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Authors response to referee and editor comments on the manuscript: Soil organic matter and labile fractions 1 
depend on specific local parameter combinations 2 
 3 
Authors response to Reviewer 1 (RC 1) for soil-2021-81 4 
 5 
Reviewer comments: 6 
In their manuscript, ‘Soil organic matter and labile fractions depend on specific local parameter 7 
combinations’, Ortner et al. present their work on the analysis of factors controlling the soil organic 8 
carbon (SOC) concentration in topsoils of the region around Trier, Germany. The authors collected topsoil 9 
samples in arable land and grassland in 4 regions with different parent material, and determined the 10 
organic carbon (OC) concentration, hot water extractable carbon (HWEC), microbial biomass carbon 11 
(MBC) and multiple soil properties on these samples. They used PCA to cluster the soil samples based 12 
on parent material and soil texture into different clusters. The aim of their study was to assess the main 13 
factors controlling topsoil organic carbon concentration, HWEC and MBC using two modelling approaches: 14 
a bivariate model and mixed effects models. The main findings are that (i) mixed effect models 15 
outperformed bivariate (linear) models in 16 
predicting OC%, HWEC and MBC, (ii) at the local scale, site-specific parameters explained OC variability 17 
better than landscape-related variables and (iii) using the ‘local’ model resulted in better results when 18 
predicting the OC% of a specific cluster compared to the ‘global’ model. 19 
 20 
The results of the present study help to improve our understanding of the factors 21 
controlling topsoil organic carbon concentrations at the landscape scale, which is needed e.g. in order to 22 
improve soil organic carbon models. The authors have constructed a valuable dataset which may benefit 23 
other researchers. I would therefore encourage the authors to make this data available through an online 24 
repository, instead of making it only available upon request. 25 
 26 
We thank for this comment. The dataset was generated in the framework of a contract project of the 27 
UBA. We aim to clarify with UBA if the data can be fully published. 28 
 29 
Overall, the manuscript is well-written. However, at multiple locations very long sentences are used, 30 
which does not benefit a smooth reading. Splitting those sentences and using more commas would 31 
improve the readability of the manuscript considerably. In addition, I would encourage the authors to 32 
use subsections in the Results and Discussion sections, which will provide a better overview to the reader 33 
of what is being presented and discussed. 34 
 35 
Following the advice, we revised and split several of the longer sentences. Further, we took up the 36 
valuable hints regarding subsections for the results and discussion sections. 37 
 38 
One of my main concerns about the present manuscript is related to the quantification of the goodness-39 
of-fit of the different models, which is now done using R-square. This is a measure to quantify the 40 
proportion of variation in a dependent variable that is explained by an independent variable, but is not 41 
a measure for the goodness-of-fit of a model. For example, a very poor model can have a high R-square 42 
value, while a good model can have a relatively low R-square value. Therefore, the authors should use 43 
a different measure to quantify the goodness-of-fit of their model when comparing measured with 44 
modelled data, such as the (root) mean square error or similar. 45 
We agree that R2 is good to show the percentage of explained variance but not fully sufficient to 46 
document the goodness-of-fit of a multivariate and/or non-linear model. Hence, the RMSE was added as 47 
a measure for the goodness-of-fit. The presentation of R2 was reduced to the bivariate linear models. 48 
 49 
In addition, I missed a discussion about the broader implications of the results and the implications for 50 
future research. For example, do the authors suggest that researchers should use ‘local’ model whenever 51 
possible? And how about regions where local information is not present? It would also be very informative 52 
if the authors would quantify the difference in predicted SOC% when using a global versus local model. 53 
To how much of an over or underestimation would this lead? Is that difference significant enough to 54 
invest more resources in the collection of local data? 55 
Statements about broader implications and some recommendations for further research were added to 56 
the conclusions.  57 
The level of over- or underestimation is represented by the RMSE. We added the RMSE 58 
 59 
Another concern is related to the title, which I find not very informative. For example, it will not be clear 60 
to someone who has not read the manuscript what ‘specific local parameter combinations’ are. Also, it 61 
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would be good to be more specific about what they mean with ‘soil organic matter and labile fractions’. 62 
From the title it is not clear if the authors mean SOC concentrations, stock, spatial distribution etc. In 63 
addition, the manuscript discusses soil organic carbon, and not all soil organic matter, so would be good 64 
to change this in the title. 65 
We changed the title in order to make it clearer: “Content of soil organic carbon and labile fractions 66 
depend on local combinations of mineral phase parameter” 67 
 68 
Lastly, it would good if the authors specify in the beginning of the manuscript that they discuss SOC 69 
concentrations, and not stocks. Throughout the manuscript, the authors talk about ‘SOC’ without 70 
specifying that it concerns concentrations, not stocks. This is an important difference, which should be 71 
clear to the reader from the abstract onwards, and repeated throughout the manuscript. For example, 72 
the authors could change ‘SOC’ to ‘SOC%’ to make this clear. 73 
In the text (e.g. Abstract) and title it is now explicitly mentioned that concentrations were investigated. 74 
 75 
Answers to specific comments RC1 76 

L18: Would be good to explain here what you mean with ‘global’ and ‘local’ clusters (and models). 77 
Thank you for this hint, we added the definition for the investigated clusters. Further we decided to replace the term 78 
‘global’ by ‘total’ to prevent any confusion regarding different scales (local vs. global scale). It should be now clearer that 79 
we talk about the total dataset encompassing the different local datasets. 80 
 81 
L19: define that you assess SOC concentrations, and thus not stocks 82 
See general comments. We added this information to the title, Abstract as well as in the Introduction and in Material and 83 
Methods. In Tables and Figures SOC is given in % as unit, indicating that we assessed concentrations. 84 
 85 
L20: would be good to explain here which ‘labile fractions’ you study 86 
Information regarding the labile fractions was added as requested. “… explaining SOC and its labile fractions hot water-extractable 87 
C (HWEC) and microbial biomass C (MBC)”. 88 
 89 
L27: here you use the term ‘organic matter’, while until here you used ‘SOC’. Please be consistent with these terms, and only use 90 
one 91 
It was changed to ‘organic carbon’. 92 
 93 
L29-30: ‘showing that labile fractions depend less on soil properties than on organic matter input and turnover in soil’. The latter 94 
were not studied, so you cannot say this with certainty. Would be better to end the abstract with a statement about the broader 95 
implications of your results. 96 
We thank for that comment. To avoid the impression that organic matter input and turnover were investigated in this study, we 97 
changed the sentence: “showing that labile fractions depend less on soil properties but presumably more on processes such as organic 98 
carbon input and turnover in soil.” 99 
 100 
L41: another important labile fraction of SOC is particulate organic carbon. Would be good to justify why you did not study this 101 
fraction 102 
The authors fully agree that particulate organic carbon (POC) is an important labile fraction. Due to trivial financial reasons we had 103 
to decide which fraction(s) we can study.  We decided for hot water extractable carbon (HWEC) and microbial biomass carbon 104 
(MBC) because they are methodically clearly defined. Quite often it is stated in the literature that both are very closely correlated 105 
with each other, and thus deliver no different information. We hypothesized and aimed to show that this is not the case (which was 106 
confirmed in this study). Additionally, we decided against POC because it is not uniformly defined, either by size or by density. So 107 
we hope that HWEC and MBC are representative measures of labile SOC pools. Again, we fully agree that having additional data 108 
on POC would have been a perfect completion of the dataset. 109 
 110 
L45: ‘MBC is expedient to explain SOC dynamics’: this is rather vague, please be more specific 111 
To make the point more clear, we added the following sentence: “Additionally, labile carbon fractions 112 
such as MBC quantitatively dominate in short-term turnover processes, while changes in SOC will only 113 
become significant over periods of decades. Therefore, MBC is expedient to explain SOC dynamics”. 114 
 115 
L45-46: ‘much less research and attempts for quantitative modelling of these labile 116 
fractions […]’: recently, multiple mechanistic models have been used to simulate labile carbon fraction 117 
such as MBC and POC, e.g. Ahrens et al. (2015), Wieder et al. (2015) and Zhang et al. (2021) 118 
Thanks for this valuable comment. We changed the sentence and included some recent publications on 119 
modelling. We left the statement that SOC is mostly considered for such simulations, while there is still 120 
a need to take labile fractions more into account in order to gain a better understanding of SOC dynamics. 121 
 122 
L58: ‘In addition or even instead of’: choose one 123 
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Ok, done. 124 
 125 
L63: please clarify what you mean with parameters versus factors, as you use these terms throughout 126 
the manuscript 127 
We added some examples. In general parameters include soil properties on a interval or ratio level of 128 
measurement while factors were applied on a nominal level of measurement. 129 
 130 
L87: please define what you mean with ‘global models’ 131 
To avoid confusion, we replaced both terms ‘global dataset’ and ‘global model’ with ‘total dataset’ and 132 
‘total model’. The total model is based on all data of the total dataset that encompasses all local datasets. 133 
 134 
L99: the term ‘sufficient quantification’ is rather vague, please clarify this 135 
The sentence was changed as follows: “It was aimed to determine the suitability of local models in 136 
comparison to total models to achieve an improved quantification of SOC, HWEC and MBC for local 137 
landscapes with distinct properties.”. 138 
 139 
L107: ‘similar numbers of samples’: how many per region? 140 
Number of samples taken per region were shown in Table 1. Additionally, they were now added to the 141 
sentence in brackets for each sampling region.  142 
 143 
L108-109: the use of the abbreviations throughout the manuscript is not intuitive and confusing for the 144 
reader, please use different names to identify the different regions, e.g. the parent material 145 
We agree that abbreviations are a compromise between clarity and readability. Using the full terms or 146 
terms such as ‘Muschelkalk’ and ‘Luxemburg sandstone’ would have been too long, though. Shorter 147 
abbreviations were also inconclusive, e.g. schist and sandstone are both abbreviated ‘S’. Hence, we plead 148 
for keeping the chosen abbreviations.  149 
 150 
L119: why were some samples stored at -20 °C and others air-dried? 151 
Samples were stored until they were analyzed. Storage was done in a uniform way for all samples. One 152 
part of each sample was air dried for subsequent chemical and physical soil analysis, another part was 153 
kept moist and was frozen for subsequent soil microbial analyses (MBC, MBN or respiration). This is now 154 
clarified in the text. 155 
 156 
L134: was the chloroform fumigation extraction performed on samples freshly collected from the field? 157 
Chloroform fumigation extraction was done on sieved material that was stored at -20°C before analysis. 158 
This was done to avoid changes until measurement was conducted. The suitability of this storage was 159 
proven in preliminary projects (data not shown). 160 
 161 
L137-140: for how long were the samples incubated? How often was the CO2 measured? 162 
Samples were preincubated at room temperature for one week (7 days), measurement was conducted 163 
for 24 hours at an interval of one hour. The information was added to the text. 164 
 165 
L143: were all parameters log-transformed? Please clarify this 166 
To conduct the principal component analysis all variables were log transformed to receive standardized 167 
and comparable variables. The information is contained in the text. 168 
 169 
L146: please provide some examples of the ‘mineral phase parameters’ 170 
We added two examples (Feo and fSilt+clay) into this sentence. 171 
 172 
L146-147: please provide more information about the linear regressions that were performed 173 
We added the information that we applied linear regressions using single predictors, and information 174 
that we checked the residuals for normality. 175 
 176 
L156-157: Please provide information about which parameters were removed from the models 177 
The non-significant parameter with the highest p-value was removed from the model. This was repeated 178 
until all remaining parameters were significantly contributing to SOC, HWEC or MBC. This information 179 
was added to the sentence. 180 
 181 
L161: were all parameters checked for collinearity? Please clarify 182 
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We checked all mineral phase parameters for collinearity, which were used by the mixed effect models. 183 
Based on this, it was found that soil texture components (Sand, c+mSilt and fSilt+clay) showed 184 
collinearity as well as ECEC and Ca+MgECEC.  185 
We clarified this in the text. 186 
 187 
L163: why a square root transformation? Please justify this 188 
Square root transformation was selected as a common transformation and was suited to achieve normal 189 
distribution and heteroscedasticity of the residuals. 190 
 191 
L163: Please clarify how the performance of the models was examined 192 
Basically, we started by comparing the explained variance and, based on your valuable comments, now 193 
also added RMSE as indicator for performance.  194 
 195 
L170: Please clarify the difference between ‘soil’ and ‘topsoil’ properties 196 
Topsoil was separately mentioned due to the fact that our study focusses on agricultural topsoils. To 197 
avoid confusion or misunderstanding we decided to use only the term ‘Soil properties‘.  198 
 199 
L177: are those differences statistically significant? What are the averages for the 200 
different parent materials? 201 
There are some statistically significant differences, averages for the parent materials are given in Table 202 
1 as mean ± sd.  203 
 204 
L186: please provide examples for the ‘parameters describing the composition of SOM’ 205 
We now mention some examples in the text, such as SOC, Nitrogen, hydrogen or oxygen, HWEC or MBC. 206 
 207 
L191-194: this is not clear 208 
We rephrased these sentences to make it clearer. Clusters identified by the PCA cover a different number 209 
of samples of the total dataset. Based on this clusters including the vast majority of samples were 210 
considered to represent the total dataset, while substantially distinct clusters, including only a part of all 211 
samples, were considered to represent  local datasets.  212 
 213 
L205-206: which 10 parameters? 214 
Selected parameters were shown in Table 1 and in Table 3. Further we mention examples of these 215 
parameters in the Material and methods section. Examples of these parameters were added to the text 216 
in brackets.  217 
 218 
L213: ‘that largely matched with those found for the complete dataset’: this is not clear 219 
We adapted this sentence to make it clearer. 220 
 221 
L224: what do you mean with ‘sufficient extent’? Similar wording is used throughout the manuscript, but 222 
this is very subjective and should be clarified. 223 
Thanks for this hint, we checked the manuscript and exchanged such phrasings by objective formulations 224 
using statistical parameters is applicable. See also L369 225 
 226 
L240: please clarify what ‘equal weight of samples’ means 227 
It means that both clusters (arable and grassland) contain a similar number of samples from each parent 228 
material resulting in a broad range for each soil property, catching up the properties from soils of each 229 
sampling region. We rephrased the sentence to clarify its meaning. 230 
 231 
L237-242: please make clear that you are discussing the results of the bivariate models 232 
We now mention that these lines address the bivariate regressions. 233 
 234 
L241: what are the ‘complex interactions of several different parameters’? 235 
The term ‘complex’ was deleted. It makes sense concerning the environmental interaction of these 236 
parameters but not concerning the contribution to a mathematical model. 237 
  238 
L243: please clarify what you mean with ‘insufficient’. Which measure do you use to determine if a model 239 
performance is sufficient or not? 240 
The authors thank for this hint, we changed such phrasings to objective formulations. 241 
 242 
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L249-251: R-square values are no measure for model performance, please provide the root mean square 243 
error (or a similar measure). Please show these results in a graph, perhaps in the supplement? 244 
R-square is used to show the explained variance, this manuscript aims to show how much mineral phase 245 
parameters and their different combinations are able to explain the variance of SOC, HWEC and MBC. 246 
Notwithstanding, we fully agree that the root mean square error is a much better measure to determine 247 
the model performance. Therefore we added it to the text. 248 
 249 
L273: do you mean the bivariate models with ‘linear regressions’ Please be consistent with this 250 
terminology 251 
Yes, it means the bivariate models, we made it clearer. 252 
 253 
L284: please replace R-square with a measure of model performance 254 
See the above response. Further, as a measure for mixed effect models we added marginal and 255 
conditional R² to describe the R² directly related to these models.  256 
R² based on predictions is only able to give a pseudo R² which is based on a linear regression between 257 
predicted vs measured. Such comparison between predicted vs measured and the received pseudo R² 258 
was technically the only option to test the performance of a total model, when applied on a local dataset. 259 
This information was added to the text. 260 
 261 
L287: please provide the goodness-of-fit values before concluding that a certain model has an ‘inferior 262 
performance’ 263 
We added this information, but we also kept the R² because it was aimed to investigate which model 264 
explained the variance to the highest extent. 265 
 266 
L309-310: by saying ‘Al- and Fe-oxides were shown to have a relevant influence on sequestration and 267 
stabilization of SOC’, it seems like you explicitly studied this, while you only used a statistical model to 268 
assess this. Also, since you model SOC concentrations and not stocks, you cannot say anything about C 269 
sequestration, as this also depends on bulk density. 270 
This sentence was linked to a reference and started with the term ‘accordingly’ in order to emphasize 271 
that this mechanistic interpretation of our statistical finding is not based on our study. We deleted the 272 
term ‘sequestration’ as requested since we do not address SOC stocks. 273 
 274 
L342: please explain what you mean by ‘multidimensional’ 275 
Multidimensional means that SOC is simultaneously affected by serval soil properties and factors which explain the overall 276 
accumulation and variability instead of single one to one interactions. 277 
 278 
L348: ‘to explain SOC’: please clarify which aspect of SOC 279 
The factors mentioned in the sentence were able to explain SOC under different scales and environmental 280 
conditions but in general, these factors enable to explain the accumulation and the variability of SOC. 281 
 282 
L366: how do you conclude that sample size biased the results? Did you test for this? 283 
It is true, randomly selecting a data subset from a total dataset does not necessarily lead to different 284 
(biased) modelling results. However, in this study total clusters including a larger number of samples 285 
showed a higher explained variance, which is a consequence of a broader variety of soil properties in the 286 
dataset. Local clusters with a smaller sample size also showed smaller ranges of the tested soil 287 
properties, leading to models with a lower explained variance. 288 
 289 
L369: ‘satisfying extent’: how is it quantified that a model performs satisfying? Please be objective in 290 
deciding if a model is good or not 291 
Thanks for this hint, we checked the manuscript and exchanged such phrasings by objective wordings. 292 
 293 
L370: what do you mean with ‘partially practicable’? 294 
We replaced the term with ‘less suitable’, which is based on the lower statistical performance. 295 
 296 
L374-375: ‘sufficient quality level’: same remark as L369 297 
Similar to comment to L369, we changed the wording. 298 
 299 
L380-381: by saying ‘It became clear that […] with different annual dynamics’, it seems like you tested 300 
annual dynamics. Please rephrase 301 
We rephrased this sentence accordingly.  302 
 303 
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L281-382: You did not take SOC turnover into account, so how can you say that this is a reason for the 304 
lower explained variability by the different models? 305 
An aim of this study was to investigate the linkage between mineral phase properties and labile fractions. 306 
Compared to SOC we found a lower explained variance for the labile fractions. Hence, we assume that – 307 
although we didn’t explicitly investigate it - the known faster turnover of these fractions (depending, e.g. 308 
on land use management) will significantly contribute to the concentration of HWEC and SOC, thus 309 
explaining the gap in explained variance of HWEC and MBC.  310 
 311 
L403-404: ‘sufficient estimation’: same remark as L369 312 
Similar to comment to L369, we exchanged this formulation. 313 
 314 
L405: would be good to end the Conclusions section with a statement about the broaderimplications of 315 
your results 316 
We added the following statement: “Our research shows that local models, respecting site-specific 317 
parameter combinations, are superior to total models, although they are based on much smaller 318 
datasets. If available, they should be preferred.” 319 
 320 
Figures and tables 321 
Fig. 2: the colours in B are difficult to distinguish 322 
It was changed accordingly. 323 
 324 
Table 3: please make clear in the caption that these are the result for the bivariate 325 
Regressions 326 
It was changed accordingly. 327 
Fig. 3: ‘Predicted vs. measured’: please clarify in the caption which model was used to make these 328 
predictions. Please provide a measure for the goodness of fit and remove the R-square values, as this is 329 
not measure for model performance 330 
We now mention it in the caption and added RMSE as measure for model performance. 331 
 332 
Table 5: please provide more information about the table in the caption, the table should be clear to the 333 
reader without having read the entire manuscript. It would be more informative to provide a table with 334 
e.g. root mean square errors instead of R-square 335 
We added some information regarding the RMSE, but we also want to show how the models differ in 336 
their explained variance. So we kept R². 337 
 338 
Figure 6: it would be informative to show the same graphs for other clusters in the 339 
supplement. Please remove the R-square values and replace them by a measure for the goodness-of-fit 340 
of the models 341 
Fig. 6 shows the performance of the previously developed total model, when applied to a local 342 

