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Abstract. We present methods to evaluate the spatial patterns of the geographic distribution of soil properties in the USA,

as shown in gridded maps produced by Predictive
::::::
Digital Soil Mapping (PSM

::::
DSM) at global (SoilGrids v2), national (Soil

Properties and Class 100m Grids of the USA), and regional (POLARIS soil properties) scales, and compare them to spatial

patterns known from detailed field surveys (
:::::::::
gNATSGO

::::
and gSSURGO). The methods are illustrated with an example: topsoil

pH for an area in central New York State. A companion report examines other areas, soil properties, and depth slices
:::::::
intervals.5

A set of R Markdown scripts is referenced so that readers can apply the analysis for areas of their interest. For the test case we

discover and discuss substantial discrepancies between PSM
::::
DSM

:
products, as well as large differences between the PSM

:::::
DSM

products and legacy field surveys. These differences are in whole-map statistics, visually-identifiable landscape features, level

of detail, range and strength of spatial autocorrelation, landscape metrics (Shannon diversity and evenness, shape, aggregation,

mean fractal dimension, co-occurence vectors), and spatial patterns of property maps classified by histogram equalization.10

Histograms and variogram analysis revealed the smoothing effect of machine-learning models. Property class maps made by

histogram equalization were substantially different, but there was no consistent trend in their landscape metrics. The model

using only national points and covariates was not better than
::::::::::
substantially

::::::::
different

::::
from

:
the global model, and in some cases

introduced artefacts from a lithology covariate. Uncertainty (5–95% confidence intervals) provided by SoilGrids and POLARIS

were unrealistically wide compared to
::::::::::
gNATSGO/gSSURGO low and high estimated values and show substantially different15

spatial patterns. We discuss the potential use of the PSM
::::
DSM

:
products as a (partial) replacement for field-based soil surveys.

:::::
There

:
is
:::
no

::::::::
substitute

:::
for

:::::::
actually

:::::::::
examining

:::
and

::::::::::
interpreting

:::
the

::::::::::::
soil-landscape

:::::::
relation,

:::
but

::::::
despite

:::
the

:::::
issues

:::::::
revealed

::
in

::::
this

:::::
study,

:::::
DSM

:::
can

::
be

:::
an

::::::::
important

:::
aid

::
to

:::
the

:::
soil

::::::::
surveyor.

:
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1 Introduction55

Predictive Soil Mapping (PSM), also commonly referred to as Digital Soil Mapping (DSM), has been defined
::::::
(under

:::
the

:::::
earlier

::::
term

::::::::::
“Predictive

::::
Soil

::::::::::
Mapping”) as “the development of a numerical or statistical model of the relationship among

environmental variables and soil properties, which is then applied to a geographic data base to create a predictive map” (Scull

et al., 2003). Since the seminal paper of McBratney et al. (2003), recently reviewed by Minasny and McBratney (2016), PSM

::::
DSM

:
has been widely-applied from the field to global levels.60

::::
This

:
is
:::
in

::::::
contrast

:::
to

::::
what

:::
we

::::
here

:::
call

:::::::::::
“traditional”

:::
soil

::::::
survey,

:::
in

:::::
which

:::
the

:::
soil

::::::::
surveyor

::::::::
develops

:
a
::::::
mental

::::::
model

::
of

:::
the

:::
soil

:::::::::
geography

:::::::::::::
(Hudson, 1992)

::
by

::::::::::
interpreting

:::
the

::::::::
landscape

::::
with

:::
the

:::
aid

::
of

:::::::::
airphotos,

::::::::
purposive

::::::::
transects,

:::
and

:::::::
detailed

::::::
profile

::::::::::
descriptions

:
at
::::::::
locations

:::::::
thought

::
to

:::::::
represent

:::
the

::::::
central

:::::::
concepts

::
of

:::
the

:::
soil

::::::
classes

::::::
present

::
in
:::
the

:::::
study

::::
area

:::::::::::::::::::::::::::
(Soil Survey Division Staff, 2017)

:
.

A principal attraction of PSM
::::
DSM

:
is that it produces consistent, geometrically-correct and reproducible gridded maps over65

large areas, given training data (“point” observations of soil classes, properties or conditions), a set of environmental covariates

covering the entire area to be mapped at some fixed grid resolution, and a set of algorithms implemented in computer code.

This removes the need for expertise in discovering and interpreting the soil-landscape relations, also known as the “paradigm”

of soil survey (Hudson, 1992), which is vital for traditional soil survey and difficult to acquire and harmonize among surveyors.

::::::::
However,

:::::::
expertise

::
in

::::::::::::
soil-landscape

:::::::
relations

::
is

:::
still

:::::::
needed

::
to

:::::
ensure

::::
that

::::
DSM

:::::::
outputs

::
are

::::::::::
reasonable,

:::
and

::
to

:::::::
discover

:::::::
reasons70

::
for

::::
any

:::::::::::
discrepancies.

:

Further,
:
it
::::
may

:::
be

:::
that

:
fewer locations can be visited in order to develop reliable models, as compared to traditional sur-

vey techniques. If the relation with covariates is strong, and locations representative of the entire covariate feature space are

included in the training set, large areas can be mapped
:
it
::::
may

::
be

:::::::
possible

::
to
::::
map

:::::
large

:::::
areas from relatively few field observa-

tions.
::::
This

::::::::::
corresponds

::
to

:::
the

::::::::::
“homosoil”

::::::
concept

:::::::::::::::::::
(Mallavan et al., 2010)

:
:
:::::::
identical

::::::::::::
environmental

:::::::::
conditions

:::
(as

::::::::::
represented75

::
by

:::::::::
covariates)

::::::
should

:::::
result

::
in

:::
the

:::::
same

::::
soils.

:
Maps made by PSM

:::::
DSM can include areas that are not accessible to field map-

pers because of permissions or difficult access, if the available training data cover the covariate space of the inaccessible area.

However, PSM
::::
DSM

:
requires sufficient sampling density to cover the full covariate space, since most PSM

::::
DSM methods do

not extrapolate
:::::::::
interpolate

::
or

:::::::::
extrapolate

::
in

::::
soil

:::::::
property

:::::
space, and in any case extrapolation is inadvisable .

:
it
::
is

::::::::::
inadvisable

::
to

::::::
predict

::::
“too

:::
far”

:::::
from

:::
the

::::::::
coverage

::
of

:::
the

:::::::
training

:::::::::::
observations.

::::
This

:::
has

:::::
been

::::::
studied

:::
by

::::::
Meyer

:::
and

::::::::
Pebesma,

::::
who

:::::
have80

::::::::
developed

:
a
:::::::
method

:::
for

::::::::
measuring

:::
the

:::::::
distance

::
in

::::
both

:::::::
covariate

::::::::::::::::::::::::
(Meyer and Pebesma, 2020)

:::
and

:::::::::
geographic

:::::::::::::::::::::::
(Meyer and Pebesma, 2022)

::::
space

::::::::
between

::::::::
prediction

::::::::
locations

:::
and

:::
the

:::
set

::
of

:::::::
training

::::::
points.

It is not claimed that PSM is inherently superior to traditional survey, but
::::
DSM

::::::
avoids

:::::
some well-known problems of tradi-

tional surveyare avoided: multiple survey projects over time with inconsistent standards and mapping concepts, inconsistency

among mappers, difficulties in objectively identifying boundaries, and indeed the need to identify boundaries. However, tradi-85
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tional soil surveyors and users of their maps are often critical of PSM
:::::
DSM products, and may not understand how they were

made and how they should be used (Arrouays et al., 2020). In the USA there is increasing awareness of, and interest in, PSM

::::
DSM

:
products. Here the most important point of contention has to do with PSM

::::
DSM

:
resolution (pixel size), which implies a

mapping scale, compared to the scale at which differences can be reliably interpreted for user needs. Criticism of PSM
:::::
DSM

products is proportional to the degree to which their implied spatial precision and accuracy is over-sold.90

:::::::
Another

:::::
benefit

:::
of

::::
DSM

::::::::
methods

::
is

::
the

::::::::::::
quantification

::
of

::::::::::
uncertainty

:::::::
inherent

::
in

::::::
various

:::::::::::
geostatistical

:::
and

:::::::::::::::
machine-learning

:::::::::
approaches

::::::::::::::::::::::::
(Szatmári and Pásztor, 2018).

:::
In

::::::::
traditional

::::::::
mapping,

::::::::::
uncertainty

::
is

::::::::
implicitly

:::::::
encoded

:::
via

::::::::
mapping

:::::
scale

::::::
(which

:::::::::
determines

:::
the

:::
size

:::
of

:::
the

::::::::
minimum

::::::::::
delineation),

::::
map

::::
unit

:::::
purity

:::::::::::
specification

:::::
(e.g.,

::::::::
complex,

:::::::::
association,

::::::::::::
consociation),

::::
and

::::::::
taxonomic

::::::::
precision

:::::
(e.g.,

:::
soil

:::::
series

:::
vs.

::::::::
suborder)

::::::::::::::::::::::::::::
(Soil Survey Division Staff, 2017)

:
.

The success of PSM
::::
DSM

:
in reproducing known “point” observations

::::
(i.e.,

::::::
pedons

::::::::
described

::
in

:::
the

::::
field

::::
and

:::::::::::
characterized95

::
in

:::
the

:::::::::
laboratory)

:
is typically reported by evaluation (“validation”) statistics based on data splitting (independent evaluation)

or by cross-validation. These evaluations are almost never based on random sampling (Brus et al., 2011), and since the source

point datasets are almost always biased towards certain land uses, access constraints or landscape locations, these evaluations

carry forward these biases and must be interpreted with caution.

A more serious issue is that point evaluations of PSM
::::
DSM

:
products do not consider the spatial pattern of predictions. By100

contrast, soil surveys based on extensive field observation of the soil landscape (sometimes called the “traditional ” soil survey

method)
::::::::
traditional

::::
soil

::::::
surveys produce polygon maps of soil map units (SMU) composed of one or more soil type units(STU),

e.g., soil series, which then provide modal or representative profiles with measurements or estimates of soil properties, usually

by genetic horizon. These
:::::::
relatively

::::::::::::
homogeneous

:::
soil

::::::
bodies

::::::::::
(represented

::
as

::::
soil

::::
map

:::::
units),

::::
with

:::
the

::::::::
boundary

::::
lines

::::::
placed

::
at

::::::::
inflection

:::::
points

::
of

:::::::::
maximum

::::::
change

:::::::
between

:::::
them

::::::::::::::::::::
(Lagacherie et al., 1996).

::::::
These

:::::
maps explicitly show the soil landscape,105

as interpreted by the soil surveyor and
::::::::
surveyor’s

:::::::::::
interpretation

:::
of

:::
the

:::
soil

:::::::::
landscape as managed by the land user

::::::::
developed

::::
from

:
a
::::::
mental

::::::
model

::
of

:::
the

:::::::::::
soil-forming

:::::::::
processes,

:::
and

:::::
which

:::::
when

:::::::
viewed

::
as

:
a
::::::
whole

:::::
show

:::
the

::::::
pattern

::
of

:::
the

:::
soil

:::::
cover.

:
It

:::
has

::::
long

::::
been

::::::::::
recognized

:::
that

:::
the

::::
soil

:::::
cover

:::::
forms

:::::::
patterns

::
at
:::::::

various
:::::
scales

::::::::::::::::::::::::::::::::::::
(Fridland, 1974; Hole and Campbell, 1985),

:::
so

:::
that

:::
the

:::::::::
traditional

::::
soil

::::::
mapper

::::::::
attempts

::
to

::::
find

:::::
those

:::::::
patterns

::::::::
expressed

::
at
:::

the
:::::

map
:::::
design

::::::
scale. Since PSM maps are not

derived from a paradigm such as the surveyor’s explicit stratification of the soil landscape, their spatial pattern depends on110

the input data (training points and covariates) and the PSM algorithm applied
::::
DSM

::::::::::
predictions

:::
are

::
on

::
a
::::
grid

:::
cell

:::::
basis,

:::::
most

::::
DSM

:::::::
models

::::
have

:::
no

::::::
concept

:::
of

::::::::
relatively

:::::::::::
homogeneous

::::::
natural

::::
soil

::::::
bodies

:::
nor

::::::::
inflection

::::::
points

:::::::
between

:::::
them.

::::::::
However,

::
it

:::::
might

::
be

::::::::
expected

:::
that

::
if

:::
the

:::::
values

::
of

:::
the

:::::
DSM

::::::::
covariates

:::::::::::
representing

:::
the

::::::::::
soil-forming

::::::
factors

::::
also

:::::
cluster

::
in
::
a
::::::
similar

::::::
pattern

::
to

:::
the

:::
soil

::::::
cover,

:::
the

:::::
DSM

:::::::::
predictions

::::::
would

::::
also

:::::
cluster

::::
and

:::::::::::
approximate

::::
map

::::
units

:::::
from

:::::::::
traditional

::::::
survey.

::::::::::::
Convolutional

:::::
neural

::::::::
networks

:::::::::::::::::::::::::::::::::
(e.g., Taghizadeh-Mehrjardi et al., 2020)

:
,
:::
not

::::::::::
represented

::
in

:::
the

::::::::
methods

::::::::
compared

::
in
::::

this
::::::
paper,

::::::::
explicitly115

:::::::
consider

:::::::::::::
neighbourhoods

:::
of

:::::::
various

::::
size,

:::
but

::::
not

::::::::
explicitly

:::::::::::
connectivity. The question is thus to what degree PSM

:::::
DSM

products represent the actual soil landscape spatial pattern and, more importantly, the underlying pedogenetic and geomorphic

processes.

PSM
::::
DSM

:
maps are most commonly produced at grid cell resolutions from 1 km to 30 m, and even to 10

::::
< 10 m for

precision agriculture applications. Environmental covariates are available at these resolution, so that PSM
::::
DSM

:
products at120

4



high resolutions can show fine details that can not be presented at the design scale of conventional maps
::::::
polygon

:::::
maps

:::::
made

::
by

:::::::::
traditional

::::::::
methods. These have minimum legible delineations (MLD) of 0.25 cm2 (Vink, 1975) or 0.40 cm2 (Forbes

et al., 1982) on the published map, multiplied by the scale factor. For example, a polygon map at 1:24 000, typical of USA

conventional
::::::::
traditional

:
soil survey, can represent spatial patterns of 1.44 (Vink) to 2.3 (Forbes) ha minimum-size polygons.

:::
The

:::::::::::::::::
Forbes et al. (1982)

:::::
criteria

::::
have

:::::
been

::::::::::
incorporated

::::
into

:::::
NRCS

:::
soil

::::::
survey

::::::::
standards

::::::::::::::::::::::::::::::::::::::::::::::::::
(Schoeneberger et al., 2012; Soil Survey Division Staff, 2017)125

:
. These correspond to single grid cell resolutions of 240 to 384 m, coarser than higher-resolution PSM

:::::
DSM products from

(30 to 100 m). But the question remains whether this implied fine detail represents true differences or artefacts of the mapping

process – in other words, should the PSM
:::::
DSM map unit trust the apparent differences between adjacent grid cells, or are some

or most of these differences due to artefacts (“noise”) of the PSM
::::
DSM

:
process? Further, there is the question of how well the

medium-resolution products (e.g., 250 m) represent the soil landscape at regional extent.130

The objective of this study is to present methods with which to evaluate the landscape and detailed level spatial patterns of

PSM maps. These maps may
:::::
DSM

:::::
maps.

:::::
These

:::::
maps

:
have been developed for global, national, or regional spatial extents.

These patterns are compared with digital soil maps based on polygon maps produced by field survey
::::::::
traditional

:::
soil

:::::::
survey,

::::
using

::::
field

:::::
study

:
and expert soil-landscape analysis. We chose the USA as a study area because of the availability of field-based

soil surveys at 1:12 000 to 1:24 000 design scale, linked to detailed descriptions of modal soil profiles, available as a seamless135

digital product. These comparisons may be useful in the context of current plans (Thompson et al., 2020) for updating and

completing the USA soil survey using PSM
::::
DSM

:
methods and GlobalSoilMap (GSM) specifications (Arrouays et al., 2014).

They should also be useful for developing realistic expectations for what PSM
::::
DSM

:
can and cannot deliver (Arrouays et al.,

2020).

To evaluate PSM
:::::
DSM methods we apply them to selected test areas and soil properties, and comment on the results. This140

paper introduces the methods and data sources, and includes an illustrative example (one area, one soil property, one depth

slice), with a minimum of discussion of soil geography
::::::::
interval),

::
in

:::
the

::::::
context

:::
of

:::
the

:::
soil

:::::::::
geography

::
of

:::
the

::::::::
selected

:::::
region.

A companion ISRIC Report (Rossiter et al., 2021) presents four case studies in diverse soil geographic contexts, each with

different soil properties and depth slices
:::::::
intervals. We encourage readers to apply the methods to their own study areas within

the USA and to their soil properties of interest, to evaluate the utility of the several PSM
::::
DSM

:
products. For this, we provide145

our analysis scripts as R Markdown documents (R Studio, 2020); see “Code availability” at the end of this paper.

2 Data sources
::::::::
Products

:::::::::
compared

The source maps
:::::::
products

:::::::::
compared

::
in

:::
this

:::::
study

:::::
differ

::
in

::::
their

:::::::
primary

::::
data

::::::
source

::::
(soil

:::::
maps

:::
and

:::::
point

::::::::::::
observations),

::::
their

:::::::::
geographic

::::::
scope,

:::
the

:::::::
mapping

::::::::
methods

::::
used

::
to
:::::

make
:::

the
::::::

digital
::::::::
product,

::::
their

:::::::::
resolution,

::::::
depths

::::
and

:::::::::
coordinate

::::::::
reference

:::::::
systems,

:::
and

:::::
how

::::
they

:::::
assess

::::
and

::::::
present

::::::::::
uncertainty.