dataset. The model was not fitted to the data of the local dataset (which would have yielded 343 

the local model). Consequently, pseudo R² is given as a measure to compare the agreement 344 

(or disagreement) of modelled vs. measured data. Additional, we also added the RMSE to this 345 

Figure. 346 
 347 
Technical comments 348 
L36: driver => drivers  349 
Done 350 
 351 
L57: expedient => suitable 352 
Changed 353 
 354 
L73: space between ‘asCa2+’ 355 
Changed 356 
 357 
L119: it’s not clear what ‘respectively’ refers to 358 
Removed due to changes in this sentence. 359 
 360 
L170: it’s not clear what ‘respectively’ refers to 361 
Ok, rephrased 362 
 363 
L172: it’s not clear what ‘thereby’ and ‘essentially’ refer to 364 
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Ok, rephrased 365 
 366 
L252: it’s not clear what ‘respectively’ refers to 367 
Ok, rephrased 368 
 369 
L275: what do you mean with ‘not last’? 370 
We want to highlight that soil acidity and its describing parameter were also relevant. The typo, however, 371 
was corrected to ‘not least’. 372 
L304: ‘the in total very sandy soils’: please rephrase 373 
Ok, rephrased 374 
L320: what is ‘circumneutral’? 375 
Circumneutral means soil pH that is close to neutral or neutral having a pH between 6.5 and 7.5. It is 376 
an established term. See for example: 377 
Carl O. Moses, Janet S. Herman, 1991, Pyrite oxidation at circumneutral pH, Geochimica et 378 
Cosmochimica Acta 55/2, 471-482. 379 
 380 
L324: please remove ‘respectively’ 381 
Done. 382 
 383 
L343: please remove ‘respectively’ 384 
Done. 385 
L344: confirmed => is in line with 386 
Done. 387 
 388 

References 389 

These references were chosen based on their scientific content. I leave it up to the authors to decide if 390 
they wish to include them in their manuscript. 391 
Thanks for this valuable references, we added some of them to our manuscript. 392 
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Authors response to Reviewer #2 (RC 2) for soil-2021-81 408 
 409 
This manuscript presents the distribution of SOC and its labile fractions predicted using parent material, land use and soil properties 410 
in Southwest Germany. The results indicated that soil properties were clustered by parent materials and soil texture rather than land 411 
use. In general, mixed-effect model gave better predictions than bivariate regression. They compared “global model” with “local 412 
model” to show that the application of global model on local dataset introduced poorer predictions. Also, the explained variance 413 
generally decreased from bulk SOC to its labile fractions. 414 
 415 
In general, the objectives were clear and relevant while the scientific value is sufficient. The large sample size contributes to a robust 416 
prediction. However, there are several concerns to be addressed. 417 
 418 
One concern is the distribution of the sampling points. As mentioned in L47-48, soil formation is also controlled by climate and 419 
topography. The clustered locations of the four parent materials are likely to introduce differences in topographical and climate 420 
conditions. As climate and topography factors were not included in the models, their effects might be recognized as the effects of 421 
parent materials, texture or land use in the predictive models. (Details in comments for Fig. 1) 422 
 423 
See answer to comment on Fig. 1 424 
 425 
Another concern is that the usage of “global/local scale”, “global/local model”, 426 
“global/local cluster” and “global/local/entire dataset” may confuse readers because they were used without necessary explanations. 427 
In addition, the words “global” vs. “local” give the impression that the study aimed to compare SOC distribution on global vs. local 428 
scale, but no investigation on global scale was given in this study. 429 
 430 
Thanks for your comments. We fully agree that the term ‘global’ may be confusing. Therefore, we decided to replace ‘global’ by 431 
‘total’ to avoid this misunderstanding. 432 
 433 
In addition, in some parts of the manuscript, R^2 was used to estimate whether models are well-fitted, which is not proper. Also, 434 
the Results and Discussion can be improved by splitting them into sub-sections and better re-organizing. Finally, the readability of 435 
the manuscript can be improved by revising long-complexed sentences and vague expressions. 436 
As similar mentioned to Reviewer #1, R-square is used to show the explained variance, this manuscript aims to show how much 437 
mineral phase parameters and their different combinations are able to explain the variance of SOC, HWEC and MBC. 438 
Notwithstanding, we fully agree that the root mean square error is a much better measure to determine the model performance. 439 
Therefore we added it to the text. 440 
Title: (1) Although “soil organic matter” is used in the title, the main part of this 441 
manuscript is mostly talking about “soil organic carbon”. Please be consistent in using them because soil organic matter contains 442 
not only organic carbon but also other elements such as nitrogen. 443 
We agree that a consequent use of the terminology is required. Therefore we changed the title to “soil organic carbon” 444 
  445 
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(2) It is advised to add restrictions on the area/location because the study was performed in western Germany and will not be 446 
necessarily applicable in other places. 447 
We agree that local areas were sampled that were all located in the larger region of Trier in southwestern Germany. Anyhow, it was 448 
not our primary intention to characterize a specific region. Instead, the sampling region was selected because it covers soils with 449 
identical land use types (arable and grassland) and similar climatic/pedoclimatic conditions but substantially different parent 450 
material, and thus different soil mineral phase properties. Our prior aim was to show that SOC of local clusters is better assessed 451 
using local models. It is clear that at larger scales (nation-wide and larger) differences in pedoclimate add to the factors explaining 452 
SOC (and labile fractions). However, the climatic impact is generally not relevant for local areas independent of where they are. At 453 
the same time what the reviewer states is exactly would we found and suggest: A specific assessment of local areas with a local 454 
model is preferred. Such a local model is not transferable on to one to another local area. 455 
 456 
L14, L18 and L21: It is confusing to mention “local scale”, “global/local cluster” and “global/local dataset” in abstract without 457 
further explanation. The usage of “local” vs.“global” gives me a feeling that this study compares SOC distribution on local vs. 458 
global scales. Apparently, the distribution of the sampling sites represents a local or sub-regional scale. It is suggested to either give 459 
them definitions when they are mentioned for the first time or replace them with more suitable words. 460 
Thanks for your comment, we now define what is meant by local and total (previously global) cluster/dataset and we replaced the 461 
scale-related terminology. 462 
 463 
L21: As only regressions were performed in this study, it is recommended not to use both correlation and regression in the text. 464 
We revised the text accordingly. 465 
 466 
L21-23: It is difficult to understand this sentence. It is not clear between which factors the correlations are significant. What does 467 
“partially low” mean? Splitting this sentence into simple ones may help. 468 
For a better understanding of the sentence, we followed the advice to split it. ‘Partially low’ means that some of the correlation 469 
coefficients (R²) only showed a small explained variance. Such vague terminology was replaced by more objective wordings. 470 
 471 
L66: In general, organo-mineral associations are considered contributing to the formation of stabilized fractions (not labile fractions) 472 
and therefore the accumulation of SOC. 473 
We agree that the formation of organo-mineral associations leads to the stabilization of SOC. Additionally, such accumulation of 474 
SOC goes along with increasing contents (not stabilization) of labile fractions such as DOC that are only weakly retained through 475 
other mechanisms in the presence of pedogenic oxides. This is what we wanted to say. We changed the sentence as follows to make 476 
it more clearer: “Organo-mineral associations are highly relevant for stabilization and accumulation of SOC and also for the 477 
accumulation of its labile fractions (Lützow et al., 2006).” 478 
 479 
L72: …leading to SOC sequestration… 480 
We adapted this line. 481 
 482 
L85: Please check if surnames and given names are misplaced in this reference. 483 
Checked, there is no misplacement of surname and given names. Surname is Jian-Bing, given name is Wei. See 484 
https://link.springer.com/article/10.1007/s10661-005-9158-5#article-info 485 
 486 
L90: “Local vs. global models” are confusing. Do they mean models on local vs. global scales? 487 
We wanted to indicate that it is necessary to apply models on local clusters/datasets instead of on one global (total) dataset to best 488 
explain SOC (more precisely its variance). 489 
 490 
 491 
L102: Is the “entire dataset” equivalent to the “global dataset”? 492 
A global (now total) dataset is defined as a dataset encompassing the large majority of the dataset. Therefore, next to the entire 493 
dataset, the clusters of arable, grassland and loam act as total (previously global) dataset. 494 
 495 
Materials and Methods 496 
L104: It is recommended to add more information about the study area. In general, most studies show readers climate factors (e.g. 497 
annual precipitation and average temperature), soil type/classification and composition of vegetation/crops. 498 
We added additional information regarding the study area.  499 
 500 
L119: Please explain why soil samples were stored either at -20 °C or air-dried. For different analyses? 501 
Samples were stored until they were analyzed. Storage was done in a uniform way for all samples. One part of each sample was air 502 
dried for subsequent chemical and physical soil analysis, another part was kept moist and was frozen for subsequent soil microbial 503 
analyses (MBC, MBN or respiration). This is now clarified in the text. 504 
 505 
L139: More information of the incubation is appreciated. How long the samples were incubated before sampling? What was the 506 
temperature? Did you sample for only once or multiple times? 507 
Samples were preincubated at room temperature for one week (7 days), measurement was conducted for 24 hours at an interval of 508 
one hour. The information was added to the text..  509 

https://link.springer.com/article/10.1007/s10661-005-9158-5#article-info
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 510 
L146: Please give more information of linear regressions. For example, indicate that they only have one predictor. Did you check 511 
the normality of residues? 512 
We added respective information. Normality of residues was checked. 513 
 514 
L147: and after: What are the reasons for performing mixed-effect models? Why parent materials, texture group and land use are 515 
selected as random effect variables? In general, random effects are used when samples are only a small subset of the group or when 516 
limited groups are included. Does it aim to make predictors on a larger scale using the limited dataset? 517 
West, Welch, & Galecki suggest in their book “Linear mixed models” that such models can be applied to clustered data. We decided 518 
to use mixed effect models to capture the effect of soil properties applied as fixed effects. Developed on different parent material or 519 
under different land use management the soils showed a further source of variability. Furthermore, we selected these variables as 520 
random factors. It is aimed to remove their bias from the specific levels of the applied random factors. To this end, sampling sites 521 
were specifically selected that covered the factors parent materials, texture group and land use. 522 
 523 
L162-163: Why was response variable transformed but not predictors? 524 
Transformation of the response variable is common and was applied to achieve a normal distribution of the residues. The predictors 525 
of the mineral phase determine the variability of SOC and its labile fractions. Therefore we tried to keep them as they occur in the 526 
environment/our dataset. SOC (or its labile fractions) as variable part of the soil was consequently transformed to achieved normally 527 
distributed residues. 528 
  529 



11 
 

Result 530 
 531 
Overall: The readability can be improved by dividing this section into a few subsections due to a large content in this section. 532 
Thanks for this valuable advice, we divided the results in subsections. 533 
3.1 Soil properties and cluster identification 534 
3.2 Bivariate relationships of mineral phase and SOC and its labile fractions 535 
3.3 Estimation of SOC and its labile fractions by mixed effect models 536 
3.4 Comparison of total and local explained variability. 537 
 538 
L170: What are “soils and topsoil properties”? Consider revising. 539 
Line was revised. Topsoil was separately mentioned due to the fact that our study is focused on agricultural topsoils. To avoid 540 
confusion or misunderstanding we decided to use only the term ‘Soil properties’.  541 
 542 
L177-178: Are they significantly different or different by looking at means/ranges? 543 
Differences were mostly statistically significant differences. Here we solely wanted to mention that a higher proportion of organic 544 
substance was found in grassland soils compared to arable soils. 545 
 546 
L190: “Somewhat different” is vague. 547 
It was changed accordingly. 548 
 549 
L205: and after: This paragraph is comprised of isolated points, which makes it difficult to follow. A suggestion is to describe Table 550 
3 in a well-organized way to shorten this paragraph. For example, you can follow the order of entire dataset --> land use --> parent 551 
materials --> texture, or you can introduce them by the types of predictors. Also, focusing on your key findings helps. 552 
We will try to rephrase it paragraph. Anyhow we include subsections. 553 
 554 
L207-208: The items “global cluster” and “local cluster” are explained here but they appear in previous parts (e.g. L18 and L193). 555 
Please give explanations when they appear for the first time. 556 
 557 
Thanks for this hint, we mention the definitions earlier. 558 
 559 
L208 and L94: Please be consistent for “parent material” or “parent rock material”. 560 
We changed it. Now it is consistent. 561 
 562 
L224: What is “a sufficient extent”? Please specify. 563 
Applying “sufficient” is not objective enough, therefore we rephrased this line and specified it by giving the respective level of R². 564 
 565 
L237 -242: Please indicate that they are from Table 3. 566 
The reference to Table 3 was added. 567 
 568 
L240: How to know “weight of samples” is equal? Why does it act as global cluster? 569 
We mean the statistical weight of the samples. We changed the sentence as follows: “The clusters of both land use types largely 570 
overlapped and contained a similar proportion of samples from each parent material. Therefore they can be regarded as total 571 
clusters.”. 572 
 573 
 574 
 575 
 576 
L250: It is not clear how to compare R^2 between bivariate regression and mixed-linear model. By the means of each cluster? 577 
Next to the comparison of the explained variance we showed the RMSE to give a measure for model performance. This is now 578 
better clarified in the revised text. ”By the mixed effect models, R²cond reach higher explained variance for SOC (R²cond = 0.39-0.89, 579 
RMSE = 0.21 – 0.42%) compared to the bivariate regressions (R² = 0.00-0.73, RMSE = 0.27-1.12%).”  Further we added some 580 
information at section 2.3 581 
 582 
L257-258: DCS sites look different from LBS and DLS. 583 
We clarified it. “Models using parent material or texture as random effect mostly showed minor differences for predictions of SOC, 584 
HWEC or MBC. Anyhow, for some local clusters (e.g. DCS, LBS and DLS) distinct results were found. Models using land use as 585 
random effect were partly distinct, though, indicating the different influence of land use on SOC and its labile fractions (Table 4).  586 
“ 587 
 588 
L279-286: Please indicate related Tables and Figures. It is hard to follow. 589 
We now refer to the considered Tables. 590 
 591 
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L282 & L287-288: This gives me a feeling that you are estimating whether the models were well-fitted. If this is true, comparing 592 
R^2 does not make sense. Large R^2 means more variation is explained by predictors. Instead, you have to look at the distribution 593 
of residue using e.g. root mean square error (RMSE). 594 
It is aimed by this study to show how well the specific models with their specific parameter combination explained the variance of 595 
SOC, HWEC and MBC. Therefore, we rephrased this sentence. We agree that in order to show the goodness of the model fit RMSE 596 
is the correct measure. We added this information. 597 
 598 
Discussion 599 
 600 
L304-305: “for the in total very sandy soils …of LBS”. Try to revise this sentence. 601 
Sentence was adapted. 602 
 603 
L309: “…SOC in soil” --> “in soil” 604 
It was changed accordingly. 605 
 606 
L314-315: “ECEC, Ca and Mg are suitable predictors for SOC in this study”; L317-318: “The minor ability of ECEC (Ca+Mg) to 607 
explain SOC..” They look like contradictory. Also, I missed a point that whether you are talking about entire dataset or specified 608 
cluster. Table 3 showed that the predictions using ECEC and (Ca+Mg) are largely dependent on parent materials and texture cluster. 609 
A possible explanation is that DCS soils had more sands and lower pH, so that Ca and Mg do not contribute to SOC stabilization, 610 
whereas DLS and PSS soils had higher pH, so that Ca and Mg bridging play a role in SOC stabilization (see your cited paper). 611 
Please consider re-organizing this part. 612 
We clarified these sentences. (L314-315)“The minor ability of ECEC and (Ca+Mg)ECEC and the higher ability of pedogenic oxides 613 
to explain variance of SOC and its labile fractions indicated in this study for several cluster (total and local) by bivariate regressions 614 
(Table 3), corresponds to findings of Rasmussen et al. (2018).”…… 615 
(L317-318)“ Ability of ECEC and (Ca+Mg)ECEC was further strongly dependent on the observed parent material or texture cluster. 616 
By the mixed effect models, (Ca+Mg)ECEC were more frequently identified as relevant to explain SOC and its labile fractions. 617 
Thereby it is shown that by a collective approach of several soil parameters more driver explain a larger part of the variability than 618 
by bivariate approaches. As example ECEC and (Ca+Mg)ECEC was found as relevant for the clusters of DLS and PSS, while for 619 
DCS it show a minor importance.” 620 
 621 
L328-333; Grassland had higher SOC contents than arable land, but the PCA showed that they were largely overlapping. This is a 622 
good point for discussion. Some explanations will be appreciated. 623 
We amended the Discussion accordingly. “In comparison, mineral phase soil properties clearly separate the dataset while 624 
composition of SOM was less enabled for this purpose. Consequently, a broad scatter of the land use clusters was obtained by PCA, 625 
suggesting to treat the land use clusters as total datasets as well.” 626 
 627 
L334-336: “Several studies with…” has only one citation? 628 
Thanks for this hint, we added further studies.  629 
 630 
L351-352: Previous explanations are good reasons for using multiple parameter models. However, the reasons for using mixed-631 
effect linear model are not well mentioned. For example, why not multiple fixed-effect model or partial least square regression? My 632 
recommendation is to stay in a safe way. 633 
As mentioned above, West, Welch & Galecki suggest in their book “Linear mixed models” this type of model for clustered data. 634 
Soil parameters (e.g. pedogenic oxides, texture) have an influence (with differing strength) on SOC, HWEC or MBC. Furthermore, 635 
there is an effect by factors such as the parent material or land use. To further capture this effect, we decided to use mixed effect 636 
models.  637 
 638 
 639 
L373-374: To be prudent, I would say models of parent materials explained more 640 
variation of SOC because we don’t if the model-fitting was better than others (see 641 
comments on L282). The same for L374-375. 642 
We changed the sentences to highlight the explained variance. 643 
 644 
L379 and after: A major finding of this study is that the overall explained variance 645 
decreased in the order SOC>HWEC>MBC. Some explanations for this would be 646 
appreciated. 647 
Ok, we added further explanations. 648 
 649 
L395: Please be consistent with “mixed effect model” and “mixed parameter model”. 650 
Ok, thanks for this hint. The relevant line was changed to mixed effect model 651 
 652 
Figures and Tables: 653 
Fig. 1 The clustered locations of the four parent materials are likely to introduce 654 
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differences in topographical and climate conditions. For example, DCS and LBS sites are mostly located on the top of the 655 
mountain/hill, whereas PSS sites are located in a flatter area. The difference may affect soil formation and SOC accumulation. Also, 656 
the different altitudes between DCS and PSS sites may cause differences in climate conditions. Therefore, it is possible that the 657 
variation caused by climate and topography factors was explained by parent material or land use in this study. I just wonder whether 658 
something has been performed in experimental design, statistics or anything else to deal with this problem. 659 
 660 
It was aimed by this study to estimate the effect of the mineral phase. Selected sampling region covers soils with identical land use 661 
and similar climatic/pedoclimatic condictions but the parent material is substantially different. Consequently soil mineral phase 662 
properties differ largely between the local sampling clusters. Our prior aim was to show that SOC of local cluster is better explained 663 
by local models, at larger scales we fully agree that differences in pedoclimatic conditions were factors needed to explain SOC (and 664 
its labile fractions). For local areas the climatic factors is generally not relevant independent of where they are.  665 
 666 
 667 
 668 
Table 1: What does the unit for respiration mean? As suggested for L146, more 669 
information of the incubation is needed. 670 
There was a typo in the unit. We corrected it: [µg CO2-C/(g dry matter h)] 671 
We added more information regarding the incubation.  672 
 673 
A suggestion for Fig. 2: Why not combining Fig. 2 and Fig. S1 if you want to show the readers that parent material and soil texture 674 
make good separations while land use make an insufficient separation? 675 
We tried this option. However, with three plots on one page the readability of the individual plots was poor. So we decided to leave 676 
it as is with a focus on the two plots showing differences between clusters 677 
 678 
Fig. 2 and 5: The shape of the font might be improved as some of them are narrow but others are wide. 679 
 680 
Ok, we adapted the fonts of these figures.  681 
 682 
Fig. 3 It looks like that the residue of MBC is less normally distributed compared to SOC and HWEC. Particularly, MBC in grassland 683 
soils is underestimated. Also, HWEC has a similar but less obvious trend. My questions are: (1) Is the model prediction of MBC 684 
less reliable than others due to the skewed distribution of residue? (2) Are there any reasons for the underestimation of MBC in 685 
grassland soils? 686 
For SOC, HWEC and MBC there is a trend of underestimation for grassland sites which increases from SOC to the labile fractions. 687 
We assume that additional soil properties (e.g. content of fine root biomass) affect the organic matter here. Since this study is focused 688 
on mineral phase parameters and did not consider further biological properties models were less suited to explain SOC and its labile 689 
fractions in grassland soils. 690 
 691 
Fig. 4 What do “dataset”, “DCS”, “sand” and “arable” on the left mean? 692 
It shows which cluster is shown there with its models. We added information to the figure in order to clarify it. 693 
 694 
Table 5: Does the “model” before “global model to local cluster” mean local model? 695 
Yes, this model means the R² which is received by the consideration of predicted vs measured data of the models for the specific 696 
clusters/datasets. We clarified it 697 
 698 
Fig. 6: Is it a part of Table 5? Is there any reason to make it a new Figure? Maybe try to combine Table 5, Table S3 and Fig. 6 into 699 
a good shape, or move unnecessary information to supplementary. 700 
Fig. 6 shows the performance of the total model and the respective local model, when both are applied to the same local dataset. 701 
This was tested by comparing measured and modelled data based on simple linear regression. This yielded a pseudo R². This 702 
information is contained in Table 5. We added information regarding RMSE at Table 5 and Figure 6. 703 
 704 
 705 