::::
We

:::::::::
summarize

:::::
these

::::::
below;

:::
see

:::
the

:::::::
journal

::::::
articles

:::::::::
describing

:::::
each150

:::::
source

:::
for

::::::
details.

:

2.1
::::::

General
:::::::::
character

::
of

:::
the

::::::::
products

5



:::
The

:::::::
products

:
are of three kinds: (1) digital products based on field

:::::::::
traditional

:::
soil survey without any statistical modelling; (2)

PSM
::::
DSM products based on field

:::::::::
traditional

:::
soil

:
survey products and enhanced by statistical modelling using environmental

covariates; and (3) PSM
::::
DSM

:
products based on statistical modelling using training points and environmental covariates.155

This latter is the most common PSM
:::::
DSM method worldwide, especially for areas without extensive field

::::::::
traditional

::::
soil

surveys. These differ in their primary data, their environmental covariates and geographic scope, their mapping methods, the

resolution of their predictions, and their uncertainty assessment. These have implications for interpreting their relative success.

We summarize these below; see the Supplementary Materials and corresponding papers for details.

The first source
:::
kind

::
of

:::::::
product

:
is represented by the reference product

:::::::
products from the Natural Resources Conserva-160

tion Service (NRCS) of the United States Department of Agriculture (USDA), based on extensive field surveyand ,
::::::::

airphoto

:::::::::::
interpretation,

::::::::
thematic

:::::
maps,

::::
and

::::::
expert

:::::::::
evaluation

::
of

:::::::::::::::
DEM-derivatives.

::::
This

::
is

:
considered to be the most accurate infor-

mation, despite the occasional presence of artefacts from the overall mapping program
::::::::::
programme, as explained later in this

section.
::::
There

:::
are

::::
two

::::::::::::
closely-related

:::::::
products

:::::
from

:::
the

::::::
NRCS.

::
At

:::
the

:::::::
national

:::::
level,

:
The National Soil Geographic Database gNATSGO

::::::::::::::::::
(NRCS Soils, 2022b) is a composite of the Soil165

Survey Geographic Database (SSURGO, mostly 1:24,000 scale), and State Soil Geographic Database (STATSGO2, 1:250,000

scale), and the very detailed Raster Soil Survey Database (RSS), according to the most detailed product available for all areas of

the USA(?). For each State
:
It
::
is

:::::
aimed

::
at

:::::
users

::::
who

::::::
require

:::::::::
multi-state

::
or

:::::::
CONUS

::::::
extent

:::::::
mapping.

::::
For

::::
each

::::
state or equivalent

political unit, the SSURGO and
::
or

:
STATSGO2 polygon maps of SMU produced by field

:::::::::
traditional survey have been rasterized

to a grid, each cell keyed to a a soil map unit (SMU) (NRCS Soils, 2020a). Grid cells link to the best available (i.e., greatest170

detail STATSGO-SSURGO-RSS) SMU. The digital products are delivered at 30 m resolution
:::
and

::
90

::
m

:::::::::
resolutions

:
for the 48

States of the continental USA and the
:::::::::
contiguous

:::::
states

:::
and

:::
the

::::::
federal District of Columbia

::
of

:::
the

::::
USA (abbreviated CONUS),

i. e., excluding Alaska, Hawaii and the Island Territories. .
:
The SMU are mappable landscape elements, at the survey design

scale. These usually have multiple component STU, with reported estimated proportion and sometimes the landscape relations

within the SMU. However the locations of the STU within the SMU are not mapped due to the design scale. The STU are175

linked to database tables of representative or synthetic soil profiles, with field and laboratory measurements of multiple soil

properties, as well as interpretations for soil use. To obtain values for soil properties in a grid cell, properties of the components

of the corresponding SMU are combined by area-weighted averaging. To obtain values at coarser resolution , grid cells are

averaged by upscaling.

The second source is represented by POLARIS soil properties (Chaney et al., 2019) (further PSP), the result of harmonizing180

diverse SSURGO and STATSGO2 polygon data with the DSMART algorithm (Odgers et al., 2014) to produce a probabilistic

raster soil class or component map (
::
At

::::
the

::::
state

:::::
level,

::::::::::
gSSURGO

:
is

::::
also

::::::::
available

::::::::::::::::::
(NRCS Soils, 2022a).

::::
This

::::
has

::::::
higher

::::::::
resolution

:::::
(both

:::
10

::
m

::::
and

:
30 grid resolution) and then extracting property information from gSSURGO, aggregated by

component name. Despite the source data, this is not an NRCS product.

There are two products representing the third source, one for the world and one for the continental USA only. This allows us185

to compare globally-
::
m)

::
to
:::::::::

minimize
::::::::::
degradation

::
of

:::
the

:::::::
original

::::::::
polygon

:::::::::::
delineations, and nationally-consistent products.

The global product is SoilGrids v2.0 (further SG2) (ISRIC - World Soil Information, 2020; Poggio et al., 2021), a further
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development of SoilGrids1km (Hengl et al., 2014) and SoilGrids250m (Hengl et al., 2017)
:
is

::
a
:::::
direct

::::::::
gridding

::
of

:::::::::
SSURGO

:::::::
polygons. This uses a global point dataset and environmental covariates that cover the entire world (except the high Arctic

and Antarctica), and models that are globally-consistent
:
It
:::::

does
:::
not

:::
use

:::::::::::
STATSGO2

:::
for

:::::::
infilling

:::
nor

:::::
RSS

::
if

:::::::
available. The190

continental product is
:
It
::::
thus

::
is

:
a
:::::::
gridded

::::::
version

::
of

:
the Soil Properties and Class 100m Grids of the United States (further

SPCG) (Ramcharan et al., 2018), which followed the methodology of Hengl et al. (2017) with the addition of USA-specific

covariates, notably parent material and drainage classes extracted from SSURGO or STATSGO2, and only used the CONUS

extent of environmental covariates in model building
:::::::
familiar

::::::::
SSURGO

:::::::
product

:::
that

::
is

::::
used

:::
for

::::
local

::::::::::
applications.

2.2 Primary data195

A major difference between products is the extent to which primary data relies on field soil survey
:::::::::
gSSURGO

::
is

::::::::
refreshed

:::::::
annually

:::
for

::::
those

:::::
users

::::
who

::
do

::::
not

::::
wish

::
to

:::
mix

::::::::::
STATSGO

::
or

:::
the

:::
new

:::::
raster

::::
soil

::::::
surveys

::::
into

::::
their

:::::::
analysis.

At one extreme are the hand-drawn
:::
The

:::::::
gridded

:::::::::
gNATSGO

:::
and

:::::::::
gSSURGO

:::::
maps

:::
are

::::::
derived

::::
from

:::
the

:
polygons of SSURGO,

the basis of the gridded products gSSURGO and gNATSGO. These polygons are available from the NRCS as vector GIS

layers (Natural Resources Conservation Service, 2019), and in a convenient format on a geographic background as SoilWeb200

(California Soil Resource Lab, 2020). These are a
:
a
:
representation of those delineated by the field surveyors on stereo-pairs or

ortho-photos and subsequently converted to vector digital format
::
by

:::::::
manual

:::::::::
digitization. Soil surveys conducted in the last 15

years were compiled using on-screen digitization in a GIS.
::
At

::::::::::
boundaries

:::::::
between

::::::
survey

:::::
areas,

:::::::
polygon

::::
lines

::
at

::::::
survey

:::::
limits

::::
have

::::
been

::::::::
matched

:::::
during

:::::::::
digitizing

:::::::::::::::::::::::::
(D’Avelo and McLeese, 1998).

:
These polygons are organized in

:::
soil map units (SMU)

with one or more components (
::
soil

::::::::::
taxonomic

:::::
units, STU), usually named for a soil series but more specific than the parent205

soil series concept. Taxa above the soil series (family or subgroup) are commonly used in soil surveys of national forest land

or wilderness areas. Soil series are the lowest level of Soil Taxonomy (Soil Survey Division Staff, 2014) and are described

in the Official Series Descriptions (OSD), as modal profiles with a set of ranges for the observed morphology and laboratory

measurements.

The component STU in a mapped SMU vary in the observed field properties from the OSD modal description, but usually210

fit within soil series range. The observed field properties of soil component units are utilized for developing a set of inter-

pretations for SSURGO polygon map units. Further, since field
:::::
These

::::::::
polygons

:::
are

::::::::
available

::::
from

:::
the

::::::
NRCS

::
as

::::::
vector

::::
GIS

:::::
layers

:::::::::::::::::::::::::::::::::::::::
(Natural Resources Conservation Service, 2019)

:
,
:::
and

::
in

::
a
:::::::::
convenient

::::::
format

:::
on

:
a
::::::::::
geographic

::::::::::
background

::
as

::::::::
SoilWeb

::::::::::::::::::::::::::::::
(California Soil Resource Lab, 2020).

:

:::
The

:::::
SMU

:::
of

:::
the

::::::
source

:::::
maps

:::
are

:::::::::
mappable

::::::::
landscape

:::::::::
elements,

::
at

:::
the

::::::
survey

::::::
design

:::::
scale.

::::::
These

::::::
almost

::::::
always

:::::
have215

:::::::
multiple

:::::::::
component

:::::
STU,

::::
with

::::::::
reported

::::::::
estimated

:::::::::
proportion

:::
and

:::::::::::
geomorphic

::::::::::
arrangement

::::::
within

:::
the

:::::
SMU

:::::
when

::::::::
possible.

:::::::
However

:::
the

::::::::
locations

::
of

:::
the

:::::
STU

::::::
within

:::
the

:::::
SMU

:::
are

:::
not

:::::::
mapped

:::
due

::
to

:::
the

::::::
design

:::::
scale.

::::
The

::::
STU

:::
are

::::::
linked

::
to

::::::::
database

:::::
tables

::
of

::::::::::::
representative

::
or

::::::::
synthetic

:::
soil

:::::::
profiles,

:::::
with

::::
field

:::
and

:::::::::
laboratory

::::::::::::
measurements

::
of
::::::::

multiple
:::
soil

:::::::::
properties,

:::
as

::::
well

::
as

::::::::::::
interpretations

:::
for

:::
soil

::::
use.

:::
To

::::::
obtain

:::::
values

:::
for

::::
soil

:::::::::
properties

::
in

:
a
::::::::::
gNATSGO

::
or

::::::::::
gSSURGO

::::
grid

::::
cell,

::::::::
properties

:::
of

:::
the

::::::::::
components

::
of

:::
the

::::::::::::
corresponding

:::::
SMU

::::
are

::::::::
combined

:::
by

::::::::::::
area-weighted

:::::::::
averaging.

:::
To

:::::
obtain

::::::
values

::
at
:::::::
coarser

::::::::::
resolutions,220

::::::::::::::
weighted-average

:::::::::
properties

::
of

::::::
groups

::
of

::::
grid

::::
cells

:::
are

:::::::
upscaled

:::
by

:::::::::
averaging.
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:::::
There

:::
are

:::::::
inherent

:::::::
problems

::::
with

::::
this

:::::::
product.

::::
First,

:::::
since

:::::::::
traditional surveys were carried out over a long time period, series

names and mapping concepts may differ between adjacent survey areas(a. k.a. survey “vintage”). .
:
At boundaries between

survey areas, polygon lines at survey limits have been matched during digitizing (D’Avelo and McLeese, 1998).
::::
Thus

:
SSURGO

SMU delineations and linked tabular data represent a progressive data collection and correlation effort spanning nearly 100225

years. As such
::::::::
Therefore, there exist many soil survey vintages, each a snapshot in time, tied to specific land-use assumptions

and technological limitations. Systematic, continuous updates to the entire SSURGO database have been made since 2013.

However
::::
2013

::::
and

:::
are

::::::::
ongoing.

::::::
Second, the transfer from unrectified photos to topographic base and the edge matching

between survey areas has not always been flawless, and in addition polygons may have been mis-drawn on the original

survey (Supplementary Fig. 1
:::
S1). Thus we can not take gSSURGO

::::
these

:::::::
primary

:::::::
polygon

:::::
maps

:
as a completely reliable230

reference
:::::::::::
georeference.

PSP does not use any point observations; rather, it samples pseudo-points from gSSURGO and uses these as training

points for the DSMART disaggregation algorithm (see below) .
:::
The

:::::::
second

::::
kind

::
of

:::::::
product

::
is
::::::::::

represented
:::

by
::::::::::
POLARIS

:::
soil

:::::::::
properties

::::::::::::::::::
(Chaney et al., 2019)

::::::
(further

::::
PSP

:
),
:::
the

::::::
result

::
of

:::::::::::
harmonizing

:::::::
diverse

::::::::
SSURGO

::::
and

::::::::::
STATSGO2

::::::::
polygon

:::
data

:::::
with

:::
the

::::::::
DSMART

:::::::::
algorithm

:::::::::::::::::
(Odgers et al., 2014)

::
to

:::::::
produce

::
a

::::::::::
probabilistic

:::::
raster

::::
soil

::::
class

:::
or

:::::::::
component

::::
map

:::
(30

:
m235

:::
grid

::::::::::
resolution)

:::
and

::::
then

:::::::::
extracting

:::::::
property

::::::::::
information

:::::
from

:::::::::
gSSURGO

:::
or

:::::::::
gNATSGO

::::
grid

::::
cells

::::::::::::
(representing

:::::::::
polygons),

:::::::::
aggregated

::
by

::::::::::
component

:::::
name.

::::::
Despite

:::
the

::::::
source

::::
data,

::::
this

::
is

:::
not

::
an

::::::
NRCS

::::::
product

::::
and

:::
was

:::::::::
developed

::::::::::::
independently

::
of

:::
the

::::::
NRCS.

At the other extreme is SG2, which
:::::
There

:::
are

::::
two

:::::::
products

:::::::::::
representing

:::
the

:::::
third

::::
kind

:::
of

:::::::
product,

::::
one

:::
for

:::
the

::::::
world

:::
and

:::
one

::::
for

:::
the

:::::::::
continental

:::::
USA

:::::
only.

::::
This

::::::
allows

::
us

:::
to

:::::::
compare

::::::::
globally-

::::
and

:::::::::::::::::
nationally-consistent

::::::::
products.

::::
The

::::::
global240

::::::
product

::
is

::::::::
SoilGrids

::::
v2.0

::::::
(further

::::
SG2

:
)
::::::::::::::::::::::::::::::::::::::::::::::::
(ISRIC - World Soil Information, 2020; Poggio et al., 2021)

:
,
:
a
::::::
further

:::::::::::
development

::
of

:::::::::::
SoilGrids1km

:::::::::::::::::
(Hengl et al., 2014)

:::
and

::::::::::::
SoilGrids250m

::::::::::::::::
(Hengl et al., 2017)

:
.
::::
This

::::
uses

:
a
::::::
global

::::
point

::::::
dataset

::::
and

::::::::::::
environmental

::::::::
covariates

::::
that

:::::
cover

:::
the

:::::
entire

:::::
world

:::::::
(except

:::
the

::::
high

::::::
Arctic

:::
and

::::::::::
Antarctica),

::::
and

:::::
global

:::::::
models.

::
It
:
does not use any infor-

mation derived from SSURGO or STATSGO
:::
map

:::::
units. Its training points are extracted from the freely-shareable World Soil

Information Service (WoSIS) point dataset from ISRIC-World Soil Information (Batjes et al., 2020). These include all profiles245

in the NRCS pedon
:::::
NCSS

::::::::::
Laboratory

::::::::::::::
Characterization

::::::::
Database database. The

::::::::::::
freely-sharable WoSIS points are augmented

by several datasets
:::::::
included

::
in
:::::::
WoSIS that can not be published externally due to restrictions by the original data providers to

ISRIC, but which can be used in mapping. In total ≈ 240 000 profiles were used in model building.

:::
The

:::::::::
continental

:::::::
product

::
is

::
the

::::
Soil

:::::::::
Properties

::::
and

:::::
Class

:::::
100m

:::::
Grids

::
of

:::
the

::::::
United

::::::
States

::::::
(further

::::::
SPCG

:
)
::::::::::::::::::::
(Ramcharan et al., 2018)

:
,
:::::
which

:::::::
followed

:::
the

:::::::::::
methodology

:::
of

::::::::::::::::
Hengl et al. (2017)

:::
with

:::
the

:::::::
addition

::
of

::::::::::::
USA-specific

:::::::::
covariates,

::::::
notably

::::::
parent

:::::::
material250

:::
and

:::::::
drainage

::::::
classes

::::::::
extracted

:::::
from

::::::::
SSURGO

:::
or

::::::::::
STATSGO2

::::
map

:::::
units,

:::
and

::::
only

:::::
used

:::
the

:::::::
CONUS

:::::
extent

:::
of

::::::::::::
environmental

::::::::
covariates

::
in

::::::
model

::::::::
building. SPCG is similar to SG2 in that it is primarily based on point observations, but it has a richer

source of these than SG2: the NCSS
::::::::
Laboratory

:
Characterization Database (34 183 pedons comprising 213 499 horizons), the

National Soil Information System (NASIS), and the Rapid Carbon Assessment (RaCA) dataset (31 215 pedons); this latter

only for organic C, total N, and bulk density.255
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2.2 Environmental Covariates and geographic scope

The three PSM products (SG2, PSP, and SPCG) use a large number of gridded GIS coverages as environmental covariates in

their predictive models. These represent soil-forming factors, and include climate, ecology, geology, land use/cover, terrain,

vegetation and hydrography; see Supplementary Information for details.

PSP also uses coarse-resolution (≈ 2 ) estimates of U, Th, and K γ-ray decay products. The model is trained in overlapping260

tiles, thus each tile is derived from a local model.

SG2 only uses environmental covariates available over the whole world. The model is trained for the whole world, not

per-country or region, thus it is a global model. This corresponds to the “homosoil” concept (Mallavan et al., 2010): identical

environmental conditions anywhere in the world should result in the same soils. The obvious question is whether or not the

additional information from outside the CONUS leads to an improved model for this region.265

SPCG also uses SSURGO and STATSGO2 polygons
:
It
::::
also

::::
uses

:::::::::
SSURGO

::::
map

::::
units

:
to derive parent material (87) and

drainage (4) classes as environmental
:::::::::::::
CONUS-specific

:
covariates. The model is trained for the CONUS, thus it is a regional

model.

2.2 Mapping methods

gSSURGO is based on field
:::::::::
gNATSGO

:::
and

::::::::::
gSSURGO

:::
are

::::
based

:::
on

::::::::
traditional

::::
soil survey, mostly on unrectified airphoto bases270

::::
until

:::
the

:::
late

::::::
1990’s. The many individual survey areas

::::
prior

::
to
::::
this

::::
time have been partially homogenized during a process of

digitization and recompilation onto topographic or orthophoto bases during the 1990’s (D’Avelo and McLeese, 1998) and are

provided as the polygon SSURGO map.
::
In

:::
the

::::
early

::::::
2000’s

:::
for

::::
new

:::::::
surveys

:::
and

:::::::
updates

:
a
:::::::::

transition
:::
was

:::::
made

::
to
:::::::::
on-screen

:::::::::
digitization

::::
over

:::::::::::
orthophotos.

:
Field methods are described in successive editions of the Soil Survey Manual (Soil Survey

Division Staff, 2017) and the field book for describing and sampling soils (Schoeneberger et al., 2012). Mapping is based on275

conceptual models of soil-landscape relations developed in each survey area (Hudson, 1992), confirmed by purposive auger

observations and a small number of
::
and

:
full profile descriptions to characterize map unit composition.

:::::::::
Component

::::::::
concepts

::
are

:::::::
refined

::::
with

:::
any

::::::::
available

:::::::::
laboratory

::::::::::::::
characterization

::::
data,

::::
with

::::::::
(limited)

::::
new

:::::::::
laboratory

:::::::::::::
characterization

:::::::::
performed

:::
as

::::::
needed.

:::::
Thus

::::::::
SSURGO

::::::::
provides

:
a
:::::
local

:::::
model

:::
of

::::::::::::
soil-landscape

::::::::
relations,

::::::::
developed

:::
in

::::
each

::::
area

::::
from

:::
the

:::::
most

:::::::::
significant

:::
soil

:::::::
forming

::::::
factors

:::::::
relevant

::
to

::::
that

::::
area.

:
SSURGO is progressively updated by field inspection and correlation, as problems280

are identified by soil surveyors or map users. The SSURGO polygons are rasterized to gSSURGO. Since SSURGO is compiled

from diverse field surveys over many years, in some areas there are artefacts of that survey process (Supplementary Fig. 2
::
S2).

PSP uses
:::
The

:::::
three

:::::
DSM

:::::::
products

:::::
(SG2,

:::::
PSP,

:::
and

::::::
SPCG)

:::
use

::
a
::::
large

:::::::
number

::
of

:::::::
gridded

::::
GIS

::::::::
coverages

:::
as

::::::::::::
environmental

::::::::
covariates

::
in

::::
their

::::::::
predictive

:::::::
models.

:::::
These

::::::::
represent

::::::::::
soil-forming

:::::::
factors,

:::
and

::::::
include

:::::::
climate,

:::::::
ecology,

:::::::
geology,

::::
land

::::::::
use/cover,

::::::
terrain,

:::::::::
vegetation

:::
and

:::::::::::
hydrography

:::::::::::::
(Supplementary

::::::::::
Information

:
§4

:
).
::::
PSP

::::
also

::::
uses

::::::::::::::
coarse-resolution

::::
(≈ 2

:
km)

::::::::
estimates

:::
of285

::
U,

:::
Th,

::::
and

:
K
:::::
γ-ray

::::::
decay

:::::::
products

::
to

::::::::
represent

::::::::
suspected

::::::::
variation

::
in

:::::
parent

:::::::
material

::::
kind

::::
and

:::::
origin.

:

:::
PSP

::::::::::::::::::
(Chaney et al., 2019)

::::
uses the DSMART disaggregation algorithm (Odgers et al., 2014) to predict the most probable

component (STU), along with their probability of occurrence, at each 30 m resolution grid cell, and from the modal soil
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properties of the component, a probability-weighted aggregation. In this context “disaggregation”
::::::::::::
Disaggregation is the process

of attempting to take
::::::::
examining

:
a coarser-resolution gridded or smaller-scale polygon product which is known to have multiple290

STU, and identify the locations at a finer grid resolution where these components would be found, should the original survey

have been at larger scale. This depends on fine-scale covariates that, in theory, relate to the STU within an SMU. It attempts

to deal with the problems caused by multiple surveys over time, inconsistencies among mappers, and poor georeference of

SMU boundaries by sampling out of mapped SMU polygons according to declared proportions of map unit components

(STU) and using these as pseudo-observations to train PSM
::::
DSM

:
models of STU occurrence. PSP

::::
does

:::
not

:::
use

::::
any

:::::
point295

:::::::::::
observations;

:::::
rather,

::
it

::::::
samples

::::::::::::
pseudo-points

::::
from

::::::::::
gSSURGO

::
or

:::::::::
gNATSGO

:::
and

::::
uses

:::::
these

::
as

::::::
training

::::::
points

::
for

:::
the

:::::::::
DSMART

::::::::::::
disaggregation

::::::::
algorithm

::::
(see

::::::
below).

::::
The

:::::
model

::
is

::::::
trained

::
in

::::::::::
overlapping

::::
tiles,

::::
each

:::::::::
containing

:::::
some

::
set

:::
of

::::::::
SSURGO

:::::::
primary

:::::::
surveys,

:::
and

:::::
using

:::::::::
covariates

::::::::
covering

:::
just

:::
the

::::
tile.

:::::
Thus

::::
each

:::::::::
POLARIS

:::
tile

::
is
:::::::

derived
:::::
from

:
a
:::::
local

:::::
model

:::
in

:::
two

:::::::
senses.

:::
PSP

:
provides a fine-scale map equivalent to ≈1:3 000 design scale, i.e., from 16 to 64 times finer resolution than the original

1:12 000 to 1:24 000 surveys included in SSURGO. An obvious question is whether it is possible to map at this resolution300

from the SSURGO source, even with the fine-resolution covariates used by DSMART. See Chaney et al. (2019) for details.
:
,

::::::
because

::
of
:::
the

:::::::::::
probabilistic

:::::
nature

:::
of

:::::::
selecting

::::::::::::
pseudo-points

::
to

:::::
match

::::
with

:::::::::::
components

::::::
(STU).

The other two methods are representative of the dominant PSM
::::
DSM

:
method as implemented, with some differences in

detail, in many countries and for many properties (e.g., Reddy et al., 2021; Liu et al., 2020; Araujo-Carrillo et al., 2021).

SG2
:::::::::::::::::
(Poggio et al., 2021) uses random forests implemented in the ranger R package, with prior covariate selection by305

recursive feature elimination and model tuning by cross-validation of model hyperparameters (number of covariates at each

tree split, number of trees in the forest). See Poggio et al. (2021) for details
::::
The

:::::
model

::
is
:::::::

trained
:::
for

:::
the

::::::
whole

:::::
world,

::::
not

:::::::::
per-country

::
or

::::::
region,

::::
thus

::
it

:
is
::
a

:::::
global

:::::
model. SPCG

:::
This

::
is

:::::
based

::
on

:::
the

::::::::::
“homosoil”

::::::
concept

:::::::::::::::::::
(Mallavan et al., 2010):

::::::::
identical

:::::::::::
environmental

:::::::::
conditions

:::::::::
anywhere

::
in

:::
the

:::::
world

::::::
should

:::::
result

::
in

:::
the

:::::
same

::::
soils.

:::
Its

:::
use

::
in

:::::
DSM

:::::::
assumes

::::
that

::
all

::::
soil

:::::::
forming

:::::
factors

:::
are

:::::
fully

::::::::
specified

::::
(i.e.,

::::
over

::::
their

::::::
whole

:::::
range

:::
and

::::
with

:::
all

::::
their

::::::::
possible

::::::::::
interactions)

::
in

:::
the

::::::
model

::::
and

::::::
training

::::
set.310

:::
Due

::
to

:::
the

::::::
uneven

::::::::::
distribution

::
of

:::::::
training

:::::
points

::
in

::::::::
covariate

:::::
space,

::
as

::::
well

::
as
:::::::
portions

:::
of

:::::::
covariate

:::::
space

::::
with

:::
no

:::::::::::
observations,

:::
this

::::
ideal

::::::::
situation

:
is
:::
not

::::
met.

:::
An

:::::::
obvious

:::::::
question

::
is

:::::::
whether

::
or

:::
not

:::
the

:::::::::
additional

:::::::::
information

:::::
from

::::::
outside

:::
the

:::::::
CONUS

:::::
leads

::
to

::
an

::::::::
improved

::::::
model

::
for

::::
this

::::::
region.

:::::
SPCG

:::::::::::::::::::::
(Ramcharan et al., 2018) is an extension of the original SoilGrids approach, but uses an ensemble of two tree-based

machine learning methods: random forests (as in the original SoilGrids) and gradient boosting. See Ramcharan et al. (2018)315

for details.
:::
The

::::::
model

::
is

::::::
trained

:::
for

::
the

::::::::
CONUS,

:::
not

::::::::::
per-region,

:::
thus

::
it
::
is

:
a
:::::::
reduced

:::::::
version

::
of

:::
the

:::::::::
“homosoil”

::::::::
concept.

:
It
::
is
::
a

:::::
global

:::::
model

::
in

:::
the

::::
sense

:::
of

::::
“use

::
all

::::::::::
information

::::
over

:
a
:::::
wide

:::::
area”,

::::::::
although

:::
this

::
is

:::
not

:::
the

:::::
entire

:::::
globe,

::
as
:::
in

::::
SG2.

:

2.3 Resolution, depths and coordinate reference systems

About 90% of gSSURGO and gNATSGO is derived from polygon maps with a design scale (1:12 000 to 1:24 000, depending

on the original survey), which corresponds to MLD 1.44 to 2.3 ha (1:24 000) or 0.38 to 0.575 ha (1:12 000) polygons,320

depending on the definition of MLD (see above). These correspond to single grid cell resolutions of 240 to 384 m (1:24 000)

or 60 to 96 m (1:12 000). gSSURGO
:::::::::
gNATSGO

::::::::
includes

:::::
some

:::::
areas

::::::::
surveyed

::
at

::::::
smaller

:::::
scale

::::::
(1:250

:::::
000).

::::::::::
gNATSGO
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is delivered as gridded coverages at 30 m
::
or

:::
90

::
m

:
horizontal resolution on an Albers Equal Area projection covering the

CONUS, with standard parallels at 29.5◦ and 45.5◦ N and the central meridian at -96◦ E on the NAD83 datum, which uses the

GRS80 ellipsoid. gNATSGO is a 90 m resolution generalization of this.
:::
We

::::
have

::::
used

:::
the

:::
30

::
m

::::::::
resolution

:::::::
product.

::::::::::
gSSURGO325

:
is
::::::::
delivered

::
as

:::::::
gridded

::::::::
coverages

::
at

::
10

::
m
:::
or

::
30

::
m

:::::::::
horizontal

::::::::
resolution

::
on

:::
the

:::::
same

:::::::
CONUS

:::::::::
projection.

:::
We

::::
have

::::
used

:::
the

:::
30

::
m

::::::::
resolution

:::::::
product.

:
Property information is provided per horizon or layer, each with depth limits. Thus to produce a prediction

for a depth slice
::::::
interval

:
these must be aggregated by depth-weighted average by thickness across the depth slice

::::::
interval.

PSP predicts at 1 arc-second of longitude and latitude resolution, i.e., 0.0002777778◦ on the WGS84 datum, equivalent to ≈
32 m latitude, and proportionally smaller longitude depending on latitude. Depth slices

:::::::
intervals are the standards specified330

by GlobalSoilMap. SPCG predicts at 100 m resolution for seven point depths (0, 5, 15, 30, 60, 100 and 200 cm) in the same

projection as
:::::::::
gNATSGO

::::
and gSSURGO. Predictions are means of a depth slice

::::::
interval. SG2 predicts at 250 m resolution

for the standard depth slices
:::::::
intervals

:
specified by GlobalSoilMap on an equal-area Interrupted Goode Homolosine (IGH)

projection on the WGS84 datum (Moreira de Sousa et al., 2019). Depth slice
::::::
interval predictions are in fact point predictions

at the centre of the depth slice
::::::
interval, considered to represent that interval. The Supplementary Information §3 explains how335

these products are accessed and made compatible for comparison at regional and local scales.

2.4 Uncertainty assessment

SG2 and PSP predict the 5% and 95% quantiles of the distribution of predictionsusing
:
.
::::
SG2

::::
uses Quantile Regression Forests

(QRF) (Meinshausen, 2006).
:
,
:::::::
whereas

:::::
PSP’s

:::::::::
uncertainty

::::::::
estimates

:::
are

:::::
based

::
on

::::::::
property

:::
data

::::::::
available

:::
for

::::
each

::::
STU

::::::::
predicted

::
by

:::::::::
POLARIS.

::::
The

::::::
profile

:::::::
property

::::
data

:::
are

::::
used

::
to

:::::
create

:
a
:::::::::::::::
depth-harmonized

::::::
profile

::::
with

::::::::::
uncertainty

::
for

:::::
each

:::::::
standard

:::::
depth340

:::::::
interval. These

:::::
These

:::::::::
uncertainty

:
limits are specified by the GlobalSoilMap consortium (Arrouays et al., 2014), defined as “the 90% Predic-

tion Interval (PI) which reports the range of values within which the true value is expected to occur 9 times out of 10 . . . there is

no assumption that this prediction interval is necessarily symmetric around the predicted value.” (Science Committee, 2012).

gSSURGO provides345

:::::::::
gNATSGO

:::
and

:::::::::
gSSURGO

:::::::
provide “representative”, “upper” and “lower” limit values of each property of a STU, per horizon

or layer. The National Soil Survey Handbook, §618.2 (United States Department of Agriculture, Natural Resources Conser-

vation Service, n.d.) explains that the representative value approximates the median, but that the quantiles corresponding to

the low and high values can be adjusted to the percentiles which best show the spread of the property within an STU. If

there are sufficient laboratory data of sampled profiles of the STU in the National Soil Information System (NASIS) (Natu-350

ral Resources Conservation Service, n.d.), these are used as the basis for establishing the range. In all cases expert opinion

is used to adjust these to represent the range that a map user can expect to find in the field. Thus these are not directly

comparable to the results of QRF, but do give some idea of how the field mappers, supported by laboratory observations,

conceive of the spread of a property. Note that none of these assessments imply a parametric probability distribution.
:
,
::::
only

:::::
ranges

::
of

:::::::
selected

::::::::
quantiles.

:::::::::::::::::::
Libohova et al. (2014)

::::::
discuss

::::
how

::::
these

::::::::
estimates

:::
can

:::
be

::::::
derived

:::
for

::::
USA

::::::::
products

::::::::
following

:::
the355

:::::::::::::::
GlobalSoilMap.net

::::::::::::
specifications.

:
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As pointed out by Arrouays et al. (2020), “[t]he user community requires training in, and experience with, the new digital

soil map products, especially about the use of uncertainties”. It would be hoped that the uncertainties computed by different

methods would be similar, but as will be seen here, that is not the case.

3 Evaluation methods360

We compared PSM
::::
DSM

:
products at regional (nominal 250 m grid cells) and local (nominal 30 m grid cells) levels. We

evaluated both qualitatively, i.e., by visual inspection followed by expert interpretation, and numerically, over a 1× 1◦ tile
:
,

::::::
selected

:::::
based

:::
on

::
its

::::::
diverse

:::::::::::
soil-forming

::::::
factors

:::
and

:::::::::::
environments

::::
and

:::
our

:::::::::
familiarity

::::
with

::
its

::::
soil

::::::::
geography. Spatial patterns

were evaluated over a 0.2× 0.2
:::
For

:::
the

::::::
pattern

:::::::
analysis

::::::
within

:::
this

::::
area

:::
we

:::::::
selected

::
a

:::::::::
0.20× 0.20◦ subtile .

:::
and

::::::::
projected

:::
the

::::
maps

::
to

:::
the

:::::::::
UTM18N

:::
grid

:::
on

:::
the

:::::::
WGS84

:::::
datum

::::::
(ESPG

:::::
code

::::::
32618).

:
365

To compare maps at the regional resolution
::::
(250

:::
m), the higher-resolution maps

::::::::::
(gSSURGO,

::::
PSP,

::::::
SPCG)

:
were aggregated

to the lower resolution by weighted averaging (resampling) of the high-resolution pixels within one low-resolution pixel.
::::
Thus

::::
there

::
is

:::::::::
smoothing

:::::::
inherent

::
in

:::
the

:::::::
regional

:::::::::::
comparisons.

To compare maps at the local resolution, we only included the two products (gSSURGO and PSP) provided at that resolution,

along with the global product (SG2) as reference, this latter downscaled by increasing the grid resolution without any attempt370

to disaggregate within the larger grid cell, over a 0.15× 0.15◦ subtile.