  706 
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 716 
Abstract. Soil organic matter (SOM) is an indispensable component of terrestrial ecosystems. Soil organic carbon (SOC) dynamics 717 

are influenced by a number of well-known abiotic factors such as clay content, soil pH or pedogenic oxides. These parameters 718 

interact with each other and vary in their influence on SOC depending on local conditions. To investigate the latter, the dependence 719 

of SOC accumulation on parameters and parameter combinations was statistically assessed that vary on a local scale depending on 720 

parent material, soil texture class and land use. To this end, topsoils were sampled from arable and grassland sites in southwestern 721 

Germany at four regions with different soil parent material. Principal component analysis (PCA) revealed a distinct clustering of 722 

data according to parent material and soil texture that varied largely between the local sampling regions, while land use explained 723 

PCA results only to a small extent. The obtained PCA clusters were differentiated into totalglobal clusters that contain the entire 724 

dataset or majorlarge proportions of it the entire dataset and local clusters which only representing only a smaller part of the dataset. 725 

and the different local clusters of the dataset were furtherAll clusters were analyzed for the relationships between SOC 726 

concentrations (SOC %) and mineral phase parameters in order to assess specific parameter combinations explaining SOC and its 727 

labile fractions hot water-extractable C (HWEC) and microbial biomass C (MBC). Analyses were focused on soil parameters that 728 

are known as possible predictors for the occurrence and stabilization of SOC (e.g. fine silt plus clay and pedogenic oxides). 729 

Regarding the total global clustersdataset, we found significant relationships,. correlations  by bivariate models, between SOC and 730 

, its labile fractions hot water-extractable C (HWEC) and microbial biomass C (MBC), respectively and the applied predictors,. 731 

Yyet some correlation coefficients indicate a partlywere partially low explained variances indicated the limited suitability of 732 

bivariate models. Mixed Hence, mixed effect models were used to identify specific parameter combinations that significantly explain 733 

SOC and its labile fractions of the different clusters. Comparing measured and mixed effect models-predicted SOC values revealed 734 

acceptable to very good regression coefficients (R² = 0.41-0.91) and low to acceptable root mean square error,  (RMSE = 0.20-0.42 735 

%). Thereby, the predictors and predictor combinations clearly differed between models obtained for the whole data set and the 736 

different cluster groups. At a local scale site specific combinations of parameters explained the variability of organic matter carbon 737 

notably better, while the application of totalglobal models to local clusters resulted in less explained variabilityvariance and a higher 738 

RMSEsufficient performance. Independent from that, the overall explained variance by marginal fixed effects generally decreased 739 

in the order SOC > HWEC > MBC, showing that labile fractions depend less on soil properties but presumably more on processes 740 

such as than presumeably on organic carbonmatter input and turnover in soil. 741 

  742 
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1 Introduction 743 

Soil as an inherent part of terrestrial ecosystems acts as a major regulator of the organic carbon (OC) cycle especially through the 744 

function of OC storage (Heimann and Reichstein, 2008; Scharlemann et al., 2014). Hence, it is of utmost relevance and a focus of 745 

ongoing research to define models and parameter sets that best describe and predict soil organic carbon (SOC) contents of soils. 746 

Further it is required to identify the drivers for SOC storage at different scales and sites to adapt the management of soils. Overall, 747 

the relevance of parameters for quantification of SOC is often described by bivariate relationships (Hassink et al., 1993; Barré et 748 

al., 2017). Yet, SOC and its potential sequestration by formation of organo-mineral associations depends on combinations and 749 

interactions of several environmental factors or soil properties, so that the number of multivariate applications to estimate the 750 

accumulation of SOC is increasing  (Hobley et al., 2015; Heinze et al., 2018).  751 

In addition to total SOC, its labile subfractions such as hot water extractable carbon (HWEC) or microbial biomass carbon (MBC) 752 

are more and more recognized as fast reacting SOC pools in order to analyze carbon dynamics in soils (Weigel et al., 2011; Lal, 753 

2016). The HWEC is known as a measure of the bioavailable and mineralizable fraction of SOC (Spohn and Giani, 2011; Heller 754 

and Zeitz, 2012). The MBC is a quantitative measure of the microbial community that plays an indispensable role for the turnover 755 

of SOC. Additionally, Because of the faster turnover labile carbon fractions such as MBC quantitatively dominate in short-term 756 

turnover processes, should be considered more frequently to improve the understanding ofwhile changes in SOC will only become 757 

significant over periods of decadesdynamics in various regions. Therefore, MBC is expedient to explain SOC dynamics (Liang et 758 

al., 2017). Determination of HWEC and MBC, allows to get a representative measure of the labile SOC pool. Labile carbon fractions 759 

were recently simulated (Wieder et al., 2015; Zhang et al., 2021) but In contrast, much less research and attempts for quantitative 760 

modeling of these labile fractions compared to SOC they were less consideredhave been done in the past (Liddle et al., 2020). 761 

Because of the faster turnover labile carbon fractions should be considered more frequently to improve the understanding of SOC 762 

dynamics in various regions. 763 

It is well known that factors such as climate, topography, vegetation, parent material and time are major factors influencing contents 764 

and storage of SOC (Jenny, 1941). Accordingly, large scale (often national or continental) surveys often include geographical 765 

properties, vegetation types, general forms of land use as well as climatic site conditions to explain the variability of SOC 766 

(Wiesmeier et al., 2014; Gray et al., 2015). Consequently, vegetation and anthropogenic influence by land use and land use changes 767 

are essential factors to model SOC accumulation and dynamics (Poeplau and Don, 2013; Dignac et al., 2017). The relevance of the 768 

parent material for SOC sequestration and stocks was discussed for sites and small landscapes of a few km² (Barré et al., 2017; 769 

Angst et al., 2018) as well as for large areas on the scale of regions or countries (Wiesmeier et al., 2013; Vos et al., 2019). The 770 

potential influence of parent material on SOC is mostly considered by parameters of soil mineralogy and texture (Herold et al., 771 

2014). Factors such as climate, topography, parent material, vegetation or land use are well suited to explain the variability of SOC 772 

at larger scales or at landscapes with a high variability concerning these factors. In contrast, for smaller, local study areas or rather 773 

uniform areas with a low factor variability an inclusion of these factors as variables is less suitableexpedient (Wiesmeier et al., 774 

2019).  775 

In addition to or even instead of these general factors, further parameters describing the soil composition in a more specific way, 776 

become relevant at regional or local scale setting boundaries for SOC accumulation, e.g. by the formation of organo-mineral 777 

associations. For an identification of SOC variations due to site specific characteristics selected parameters are used which are 778 

mostly known as indicators for stabilization of SOC such as content of fine silt, clay and pedogenic oxides or microbial parameters 779 

such as microbial biomass and amino sugars (Angst et al., 2018; Quesada et al., 2020). There are indications that for the explanation 780 

of SOC variability on a local to regional scale soil parameters (e.g.e.g., pedogenic oxides, texture fractions) instead of factors (e.g., 781 

parent material or climate) are especially suitable. Models based on soil parameters also allow to identify possible drivers of SOC 782 

stabilization while using the above mentioned general factors would not deliver a satisfying result (Wiesmeier et al., 2019; Adhikari 783 

et al., 2020).  784 
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Organo-mineral associations are highly relevant for stabilization and accumulation of SOC and its labile fractions (Lützow et al., 785 

2006). It is well known that the different mineral particle size classes vary in their ability to interact with SOC, forming organo-786 

mineral associations (Arrouays et al., 2006; Lützow et al., 2007). On one hand coarse particle size fractions such as sand, coarse silt 787 

(cSilt) and medium silt (mSilt) contribute less to interactions between SOC and the mineral phase while on the other hand fine silt 788 

(fSilt) and clay dominate such interactions (Ludwig et al., 2003). In addition, the mineral composition of the fine fraction, i.e. types 789 

of clay minerals and pedogenic oxides, is relevant for the interactions of SOC with the mineral phase (Kleber et al., 2015; Porras et 790 

al., 2017). Especially iron and aluminum oxides interact with SOC leading to its sequestration (Mikutta et al., 2006). Stabilization 791 

of SOC is further enhanced by multivalent cations such as Ca2+ and Mg2+ going along with higher soil pH (Kaiser et al., 2012; 792 

O'Brien et al., 2015). Covering on one hand all quantitative relevant cations and on the other hand being an overall measure of soils 793 

sorptive properties the effective cation exchange capacity (ECEC) provides an overall measure to model cation impact on SOC 794 

storage (Kaiser et al., 2012; O'Brien et al., 2015). Rock fragments (soil skeleton) contribute only little to SOC storage (Poeplau et 795 

al., 2017). Anyhow, the fraction of rock fragments is considered as a relevant parameter to assess SOC accumulation due to a 796 

potential saturation effect in soils with a high rock fragment content in consequence of a disproportionately high input of organic 797 

matter in the fine soil fraction (Bornemann et al., 2011).  798 

Consequently, understanding SOC as a dynamic equilibrium of heterogeneous compounds with distinct relationships to various 799 

components of the soil mineral phase (Lehmann and Kleber, 2015) implements that SOC accumulation is best described and 800 

predicted by a variety of soil mineral phase parameters instead of a single predictor. Thereby combinations of parameters or factors 801 

can differ according to the considered scale. Consequently, multivariate approaches better explain the SOC variability (Heinze et 802 

al., 2018; Liddle et al., 2020) compared to bivariate linear regressioncorrelation models that are often unsuited at the level of local 803 

and regional soilscapes (Jian-Bing et al., 2006). The latter especially applies for studies that are limited to a single specific location 804 

or only contain a limited number of categorical variables or estimated soil parameters (Liddle et al., 2020). On the other hand, 805 

predictions based on totalglobal models, based on the majoritylargest part of the dataset, are often less site-specific and thus can 806 

possibly lead to an insufficient quantification of SOC at certain sites.  807 

Consequently, it is required to determine parameter sets to estimate SOC and its labile fractions HWEC and MBC at a regional or 808 

landscape scale. It is necessary to identify predictor parameters and categorical environmental factors that are able to predict SOC 809 

as well as its labile fractions by using models based on local and totalglobal datasetsmodels. Differences regarding the relevance of 810 

a predictor in local vs. totalglobal models have to be identified to boost model performance and to fit adequate datasets using the 811 

best set of parameters for the prediction of SOC at the investigated location. This overall aim was investigated in this study using a 812 

dataset from four local agricultural areas in the greater region of Trier (each with a size of 5-10 km²), thus with similarity in the 813 

global factors but distinct local properties such as parent rock material, soil texture and land use. Regarding the composition of the 814 

soil mineral phase the four local areas differ among each other, but as a totalglobal dataset they represent a broad range of soil 815 

properties typical for soils in temperate regions. Therefore, the dataset enables to verify whether the totalglobal dataset is able to 816 

cover the local variability of SOC and its labile fractions. Objectives of this study were, (i) based on identified differences in soil 817 

properties to determine best fitting factors and parameter combinations, based on identified differences in soil properties, that explain 818 

the variability in SOC and its labile fractions HWEC and MBC. (ii) It was aimed to determine the suitabilityrelevance of local 819 

models in comparison to total global models to achieve an improved sufficient quantification, on a comparablesimilar level, of SOC, 820 