3.1 Qualitative methods

Qualitative methods for comparing maps rely on expert judgement to identify known soil-geographic patterns and evaluate to

what extent they are represented on the gridded maps. The maps are displayed side-by-side along with a map of their pairwise

differences. Areas of disagreement are identified and discussed.375

:::
The

:::::
DSM

:::::::
product

:::
can

::
be

:::::::::
evaluated

:
at
:::::::

selected
::::::

known
::::::
points,

::::::::
typically

::::
from

::::
field

::::::::::
observation

::
of

::::
test

:::::
areas:

::
is

:::
the

::::::::
“correct”

:::
soil

::::
type

::
or

:::::::
property

:::::::::
predicted?

::::
and

:
if
::::

not,
::
is

:::
the

::::
error

::
a
:::::::::
reasonable

:::::::::::::
approximation?

:::::
More

:::::::::
interesting

:::
are

:::::::
patterns

::
in

:::
the

:::::
DSM

:::::::
product.

:::::
These

:::
can

:::
be

::::::::
compared

:::
to

:::::::
patterns

::::
used

::
in

:::
the

::::::
mental

::::::
model

::
of

:::::::::
traditional

:::
soil

:::::::
survey,

:::
for

:::::::
example,

:::::::::::::
toposequences

:::
and

::::::::
sequences

:::
of

:::::::::
contrasting

::::::
parent

:::::::
material.

:

::
In

::::
both

::::
cases

::::::
(points

::::
and

:::::::
patterns)

:::
the

::::::::
evaluator

::::
may

::
be

::::
able

::
to

::::
infer

::::::
which

::::
DSM

:::::::::
covariates

:::::
would

:::
be

::::::
needed

::
to

:::::::
improve

:::
the380

::::
map.

3.2 Numerical methods – whole map

Numerical methods for comparing gridded maps as a whole include (1) MD: Mean difference
::::
(also

::::::
known

::
as

:::
the

::::
bias), i.e., the

::::::
average

:
disagreement between maps; (2) RMSD: root mean squared difference; (3) RMSD adjusted for MD, i.e., the RMSD

after accounting for any bias
:::::::::
subtracting

:::
the

::::
bias

:::::
from

::::
each

:::::::::
prediction. These take the first-listed map as reference and the385

second as the map to evaluate. They can be normalized by the number of grid cells or total area. In addition, all maps can be

compared by their Pearson (linear) correlations. These methods are of limited interpretive value– they do characterize the entire
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map, especially for overall
:
.
:::::
Their

::::
main

::::
use

::
is

::
to

::::::::::
characterize

:::
the

:
bias (MD) , but do not explain where the spatial

::::
over

:::
the

:::::
entire

::::
map;

::::
they

:::
do

:::
not

:::::
reveal

:::::
where

::::
any discrepancies occur.

:::
For

::::::::
example,

::::
there

:::
can

:::
be

::
no

::::
bias

::::::
overall

:::
but

::
a

::::
large

:::::::::
difference

::
in

:::
the

:::::::
amount

:::
and

::::::
values

::
of

::::::
higher

:::
and

:::::
lower

::::::::::
differences.

::::
This

::::
will

::
be

:::::::
reflected

::
in
:::
the

:::::::
RMSD,

::::::::
although

:::
not

:::::
shown

:::
on

:
a
:::::
map.390

3.3 Numerical methods – spatial continuity

Soil properties are usually spatially-correlated: we expect similar values of properties in nearby grid cells. The degree of

local spatial continuity can be assessed by the variogram computed over local neighbourhoods of the gridded map. We com-

puted and modelled the variogram within a local neighbourhood and automatically fit with an exponential model, using the

fit.variogram function of the gstat R package (Pebesma, 2004). Spatial structure is characterized by the range, pro-395

portional nugget and structural sill of the fitted variogram model. The range shows the radius over which the selected property

has spatial correlation. The proportional nugget shows the inherent variability at a point
::::::::
variability

::
at

:::
the

::::::::
prediction

:::::
point

::
at

:::
the

:::::
centre

::
of

::
a

:::
grid

::::
cell, at a scale shorter than the grid spacing. The structural sill shows the overall variability within the range.

:::::
These

::::::
metrics

:::::
show

:::::::::
differences

::
in

::::::
spatial

::::::::
continuity

:::::::
(range),

::::
total

:::::::::
variability

::::
(total

::::
sill)

:::
and

::::::::::
short-range

::::::::::
unexplained

:::::::::
variability

:::::::::::
(proportional

::::::
nugget)

:::::::
between

::::::
maps.400

3.4 Numerical methods – patterns

Numerical methods for comparing patterns include: (1) the “V-measure” method (§3.4.1) (Nowosad and Stepinski, 2018) im-

plemented in the sabre “Spatial Association Between REgionalizations” R package (Nowosad, 2020);
:::
and

:
(2) landscape-level

metrics (§3.4.2) (Uuemaa et al., 2013) as used in ecology and derived from the FRAGSTATS computer program (McGarigal

et al., 2012), implemented in the landscapemetrics
:::::::::::::::::::
landscapemetrics R package (Hesselbarth et al., 2019). These in-405

clude Shannon diversity and evenness, landscape shape index, and fractal dimension.
:::::::
Although

:::
the

:::::::::
ecological

::::::::
relevance

:::
of

:::::::::::
FRAGSTATS

::::::
metrics

:::::
have

::::
been

::::::::
criticized

::::::::::::
(Kupfer, 2012)

:
,
::::
here

:::
we

:::
use

::::
them

::
to
:::::::::::
characterize

:::::
spatial

:::::::
patterns

::
of

::::
soil

:::::::::
properties,

:::
not

::
as

:::::
inputs

::
to

::::::::
landscape

:::::::
ecology

:::::::
models.

::::
Most

::
of

:::
the

:::::::
metrics

::::
used

::::
here

::::
have

:::
also

:::::
been

::::
used

::
by

:::::::::::::::::
Pindral et al. (2020)

::
in

:
a
:::::
study

::
of

:::::
urban

:::::::::::
pedodiversity.

:

These methods must be applied to classified maps, so the continuous soil property maps must first be classified into ranges410

before analysis. Clearly, different
:::::::
Different

:
choices of class limits and widths will result in different

:::::
values

:::
of

::::
these

:
measures.

A somewhat objective method to choose classes is histogram equalization. The analyst determines the number of classes, and

equal numbers of grid cells are in each class. To compare maps, the combined values of all maps are used to construct the

histogram. For the “V-measure ” they must also
::
the

:::::::
gridded

::::
maps

:::::
must be polygonized.

These metrics do not compare the values of the classes, only their spatial pattern.415

3.4.1 V-measure

The V-measure method evaluates the spatial association between two regionalizations, i. e. , partitions of a map into classes,

called
::::::
metrics

::::::::
compare

:::::::
different

::::::
spatial

::::::::
partitions

::
of

:::
the

:::::
same

:::::::
domain,

::
in
::::
this

::::
case,

:::::
maps

::::
with

::::::::
classified

::::
soil

:::::::::
properties.

::::
The
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:::::
intent

:
is
::
to
::::::

reveal
::::
how

::::::
similar

:::
are

::::
these

:::::::::
partitions.

::::
Two

:::::
maps

:::::
could

::::
have

:::
the

:::::
same

::::
total

::::
areas

::
of

:::::
each

:::::
class,

:::
and

::::
even

:::
the

:::::
same

::::::
number

::
of

::::::::
polygons

::::::
within

::::
each

:::::
class,

:::
and

:::::
even

:::
the

::::
same

::::
size

::::::::::
distribution

::
of

:::::
these

::::::::
polygons,

:::
and

:::
yet

:::
be

:::::::::
completely

::::::::
different420

::
in

:::
how

::::
they

::::::::
partition

:::::
space

:::
into

:::::::
classes.

:::
The

::::::::
polygons

::
of

:
a
::::::::
classified

::::
map

:::
are

::::::
termed

:
regions

::
of

:
a
:::::::::::::
regionalization in the first

::::::::
(reference)

:
map and zones

::
of

:
a
::::::::
partition

in the second map. These are intersected to produce segments
::::::
segment

:::::::
polygons

:
of the combined map. The segments, ,

::::::
which

::
are

:
labelled with both zone and region , are

::::::
classes.

:::::
These

::::::::
polygons

:::
are

:::
then

:
used to compute two metrics , called

::
of

:::
the

::::
map

::
to

::
be

::::::::
evaluated

:::
(1)

:
homogeneity and

::
(2)

:
completeness,

::::
both

:
with respect to the base (first-listed) regionalization

::::::::::::
regionalization425

::
of

:::
the

::::::::
reference

:::
map.

:::
The

:
Homogeneity

::::::::::
homogeneity of the second map is a measure of the variance of the regions within a zone, normalized by

the variance of the regions in the entire domain of the first map. If
:::::
These

::::::::
variances

:::
are

::::::::
computed

:::
by

:::
the

::::::::
Shannon

:::::::
entropy

:::::
based

::
on

:::::
areas

::
of

:::
the

:::::::::
segments.

::
If

:::
the

:::::::
variance

::
of

:::
the

:::::::
regions

:::::
within

:
the regions within zones have less variance than within

the entire second map, the second map is to some extent
:::::
zones

::
is

:::::
small,

:::
the

::::::::
partition

::
is

::::::::
relatively homogeneous with respect430

to the first map
::::::::::::
regionalization. A perfectly homogeneous partition (second map) (with value 1) is when each zone of the first

map is entirely
::::::
second

::::
map

::
is within a single region of the second

:::::::
reference

:
map.

::
In

:::
this

::::
case

::::
each

::::
zone

:::
has

::::
only

::::
one

::::::::
reference

::::
class.

:
A perfectly inhomogeneous partition (with value 0) is when each zone has the same composition of regions as the entire

domain of the first map, i.e., the second map’s partition (to be tested
:::::::
evaluated) is essentially random with respect to the first

map’s regionalization.435

Completeness of the second map is the inverse of homogeneity: it assesses the variance of the zones within a region, nor-

malized by the variance of the zones in the entire domain of the second map. This
::
It

::::::::
evaluates

:::
the

:::::::::::
homogeneity

::
of

:::::::
regions

::::
with

::::::
respect

::
to

::::::
zones,

::::
and shows how well the partition of the second

::::::::::::
regionalization

::
of

:::
the

:::::::::
reference map fits inside the

regionalization
:::::::
partition

::
of

:::
the

::::
map

::
to

::
be

:::::::::
evaluated.

::
A

::::::::
perfectly

::::::::
complete

::::::::::::
regionalization

::
is

:::::
when

::::
each

::::::
region

::
of

:::
the

::::::::
reference

:::
map

::
is
:::::::
entirely

::::::
within

:
a
::::::
single

::::
zone

::
of

:::
the

::::
map

::
to
:::

be
::::::::
evaluated.

::
In

:::
this

::::
case

::
a
:::::::
polygon

::
of

:::
the

::::::::
reference

::::
map

::::
will

:::
not

:::
be

::::
split440

:::::
among

::::::
zones.

These two together are combined into a single measure, the V-measure, as the harmonic mean of homogeneity h and com-

pleteness c (Equation 1). This has a range between 0 (no spatial association between the maps) and 1 (perfect association).

Obviously, we prefer high association between maps produced by PSM
:::::
DSM and a reference map. We can also assess the

agreement of the patterns produced by different PSM methods
::::
DSM

::::::::
methods,

::::::::
selecting

:::
one

::
as

:
a
::::::::
reference.445

V =
h× c
h+ c

(1)

3.4.2 Landscape metrics

The landscape metrics applicable to soil maps (as opposed to, e.g., vegetation maps
::::
maps

:::
of

:::::::::
vegetation

::::
types) have diverse

interpretations. We compare the metrics of two maps to see if they have a similar concept of the (classified) soil landscape. The

landscapemetrics package can compute many indices; we choose a few that will best
:::::::::
FRAGSTAT

:::::::
indices.

::::
We

:::::
chose450

::::::
several

:::
that

:
show the landscape-level difference between maps. We do

:::
did not consider metrics of individual patches, except as
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they contribute to landscape-level metrics. The algorithms for these can be read from the
:::::
found

::
in

:::
the

:::::::
package code repository

(Hesselbarth, 2021);
:::
here

:
we present the formulas and interpretations in the following text

::::
their

::::::::::::
interpretations.

– The Shannon Diversity Index shdi (Equation 2), where pi is the proportion of pixels of class i= (1 . . .N), character-

izing the landscape diversity in two senses
::::::::
according

::
to

:::
two

:::::::
factors:

::::::
number

::
of

:::::::
classes

:::
and

::::
their

::::::::::
proportions.

:
It

::
is

::::::
widely455

::::
used

::
as

:
a
::::::::

summary
::::::::

diversity
::::::::
measure,

:::::::
although

::
it
::::
does

::::
not

:::::::::
distinguish

:::::::
between

:::
the

::::
two

::::::
factors.

:
More classes and/or a

more even distribution of proportions lead to a higher landscape diversity. This does not account for spatial contiguity,

it just considers the class of each pixel, irrespective of position.
::
In

::::
this

:::::::
example

:::
the

::::::
number

:::
of

::::::
classes

::
in

::::
each

::::
map

::::
will

::
be

:::::::
similar,

:
a
:::::::::
maximum

::
of

:::::
eight

:::
(the

:::::::
chosen

::::::::
histogram

:::::::::::
equalization

::::::
classes,

:::::::::
computed

::::
over

:::
the

:::::::::
combined

:::::
range

::
of

:::
all

:::::
maps),

:::
but

:::::
some

:::::
maps

::::
may

::::
lack

::::::::::::
representatives

::
of

:::
the

::::::
highest

:::
or

:::::
lowest

:::::::
classes,

:::
and

::
so

::::
will

::::
have

::::
only

:::::
seven

:::::::
classes.460

D =−
N∑
i=1

pi lnpi (2)

– The Shannon Evenness Index shei (Equation 3) is a normalization of Shannon Diversity by the maximum diversity

possible for the given number of classes (N). It varies from 0 (completely uneven distribution - low landscape diversity)

to 1 (all proportions are equal - high landscape diversity). It does not depend on the number of classes. Again, this does

not account for spatial contiguity
:
,
:::
and

::::
thus

:::::::
isolates

:::
the

:::::
effect

::
of

::::
class

:::::::::
proportion.465

E =
D

lnN
(3)

– The Landscape Shape Index lsi (Equation 4), where A is the total area of the landscape and E′ is the total length of

edges, including the boundary, quantifies the internal boundary complexity of a landscape tile, with a value of 1 when

the landscape consists of a single square patch, increasing without limit as the length of edges within the landscape

increases.
::::
This

:::::
metric

:::::::::::
characterizes

:::
the

::::::
degree

::
of

:::::::::::
compactness

::
of

:::
the

:::::::::
contiguous

:::::
areas

::
of

:::
the

:::::::
classes.470

LSI =
0.25E′√

A
(4)

– The Landscape Aggregation Index lai (Equation 5), where gii is the number of like adjacencies,max− gii ::::::::::
(max− gii)

is the classwise maximum possible number of like adjacencies of class i (i.e., if all pixels in the class were in one cluster),

and Pi is the proportion of landscape comprised of class i, to weight the index by class prevalence. Thus lai equals

the number of like adjacencies divided by the theoretical maximum possible number of like adjacencies, summed over475
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each class and over the entire landscape. It ranges from 0 for maximally disaggregated to 100 for maximally aggregated

landscapes.
:::
This

::::::
metric

:::::::::::
characterizes

::::
how

::::::::
dispersed

:::
are

:::
the

::::::
classes.

:

AI =

[
m∑
i=1

( gii
max− gii

)
Pi

]
(100) (5)

– The Mean Fractal Dimension frac_mn characterizes the complexity of the landscape as the mean of the fractal

dimension of all patches in the landscape. It approaches 1 if all patches are square, and 2 if all patches are irregular. It is480

scale-independent. The patch-level fractal dimensions (Equation 6) are computed from the patch perimeters pij in linear

units and areas aij in square units
:
;
::::
these

:::
are

::::
then

::::::::
averaged

::
to

:::::
obtain

:::::::::
frac_mm.

FRAC=
2 ∗ ln∗(0.25 ∗ pij)

lnaij
(6)

– The Co-occurrence vector cove proposed by Nowosad (2021) summarizes the entire adjacency structure of the map

and can be used to compare map structures. This is a normalized form of the co-occurrence matrix, which counts all485

the pairs of the adjacent cells for each category in a local landscape, in the form of a cross-classification matrix. This

vector can be considered as a probability vector for the co-occurence of different classes. Co-occurrence vectors of

different categorical maps can then be compared by computing the distance between them. Many distance measures are

possible; we choose the Jensen-Shannon distance (Equation 7), which computes the entropyH of each probability vector

vi and entropy of their average, and from these the distance in entropy space between them. Increasing values indicate490

increasing dissimilarity in the adjacency patterns. The computation of cove is implemented in the motif R package,

and the Jensen-Shannon distance in the philentropy R package.

JSD(v1,v2) =H(
v1 + v2

2
)− 1

2
[H(v1)+H(v2)] (7)

3.5 Regional patterns

Regional patterns are at the scale of regional trends such as lithologic units, elevation zones in mountains, and repeating patterns495

(e.g., basin-and-range, ridge-and-valley). A “region” in this context is on the order of 1× 1 to 5× 5. An appropriate resolution

for this scale is (250m)2, as used in SG2.

For this evaluation we produced difference maps of the PSM products (SG2, SPCG, PSP) vs. the gNATSGO gridded maps.