HWEC and MBC for local landscapes with distinct properties. To this end, bivariate linear regression, principal component analysis 821 

(PCA) and mixed effect models were used in order to find out whether totalglobal models or local models are better fitting. (iii) It 822 

was assessed if local datasets show a distinct combination of significantly contributing predictor parameters compared to other local 823 

datasets and the entire dataset. 824 
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2 Material and Methods 825 

2.1 Study area 826 

The study was conducted in the greater area of Trier in southwestern Germany (Fig. 1). Bulk samples from topsoil horizons, i.e. 0-827 

25 cm for arable and 0-15 cm for grassland soils, were taken in spring 2017 and 2018 from 199 agricultural sites used as arable land 828 

(150) and grassland (49). Similar numbers of samples were taken from four regional areas with different parent materials. Parent 829 

materials were Devonian clay schist (DCS, n= 50), Luxemburg sandstone (LBS, n= 50), sandy dolomitic limestone (DLS, n= 50) 830 

from the Muschelkalk, and Permian siltstone and fine sandstone (PSS, n= 49) from the Rotliegend (Wagner et al., 2011). Across 831 

the different parent materials, a similar proportion of samples were taken at sites under arable or grassland management. Climatic 832 

conditions in the greater area of Trier are classified as warm-temperate, fully humid with warm summer temperate (Cfb) (Kottek et 833 

al., 2006). According to the German Weather service (DWD) mean annual precipitation is 784 mm and mean annual temperature is 834 

9.8°C. Investigated sites were dominated by the soil groups Regosol and Cambisol. The main cultivated crop plants are wheat, 835 

barley, triticale, maize orand rapeseed. 836 

 837 

Fig. 1. Study area in the greater Trier region; sampling sites at the four regions with different parent material are indicated, i.e. 838 

Devonian clay schist (DCS), sandy dolomitic limestone (DLS) from the Muschelkalk, Luxemburg sandstone (LBS), and Permian 839 

siltstone and fine sandstone (PSS) from the Rotliegend (©GeoBasis-DE). 840 

 841 

 842 
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2.2 Analysis of soil properties 843 

Samples were sieved < 2 mm and the stone content (> 2 mm) was determined gravimetrically. For further analysis, Each samples 844 

were dividedwas split and stored at -20°C on one hand andor air-dried on the other hand, for subsequently biological and chemical 845 

soil analysis, respectively. Soil pH was measured in 0.01 M CaCl2 solution using a pH/Con 340i glass electrode (WTW GmbH, 846 

Weilheim). Particle size distribution was determined by a combination of wet sieving and pipette method according to Blume et al. 847 

(2011). Dithionite-citrate extractable Fe (Fed) was measured according to Mehra and Jackson (1958). To this end, 2 g air-dry soil 848 

were extracted with a mixture of 1 g sodium dithionite, 40 ml sodium citrate and 10 ml NaHCO3. Oxalate extractable Fe and Al 849 

(Feo, Alo) were determined according to  Schwertmann (1964). For extraction, 1 g air-dry soil was shaken for 2 h in the dark in 50 850 

ml NH4
+-oxalate (pH 3) and filtered afterwards. Extraction for the determination of the effective cation exchange capacity (ECEC) 851 

was conducted using 1 M NH4Cl. Elemental analyses for pedogenic oxides and ECEC (Na, K, Fe, Mn, Al, Ca, Mg) were done using 852 

atomic absorption spectrometry (Varian AA240 FS Fast Sequential Atomic Absorption Spectrometer; Darmstadt, Germany). 853 

For estimation of total carbon (TC) and nitrogen soil was dried at 105°C, grinded and measured by an Elemental Analyzer Analyser 854 

EA3000 Series (HEKAtech GmbH, Wegberg). For carbonate containing soils the inorganic carbon (IC) was determined following 855 

carbonate destruction using phosphoric acid at a temperature of 100°C (IC Kit combined with Elemental Analyzer Analyser EA3000 856 

Series, HEKAtech GmbH, Wegberg). SOC content was calculated as the difference of TC and IC. HWEC and hot water extractable 857 

nitrogen (HWEN) were determined following Körschens et al. (1990), using a Gerhardt Turbotherm TT 125 (Gerhardt, Bonn, 858 

Germany) for extraction of 10 g soil with distilled water (50 ml) at 100°C for 1 h. After extracts cooled down 1 ml of 0.2 M MgSO4 859 

was added and samples were centrifuged at 1476 g for 10 minutes. Microbial biomass was estimated by using chloroform fumigation 860 

extraction according to Joergensen (1995) with 0.01 M CaCl2. Extracts of HWEC, HWEN, microbial biomass carbon (MBC) and 861 

nitrogen (MBN) were analyzed analysed with a TOC-VCPN analyzer analyser (Shimadzu, Duisburg, Germany). For MBC and 862 

MBN correction factors kEC = 0.45 and kEN = 0.4 respectively, were used (Joergensen, 1996; Joergensen and Mueller, 1996). Soil 863 

respiration was measured according to Heinemeyer et al. (1989) . Following a week of incubation at room temperature (20 864 

°C)Therefore, 25 g dry matter equivalent of sieved field moist soil were weighted in a tube that was flushed with 200 mL min-1 of 865 

CO2-free, humid air for 24 hours. Evolved CO2 was determined by ain one-hour intervals after the soil passage using an infrared 866 

gas analyzer analyser (ADC 225 MK3, The Analytical Development, Hoddesdon, England).  867 

2.3 Data analysis 868 

Principal component analysis (PCA) was carried out to identify clusters within the dataset. For that purpose, 24 parameters 869 

describing the mineral phase as well as SOM were included (Table 1). To conduct the PCA applied variables were log transformed, 870 

centered and scaled to achieve standardized and comparable variables. Ellipses were defined by 95 % of the confidence interval 871 

according to Fox and Weisberg (2019), The cluster of clayey soils was not included in the analysis due to a small number of samples 872 

(n = 5). Using single predictors, Llinear regressions were performed to identify significant impact of mineral phase parameters (e.g. 873 

Feo [g kg-1] or fSilt plus clay [%])   on SOC, HWEC and MBC for the entire dataset as well as for the identified clusters. Residues 874 

of the bivariate linear regressions were checked for normality..  Mixed effect models were determined for the entire dataset and for 875 

identified clusters. To this end, selected soil properties of the mineral phase (Fed-o [g /kg-1], Feo [g/ kg-1], Alo [g/ kg-1], sand [%], cSilt 876 

plus mSilt [%], fSilt plus clay [%], (Ca + Mg)ECEC [mmolc/ kg-1 ], stones [%] and pH) were used as fixed effect while, ‘parent 877 

material’, ‘soil texture group’ or ‘land use’ were used as random effect. In general, as random effects only categorical variables 878 

were selected, while for the fixed effects variable mineral phase parameters were selected. Parent material as a random effect 879 

includes the four different soil parent materials that dominate at the four sampling sites. For the soil texture group as random effect 880 

four levels were applied (sandy, silty, clayey and loamy soils). The additional implementation of the soil texture groups was done 881 

to consider the potential different intercepts of the specific groups. Land use as random effect comprised the two management 882 

practices arable and grassland. Restricted Mmaximum likelihood was applied as estimation procedure for the mixed effect models. 883 

At the beginning, all selected soil properties were included in each model. Stepwise removal of the most the least significant 884 
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parameters  was conducted until all properties included in the models significantly contributed to SOC, HWEC or MBC, 885 

respectively. Additional Additionally, the relevance of variables was visualized by the mean values of the clusters multiplied with 886 

their coefficient received from the mixed effect models. All parameters involved as fixed parameter in the mixed effect models were 887 

checked for collinearity. To avoid collinear behaviour of the soil texture related parameters either ‘sand’ or ‘coarse silt plus medium 888 

silt’ (cSilt plus mSilt) were used for model development. The two models received were compared by their Akaike information 889 

criterion (AIC) using ANOVA to identify the best model. Furthermore, ECEC was excluded from mixed effect models to avoid 890 

overfitting due to collinearity with (Ca+Mg)ECEC. Residuals of models were examined for homoscedasticity and normality. In case 891 

these criteria were not fulfilled, the response variable was square root transformed to achieve variance homogeneity and normality. 892 

For the mixed effect models a marginal R² (R²marg) and conditional R² (R²con) coefficients was estimated according to Nakagawa and 893 

Schielzeth (2013). Thereby R ²marg examinesa the explained variance of the fixed effects while R²cond also includetests the variance 894 

including the effect iof the random effects. Next to this,The root mean squared error (RMSE) was estimated as a measure forof the 895 

model performance. For the mixed effect models, RMSE was estimated based on the comparison of predicted and measured values. 896 

To transfer the mixed effect models of a total dataset to a local dataset, predictions were conducted usapplying the total dataset 897 

models onto a local datasets. Measures to inspect these results (R² and RMSE) were The received from comparisons of predicted 898 

values of SOC; HWEC and MBC received from the different mixed effect models were compared with thevs. Mmeasured values 899 

using bivariate linear regressions. This yielded of SOC; HWEC and MBCR² and RMSE as measures of goodness. To examine 900 

performance of mixed effect models, predicted values were tested against measured values of SOC, HWEC and MBC, respectively 901 

using bivariate linear regressions. Data All data are shown as mean (± SE) if not indicated otherwise. Statistical significance was is 902 

indicated with *p < 0.05, **p < 0.01 and ***p < 0.001. Statistical analyses were carried out using the R statistical package version 903 

4.1.13.6.2 (R Core Team, 2021).  904 

  905 
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3 Results  907 

3.1 Soil properties and cluster identification 908 

The dataset covers soilss and topsoil properties with broad ranges of 24 parameters and parameter ratios , respectively, of SOM, 909 

soil mineral phase and microbial biomass (Table 1). For example, soil pH ranged from very strongly acidic (pH 3.8) to slightly 910 

alkaline (pH 7.4); soil texture varied from sandy to clayey texture. Thereby, Parent materials essentially influenced 911 

characteristics of the mineral phase related parameters such as texture., e.g. AsFor example soils developed from sandy parent 912 

material such as LBS had a sandy texture with sand content of up to 91.9 %. Soils developed from DCS and DLS parent material 913 

had elevated contents of fine silt plus clay (33.4-53.3 % and 16.7-44.8 %, respectively). Additionally, high contents of pedogenic 914 

oxides were found in soils from DCS while ECEC and especially the contents of the polyvalent cations (Ca+Mg)ECEC were high 915 

in soils developed from DLS (Table 1). Higher contents of SOC, HWEC and MBC were found for all parent material substrates 916 

in grassland soils compared to arable soils (Table 1 and SI Table S1A). For the entire dataset, SOC ranged from 0.38 to 5.32 %, 917 

while ranges from 237 to 1889 µg/g and 52.4 to 810 µg/g were determined for HWEC and MBC, respectively. SOC was strongly 918 

correlated with HWEC (R² = 0.75) while the regressioncorrelation with MBC was substantially lower (R² = 0.40). The dissimilar 919 

regressionscorrelations of SOC with the two labile fractions indicate differences between HWEC and MBC, which was further 920 

confirmed by the mediocre correlation regressions between HWEC and MBC (R² = 0.55). 921 

To identify possible local clusters due to different sampling sites, parent material or land use systems within the dataset, PCA 922 

was conducted including all 24 soil parameters and parameter ratios (Fig. 2). Principal component (PC) 1 to 3 explained 65 % 923 

of the variance and had eigenvalues > 1 (Table 2). Parameters related to the soil mineral phase loaded on all three PCs. 924 

Additionally, highest loadings on PC 1 were found for parameters describing the composition of SOM such as content of SOC, 925 

nitrogen, hydrogen or oxygen as well as HWEC or MBC. For PC 2 high loadings were further found for parameters related to 926 

soil acidity (pH, IC, ECEC, (Ca+Mg)ECEC), as well as for SOC and the microbial ratio MBC/SOC. The HWEC and respiration 927 

further loaded on PC 3 (Table 2). A plot of the first two PCs shows clear clusters that were strongly related to the parent materials 928 

according to the different sampling sites (Fig. 2 A). In addition, samples clustered somewhat differently when assigned to 929 

different soil texture classes (Fig. 2 B). Land use, however, was insufficient to explain separation into different local clusters 930 

(Fig. S1). Instead, the land use clustersit representcould be used as a totalglobal clusters covering covered soils from all sampling 931 

regions and property combinations, and thus represented total clusterswith a differentiation according to itswith separated effects 932 

due to land use management. Compared to the entire dataset or the land use clusters, the identified clusters based on parent 933 

material and soil texture showed covered distinct property rangesies of the SOM SOC and the mineral phase (Table 1). In 934 

contrast to the local clusters, the totalglobal cluster according to land use classes showed mostly properties quite similar to the 935 

entire dataset. Overall, identified clusters strongly depended on the composition of SOM as well as on specific properties of the 936 

soil mineral phase, e.g. texture or soil pH related properties. With a smaller relevance, parameters regarding the characteristics 937 

of soil microorganisms separated the dataset into clusters (Table 2). 938 
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Table 2. Loadings of the variables on the first three principal components. 943 

 944 

  PC1 PC2 PC3 

SOC -0.24 -0.24 -0.19 

Nitrogen  -0.27 -0.21 -0.04 

Hydrogen -0.26 -0.12 0.17 

Oxygen -0.26 -0.18 0.07 

HWEC -0.22 -0.21 -0.36 

HWEN -0.22 -0.04 -0.19 

MBC -0.27 0.08 -0.26 

MBN -0.24 0.12 -0.26 

Respiration -0.18 0.01 -0.36 

MBC/SOC -0.09 0.33 -0.12 

C/N SOM 0.09 -0.07 -0.36 

C/N HWEC 0.06 -0.16 -0.13 

C/N MB -0.03 -0.09 0.04 

IC -0.09 0.32 -0.09 

pH -0.07 0.4 0.03 

ECEC -0.22 0.3 0.07 

(Ca+Mg)ECEC -0.22 0.3 0.06 

Feo -0.27 -0.13 0.12 

Fed-Feo -0.17 -0.07 0.37 

Alo -0.16 -0.34 0.14 

Sand 0.27 -0.11 -0.11 

cSilt + mSilt -0.21 0.19 0.12 

fSilt + clay -0.29 0.03 0.18 

Stones -0.13 -0.09 0.29 

Proportion of Variance 40.2 17.5 7.47 

Cumulative Proportion 40.2 57.8 65.23 

Eigenvalue 9.66 4.21 1.79 

 945 

  946 
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3.2 Bivariate relationships of mineral phase and SOC and its labile fractions 947 

In order to test whether single parameters are suitable predictors of SOC, HWEC and MBC ten independent parameters 948 

describing the properties of the soil mineral phase were selected from the dataset (Table 1, Table 3). Bivariate linear Rregressions 949 

were calculated based on the total dataset (n = 199), for further totalglobal clusters (e.g. arable or grassland soils) and the local 950 

clusters that were identified in PCA, i.e. subgroups based on the four parent rock materials and major texture classes (Table 3). 951 

Using the complete dataset, highly significant regressions of SOC, HWEC and MBC to most soil mineral phase parameters were 952 

found, yet predominantly at a low level of explained variance (Table 3). Compared to the complete dataset substantially different 953 

soil parameters explained SOC, HWEC and MBC especially for smaller clusters such as soils from the parent materials DCS or 954 

LBS. Yet, clusters comprising large sample numbers, where soil parameters cover broad ranges such as the clusters of loamy, 955 

arable or grassland soils, showed significantly contributing parameters that were largely in line withmatched with  those found 956 

as significant for the complete dataset. All clusters differed in their pattern of significant parameters. However, for the complete 957 

dataset as well as for the clusters the explained variance decreased from SOC to the labile fractions HWEC and MBC (Fig. 3 958 

and Table 3). Only some properties such as sand. ECEC or (Ca+Mg)ECEC showed for MBC  a higher explained variance 959 

compared to SOC and HWEC (Table 3). For the entire dataset the content of SOC was best explained by Alo and Feo as predictor 960 

parameter (R² = 0.63 58 and 0.56, respectively) while soil texture related properties such as sand or fSilt plus clay explained 961 

SOC on a lower level (Table 3). Other determined mineral phase parameters such as cSilt plus mSilt or ECEC explained variance 962 

to a negligible extent (Table 3). With lower values for R², HWEC was explained by similar soil mineral phase parameters, as it 963 

was the case for SOC. With R² of 0.39 and a variance of 0.38 HWEC was best explained by pedogenic oxides (Feo and Alo, 964 

Table 3). In contrast, the predictors for MBC were quite distinct. Especially parameters related to soil texture such as fSilt plus 965 

clay (R² = 0.43) or sand (R² = 0.45) better explained the variance of MBC compared to HWEC (R² = 0.27 and 0.16, respectively). 966 

Nevertheless, none of the applied parameters could explain in all cases the complete variance of SOC, HWEC or MBC to a 967 

highersufficient extent (R² > 0.75). Explained variance of SOC and its labile fractions varied strongly between the parent material 968 

clusters. In general, the variance in these clusters was explained to a substantially lower extent compared to the whole dataset 969 

(Table 3). In most cases, parameters of soil texture and pedogenic oxides correlated significantly with SOC, HWEC and MBC. 970 

Additional to these parameters, (Ca+Mg)ECEC was useful to predict SOC and MBC for some parent material clusters (Table 3). 971 

Highest values of R² were reached for the regression between SOC and Alo and Feo (0.47, 0.42) in the cluster DCS and fSilt plus 972 

clay (0.37) in the cluster PSS. R² was even lower in the clusters LBS and DLS with maximum values of 0.21 and 0.20 973 

respectively. Further, the cluster of loamy soils was also best described by parameters representing pedogenic oxides and texture. 974 

Much lower R² were found for the sandy and silty soil clusters with Alo and texture parameters (sandy) and additionally Feo 975 

(silty) as best descriptors. While for SOC, HWEC and MBC mostly the same descriptors were found (yet on different level of 976 

R²), they were partially different for MBC of the clusters silty and loamy soils.  977 
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 982 

Comprising soils from all identified clusters, the sets of descriptor parameters of the land use clusters were comparable to those 983 

of the totalglobal dataset (Table 3). Yet, the variance of SOC and its labile fractions were explained, by bivariate linear 984 

regressions, to a much higher extent for the totalglobal dataset and the clusters of arable soils and especially grassland soils 985 

compared to the clusters based on parent material and texture (Table 3). Both The clusters of both land use types largely 986 

overlapped and contained a similar proportion of samples from each parent material.include an equal weight of samples from 987 

each parent material Therefore they can be regardedact as totalglobal clusters. While SOC was explained by complex interactions 988 

of several numerous different parameters (up to eight) for the distinct fractionsfactors, less variables showed a significant 989 

contribution to explain the variability of HWEC and MBC (Table 3).  990 

 991 

3.3 Estimation of SOC and its labile fractions by mixed effect models 992 

 993 

Since bivariate linear models insufficiently explained SOC, HWEC and MBC, respectively, mixed effect models were 994 

developed. In these models, mineral phase parameters were applied as fixed effects, and land use, parent material and texture 995 

were used as random effects (Table 4, Fig. 4 and Fig. 5). Variability of SOC, HWEC and MBC were much better explained than 996 

by linear regressions indicating that organic matter depends on complex interactions of several components of the mineral phase. 997 

In general, Based on marginal effects, of the mixed effect models mostly explained the variance in most cases in the order SOC 998 

> HWEC > MBC (Fig. 3, and Table 4 and Table 5). By tThe mixed effect models, R²cond reached a higher explained variance 999 

and mostly lower RMSE for SOC (R²cond = 0.39-0.89, RMSE = 0.21 – 0.42 %) compared to the bivariate regressions (R² = 0.00-1000 

0.73, RMSE = 0.27-1.12 %). Data for RMSE are listed in Table SI3. AlsoAccordingly, the mixed effect models for HWEC and 1001 

MBC yielded and higher explained variance for HWEC and MBCwas estimated by the mixed effect models. Representing the 1002 

explained variance of the fixed effects, the R²marg revealed, for the majority of the clusters, a larger parts of the explained variance. 1003 

Anyhow,But even in the cases  of low R²marg several of that clusters providehad a high R²con even if R²marg was low. This highlights 1004 

the overall importancerelevance of the random effects (Table 4). By aApplying different random effects resulted in large 1005 

differences , explained variancein (R²cond) differed larger for some clusters (e.g., ‘sandy soils’). In particular, modelling the labile 1006 

fractions wereas more affected by the different random effects, showing in majoritymostly highest R²cond values if land use was 1007 

applied as random effect. RMSE of the mixed effect models was mostly lower compared to the bivariate linear regression (Table 1008 

SI3). 1009 

Independent from the applied random effect, explained variance increased with sample number and width of the data range of 1010 

parameters. Consequently, best model performance was achieved for the complete dataset as well as for the total clusters. Similar 1011 

model performance was only found for some local clusters (e.g. DCS), while models for other local clusters such as LBS, DLS 1012 

or sandy soils revealed the poorest, yet still sufficient (Rcond ≥ 0.39, RMSE ≤ 0.40 %) estimates of SOC (Table 4). In general, 1013 

applying random effects such as parent material, land use or texture for mixed effect models led to distinct results for the 1014 

prediction of SOC, HWEC or MBC (Table 4). For clusters according to land use variance was explained to a high extent (mean 1015 

R²con of 0.66 and 0.77 for cluster of arable soils and grassland, respectively). Models using parent material or texture as random 1016 

effect mostly showed minor differences for predictions of SOC, HWEC or MBC. Anyhow for some local clusters (e.g. DCS, 1017 

LBS and DLS) distinct results were found. Models using land use as random effect were partly distinct, though, indicating the 1018 

different influence of land use on SOC and its labile fractions (Table 4).  1019 

The different mixed effects models particularly comprised variables (Fig. 4, Fig. 5) that also proved significant in the bivariate 1020 

linear regressions (Table 3). Mineral phase parameters contributed with different significance to the models for SOC, HWEC 1021 
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and MBC. The SOC and HWEC were primarily explained by pedogenic oxides followed by soil texture related parameters. Not 1022 

least, soil acidity specified by pH and (Ca+Mg)ECEC was also relevant. MBC, compared to SOC or HWEC, was better explained 1023 

by parameters linked to soil texture. Contribution of the variables, on SOC and its labile fraction was visualized using the mean 1024 

values multiplied with their coefficients (Fig. 4, Fig 5). Distinct significant parameter combinations explaining SOC, HWEC 1025 

and MBC were also found between the total data set and local clusters (Table 3, Fig. 4 and Fig. 5, SI Table 2). For example, 1026 

within the soil texture related clusters pedogenic oxides, (Ca+Mg)ECEC, pH and texture parameters were relevant to estimate 1027 

SOC, HWEC and MBC (Table 3, Fig. 4 and Fig. 5). Regarding the random effects, applied mixed effect models using parent 1028 

material as random effect explained variability of SOC best (Table 4). For MBC and HWEC, however, highest explained 1029 

variance were mostly obtained with land use as random effect (Table 4). Only estimates of HWEC for the texture clusters were 1030 

better when parent material was used as random effect.  1031 

 1032 

Measured and predicted data using the mixed effect models showed a close relationship along the 1:1 prediction line while 1033 

scatter increased at higher contents of HWEC and especially of MBC, showing that estimates for grassland soils were inferior. 1034 

Anyhow, bivariate linear regressioncorrelations between measured data and predictions predicted data fromof the mixed effect 1035 

models (R² = 0.29-0.91) were mostly higher than for bivariate linear regressions (R² = 0.00 – 0.73). Independent from the applied 1036 

random effect, precision of prediction results increased with sample number and data range of parameters, respectively. 1037 

Consequently, best model performance was achieved for the complete dataset as well as for some of the local clusters (e.g. DCS, 1038 

loamy soils), while models for other local clusters such as LBS, DLS or sandy soils revealed the poorest estimates of SOC (Table 1039 

4). In general, applying random effects such as parent material, land use or texture for mixed effect models led to distinct results 1040 

for the prediction of SOC, HWEC or MBC (Table 4). For clusters according to land use variance was explained to a high extent 1041 

(mean R² of 0.68 and 0.80 for cluster of arable and grassland respectively). Models using parent material or texture as random 1042 

effect mostly showed minor differences for predictions of SOC, HWEC or MBC. Models using land use as random effect were 1043 

partly distinct, though, indicating the different influence of land use on SOC and its labile fractions (Table 4).  1044 

  1045 
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Fig. 4. Coefficients of the mixed effect models to predict SOC, multiplied with the mean values of the specific cluster indicating 1047 

the impact of the applied variables. Differentiation into clusters and used random factors. Variables are scaled from 0 to 1. 1048 
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3.4 Comparison of total and local explained variability. 1055 
The different mixed effects models particularly comprised variables (Fig. 4, Fig. 5) that also proved significant in linear 1056 

regressions (Table 3). Mineral phase parameters contributed with different significance to the models for SOC, HWEC and 1057 