All except SG2 were upscaled to the SG2 resolution (250m). The gNATSGO maps are assumed to be the most correct
:::::
taken

::
as

:::
the

::::::::
reference,

::::::::
although

:::
we

:::
are

::::
well

:::::
aware

::::
that

::::
they

::::
may

:::
not

::::::
always

::::::::::
correspond

::
to

::::::
ground

::::
truth. We then comment on the500

differences and speculate on the causes, based on our knowledge of the PSM
::::
DSM

:
procedures used to make each product and

the nature of the soil landscape.
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We selected an example 1× 1 test area, based on its well-known soil-forming factors and environments and our familiarity

with the soil geography. For the pattern analysis within this area we selected a 0.20× 0.20 subtile and projected the maps to

the UTM18N grid on the WGS84 datum (ESPG code 32618).505

3.6 Local patterns

Local patterns are at the scale of geomorphic features such as hillslope catenas, fluvial terraces, outwash fans, valley trains and

drumlin fields. “Local” in this context is on the order of 10× 10 . An appropriate resolution for this scale is ≈ 30× 30 . Only

gSSURGO and PSP map at this level; we included the other two products to see the effect of (unjustified) downscaling.

For this evaluation we used the same test areas as
:::
This

:::::::::
evaluation

::::::
within

::
the

::::
test

:::
area

:
for the regional patterns, but examined510

smaller areas with
:::::::::
examining

:
a
::::::
smaller

::::
area

::::
with

::
a distinctive soil-landscape relations

::::::
pattern.

:::
The

:::::::::
gSSURGO

:::::
maps

:::
are

:::::
taken

::
as

:::
the

::::::::
reference.

:
These were

::::
This

:::
was

:
evaluated by two methods,

::
as

:::::::
follows.

3.6.1 Visual method

We produced ground overlays of key soil properties at selected depth slices
:::::::
intervals with corresponding KML specifications,

and displayed these in Google Earth as semi-transparent overlays, using the original resolution of each product, projected into515

WGS84 geographic coordinates as required by Google Earth. These were then compared with gSSURGO
:::::::::
gNATSGO

:
maps

streamed within Google Earth by SoilWeb Earth (California Soil Resource Lab, 2020). This shows the mapped polygons,

labelled with their map unit, and linked to the map unit description, which in turn is linked to the Official Series Descriptions

(OSD) (NRCS Soils, 2020b) with complete description of the soil properties modal values and ranges.

Figure 3 shows SSURGO map units draped over a ground overlay of pH (0–5 cm) from SG2, produced by the SoilWeb520

streaming coverage in Google EarthPro, with a point query showing the SSURGO map unit composition. The map unit is

described by its constituent soil series and their estimated proportions. Each series can then be queried for its Official Series

Description (OSD) (NRCS Soils, 2020b), which gives a typical profile, a range of properties, and a link to lab data for the

series. Clearly the pattern of properties follows the map unit delineations. This figure also shows the result of gridding the

SSURGO polygons on a 30 m grid: grid cells overlap polygon boundaries.525

SoilWeb view of SSURGO map units and a ground overlay of pH, 0–5 cm, predicted by SG2. Colours are low (red) to

yellow (high) pH. Point inquiry at −76◦38′05”E,42◦19′53”N

3.6.2 Quantitative method

This follows the procedures of the regional assessment, except that V-measures are not computed, due to the very fine pattern

of classified polygons.530
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Figure 1.
::::::
Bedrock

::::::
geology

::
of

::::::
Central

::::
New

::::
York

:::::
State,

::::::
transect

::::
from

:::::
N–43◦

:
N
:::::

(left)
:
–
::
42◦

:
,
::::::
centred

::
on

:::
-76◦

::::
30’

::
E.

:::::::::
Orientation

::
N

::::
(left)

:
to
::

S
:::::
(right).

:::::::::::
Chronological

:::
and

:::::::::
topographic

::::::::
sequence

::::
from

:::::
Upper

::::::
Silurian

:::
(N)

::::::
through

:::::
Upper

:::::::
Devonian

:::
(S)

:::::::::
sedimentary

:::::
rocks,

::::::
notably

:::
the

:::::::
Onondaga

::::::::
limestone

:::::
(green

::::::
“Don”)

:::
and

::::
Tully

:::::::
limestone

:::::::::::
(crosshatched

:::
red,

:::::
“Dt”).

::::::
Source:

::::::::::::::::::::::::::::::::
(New York State Geological Survey, 1970)

4 Example area and soil property

To illustrate the method, we selected one area familiar to the first author, and an important soil property with strong spatial

variability and pattern, namely pH in the 0–5 layer. We selected this property because in our experience this is often well-

modelled by PSM
:::::
DSM methods. For example, SG2 had global cross-validation statistics of 0.78 pH median RMSD and a

Model Efficiency Coefficient (MEC, the R2 of the 1:1 line actual vs. observed) of 0.67 (Poggio et al., 2021). We select the535

topmost depth slices
::::::
interval because it is most represented by many environmental covariates, especially land cover as well as

those derived from remote sensing. Thus the example shown here may be the best case, where
:::
we

:::::
would

::::
hope

::::
that all mapping

methods should provide similar results.

The example area is in central New York State, bounding box (-77 – -76◦ E), (42–43◦ N); the subtile for pattern evalu-

ation was (-76.8 – -76.6◦ E), (42.2–42.4◦ N), centred at Cayuta NY. See the Supplementary Information for an explanation540

of the regional soil geomorphology
:::
The

:::::::
regional

:::::::::::::
geomorphology

::
is

::::::::
described

:::
by

::::::::::::
Bloom (2018).

::::
The

:::::::::
underlying

:::::::
bedrock

::
is
::
a

::::::::::
sedimentary

::::::::
sequence

::::
from

::::::::::
Ordovician

::::::
(north)

::
to

:::::
upper

::::::::
Devonian

:::::::
(south),

::::
with

::
a
::::
wide

::::::
variety

::
of
:::::::::::

sedimentary
::::::
facies.

::
A

::::
strip

::
of

:::
the

:::::::
bedrock

::::::
geology

::::
map

::::::::::::::::::::::::::::::::::::
(New York State Geological Survey, 1970)

:::::::
covering

:::
part

::
of
:::
the

:::::
study

::::
area

::
is

::::::
shown

::
in

:::
Fig.

::
1.
:

:::
The

:::::
entire

::::
area

::::
has

::::
been

::::::::
glaciated,

::::
the

::::::
portion

:::::
north

::
of

:::::
about

:::
42◦

:::
15’

:::::::
(Valley

:::::
Heads

::::::::
terminal

::::::::
moraines)

:::::::::
somewhat

:::::
more

::::::
recently

:::::
than

:::
the

::::::::
southern

:::::::
portion.

::
A

::::::::
fragment

:::
of

:::
the

:::::::
surficial

:::::::
geology

:::::
map

:::::::::::::::::::::::::::::::::::
(New York State Geological Survey, 1986)

::
is545

:::::
shown

::
in
::::

Fig.
::
2.
:::::

This
:::::
shows

::::::::::::::::
strongly-expressed

:::::::
features

::::::::
resulting

::::
from

:::
the

:::::
most

:::::
recent

:::::::::
glaciation;

:::::
these

:::
are

:::::::::::
well-known

::
to

::
the

:::::::::
traditional

::::
soil

::::::::
surveyors.

:::::
Many

::::::
glacial

:::::::
features

:::
are

::::::
present

:::
and

:::::::
relevant

:::
to

:::
soil

::::::::::
geography:

::::::
ground

:::::::
moraine,

:::::
deep

::::::
glacial

::::::
troughs

::::
with

:::::::::
proglacial

::::
lake

:::::::::
sediments,

:::::
beach

:::::
lines,

:::::::
outwash

:::::
valley

::::::
trains,

:::::
kame

:::::::
terraces

:::
and

:::::::
hanging

::::::
deltas.

::::
Soil

:::::::
reaction

::
in

::
the

::::::::
northern

:::
half

::
is
::::::
largely

:::::::::
controlled

::
by

:::::::::
limestone

:::::
spread

:::
by

:::
the

::::::
glacier

::::
from

::::::::
outcrops

::
of

:::
the

::::::::
Onondaga

::::
and

:::::
Tully

:::::::::
limestones

::::
(Fig.

:::
1),

::::::::::
decreasing

::
to

:::
the

:::::
south.550

5 Regional spatial patterns

5.1
:::::

Visual
:::::::
method
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Figure 2.
::::::
Surficial

:::::::
geology

::
of

::::::
Central

:::
New

::::
York

::::
State

::::
near

:::::::
Moravia

:::
NY.

::::::
Legend:

::::::
ground

::::::
moraine

:::::
(pink;

::
if

::::::
stippled

::::::
shallow

:::
over

::::::::
bedrock),

:::::::
proglacial

::::
lakes

:::::::
(brown),

::::::
organic

::::::
swamps

::::
(dark

::::::
green),

::::::
bedrock

::
or

::::
very

:::
thin

:::
soil

::::
cover

:::::
(red),

::
till

:::::::
moraine

::::::
(purple),

:::::
kame

:::::::
moraines

:::::::
(orange),

:::::::
lacustrine

::::
sand

::::
(light

::::::
green),

::::::
outwash

::::
sand

:::
and

:::::
gravel

:::::::
(yellow).

::::::
Source:

:::::::::::::::::::::::::::::::
(New York State Geological Survey, 1986)

:::::
Visual

:::::::::
inspection

::
of

:
a
:::::

DSM
:::::::
product

::::
over

:::
the

::::::::
landscape

::::
can

::
be

::::::
useful

::
to

::::::
identify

:::::::::
anomalies

::::
and

:::
the

:::::
degree

::
to
::::::
which

:::
the

:::::
DSM

::::::
product

:::::::
captures

:::::::::
landscape

:::::::
features.

::::::
These

:::
are

::::
over

:::::
small

:::::
areas

:::::
where

:::
the

::::::::::::
soil-landscape

:::::::
relation

::
is

::::::
known

::
to

:::
the

:::::::::
evaluator.

::::
This

:::
can

:::
not

::
be

::::
part

::
of

:
a
:::::::::
systematic

::::::::::
evaluation,

:::
but

:::
can

:::::
reveal

:::::
areas

::
of

:::::::
concern

::
or

:::::::::
agreement.

:
555

::
As

::
an

::::::::
example,

::::::
Figure

:
3
:::::
shows

:::::::::
SSURGO

::::
map

::::
units,

:::::
from

:
a
::::
1965

:::::
1:20k

::::::
design

::::
scale

:::
soil

::::::
survey,

:::::::::
minimum

:::::
legible

::::::::::
delineation

:::
1.6

::
ha

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Cornell University Geospatial Information Repository (CUGIR), n.d.)

:
,
::::::
draped

::::
over

:
a
:::::::

ground
::::::
overlay

:::
of

:::
pH

::::
(0–5

::::
cm)

::::
from

:::::
SG2,

::::::::
produced

::
by

:::
the

::::::::
SoilWeb

::::::::
streaming

::::::::
coverage

::
in

::::::
Google

:::::::::
EarthPro,

::::
with

:
a
:::::
point

:::::
query

:::::::
showing

:::
the

:::::::::
SSURGO

::::
map

:::
unit

::::::::::
composition

:::::::
(Figure

::
4).

::::
The

::::
map

:::
unit

::
is
::::::::
described

:::
by

::
its

:::::::::
constituent

::::
soil

:::::
series

:::
and

::::
their

::::::::
estimated

::::::::::
proportions.

:::::
Each

:::::
series

:::
can

::::
then

::
be

:::::::
queried

:::
for

::
its

:::::::
Official

::::::
Series

::::::::::
Description

::::::
(OSD)

:::::::::::::::::
(NRCS Soils, 2020b)

:
,
:::::
which

:::::
gives

:
a
:::::::

typical
::::::
profile,

:
a
:::::
range

:::
of560

::::::::
properties,

::::
and

:
a
::::
link

::
to

:::
lab

::::
data

::
for

:::
the

::::::
series.

::
In

:::
this

:::::
case,

:::
the

::::::
pattern

::
of

::::::::
properties

::
as

::::::::
predicted

:::
by

::::
SG2

::::::::
somewhat

:::::::
follows

:::
the

:::
map

::::
unit

:::::::::::
delineations,

:::
but

::
at

:
a
:::::
much

::::::
coarser

:::::::::
resolution.

:::::
This

:
is
:::::::::
especially

::::::
evident

::
at

:::
the

::::::::
transition

:::::
from

:::
the

:::
end

:::::::
moraine

:::::
(map

::::
units

::::::::
beginning

::::
with

::
H
:
)
:::
and

:::
the

:::::
steep

:::::
slopes

::::
with

::::
thin

:::
till

::::
from

::::
local

:::::::
bedrock

:::::
(map

::::
unit

::::
LoF

:
).

5.2 Regional maps

Table 1 shows the statistical differences between gNATSGO (reference) and the PSM
::::
DSM

:
products. All PSM

::::
DSM

:
products565

under-predict topsoil pH with respect to gNATSGO, by about 0.38–0.48 pH units. The RMSD is substantial also, on the order

of 0.49–0.67 pH units, somewhat less than this when corrected for bias.
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Figure 3.
::::::
SoilWeb

::::
view

::
of

:::::::
SSURGO

::::
map

::::
units

:::
and

:
a
:::::
ground

::::::
overlay

::
of

:::
pH,

:::
0–5

:::
cm,

:::::::
predicted

::
by

::::
SG2.

::::::
Colours

:::
are

:::
low

::::
(red)

::
to

:::::
yellow

:::::
(high)

:::
pH.

:::::
Centre

::
at

:::::::::::::::::::::
−76◦38′04”E,42◦20′07”N.

::::::::
Interactive

::::
view

::
of

::::::::
SSURGO:

:
https://casoilresource.lawr.ucdavis.edu/gmap/?loc=42.33215,-76.

63590,z15

Figure 5 shows whole-map histograms. PSP has a bimodal distributions
::::::::::
distribution, and predicts few pH values around

pH 5.8. This is quite strange
:::
was

::::::::::
unexpected,

:
since this value is well-represented in the gNATSGO map.

:
It

::::
may

::
be

:::
an

::::::
artifact

::
of

:
a
::::::::
covariate

:::
that

::
is

::::::::
influential

::::
over

:
a
:::::
wider

::::
area

::::
than

:::
this

:::
tile

:::
and

::::::
results

::
in

:::
two

:::::::
regional

:::::::::::
distributions

::::
from

:::::::::
contrasting

::::::::
elevation570

::
or

::::::
climate

::::::
zones. The other distributions are fairly symmetric, although SG2 and SPCG are more even than gNATSGO, which

is strongly concentrated near pH 6.2. This shows the smoothing effect of the machine learning models.

Figure 6 shows the pairwise Pearson correlations between the products. The products are overall well-correlated. SG2 and

SPCG are very closely correlated, since they use similar mapping methods, despite the additional covariates used by SPCG.

PSP and gNATSGO are also closely-correlated. These correlations do not account for bias. They do however show that the575

maps are similar in their overall pattern as evaluated per-grid cell.

Figure 7 shows gNATSGO (reference) along with the predictions of pH of the PSP products. Figure 8 shows these as

difference maps. These figures reveal substantial differences between products. The most obvious difference is in the detail of

20
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Figure 4.
:::::::
SSURGO

::::
map

:::
unit

::::
HrC

:::::::::
composition

::
at

:::::::::::::::::::::
−76◦38′05”E,42◦19′53”N.

::::
Link

:
to
::::::::
interactive

::::
map

:::
unit

::::::::
summary: https://casoilresource.

lawr.ucdavis.edu/soil_web/list_components.php?mukey=295620

the spatial pattern. Despite having been upscaled to regional resolution, gNATSGO shows finer detail than the other products,

especially PSP.580

These figures also show the spatial distribution of the bias .
:::::::
compared

::
to
::::::::::
gNATSGO

:::
(as

:::::::::
reference). Compared to gNATSGO

, SG2 and SPCG underestimate
:::::::::::
under-predict pH in the higher hills in the NE portion of the map, and in the glacio-lacustrine

sediments along the lakeshores.
::::
The

:::::::::::
disagreement

::::
along

:::
the

:::::::::
lakeshores

::
is

:::::::
because SG2

:::
and

:::::
SPCG

:::
do

:::
not

:::
use

:
a
:::::::
surficial

:::::::
geology

::::
map,

:::::
which

::::::
would

::
be

:::::::::
especially

:::::
useful

::
in

:::::::::::::::
recently-glaciated

::::
areas

::::
such

::
as

::::
this.

::::
The

:::::::::::
disagreement

::::
with

::
in

:::
the

:::::
higher

::::
hills

::::::
seems

::
to

::
be

::
a

:::::
direct

:::::
result

::
of

:::::::::
elevation.

::::
This

::
is

:::
not

:::::::
because

::
of

:::::::::::
extrapolation

::
in
:::::::

feature
:::::
space,

:::::::
because

::
at
:::::
these

:::::::::
elevations

::::
SG2

::::
also585

misses the soils derived from Onondaga limestone glacial till towards the southern end of the till plain. SG2 has no information

on parent material and uses global models. SPCG has very similar differences, despite using SSURGO-derived parent material

as a covariate.

PSP predictions are closer to gNATSGO than are those of SG2, which is not surprising since PSP also uses gSSURGO

:::::::::
gNATSGO as its primary information source. This product has removed some of the fine variation of gNATSGO. However590

the disaggregation by DSMART results in quite some discrepancies with gNATSGO. In particular, the Homer-Tully outwash

valley (northeast side of map) is under-predicted by one pH unit, and the surrounding hills over-predicted by almost as much.
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Product MD RMSD RMSD.Adjusted

SG2 3.796 6.111 4.789

PSP 3.843 4.908 3.052

SPCG 4.815 6.693 4.649
Table 1. Statistical differences between gNATSGO and PSM

::::
DSM

:
products, pHx10, 0–5 cm

Figure 5. Histograms of pHx10, 0–5 cm.
::::
Note

:::
the

::::::
bimodal

:::::::::
distribution

::
of

:::
PSP

:::
and

:::
the

:::::
flatter

:::::::::
distributions

::
of
::::
SG2

:::
and

:::::
SPCG

::::::::
compared

::
to

::::::::
gNATSGO.
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Figure 6. Pearson correlations between all products, pH, 0–5 cm
:
.
:::::
Strong

:::::::::
correlations,

::::::::
especially

:::::::
between

::::::::
gNATSGO

:::
vs.