MBC. The SOC and HWEC were primarily explained by pedogenic oxides followed by soil texture related parameters. Not last, 1058 

soil acidity indicated by pH and (Ca+Mg)ECEC was also relevant. MBC, compared to SOC or HWEC, was better explained by 1059 

parameters linked to soil texture. Contribution of the variables, on SOC and its labile fraction was visualized using the mean 1060 

values multiplied with their coefficients (Fig. 4, Fig 5). Distinct significant parameter combinations explaining SOC, HWEC 1061 

and MBC were also found between the global data set and local clusters (Table 3,Fig. 4 and Fig. 5, SI Table 2). For example, 1062 

within the soil texture related clusters pedogenic oxides, (Ca+Mg)ECEC, pH and texture parameters were relevant to estimate 1063 

SOC, HWEC and MBC (Table 3, Fig. 4 and Fig. 5). Regarding the random effects, applied mixed effect models using parent 1064 

material as random effect explained variability of SOC best (Table 4). For MBC and HWEC, however, best model fits were 1065 

mostly obtained with land use as random effect (Table 4). Only estimates of HWEC for the texture clusters were better when 1066 

parent material was used as random effect.  1067 

Predictions for SOC, HWEC and MBC were conducted based on the mixed effects models. Subsequent linear regression 1068 

between measured and predicted data showed a close relationship along the 1:1 prediction line leading to a high explained 1069 

variance (Fig. 3, Table 5). For these regressions the explained variance was mostly comparablesimilar to R²con. Especially for 1070 

the total clusters, i.e. all the total dataset and data clustered according to arable or grassland land use, best results were 1071 

foundobtained.  1072 

The R² of model predictions was best for the global clusters tested in this study, i.e. all data and data clustered according to 1073 

arable or grassland land use. Yet, this was at least partly due to a larger sample size and a broader range of parameter values 1074 

compared to the various local clusters. Applying athe totalglobal model for SOC estimation to a smaller local cluster data set 1075 

clearly revealed an inferior explained varianceperformance of the totalglobal compared to the local model (Fig. 6). Alongside 1076 

with decreasing explained variance, RMSE values were mostly increasing if a total model of a total dataset was applied to a 1077 

local dataset. The higher explained variancebetter performance of specific local models and parameter combinations was also 1078 

found for other local clusters (Table 65 and SI Table 34).  1079 

By transferring a total model to local clusters, the explained variance differeds for SOC by up to 20 % while RMSE differed by 1080 

up to 0.25 %. mlocal  Even ifAlso in case a total model was transferred to a local dataset to estimate HWEC or MBC, the 1081 

explained variance decreased and RMSE mostly increased. Thereby, explained variance decreased by up to 17 % for HWEC 1082 

and MBC. The RMSE increased by up to 0.07 orand 0.06 mg g-1 for HWEC and MBC, respectively..  1083 

 1084 

Table 5. R² and RMSE of the models for prediction of SOC, HWEC, and MBC based on the results of mixed effect models. 1085 

RMSE is given in % for SOC and in µmg/g for HWEC and MBC. 1086 

  Parent material+ Land use+ Texture+ Mean model prediction 
Sample  SOC HWEC MBC SOC HWEC MBC SOC HWEC MBC R² 

Dataset R² 0.79* 0.63* 0.55* 0.77* 0.68* 0.71* 0.77* 0.61* 0.56* 0.67* 
 RMSE 0.37 0.19 0.10 0.41 0.18 0.08 0.42 0.20 0.10 0.40 % / 0.14 mg g-1 

Land use 
Arable R² 0.80* 0.59* 0.70*    0.72* 0.53* 0.71* 0.68* 

 RMSE 0.33 0.15 0.05    0.39 0.16 0.05 0.36 % / 0.10 mg/ g-1 
Grassland R² 0.91* 0.78* 0.76*    0.89* 0.67* 0.76* 0.80* 

 RMSE 0.33 0.19 0.09    0.36 0.24 0.09 0.35 % / 0.15 mg/ g-1 
Parent Material 

DCS R²    0.81* 0.78* 0.79* 0.74* 0.62* 0.55* 0.72 
 RMSE    0.34 0.17 0.07 0.40 0.22 0.11 0.37 % / 0.14 mg/ g-1 
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LBS R²    0.43* 0.27* 0.48* 0.41* 0.29* 0.41* 0.38 
 RMSE    0.30 0.14 0.03 0.30 0.14 0.03 0.30 % / 0.09 mg/ g-1 

DLS R²    0.50* 0.36* 0.32* 0.50* 0.37* 0.26* 0.39 
 RMSE    0.35 0,17 0.10 0.35 0.17 0.10 0.35 % / 0.13 mg/ g-1 

PSS R²    0.61* 0.62* 0.74* 0.63* 0.56* 0.60* 0.62 
 RMSE    0.21 0.16 0.06 0.20 0.16 0.07 0.21 % / 0.11 mg/ g-1 

Texture 
Sandy R² 0.79* 0.61* 0.28* 0.54* 0.51* 0.58* - - - 0.55 

 RMSE 0.21 0.12 0.04 0.31 0.14 0.03    0.26 % / 0.08 mg/ g-1 
Silty soils R² 0.74* 0.75* 0.48* 0.72* 0.66* 0.50* - - - 0.64 

 RMSE 0.39 0.14 0.09 0.40 0.16 0.08    0.40 % / 0.12 mg/ g-1 
Loamy R² 0.83* 0.59* 0.41* 0.81* 0.66* 0.64* - - - 0.66 

 RMSE 0.35 0.20 0.10 0.38 0.19 0.08    0.37 % / 0.14 mg/ g-1 
Mean model prediction 

Mean R² 0.81 0.66 0.53 0.65 0.57 0.59 0.67 0.52 0.55  

 RMSE 0.33 0.17 0.08 0.34 0.16 0.07 0.35 0.18 0.08  
+Applied random effect; ~Not all random effects could applied to this group of clusters because of missing factor levels. *Significant on a 1087 
level of <0.05 1088 
 1089 

 1090 
Table 56. R² and RMSE for implementation of the totalglobal dataset to local clusters to estimate SOC. 1091 

 SOC 
  Parent material Land use Texture 

Sample 
subgroups 

 Cluster 
specific 
Mmodel 

totalGlobal 
model to 

local cluster 

Cluster 
specific 
mModel 

totalGlobal 
model to 

local cluster 

Cluster 
specific 
mModel 

totalGlobal 
model to 

local cluster 
Dataset R² 0.79  0.77  0.77  

 RMSE 0.37  0.41  0.42  
DCS R² -   0.81 0.69 0.74 0.65 

 RMSE   0.34 0.44 0.40 0.47 
LBS R² -  0.43 0.23 0.41 0.24 

 RMSE   0.30 0.41 0.30 0.40 
DLS R² -  0.50 0.30 0.50 0.35 

 RMSE   0.35 0.42 0.35 0.41 
PSS R² -  0.61 0.57 0.63 0.57 

 RMSE   0.21 0.38 0.20 0.38 
Sandy soils R² 0.79 0.68 0.54 0.37 -  

 RMSE 0.21 0.26 0.31 0.36   
Silty soils R² 0.74 0.65 0.72 0.60 -  

 RMSE 0.39 0.45 0.40 0.48   
Loamy soils R² 0.83 0.83 0.81 0.79 -  

 RMSE 0.35 0.36 0.38 0.40   
Arable R² 0.80 0.80   0.72 0.73 

 RMSE 0.33 0.34   0.39 0.39 
Grassland R² 0.91 0.87   0.89 0.87 

 RMSE 0.33 0.44   0.36 0.47 
 1092 

 1093 

 1094 

1095 
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4 Discussion  1099 

Our study showed that interactions of SOC with the mineral phase are highly relevant for the content of SOC as well as of its 1100 

labile fractions HWEC and MBC in soils. High correlations regression coefficients of SOC to fSilt plus clay (Table 3) agree 1101 

with reports on the relevance of organo-mineral associations for the stabilization of SOC and related to this the accumulation of 1102 

the labile fraction HWEC and MBC (Lützow et al., 2006). Furthermore, sandy soils contained the lowest content of SOC while 1103 

loamy and silty soils had an equally higher content of SOC (Table 1). This is typically expected and confirms numerous previous 1104 

reports, e.g. Ludwig et al. (2003) and Vos et al. (2018). In contrast, for the LBS cluster with its very sandy soils, a slightly 1105 

positive effect of sand on SOC was found. for the in total very sandy soils in the parent material cluster of LBS. This, however, 1106 

is most likely a consequence of agricultural practice, with high manure application to the LBS soils in the sampled area. This 1107 

was further confirmed by a factor of 1.2 higher ratios of SOC/N and HWEC/N as well as by a lower oxygen content of SOM 1108 

compared to soils of the other parent material clusters (factor of 0.6; Table 1). Besides parameters directly related to soil texture, 1109 

pedogenic Al- and Fe-oxides were found to be strong predictors of SOC in soils. Accordingly, Al- and Fe-oxides were shown 1110 

to have a relevant influence on the accumulation the sequestration and stabilization of SOC (Kaiser and Guggenberger, 2000; 1111 

Lützow et al., 2006) as well as to have a high affinity to retain components of the labile SOC fractions (Kaiser and Zech, 1998; 1112 

Kaiser et al., 2002). Although soil acidity strongly affects soil processes such as microbial activity and turnover that are relevant 1113 

for SOC accumulation (Kemmitt et al., 2006), no clear regressionrelation coefficientscorrelation between pH and SOC or its 1114 

labile fractions was found by bivariate linear regression. Yet, soil parameters that are strongly related to soil acidity, i.e. ECEC 1115 

as well as the content of exchangeable polyvalent cations such as Ca2+ and Mg2+, were suitable predictors for SOC and its labile 1116 

fractions in this and previous studies (O'Brien et al., 2015; Rasmussen et al., 2018). This is causally explained by the stabilization 1117 

of SOC in organo-mineral associations and the contribution of multivalent cation bridges (Ca2+ and Mg2+) to it (Kaiser et al., 1118 

2012). The minor ability of ECEC and (Ca+Mg)ECEC and theeven higher ability of the content of pedogenic oxides to explain 1119 

variance of SOC and its labile fractions was indicated in this study for several clusters (total and local) by bivariate regressions 1120 

(Table 3), ). This corresponds to findings of Rasmussen et al. (2018). They found a prevalence of pedogenic oxides in humid 1121 

areas with moderately acidic soils, while exchangeable Ca and clay prevealed prevailed in soils of dry climates with 1122 

circumneutral to alkaline pH. Such a case-specific prevalence of parameters to predict SOC, HWEC or MBC demonstrates that 1123 

it is preferred to use specific parameter sets when it is aimed to focus on local areas. In this studyAbility of ECEC and 1124 

(Ca+Mg)ECEC were not generally applicable as predictors but it was further strongly dependentd on the observed parent material 1125 

orand texture cluster. For example, ECEC and (Ca+Mg)ECEC were found to be relevant for the clusters of DLS and PSS, while 1126 

for DCS they were of minor importance. More often than ECEC the was in mixed effect modelsThis showsn using combined 1127 

snce ofSOC, HWEC or MBC better . As example ECEC and (Ca+Mg)ECEC was found as relevant for the clusters of DLS and 1128 

PSS, while for DCS it show a minor importance. The bivariate models revealed that the stone content had only a small impact 1129 

on SOC, HWEC and MBC. Hence, a funnel effect of the stone content, by funneling more SOC into the remaining fine textured 1130 

soil (Bornemann et al., 2011) was irrelevant. The combinations of factors and soil properties affecting SOC and SOC fractions, 1131 

respectively, were dissimilar between the different local areas investigated in this study. The PCA revealed that differences 1132 

according to parent material and soil texture were most relevant to separate the dataset into various local clusters based on 1133 

different factors (Fig. 2 A and B; Table 2). At the same time, this illustrates the importance of the mineral composition (parent 1134 

material) and grain size (soil texture) for the accumulation of SOC as well as its labile fractions HWEC and MBC. In contrast, 1135 

land use was not useful for a separation into clusters. This was unexpected because typically topsoils under grassland have 1136 

higher SOC contents compared to arable soils (Poeplau et al., 2020), which was largely confirmed for the samples investigated 1137 

in this study (Table 1). This went along with differences in the composition of SOM (Table 1 and Table SI). However, data 1138 
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ranges of SOC, HWEC and MBC contents were largely overlapping and similarities even increased in PCA when further soil 1139 

properties were included. In comparison, mineral phase soil properties clearly separated the dataset while composition of SOM 1140 

was less enabled for this purpose. Consequently, a broad scatter of the land use clusters was obtained by PCA, suggesting to 1141 

treat the land use clusters as totalglobal datasets as well.  1142 

Several studies with large datasets covering national or continental scales, e.g. soil inventories, pointed out the relevance of 1143 

combinations of multiple factors and parameters instead of using single predictors to estimate SOC or its labile fractions (Wieder 1144 

et al., 2015; Vos et al., 2018; Gray et al., 2019)  (Vos et al., 2018). Furthermore, local studies covering small areas with narrow 1145 

ranges of soil properties often show weak bivariate relationships between SOC and components of the mineral phase or 1146 

environmental factors (Jian-Bing et al., 2006; Liddle et al., 2020). Accordingly, models focused on specific local clusters and 1147 

combined with multiple parameter sets were superior compared to the totalglobal model that was developed for the totalglobal 1148 