:::
PSP,

:::
and

::::
SG2

:::
vs.

:::::
SPCG.

Many of the valley trains (southern side of map, running towards the Susquehanna River) are under-predicted. This is likely due

to PSP’
:
s soil series predictions, which are based on estimated map unit composition and random selection of series locations

within map units for PSM
:::::
DSM calibration.595

5.3 Uncertainty

The 5%, 50%, and 95% prediction quantile maps are shown in Fig. 9 (SG2) and 10 (PSP). The “low”, “representative” and

“high” values from gNATSGO are shown in Fig. 11.
:

Each figure has its own stretch.
::::::::
gNATSGO

::::
has

::::::::
narrower

::::::
ranges

::::
than

::
the

::::
two

:::::
DSM

::::::::
products

:::
and

:::
by

::::::
design

::::
does

:::
not

:::::::
include

:::::::::
unrealistic

::::::
values.

::::
SG2

::::
and

::::
PSP

::::
have

::::::::::::
unrealistically

:::::
wide

::::::
ranges

::
at

::
all

::::::::
locations.

:::
In

:::::::
addition,

::::
PSP

::::::
shows

:
a
:::::::

curious
:::::::
feature:

:::
fine

:::::::::
patterning

::
at

:::
the

::::
two

::::::::
extremes

:::
that

::
is
::::

not
::::::
present

::
at

:::
the

:::::::
median600

:::::::::
prediction.

Figure 12 shows the inter-quartile range 5–95% (IQR) for the two PSM
::::
DSM products, along with the low-high range for

gNATSGO.

Quantiles of the prediction, SG2, pHx10, 0–5 cm

Quantiles of the prediction, PSP, pHx10, 0–5 cm605

Low, representative, high values from gNATSGO, pHx10, 0–5 cm

Inter-quantile ranges 0.05–0.95, pHx10, 0–5 cm
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Figure 7. Topsoil (0–5 cm) pHx10, according to gNATSGO and PSM
::::
DSM products

:
.
:::
See

:::
text

:::
for

::::::::
discussion.
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Figure 8. Difference between gNATSGO and PSM
::::
DSM

:
products, pHx10, 0–5 cm.

:::
See

::::
text

::
for

:::::::::
discussion.

Figure 9.
::::::
Quantiles

:::
of

::
the

:::::::::
prediction,

::::
SG2,

::::::
pHx10,

:::
0–5

:::
cm.

::::
Note

:::
the

:::::::::::
unrealistically

::::
wide

:::::
range

:
at
:::

all
:::::::
locations

:::
and

::::::::
consistent

::::::::
patterning

:::::
among

:::::::
quantiles.
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Figure 10.
:::::::
Quantiles

::
of

:::
the

::::::::
prediction,

:::
PSP,

::::::
pHx10,

:::
0–5

:::
cm.

::::
Note

:::
the

:::::::::::
unrealistically

::::
wide

::::
range

::
at

::
all

:::::::
locations

:::
and

:::
the

:::
fine

:::::::
patterning

::
at

:::
the

:::
two

:::::::
extremes.

Figure 11.
::::
Low,

:::::::::::
representative,

:::
high

:::::
values

::::
from

:::::::::
gNATSGO,

::::::
pHx10,

:::
0–5

:::
cm
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Figure 12.
::::::::::
Inter-quantile

:::::
ranges

:::::::::
0.05–0.95,

::::::
pHx10,

:::
0–5

:::
cm.

::::
SG2

:::
IQR

::
is
:::::
fairly

:::::::
consistent

::::
from

:::::
about

:::
2.5

::
to

::
3.5

::::
pH.

:::
PSP

::::
IQR

:::
has

:
a
:::::
wider

::::
range

:::
and

::::
more

:::::
spatial

:::::::::
patterning.

::::::::
gNATSGO

::::::::
“low-high”

:::::
range

::
is

:::::::
narrower.

SG2 has a fairly consistent IQR, mostly from about 2.5 to 3.5 pH, whereas PSP has a much wider range of uncertainties,

mostly from about 1.5 to 4.5 pH, and shows much more spatial pattern. PSP has the widest ranges on the steep valley sides

and especially in the Seneca Army Depot at the north inter-lake area, and the lowest on the broad till plains and through610

valleys. These are wide ranges, and although an honest reflection of the PSM
::::
DSM

:
models, should give pause to map users.

This suggests that the GlobalSoilMap specifications for uncertainty (Arrouays et al., 2014) are unduly pessimistic. Sources

for uncertainty assessment (SG2: training points and global covariates, PSP: mapped soil series and national covariates) and

the different machine learning methods lead to greatly different estimates of prediction uncertainty. gNATSGO has narrower

ranges than the two PSM products and by design does not include unrealistic values.
:::
The

::::::::::
gNATSGO

::::::::::
“low-high”

:::::
range

::
is615

:::::::
narrower

::::
than

:::
the

:::::
DSM

::::
IQR,

:::
but

:::::
these

:::
are

:::
not

::::::::::
comparable,

:::::::
because

:::
the

:::::::::::::
expert-assigned

:::::
range

::
is

:::
not

:::::
based

:::
on

::
an

:::::::
estimate

::
of

::
a

:::::
5-95%

:::::
IQR.

:::::
Figure

:::
13

:::::
shows

:::
the

:::::::::
differences

:::::::
between

:::
the

::::
IQR

::
of

:::
the

:::::
DSM

::::::::
products

:::
and

:::
the

:::::::
low-high

:::::
range

:::::
from

::::::::::
gNATSGO.

::::
Both

:::::
DSM

:::::::
products

::::::
almost

:::::::::
everywhere

:::::
have

::::::::::
substantially

:::::
wider

::::::
ranges

::::
than

::::::::::
gNATSGO,

:::::::
however

:::
the

::::::
pattern

::
of

:::::::::
differences

::
is
:::
not

:::::::
similar.

:::
For

::::::::
example,

:::
the

::::::::
difference

::::
with

::::::
SG250

::
is
:::::
much

:::::
larger

:::
in

:::
the

::::
north

:::
of

:::
the

:::::
study

::::
area,

:::::::
whereas

::::
PSP

:::
has

:::
the

:::::
larger

::::::::::
differences620

::
in

:::
the

::::::::
southern

::::
hills.

:
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Figure 13.
::::::::
IQR/range

:::::
5/95%

::
vs.

::::::::
low/high,

::::::::::::::::
POLARIS-gNATSGO

:::::
(left),

::::::::::::::
SG250-gNATSGO

:::::
(right)

:
,
:::::
pHx10,

:::
0–5

::::
cm.

::::
Each

::::
figure

:::
has

::
its

::::
own

:::::
stretch
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5.4 Local spatial autocorrelation

The local variograms and their fitted exponential models are shown in Fig. 14. Table 2 shows their statistics.

Figure 14. Fitted variograms, pH 0–5 cm. Semivariance units (pHx10)2
:
.
::::
Note

::
the

::::::
shorter

::::
range

::
of
:::::::::
gNATSGO

:::
and

:::
low

:::
sill

:
of
::::

PSP.

Product Effective range Structural Sill Proportional Nugget

gNATSGO 1938.00 10.32 0.00

SG2 3699.00 12.93 0.00

SPCG 6924.00 11.81 0.01

PSP 3918.00 6.50 0.02

Table 2. Fitted variogram parameters, pH 0–5 cm. Effective range in m; structural sill in (pHx10)2, proportional nugget on [0 . . .1]

gNATSGO has the shortest effective range. This indicate
:::::::
indicates

:
fine-scale structure at 250 m resolution

:
,
:::::
which

::
is
:::

of

::
the

:::::
same

:::::
order

::
as

:::
the

:::::::::
minimum

::::::
legible

:::::::::
delineation

:::::::
(MLD)

::
as

::
a

:::
grid

::::
cell

::::
(see

:::::::::::
Introduction). The PSM

:::::::
mappers

::::
who

:::::::
defined625

::
the

::::::::::
boundaries

:::::::
between

::::
soil

::::::
classes

::::
(and

::::
thus

::::::::::::
representative

:::::::
property

:::::::
values)

::::
were

::::
able

:::
to

:::::
divide

:::
the

:::::::::
landscape

::
at

::::
this

::::
high

:::::
spatial

:::::::::
frequency,

::
if

::::::::::
appropriate

::
to

:::
the

:::
soil

:::::::
pattern.

::::
The

::::
DSM

:
products have longer ranges, showing that these models do not
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PSM_products V_measure Homogeneity Completeness

gNATSGO vs. SG2 0.0128 0.0143 0.0116

gNATSGO vs. SPCG 0.0258 0.0275 0.0243

gNATSGO vs. PSP 0.084 0.0897 0.079

SPCG vs. SG2 0.3342 0.3495 0.3201
Table 3. V-measure statistics, pHx10 0–5 cm

capture well fine-scale variation. These show a smoothing effect, likely due to
::
the

:::::::::::
longer-range spatial continuity in

:::::
many

::
of the

covariates. PSP has a long range and low sill
:::::
longer

:::::
range

:::
and

:::::
lower

:::
sill

::::
than

::
the

::::::::::
gNATSGO

::::
from

:::::
which

::
it
::
is

::::::
derived, due to the

harmonization from DSMART
:::::::
inherent

::
in

:::
the

:::::::::
DSMART

::::::::
algorithm.

::
It

:::
has

:::
the

::::::
highest

:::::::::::
proportional

::::::
nugget,

::::
due

::
to

:::::::::
DSMART630

::::::::
randomly

::::::::
assigning

:::::
pixels

::::::
within

:
a
::::::::::
gNATSGO

::::
map

:::
unit

::
to

:::
its

::::::::::
constituents,

:::
so

:::
that

::::::::::::
neighbouring

:::::
pixels

::::
may

::
be

::::::::::
contrasting

::
at

::
the

:::::::
shortest

:::::::::
separation.

:
The

::::
very

:
low proportional nuggets

::
of

:::
the

::::
other

::::::::
products are due to the relatively coarse resolution.

5.5 Classification

Figure 15 shows the topsoil pH classified into eight histogram-equalized classes in the
:
a
:
0.2 x 0.2◦ sub-tile. The higher pH

are shown in green, the lower in red. Class limits are approximately 5.01, 5.14, 5.27, 5.40, 5.54, 5.71, and 6.02 pH, with635

the extreme values of 4.52 and 6.96 pH. The maps show obvious spatial differences in class distribution. gNATSGO shows

more areas in the highest pH class than the PSP products
::::
DSM

::::::::
products,

::::::
which

::
is

::::::::
consistent

::::
with

:::
the

::::::
results

::::
from

::::::::::
continuous

:::::::
property

:::::
maps. The products based on gSSURGO, i.e., gNATSGO and PSP , show a finer spatial pattern than the purely PSM

products, i. e., SG2 and SPCG
::::::
pattern

::
of

:::::::::
gNATSGO

::
is
:::
the

::::::::
coarsest,

:::::::
because

:::
the

::::::::
classified

::::::
values

:::::
come

::::
from

:::::::::::::
minimum-area

::::::::
polygons,

:::::::
whereas

:::
the

:::::
DSM

:::::::
products

:::::::
predict

::::::
per-grid

::::
cell.

::::
PSP

::::::
shows

:::
the

:::::
finest

::::::
spatial

::::::
pattern

:::::::
because

::
of

::
its

:::::::::::::
disaggregation640

::::::::
algorithm

:::
that

::::::::
randomly

:::::::
divides

:::::::::
gNATSGO

::::::::
polygons

::::::::
according

::
to

:::::::::
component

::::::::::
proportion.

::
If

::::
these

::::::::::
components

:::
are

::
in
::::::::
different

::
pH

:::::::
classes,

:::::
there

::::
will

::
be

::::::::
fine-scale

:::::::
pattern

:::::
within

::::
the

::::::
original

::::::::
polygon. But

::::
This

::
is

::::::
clearly

:::
the

::::
case

:::
in

:::
the

::::
large

::::::::::
gNATSGO

:::::::
polygon

::
in

:::
the

::::::::
northeast

::::::
portion

::
of

:::
the

::::
map

:::::::::::
(Connecticut

:::::
Hill).

::
In

:::
this

::::::::
example SPCG shows large homogeneous areas of the

lowest
::
pH

:
class, covering the highest hills, whereas SG2 presents a more nuanced view.

5.6 V-measure645

Table 3 shows the statistics from several V-measure comparisons, based on the histogram-equalized class maps. Only SG2 and

SPCG have somewhat comparable patterns. gNATSGO is considerably different from all other products , due to its detailed

spatial pattern based on field survey.
::
the

:::::
DSM

:::::::
products

:::::::
because

::
of

:::
its

::::::::
derivation

::::
from

:::::::::::::
minimum-area

::::::::
polygons.

:

Figure ?? shows the computed homogeneity and completeness
::
16

:::::
shows

:::
the

::::::::::::
inhomogeneity

::::
and

:::::::::::::
incompleteness of the SG2

pH class map
:::
(the

::::::
second

::::
map

:::
for

:::
the

::::::::::
V-measure), with respect to the gNATSGO pH class map

:::
(the

::::::::
reference

:::::
map). In the650

yellow
:::::
These

:::::
values

:::
are

:::
the

::::::
inverse

::
of

:::
the

::::::::
composite

::::::
values

::
of

:::::
Table

:
3:
:::
the

::::
very

::::
low

:::::
values

::
in

:::
the

::::
table

:::::::::
correspond

::
to

::::
high

::::::
values

::
in

:::
the

:::::
figure.

:::
In

:::
the

:::::::::::
homogeneity

::::
map,

:::
the

::::
blue

::::::::
polygons

:::
are

:::
the

:::::
most

::::::::::::
homogeneous areas of the homogeneity mapone, one
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Figure 15. pH classes, 0–5 cm, central NY, detail.
:::::
Most

::::
areas

::
of

::::::::
gNATSGO

:::
are

::
in

:::::
higher

:::
pH

:::::
classes.

::::
PSP

:::
has

:::
the

::::
finest

:::::
spatial

::::::
pattern

:::
due

:
to
:::
the

:::::::::
DSMART

:::::::::::
disaggregation

::::::::
algorithm.
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Figure 16.
::::::::::
Homogeneity

::::
(left)

::::
and

::::::::::
completeness

:::::
(right)

:::::::
measures

::
of
:::

the
::::
SG2

:::
pH

::::
class

::::
map,

::::
with

:::::
respect

::
to
:::

the
:::::::
reference

:::::::::
gNATSGO

:::
pH

:::
class

::::
map,

::::
0–5

:::
cm.

:::::
Values

:::
are

::
the

::::::::::::
inhomogeneity

:
of
::::

each
::::
zone

::::
(left)

:::
and

::::::::::::
incompleteness

::
of

:::
each

:::::
region

::::::
(right)

Figure 17. Homogeneity (left) and Completeness
:::::::::
completeness

:
(right)

:::::::
measures of the SG2 pH class map, with respect to gNATSGO

::
the

:::::
SPCG pH class map, 0–5 cm.

::::::
Values

::
are

:::
the

:::::::::::
inhomogeneity

::
of

::::
each

::::
zone

::::
(left)

:::
and

:::::::::::
incompleteness

::
of

::::
each

:::::
region

:::::
(right)

gNATSGO predicted class is contained in
:::
SG2

:::::
map,

:::
i.e.,

::::::
where

::
an

::::
SG2

:::::::
polygon

:::
has

:::
the

:::::
most

:::::::::::
homogeneous

:::
set

::
of

::::::::::
gNATSGO

:::::::
classified

::::::
values

::::
and

::::
thus

:::::
comes

::::::
closest

::
to
:::

the
:::::::::

reference.
::
In

:::
the

::::::::::::
completeness

::::
map,

:::
the

::::
blue

::::::::
polygons

:::
are

:::
the

:::::
most

::::::::
complete

::::
areas

::
of

:::
the

::::
SG2

:::::
map,

::::
i.e.,

:::::
where

:::
the

:::::::::
gNATSGO

::::::::
reference

::::
map

::::
has

:::
the

::::
most

::::::::::::
homogeneous

:::
set

::
of

::::
SG2

::::::::
classified

::::::
values.

::::
The655

:::
two

:::::
maps

::::
have

::
no

:::::
areas

::::
with

::::::
similar

:::::::
patterns.

:

:
A
::::::::::
contrasting

:::::
result

::
is

:::::
shown

:::
in

:::::
Figure

:::
17,

::::::
which

::::::::
compares the SG2 region; in the blue areas many are.

::
pH

:::::
class

::::
map

::::
with

::::::
respect

::
to

:::
the

:::::
SPCG

:::::
map.

:::::
These

:::::
maps

:::::
were

::::
made

:::::
with

::::::
similar

:::::::
methods

::::
and

::
at

:::
the

::::
same

:::::::::
resolution.

:
Overall the agreement is

fairly good.
:::
The

:::::::::::::
inhomogeneity

:::
and

:::::::::::::
incompleteness

::::
are

:::::
much

:::::
lower

::::
than

:::
for

:::
the

:::::::
previous

:::::
map,

:::::::
showing

::::
that

:::
the

::::::
pattern

:::
of

::::
these

::::
two

::::::::
classified

::::
maps

:::
are

:::::
fairly

::::::
similar.