(complete)(entire) dataset to estimate SOC, HWEC or MBC (Fig. 6). The different parameter combinations indicate that distinct 1149 

properties of the mineral phase control SOC, HWEC and MBC in the soils of the different clusters.  1150 

Understanding SOC as continuum (Lehmann and Kleber, 2015) implies that accumulation of SOC is a multidimensional process 1151 

with various interacting factors and soil properties, respectively. The substantially lower ability of bivariate models to estimate 1152 

SOC compared to multiple parameter models is in line withconfirmed this assumption. Accordingly, it was superior to use 1153 

multiparameter mixed effect models to estimate SOC and the two labile fractions. Especially parameter combinations within the 1154 

land use clusters gained a high-explained variance (Table 3, Table 4). A comparison with studies on regional or national scale 1155 

(Vos et al., 2018; Mayer et al., 2019) suggests that the importance of factors such as land use, soil texture or parent material 1156 

varies with the observed scale. Wiesmeier et al. (2019) reported that soil texture, land use and land management are relevant to 1157 

explain SOC variability at all scales. On regional or larger scale, also environmental factors such as climate, geology, soil use, 1158 

topography are relevant for SOC. Yet, at a local or smaller scale factors such as climate become less important, while parameters 1159 

representing small-scale soil physico-chemical properties gain importance for explaining the variability of SOC. Thereby, 1160 

different factor and parameter combinations were identified for the different local clusters by mixed effect modelling. The 1161 

prevalence of a parameter for quantification of SOC can differ dependent on environmental factors (Rasmussen et al., 2018). 1162 

Consequently, the quality of the multiparameter models was further improved by the implementation of local specific random 1163 

effects such as parent material or land use. Dependent on the random factors parent material, soil texture class and land use 1164 

different parameter combinations explained SOC, HWEC or MBC (Fig. 4 and Fig. 5). For the totalglobal (complete) dataset, 1165 

nearly all predictor parameters showed a significant contribution to the explanation of SOC. Most of these soil mineral phase 1166 

parameters were also significant in linear regression. In contrast to the bivariate models, most mixed effect models revealed 1167 

parameters related to soil acidity as significantly important to estimate SOC, HWEC and MBC. This highlights the importance 1168 

of soil acidity on SOC dynamics due to its effects on the reactivity of the mineral phase and the activity of microorganisms 1169 

(Hillel, 2004). In order to explain the variability of HWEC and MBC for the various local clusters, different combinations of 1170 

mineral phase parameters were required that also clearly differed from the parameter combinations used in the models for SOC 1171 

(Fig. 4 and Fig. 5). Such differences concerning significantly contributing parameters were also found by other studies for 1172 

specific clusters or local sampling sites (Heinze et al., 2018; Quesada et al., 2020). This emphasizes that local models are required 1173 

and superior when it is the aim to estimate SOC and SOC fractions on a local scale. The totalglobal models used for the 1174 

totalglobal datasets in this study reached the best predictions for SOC, HWEC and MBC. Nevertheless some local cluster 1175 

revealed a smaller RMSe than the total clusters. Yet, this was largely biased by the large samples size; applying the same 1176 

totalglobal models to local samples sets produced clearly poorer estimates compared to the more specific local models as 1177 

indicated by the explained variance and the RMSE (Fig. 6; Table 45 and Table 65). This was found even for the explained 1178 
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variance as well as for the RMSE. Consequently, aggregation of smaller datasets, e.g. from a local scale, to a larger dataset 1179 

enables to predict SOC and its labile fractions to a satisfying higher extent. In opposite a model that was derived from a 1180 

totalglobal dataset and is applied to the a local area and its dataset with defined smaller ranges of properties is partially 1181 

practicableless suitable, resulting in a variance explained on a lower level. DependendDependenting on the properties of the soil 1182 

mineral phase, each specific cluster was controlled by other properties, which best explain the accumulation of SOC and its 1183 

labile fractions. This implies the importance for analysis of local clusters to avoid a subordination by models of totalglobal 1184 

datasets. 1185 

Comparing the results of mixed effect models using the different random effects (parent material, soil texture, land use), the 1186 

models using parent material yielded highest explained variancebest results for the estimation of SOC. For HWEC and MBC 1187 

best predictions at a high sufficient quality level of explained variance were obtained by models using land use as random effect 1188 

(Table 4). RMSE was mostly in line with founding concerning explained variance. High explained variance resulted mostly 1189 

inwent along with smaller RMSE values. The parent material predefines the boundaries for accumulation and stabilization of 1190 

organic matter (Gray et al., 2015). The importance of land use as random effect especially for the labile fractions results from 1191 

the fact that these are especially influenced by soil management (Cardoso et al., 2013; Lal, 2016). 1192 

In general, the variance explained by the mixed effect models was not similar, but varied between SOC and its labile fractions 1193 

HWEC and MBC. It became clear that SOC and the labile fractions HWEC and MBC are not fully correlated but quantitatively 1194 

quite distinct SOM pools with different annual dynamics (Wander, 2004; Tokarski et al., 2020). Not last, the faster turnover of 1195 

the labile fractions is one of the reasons for the lower explained variability by the different models. HWEC is a measure of 1196 

bioavailable and degradable organic carbon (Weigel et al., 1998). Although it is closely correlated to SOC (R² =0.75) it is best 1197 

estimated by distinct parameter combinations compared to SOC, which is explained by the substantially higher variability of 1198 

HWEC (Table 3 and 4). Changes in HWEC are mostly assigned to inputs of organic fertilizer substrates (Weigel et al., 1998) 1199 

and the soil management (Ghani et al., 2003). For MBC especially soil management and factors such as C-input, climate, soil 1200 

texture and soil pH are relevant (Wardle, 1992). Accordingly, the effect of land use but also of soil texture was most relevant 1201 

for MBC accumulation. Similar to findings of Ludwig et al. (2015), MBC increased with the content of silt and clay but declined 1202 

with sand, which is explained amongst other by the contribution of MBC to aggregate formation, the habitable surface and 1203 

accessibility of SOC (Totsche et al., 2018). Additionally, management practices such as tillage and the application of organic 1204 

fertilizer directly influence MBC (Liang et al., 1997). DecreasingLower explained variance of HWEC and MBC compared to 1205 

SOC were based on a smaller relevance of the mineral phase parameters for their accumulation. FurtherLabile fractions such as 1206 

HWEC and MBC, containing larger proportions of bioavailable and easily degradable compartmentsorganic compounds, leading 1207 

to are subject toa faster turnover (Landgraf et al., 2006; Lorenz et al., 2021) and a lower ability to interact with the mineral 1208 

phase.  1209 

5 Conclusions 1210 

The reliable estimation of SOC and of its labile fractions HWEC and MBC is a task of growing importance in order to manage 1211 

soil properties and functioning. That task will most often focus on local soilscapes with minor variation range in soil properties. 1212 

This study showed that local models are superior to totalglobal models. Mixed parameter effect models combined with random 1213 

effects yielded best estimates and highest explained variance for SOC and even its labile and quite dynamic fractions HWEC 1214 

and MBC. For this purpose, the application of multivariate approaches to estimate SOC, HWEC and MBC clearly resulted in a 1215 

higher explained variance compared tooutperforms models based on bivariate linear regressionscorrelations. Even a reduced 1216 
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dataset, representing parameters of the soil mineral phase is suited to estimate contents of SOC as well as HWEC and MBC. 1217 

Application of models from total datasets to local lead to a smaller explained variance while RMSE increased. The inclusion of 1218 

overall factors such as parent material, soil texture class and land use as random effects further improves the models. tTotal 1219 

Global or even global models, developed from large-scale studies across countries or continents, often reach best estimates; 1220 

however, they are subordinate for the above-mentioned small-scale areas and low sample numbers. Application of total models 1221 

to local datasets leads to a smaller explained variance and higher RMSE. For further research we suggest to identify possible 1222 

clusters and to prove if these clusters were well explained by the overall total dataset. If otherwise we suggest to search of most 1223 

relevant parameters to achieve a site adapted estimation to improve the overall understanding to SOC and its labile fractions on 1224 

different landscapes. From a practical perspective, the selected set of soil mineral phase parameters can be easily determined by 1225 

using well-established methods and the parameters are rather stable over a longer-term. Thus, using such parameters for the 1226 

sufficient estimation of SOC, HWEC and MBC is expedient. The presented research will be further enlarged by studying larger 1227 

datasets containing more clusters in order to better identify local drivers of SOC and of its labile fractions. s Our research shows 1228 

that local models, considering site-specific parameter combinations, are superior to total models, although they are based on 1229 

much smaller datasets. If such local datasets and models are available, they should be preferred. For further research we suggest 1230 

to assess even larger datasets, in order to find out whether local subclusters can be identified and to examine if these clusters are 1231 

best explained by total or local models. Furthermore, research is needed to determine most relevant parameters for a site adapted 1232 

estimation of SOC and its labile fractions on different landscapes. 1233 
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Authors response to review submitted on 06 Dec 2021 for soil-2021-81  

Dear authors, 

 

Thanks a lot for considering the feedback I gave on the initial version of your manuscript. 

You have incorporated most of my comments adequately, but I would like you to clarify a 

couple of things in the manuscript: 

 

The authors are thankful for your additional advice to improve the quality of our 

manuscript. We clarified the suggested points.  

 

- With respect to the title: how about '[...] mineral phase characteristics', instead of 'mineral 

phase parameters'? 

It is a good option, we decided to change it according to your suggestion. 

 

- The Discussion section is still one uninterupted text. The readibility would be increased 

considerably by splitting this into subsections. 

Agreed, subsections were added to the discussion 

 

- With respect to my comment to line 41, about POC: would be good to include this 

argumentation in the manuscript, so it's clear to the reader why POC was not studied 

Thank you for this valuable hint, we added the explanation to these lines. 

 

 

- With respect to my comment to line 108-109, about the abbreviations: I leave this up to 

you, but I think the readibility of the text will be increased substantially by using more 

intuitive names for your study sites 

We decided to keep the abbreviations even if they are perhaps not fully intuitive. The full 

terms would increase the length of sentences too much. Shorter abbreviations are difficult 

because letters always appear in several terms. 

 

- With respect to my comment to line 134, about CFE: As CFE is generally performed on 

fresh soil, to make sure the microbial community is as little disturbed as possible at the time 

of analysis, I would like to ask the authors to justify performing the analysis on frozen soil 

(either through citing articles showing that this has little effect on tbe measured MBC, or by 

providing the data that's not shown). In addition, I would like to ask the authors to mention 

in the manuscript that CFE was performed on samples that were frozen prior to analyses, 

this is important methodological information that is currently not mentioned. 

According to Stenberg et al. (1998) freezing of soil samples at -20°C does not affect the 

microflora, so it is a widely accepted method for sample preservation in soil microbiology. 
 

Stenberg, B., Johansson, M., Pell, M., Sjödahl-Svensson, K., Stenström, J., Torstensson, L., 1998. 

Microbial biomass and activities in soil as affected by frozen and cold storage. Soil Biology and 

Biochemistry 30, 393-402. 

 

 

- With respect to my comment to line 205-206: Table 1 describes much more than 10 

parameters, so this is not clear. 



 

We added the information that only 10 from 23 parameters were selected, further we added 

information to Table 1 indicating which parameters were chosen. 

 

- With respect to the previous formulation of models of 'sufficient extent': Would be good to 

clarify in the Material and Methods section what you consider a sufficiently good model 

 

Classification of explained variance regarding their quality is for examples given by Cohen 

(1988) or Achen (1990). Cohen for example termed explained variance (R²) above 0.26 as 

‘high’. (For our study, however, an explained variance not much larger than 0.26 is not 

really high. To stay away from such discussion we focused on a relative assessment of 

models. If a model had a higher explained variance and a lower RMSE, it was termed as 

‘superior’ to models with lower explained variance. Following the reviewer’s advice, we 

removed insufficient terms of model quality and added additional information to material 

and methods: ‘Both R² and RMSE were used for a comparative assessment of different models 

rather than for an absolute valuation.’. 
 
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, N.J.: L. 

Erlbaum Associates. 

Achen, C. H. (1990). What Does “Explained Variance” Explain?: Reply. Political Analysis, 2(1), 173–
184. doi:10.1093/pan/2.1.173 

 

- With respect to my comment to line 243: This has not been changed at this location in the 

manuscript, please do so 

We rephrased the sentence using a more neutral term. 

 

- With respect to my comment to line 309-310: As you discuss the results of your model in 

the previous sentences, starting this sentence with 'accordingly' refers to those sentences. 

Would be good to rephrase this, and make it clear that this statement refers to the article you 

cite at the end, e.g.: 'For example, Kaiser and Guggenberger showed that ...'  

We adapted this sentence to avoid any confusion. 

 

- With respect to my comment to line 342: Please clarify this in the manuscript as well  

We added some information to explain what ‘multidimensional’ means 

 

- With respect to my comment to line 381-382: I would like to ask the authors to change this 

wording. You cannot assume that a property you didn't investigate contributes to 

concentration of SOC fraction, and 'explains' the gap in explained variance. However, you 

can hypothesize this. 

Agreed, we changed it accordingly. 

 

https://doi.org/10.1093/pan/2.1.173