:
660
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product ai frac_mn lsi shdi shei

gNATSGO 48.188 1.034 22.602 1.666 0.801

SG2 50.659 1.034 21.768 2.06 0.991

SPCG 58.483 1.041 18.557 1.887 0.907

PSP 47.025 1.04 23.232 1.898 0.913
Table 4.

::::::::
Landscape

:::::
metrics

::::::::
statistics,

:::
pH

:::
0–5

:::
cm.

::::::::
frac_mn

:
:
:::::
Mean

:::::
Fractal

:::::::::
Dimension;

::::
lsi

:
:
::::::::
Landscape

:::::
Shape

:::::
Index;

:::::
shdi

:
:
:::::::
Shannon

:::::::
Diversity;

:::::
shei:

:::::::
Shannon

::::::::
Evenness;

::
ai

:
:
:::::::::
Aggregation

:::::
Index

Landscape metrics statistics, pH 0–5 cm. frac_mn: Mean Fractal Dimension; lsi: Landscape Shape Index; shdi: Shannon Diversity;

shei: Shannon Evenness; ai: Aggregation Index

gNATSGO SG2 SPCG PSP

gNATSGO 0.000 0.149 0.281 0.261

SG2 0.149 0.000 0.067 0.087

SPCG 0.281 0.067 0.000 0.111

PSP 0.261 0.087 0.111 0.000
Table 5. Jensen-Shannon distance beween co-occurence vectors

5.7 Landscape metrics

Table 4 shows the statistics from the landscape metrics calculations. The mean fractal dimensions are almost identical. There

is quite some range of aggregations, with SPCG most aggregated, i.e., least complex. Otherwise the results are inconsistent; all

we can say is that the map patterns vary considerably among products
:::
PSP

::::
has

:::
the

::::
most

:::::::
complex

:::::::::
landscape

::::::
shape,

:::
due

::
to

:::
its

::::::::
fine-scale

::::::::::::
disaggregation

::
of

:::::::::
gSSURGO

:::::::::
polygons.

:::
The

::::::::
Shannon

:::::::
diversity

::::::
indices

:::
are

::::::
highest

:::
for

:::::
SG2,

::::::::
indicating

:::
the

:::::
most

::::
even665

::::
areal

:::::::
division

:::
into

::::::
classes.

::::
This

::::
may

::
be

:::
an

::::::
artefact

::
of

:::
the

:::::::::
histogram

:::::::::::
equalization.

Table 5 shows the Jensen-Shannon distance beween co-occurence vectors of the four products. The co-occurence patterns

of SG2 is quite similar to that of the other
:::::
DSM products, whereas gNATSGO is quite different than PSP .

:::
and

:::::
SPCG

::::
and

::::::::
somewhat

::::::::
different

::::
than

:::::
SG2.

::::
This

::::::
shows

::::
that,

:::::
given

::::
this

:::::::::
histogram

::::::::::
equalization

::::
and

:::
for

:::
the

:::::::
selected

::::::::
property

::::
and

:::::
depth

:::::::
interval,

::::
none

::
of

:::
the

:::::
DSM

:::::::
products

::::::::::
well-match

:::
the

::::::
pattern

::::
from

:::::::::
traditional

:::
soil

::::::
survey.

:
670

6 Local spatial patterns

The main interest here is to see how well PSM
::::
DSM

:
methods at relatively fine resolution reproduce known relations at the local

geomorphic level, e.g., hillslopes, transects across valleys with multiple terrace levels, and within farms. It has been claimed

that PSM
::::
DSM

:
at 30 m resolution is sufficient for management of, or even within, individual farm fields. This

:::
PSP is the only

PSM
::::
DSM product which predicts at this resolution.675
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We examine this first qualitatively, i.e., by visual inspection, and then quantitatively, mostly following the methods of the

regional assessment.

6.1 Qualitative assessment

Here we use silt concentration, as it reveals stronger qualitative discrepancies than pH in this test area. Figure 18 shows the silt

concentration of the 0–5 cm layer for (top) the gridded SSURGO overlain on the original polygons from which it was derived,680

and (bottom) the disaggregated PSP grid cells in a hilly landscape near Caroline, NY. Red colours are low silt, in this window

alluvial fans (the C* map units). Pale grey colours are organic soils (the Hk, Hl map units). Light colours are high-silt surface

soils (the L*, V*, B*, M* map units), from thin glacial till developed on shale and mudstone bedrock.

The gSSURGO product follows the SSURGO lines exactly. Some of the sharp boundary lines do correspond with abrupt

transitions on the ground, for example where the steep hillsides are buried by fan alluvium. But others are not, for example685

on the hilltops. These differences are because the predicted silt concentrations are taken from the official series descriptions.

PSP follows the map unit lines fairly well, but is much finer-grained; each 30 m pixel is separately predicted. This results in

some smoothing of the abrupt boundary lines from gSSURGO on the hilltops. However within some SSURGO map units PSP

predicts quite some differences in topsoil silt concentration. These are map units with contrasting components, which PSP

attempts to disaggregate according to their correlation with covariates. For the most part these do not seem to be related to690

terrain or land use.

For example, Fig. 19 shows detail of the Holly-Papakting map unit within this PSP window. This map unit has two con-

trasting soils in similar proportions: a mineral alluvial soil (Holly series) and an organic soil (Papakting series); the second has

much lower silt concentration.

It is difficult to see the reason for the pattern within this map unit. PSP has placed the component series in their proper695

proportions but not according to any landscape feature
::::::
apparent

:::::::::
landscape

::::::
feature

::
or

::::::::
covariate.

:::::::
Another

:::::::
example

::::
from

::::
this

::::
same

::::
area

::
is

::::::
shown

::
in

::::::::::::
Supplementary

::::::::::
Information

:
§5.

:

6.2 Quantitative assessment

To see the fine differences at this high resolution, we consider a 0.15×0.15◦ subtile with lower-right corner−76.30◦E,42.45◦N
and evaluate pH, as in the regional assessment (§5).700

Table 6 shows the statistical differences between gSSURGO (reference) and the PSM
::::
DSM products, along with the predic-

tions of pH. Figure 20 shows the pairwise Pearson correlations between the maps. These results are comparable to those for

the full tile at regional resolution: both SG2 and PSP under-predict pH by about 0.35–0.45 pH. Correlations are fairly strong

between PSP and gSSURGO, and between SG2 and PSP, but weak between SG2 and gSSURGO.

Figure 21 shows gSSURGO (reference) along with the predictions of pH by the PSP products. Figure 22 shows these as705

difference maps. Clearly, gSSURGO has overall higher values than the other two products, and despite the fine resolution, has

in general large areas of identical values. The differentiation between map units follows sharp boundaries even within a single

landscape (e.g., the plateau towards the S of the map), and this is likely an artefact of relying on the representative profiles in
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Figure 18. Ground overlay from gSSURGO (top) and PSP (bottom), silt % 0–5 cm, with SSURGO polygons from SoilWeb. Centre of image

−76◦16′25”E,42◦22′53”N ; view azimuth 247◦
:
.
:::
Red

::::::
colours

:::
are

:::
low

:::
silt,

:
in
:::
this

:::::::
window

:::::
alluvial

::::
fans

:::
(the

:::
C* :::

map
:::::
units).

:::
Pale

::::
grey

::::::
colours

::
are

::::::
organic

::::
soils

:::
(the

::::
Hk,

:::
Hl

:::
map

:::::
units).

:::::
Light

:::::
colours

:::
are

::::::
high-silt

::::::
surface

::::
soils

:::
(the

::::
L*, ::::

V*,::::
B*,:::

M* :::
map

:::::
units),

::::
from

:::
thin

:::::
glacial

:::
till

:::::::
developed

:::
on

::::
shale

:::
and

:::::::
mudstone

:::::::
bedrock.

:::::::::
gNATSGO

:::::::
polygons

::::
have

:::
only

:::
one

:::::
value,

::::
PSP

::::::::::
disaggregates

:::::
these,

::::
hence

:::
the

:::::::
pixelated

::::::
pattern

:::
and

:::::::
somewhat

::::::::
smoothed

:::::::::
boundaries.
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Figure 19. Ground overlay from PSP in the Holly-Papakting map unit, silt % 0–5 cm. Centre of image −76◦16′03”E,42◦22′30”N
:
.

:::::::::::
Disaggregation

::::::
appears

::
to

::
be

::::::
random

:::
and

:::
not

:::::
related

::
to

::::::::
covariates.

PSM_product MD RMSD RMSD.Adjusted

SG2 4.436 6.758 5.097

PSP 3.462 5.625 4.433
Table 6. Statistical differences between gSSURGO and PSM

::::
DSM

:
products, pHx10, 0–5 cm. Centre of map −76◦30′30”E,42◦52′30”N

the official series descriptions for property values. PSP has a finer pattern, due to disaggregation, and shows a more realistic

local patternby smoothing out
::::::::
smoother

::::
local

::::::
pattern,

:::::::
without the sharp boundaries between map units within a landscape. PSP710

shows large areas of low pH. SG2 does not follow well the landscape lines, especially the sharp boundaries between uplands

and valleys, and predicts very low pH (≈ 4.5) on the plateau. It is difficult to recognize local landscape units in this global

product.

6.2.1 Class maps

Figure 23 shows the topsoil pH classified into eight histogram-equalized classes. Class limits in this area are approximately715

5.30, 5.44, 5.55, 5.61, 5.74, 5.89, and 6.15 pH, with the extreme values of 4.44 and 7.00 pH. SG2 clearly is less detailed than

the other two products. PSP shows a fine pattern, not closely related to the fine pattern of gSSURGO. As previously noted,

gSSURGO is consistently about one pH class higher than the other products.
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Figure 20. Pearson correlations between local products, pH, 0–5 cm
:
.
::::
These

::::::::
moderate

::
but

:::::
weak

::
for

:::::::::
gSSURGO

::
vs.

::::
SG2

Figure 21. Topsoil (0–5 cm) pHx10, according to gSSURGO and PSM
::::
DSM products

:
.
:::
See

:::
text

::
for

:::::::::
discussion.
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Figure 22. Difference between gSSURGO and PSM
::::
DSM

:
products, pHx10, 0–5 cm.

:::
See

::::
text

::
for

::::::::
discussion.

Figure 23. pH classes, 0–5 cm. Coordinates are UTM 18N meters.

6.2.2 Local spatial autocorrelation

The local variograms and their fitted exponential models are shown in Fig. 24. Table 7 shows their statistics. gSSURGO has720

the shortest effective range and highest sill. PSP has a longer range and low sill, due to the harmonization from DSMART that

removes some of the overall variability. SG2 has no nugget variance, a low sill, and long range, consistent with its regional

scale.

6.2.3 Landscape metrics

Table 8 shows the statistics from the landscape metrics calculations. The mean fractal dimensions are almost identical. SG2 is725

much more aggregated, i.e., least complex, than gSSURGO or PSP. PSP has a higher landscape shape and Shannon diversity
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Figure 24. Fitted variograms, pH 0–5 cm. Semivariance units (pHx10)2
:
.
::::
Note

::
the

:::::
short

::::
range

::
of

::::::::
gSSURGO

:::
and

::::
low

::
sill

::
of

::::
SG2

:::
and

::::
PSP.

Product Effective range Structural Sill Proportional Nugget

gSSURGO 774.00 13.67 0.12

SG2 2550.00 7.34 0.00

PSP 1455.00 6.36 0.22

Table 7. Fitted variogram parameters, pH 0–5 cm. Effective range in m; structural sill in (pHx10)2, proportional nugget on [0 . . .1]

product ai frac_mn lsi shdi shei

gSSURGO 73.658 1.049 71.395 1.845 0.887

SG2 87.647 1.106 34.978 1.941 0.934

PSP 56.376 1.045 116.476 2.006 0.965
Table 8. Landscape metrics statistics (local), pH 0–5 cm. frac_mn: Mean Fractal Dimension; lsi: Landscape Shape Index; shdi: Shannon

Diversity; shei: Shannon Evenness; ai: Aggregation Index

gSSURGO SG2 PSP

gSSURGO 0.000 0.218 0.168

SG2 0.218 0.000 0.112

PSP 0.168 0.112 0.000
Table 9. Jensen-Shannon distance beween co-occurence vectors (local)

than the other products. Table 5
:
9
:
shows the Jensen-Shannon distance beween co-occurence vectors of the four products. The

co-occurence patterns of SG2 is somewhat similar to that PSP but quite different from gSSURGO.
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7 Conclusions

The presented methods are well-able to expose differences between PSM
::
in

::::
maps

::::::::
produced

:::
by

:::::::
different

:::::
DSM

:
mapping meth-730

ods, and between these and field
::::::::
traditional

::::
soil

:
survey.

:::::
There

:::
are

::::
also

::::::::::::::
well-documented

::::::::::
differences

:::::::
between

:::::
maps

::::::
based

:::::::
produced

:::
by

:::::::::
traditional

:::::
survey

::::::::
methods.

:::
For

::::::::
example,

::::::::::::::::::::
Bie and Beckett (1973)

:::::::
compared

::::
four

:::::::::::
independent

::::::
surveys

::
of

::
a

::
19

::::
km2

:::
area

::
in
:::::::

Cyprus,
::::
and

:::::
found

::::
that

:::
the

::::
maps

:::::::
differed

:::::::::::
considerably

::
in

::::
their

::::
map

::::
unit

:::::
purity

::::
and

::::
their

::::::::::
proportions

::
of

::::::::
interclass

::::
and

::::::::
intraclass

:::::::::
variability.

::::
Thus

::::
the

:::
use

::
of

:::
the

::::::
NRCS

::::::::
products

::
as

::::::::
reference

::::::
should

:::
be

::::
seen

::
as

::
a
:::::
basis

:::
for

::::::::::
comparison

::::
with

:::::
DSM

:::::::
products,

:::
not

:::
as

:::
the

::::::
“truth”.

::::::::
However,

::
it
::
is

:::
the

::::
best

:::::::
available

::::::::::::
representation

:::
the

::
of

::::
soil

::::::::
landscape

::
at

:::
the

:::::
given

::::::
design

::::
scale

::::
and735

::::::
legend.

:::
Our

::::::::
methods

:::
for

:::::::::
comparing

:::::
maps

:::::
have

:::
two

::::::::::
limitations

::::
due

::
to

:::
the

::::::::
decision

:::
that

:::::
they

::
be

::::::::::
applicable,

:::::
using

:::
the

::::::::
supplied

::::::::
computer

::::
code,

:::
to

:::
any

::::
area

::::::
within

:::
the

:::::
USA.

::::
The

:::
first

::
is
:::
the

::::
use

::
of

::::::::
histogram

:::::::::::
equalization

:::
for

:::
the

::::
class

:::::
maps

::::::
which

:::
are

::::
then

::::::::
evaluated

::
for

:::
the

:::::
class

:::::::
pattern.

:::
For

::::::
specific

:::::
areas

::::
and

::::::::
properties

::
it

:::::
would

:::
be

::::::::
preferable

:::
to

:::
use

:::::::::
established

:::::
class

:::::
limits

:::::::
relevant

::
for

::::
land

::::
use,

:::
for

:::::::
example

::::::
limits

::::
from

:::
soil

::::::
survey

::::::::::::
interpretation

:::::
tables.

::::
The

::::::
second

::
is
:::
the

::::::
choice

::
of

:::
the

::::::::::
exponential

::::::
model

:::
for740

::::::::
automatic

:::::::::
variogram

::::::
fitting,

::
as

::::
well

::
as

:::
the

:::::::::
somewhat

:::::::
arbitrary

::::::
choice

::
of
:::::::::

empirical
::::::::
variogram

::::::
cutoff

:::
and

:::
bin

::::::
width.

:::
For

:::::
each

::::
area,

:::::::
property

:::
and

:::::
depth

:::::::
interval

:::::::::
variograms

:::::
could

:::
be

::::::::
computed

::::
and

::
fit

::::::::
according

::
to

:::
the

::::::::
analysts’

::::
prior

::::::::::
knowledge.

:
A
:::::::

variety
::
of

:::::::
metrics

::
to

:::::::
compare

::::::
DSM

:::::::
products

::::::
among

::::::::::
themselves

:::
and

:::
to

:::
the

::::::::
reference

::::
map

:::
are

::::::::
proposed

:::
in

:::
this

::::::
paper.

::::
This

:::::
raises

::::::
several

::::::::
questions

:::::
about

::::
their

::::::
utility

:::
and

:::::::
possible

:::::::::::
redundancy.

:::::
Since

:::
we

::::
only

:::::::
consider

::::
one

:::::::
example

::::
case

::::
here,

::::
our

:::::::::
conclusions

:::
are

::::::::
tentative.

::::::::::
Comparing

:::
the

::::::
results

::::
here

::::
with

::::
those

::
in
:::

the
::::::::::
companion

::::
case

::::::
studies

::::::
report,

:::
we

:::::
know

:::
that

:::::
these

:::
are745

:::::::::::::::
context-dependent,

::::
and

::
no

:::::::
general

::::::::::
conclusions

::::
can

::
be

::::::
drawn.

:::
All

:::
the

:::::::
metrics

:::::::
provide

:::::
useful

::::::::::
information

::::::
based

::
on

::::::::
different

:::::::::
summaries

::
of

:::
the

:::::
maps,

::
so

:::::
none

:::
are

:::::::::
redundant.

:
A
::::

first
::::::::
question

:
is
::::::

which
::::::
metrics

::::
best

::::::
reflect

:::
the

:::::
visual

::::::::::
differences

::
in

:::::::
patterns,

::::
e.g.,

:::
for

:::
the

:::::::
regional

:::::::
patterns

:::
of

:::
Fig.

::
7.
::::
For

::
the

::::::::::
continuous

:::::
maps,

:::
the

::::::::::
whole-map

:::::::::
histograms

::::
(Fig.

:::
5)

:::::
reveal

:::::::
whether

:::
the

:::::::::::
feature-space

::::::::::
distribution

::
of

:::
the

::::::::
property

::::::
known

::::
from

:::::::::
gNATSGO

:::
has

:::::
been

:::::::
distorted

:::
by

:::
the

:::::
DSM

:::::::
method.

:::::
«««<

::::::
HEAD

::
In

:::
the

:::::::
example

::::
case

::::
PSP

::::::::
produced

::
a

:::::::
strongly

:::::::
bimodal750

::::::::::
distribution,

::
so

::::
that

::
its

::::
map

::::::
shows

:::
few

::::::
values

::::
near

:::
pH

::::
5.8.

::::::::
=======

::
In
::::

the
:::::::
example

::::
case

::::
PSP

::::::::
produced

:
a
::::::::

strongly
:::::::
bimodal

::::::::::
distribution,

::
so

:::
its

::::
map

::::::
showed

::::
few

::::::
values

::::
near

:::
pH

::::
5.8.

::::
»»»>

::::::::::::::::::::::::::::::::::::::::
56de475b489470b570c995fd75098582716df8e9

:::::
Much

:::
of

:::
the

::::::::
patterning

::
in

:::
the

:::::::
strongly

::::
acid

::::
soil

:::::
region

::
is
::::::::::::
homogenized

::::::
towards

:::::
lower

:::::::
values,

:::
and

:::::
there

:
is
::

a
::::::
sharper

::::::::
boundary

::::::::
between

:::
the

:::::::
strongly

:::
and

::::::::::
moderately

::::
acid

:::::
areas.

:::
By

::::::::
contrast,

::::
both

::::
SG2

::::
and

:::::
SPCG

:::::::
reduced

:::
the

:::::
peak

::::::
modal

:::::
value

:::
pH

:
6
::::

and
:::::
made

:::::
more

:::::::::
predictions

:::::::
towards

:::
the

:::
two

::::
tails

::
of

:::
the

:::::::::
univariate

::::::::::
distribution.

::::
This

::::
can

::
be

::::
seen

::
in

:::
the

::::::::
resulting

:::::
maps

::
by

:::::
more

:::::
areas

::::
with

:::
the755

::::::
colours

:::::::
towards

::
the

::::
two

::::
ends

::
of

:::
the

:::::
colour

:::::
ramp.

::::
The

:::::::::
whole-map

::::::::::
variograms

::::
(Fig.

:::
14)

:::::
reveal

:::
the

:::::::::::
longer-range

:::::
spatial

:::::::::
continuity

::
of

:::
the

:::::
DSM

::::::::
products,

::::::::
compared

::
to

::::::::::
gNATSGO.

::::
This

::::
can

::
be

::::
seen

:::
in

:::
the

::::
maps

:::
as

:::
less

::::
fine

:::::
detail

:::
and

::::::
larger

::::
areas

:::::
with

::::::
similar

::::::
values.

:::
For

:::
the

:::::::
classified

:::::
maps

:::::
(e.g.,

:::
Fig.

::::
15),

:::
the

::::
large

:::::::::::
discrepancies

:::::::
between

:::::
them

:
is
::::
due

::
to

:::
the

:::::
slicing

:::::
from

::::::::
histogram

:::::::::::
equalization.

::::
Each

::::::::
landscape

::::::
metric

:::::
(Table

::
4)

::::::
reveals

::
a

:::::::
different

:::::
aspect

::
of

:::
the

:::::
maps.

::::
For

:::::::
example,

:::
the

::::::::::
aggregation

:::::
index

:::
ai

:::::
shows

:::
that

::::::
SPCG760

:::::::
contains

:::::
much

:::::
larger

::::::::
one-class

:::::
areas,

:::
on

:::::::
average,

::::
than

:::
the

:::::
other

:::::::
products,

::::
and

:::
this

::
is
:::::
clear

::
in

:::
the

::::::
figure.

:::::::::
Consistent

::::
with

::::
this,

::
the

:::::::::
landscape

:::::
shape

:::::
index

::::
lsi

:::::
shows

::::
that

:::::
SPCG

::::
has

:
a
::::::
simpler

::::::
overall

::::::
shape.
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:
A
::::::
second

::::::::
question

:
is
::::::
which

::::::
metrics

:::
best

:::::::::::
discriminate

::
the

::::::::
different

::::
DSM

::::::::
products.

::::
The

:::::::::
whole-map

:::::::::
histograms

:::
and

::::::::::
variograms

:::::
clearly

:::::
show

::::::
which

:::::::
products

:::
are

:::::
more

:::::::
similar.

::
In

:::
the

:::::::
example

:::::
case,

::::
SG2

::::
and

:::::
SPCG

:::
are

:::::
quite

:::::
close

:::
and

::::
PSP

::
is

:::::::::::
substantially

:::::::
different

::
by

::::
both

:::::
these

::::::
metrics.

::::
The

:::::::::::::
Jensen-Shannon

:::::::
distance

:::::::
beween

:::::::::::
co-occurence

::::::
vectors

:::::
(Table

::
5)

::::::
clearly

:::::
shows

:::::::::::
dissimilarity765

::
in

::
the

:::::::::
adjacency

:::::::
patterns

::
of

::::::
classes.

::
In

:::
the

::::::::
example

:::
case

:::::
again

::::
SG2

::::
and

:::::
SPCG

:::
are

::::
quite

:::::
close,

:::
but

::::
here

::::
PSP

::
is

:::
not

:::
too

::::::::
different.

:::
The

::::::::
landscape

:::::::
metrics

::::
were

::::::::::
inconsistent

::
in
::::
this

::::
case.

:

It is clear from the “best case” example presented in this paper that different PSM
::::
DSM

:
methods, with different training

points, covariates, and algorithms, can produce quite different predictive soil maps. Comparing
::::
Thus

::::::::::
comparing maps with

point-wise evaluation from (almost always biased) field observations gives an incomplete picture of how the different methods770

represent the soil landscape, which is after all what dictates how the soil is used and managed.

The main findings from the example case are:

1. Although the regional products (250 m resolution) are well-correlated, the PSM
::::
DSM

:
products are biased, under-

predicting topsoil pH by about 0.38–0.48 pH units. They also differ substantially, with a RMSD adjusted for bias on

the order of 0.31–0.48 pH. This is based on representative pH values of the mapped soil series
::::
STU, not on measured775

values.

2. The PSM
::::
DSM

:
products differ substantially among themselves and with the reference product in their local spatial

pattern, as revealed by empirical variograms. gNATSGO has a short effective range, but this is smoothed to a range 2 to

3.5 times as long by PSM.
::::
DSM.

:

3. Classification by histogram equalization reveals major differences in the spatial patterns of the produced class maps, as780

evaluated both by visual inspection and landscape metrics.

4. Despite using USA-specific covariates (parent material, drainage classes) derived from gSSURGO
:::::::::
gNATSGO

:
and co-

variates limited in geographic scope to the USA, the predictive map made by SPCG is not substantially different from

that made by SG2, likely due to the similar modelling method.

5. The estimates of uncertainty provided by SG2 and PSP are substantially different, both in width of the uncertainty785

interval (much narrower in SG2) and in spatial pattern.
::::
This

:::::
could

::
be

:::
in

:::
part

:::::::
because

::::
SG2

::
is
::
a
:::::
global

:::::::
model,

:::::::
whereas

:::
PSP

::
is

:::::
based

:::
on

::::
local

:::
soil

:::::::
surveys

:::
and

::::::::
covariates

::::::::
restricted

::
to

::::
one

:::
tile.

:
The confidence intervals seem unrealistically wide

compared to the expert-derived high-low value range provided by gSSURGO
:::::::::
gNATSGO.

6. At the local level (30 m resolution) the disaggregation provided by PSP does not appear to correspond to landscape

positions associated with STU components. PSP obscures the fine-scale details of the local spatial pattern, and SG is790

substantially more general, due to its resolution.

These results will differ in different soil geographic regions, for different soil properties, and for different depth slices
:::::::
intervals,

as shown in the companion Case Studies report.

Our methods have two limitations due to
::::
Why

:::
are

:::
the

::::::
results

::::
from

:::::
these

:::::
DSM

::::::::
examples

::
so

:::::
poor?

:::::
Why

::
do

::::
they

::::
not

:::::
better

::::::::::
approximate

:::::::::
traditional

:::::::
surveys?

:::
We

:::::::
present

::::
some

:::::::
possible

:::::::
reasons:

:
795
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1.
:::
The

::::::::
dominant

:::::
DSM

:::::::
methods

:::
do

:::
not

::::::::
explicitly

:::::::
consider

::::::
spatial

::::::::
continuity

::
or

:::::::
pattern.

::::::::::
Experiments

:::::
have

::::
been

::::::
started

::::
with

:::::::::::
convolutional

:::::
neural

::::::::
networks

::::
and

::::
other

:::::::
methods

:::::
with

::::::
varying

:::::::
window

::::
sizes

:::
of

:::::::::
covariates.

2.
::::::::::::
Environmental

::::::::
covariates

::
to

::::::::
represent

:::
past

:::::::::::
soil-forming

:::::::::
conditions

:::
(the

::::::
“time”

::::::
factor)

::
are

::::
only

::::::::
available

::::
since

:::
the

:::::::
satellite

::::::
remote

::::::
sensing

::::
age,

::::
very

::::
short

::
in
:::::
terms

:::
of

:::
soil

:::::::::
formation.

3.
::::::::::::
Environmental

::::::::
covariates

:::
to

::::::::
represent

:::
soil

::::::
parent

:::::::
material

:::::
(e.g.,

:::::::
surficial

:::::::
geology)

:::
are

::::
not

:::::::
available

::::::::
globally,

:::
and

:::::
even800

::
for

:::
the

:::::
USA the decision that they be applicable, using the supplied computer code, to any area within the USA

:::::
proxy

::
of

::::
using

::::::
parent

:::::::
material

::::::
derived

:::::
from

::::::::
SSURGO

::
in

::::::
SPCG

:::
was

:::
not

:::
of

::::::::
sufficient

:::::::
precision

::
to
::::::::
improve

::
the

:::::::::
predictive

::::::
models.

The first is the use of histogram equalization for the class maps which are then evaluated for the class pattern.

4.
::::
Point

:::::::::::
observations

::::
were

::::::
mostly

:::::
placed

:::
by

:::
the

:::
soil

:::::::
surveyor

::
at

::::::::
“typical”

::
or

:::::::::::::
“representative”

::::::::
locations

:
in
:::::
order

::
to

::::::::::
characterize

:::
map

:::::
units,

::::
and

::
do

:::
not

::::::
capture

:::
the

::::
full

::::
range

:::
of

::::::::
variability

:::::
along

:::::::::::::
toposequences. For specific areas and properties it would805

be preferable to use established class limits relevant for land use, for example limits from soil survey interpretation

tables. The second is the choice of the exponential model for automatic variogram fitting,

5.
::::
Poor

:::::::::::
georeference

::
of

:::::
legacy

:::::
point

:::::::::::
observations,

::::
many

:::::
from

:::
the

:::::::
pre-GPS

:::
era,

:::::
leads

::
to

::::
poor

:::::::::
correlation

::::
with

::::::::::::
environmental

:::::::::
covariates,

:::::
hence

::
to

::::
poor

:::::::
models,

:::::
hence

::
to

:::::
much

:::::
noise

::
in

:::
the

::::
DSM

::::::::
product,

:::::
which

:::
can

:::::::
obscure

:::::::
patterns.

:

6.
:::::::::
Traditional

:::
soil

::::::
survey

::::
uses

::
is

::::
also

:
a
::::::::
predictive

:::::::
activity.

::::
The

::::::::
surveyors

::::
uses

::
as

:::::::::::
“covariates”

::::
(i.e.,

:::::::
non-soil

::::::::::::
environmental810

:::::::::
information

::::::
related

:::
to

:::
soil

::::::::::
geography)

::::
what

:::
can

:::
be

:::::::
inferred

::::
from

::::::::
airphotos,

:
as well as the somewhat arbitrary choice of

empirical variogram cutoff and bin width. For each area, property and depth slice variograms could be computed and fit

according to the analysts’ prior knowledge.
::::
direct

:::::::::
landscape

:::::::::
observation

:::::::
(terrain,

::::::::::
vegetation,

:::
land

::::
use

::::
etc.).

:::::
These

::::
give

::
a

::::
more

:::::::
detailed

:::
and

::::::::
nuanced

::::
view

::
of

::::
than

:::::::
possible

::
at
:::
the

::::::::::
resolutions

::::
used

::
in

::::::::
practical

::::
DSM

::
at
:::::::
regional

::::::
scale,

:::
i.e.,

::::
100

::
m

::
or

::::::
coarser.

:
815

Despite the discrepencies between PSM

::::::
Despite

:::
the

:::::::::::
discrepancies

:::::::
between

:::::
DSM products and field survey, PSM

::::
DSM can be a valuable tool for soil survey.

:::::::
Because

::
of

:::
the

:::::::
expense

:::
and

::::::::
difficulty

::
of

::::
field

::::::
survey,

::
in
:::::::
practice

:::::
DSM

::
is

:::::
likely

::
to

:::
be

:::
the

::::
most

::::
used

:::::::
method

::
of

:::::::
making

::
or

:::::::
updating

::::
soil

::::
maps

::
in

:::::
areas

::::
with

::
no

:::
or

::::::::::::::
poorly-resources

:::
soil

::::::
survey

::::::::::::
organizations.

:::
For

:::::::::
unsurveyed

:::::
areas

:::::
DSM

:::
can

:::::::
provide

:
a
::::::
useful

:::::::
pre-map

::
for

::::::::
planning

::::::::
sampling

::::
and

::::
field

:::::::
survey,

::::::
thereby

::::::::::
optimizing

::::::
scarce

::::::::
resources

:::
for

::::
field

::::::
work. It has the advantage of being820

reproducible and objective, given a set of training points, relevant environmental covariates, and a PSM
::::::::::::::
machine-learning

method. Therefore, its output should be examined and compared with field-based maps to identify possible improvements,

especially in areas with difficult field access or complex, difficult to interpret soil-landscape patterns
:::::
Many

::
of

:::
its

::::::::::
problematic

:::::
results

:::
are

::::
due

::
to

:
a
:::
set

::
of

:::::::
training

::::::
points,

::::
often

::::
with

:::::::::
imprecise

:::::::::::
georeference,

::::
that

::
do

:::
not

::::::::
properly

::::::
occupy

:::
the

::::::::
covariate

::::::
feature

::::
space

::::
and,

::::
and

::
to

::
the

::::
lack

::
of

:::::::::
covariates

::
to

:::::::
represent

:::::
some

::::::
aspects

::
of

::::::::::
pedogenesis

::::
over

::::
time. For unsurveyed areas PSM provides825

a useful pre-map for planning sampling and field survey.
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::
In

:::
the

:::::
USA

::::
(our

:::::
study

::::
area)

::::
and

::
in

:::::
other

::::::::
countries

:::::
with

:::::
active

::::
soil

::::::
survey

:::::::::::
programmes,

:::::
DSM

::::
will

::
be

:::
an

::::::::
important

::::
but

:::
not

::::::::
dominant

::::
tool

::
in

:::
the

::::::
overall

::::::
survey.

::::
Soil

::::::
survey

:::
as

::::::::
practiced

::
by

:::
the

::::::
NRCS

::::
uses

::::::::
methods

::::
from

::::::
DSM,

::::::
applied

:::::::::
statistical

::::::::
modeling,

::::
and

::::::::
numerical

:::::::
ecology,

::::::
along

::::
with

::
an

:::::
active

::::
and

:::::::
focused

::::
field

::::::::::
programme.

::::
For

::::::::
example,

:::::::::
supervised

:::::::::::
classification

::
of

:::::
terrain

::::::::::
derivatives

:::
and

:::::::
satellite

:::::::
imagery

:::
has

::::
been

:::::::::::
successfully

::::
used

::
to

:::::
check

:::::::
internal

::::::::::
consistency

::
of

::::
map

::::
unit

:::::::
concepts

::::
and830

::::
assist

::::
with

:::
the

:::::::::
placement

::
of

:::::::::::
delineations.

:::
The

::::
aim

:
is
::
to

:::::
blend

:::
the

::::
most

:::::::::
applicable

::::
tools

:::::
from

::::::::
traditional

::::
field

::::::
survey

:::
and

:::::::
applied

::::::::
statistical

:::::::
methods,

:::::::::
supported

::
by

:::::::::
pedologic

:::::
theory

::::
and

:::::::
regional

::::
land

:::
use

::::::::::::
considerations.

:

::
Of

::::::
course,

::::
soil

:::::
survey

:::::
must

::
be

:::::
based

:::
on

:
a
::::::
proper

::::::::::
examination

::
of

:::
the

::::
soil

:::::
itself. There is no substitute for actually examining

the soil and landscape, but despite the issues revealed in this study, PSM can be an important aid to the soil surveyor.
:::
for

:::::
either

::::::::
traditional

::::
soil

::::::
survey,

::
or

::
as

:
a
:::::::
reliable

::::
basis

:::
for

::::::
DSM.835

Code availability. Source code as R Markdown documents are available at https://github.com/ncss-tech/compare-psm. These can be used

to (1) import all products to compare, as well as some others not considered in this study; (2) create ground overlays and corresponding

KML files for display in Google Earth; (3) compare SG2 and PSP for 1× 1◦ tiles; (4) compare SG2 with SPCG and gNATSGO for any

rectangular tile; (5) compute landscape metrics and compare them between products for any subtile of these; (6) evaluate the success of PSP

in disaggregating at 30 m resolution.840
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