
Supplementary information: Estimating soil fungal abundance and
diversity at a macroecological scale with deep learning
spectrotransfer functions
Yuanyuan Yang1, Zefang Shen1, Andrew Bisset2, and Raphael A. Viscarra Rossel1

1Soil and Landscape Science, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth WA 6845,
Australia.
2CSIRO Oceans and Atmosphere, GPO BOX 1538, Hobart TAS 7001, Australia.

Correspondence: Raphael A. Viscarra Rossel (r.viscarra-rossel@curtin.edu.au)

Rarefaction curves

The BASE dataset sought to produce as many sequences as resources allow with a minimum sequencing number of 10,000 per

sample. Here, each sample was re-sampled at depth of 11 000 sequences to eliminate the unbalanced sequencing (Fig. S1). We

chose 11 000 sequences as re-sampling depth mainly because many samples only had this sequences number but also the rate

of increase in the rarefaction curves is small at this depth.5
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Figure 1. Rarefaction curves showing richness accumulated in terms of the observed OTUs per ecosystem types. We have showed rarefaction

curves for only 11000 sequences.
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Edaphic and environment covariates

Table 1. The soil, environmental, and visible–near infrared (vis–NIR) covariates used in the modelling, their resolution and the source of the

data.

Set Predictors Resolution Source

Digital soil maps Total organic carbon (TOC)/ % 90 m Viscarra Rossel et al. (2015)

Total nitrogen (TN)/ % 90 m

Total phosphorus (TP)/ % 90 m

Bulk density (BD)/ g cm−3 90 m

Cation exchange capacity (CEC)/ meq/100 g 90 m

Available water content (AWC) 90 m

pH 90 m

Sand/ % 90 m

Silt/ % 90 m

Clay/ % 90 m

Kaolinite/ rel. abundance 90 m Viscarra Rossel (2011)

Illite/ rel. abundance 90 m

Smectite/ rel. abundance 90 m

Climate Mean annual temperature (MAT)/ ◦C 90 m Xu and Hutchinson (2011)

Mean annual precipitation (MAP)/ mm 90 m

Potential evapotranspiration (PET)/ ◦C 90 m

Mean annual solar radiation (SolarR)/ J m−2 yr−1 90 m

Prescott index (PI) 90 m Prescott (1950)

Terrain Elevation (DEM)/ m 90 m Gallant et al. (2011)

Topological Wetness Index (TWI) 90 m

Aspect/ ◦ 90 m

Relief/ m 90 m

Slope/ ◦ 90 m

Vegetation Fpar-raingreen (Fpar-r) 250 m Donohue et al. (2009)

Fpar-evergreen (Fpar-e) 250 m

Net primary productivity (NPP)/ g C m−2 yr−1 1 km Zhao et al. (2005)

Parent material Thorium (GammaTh)/ mg kg−1 100 m Minty et al. (2009)

Uranium (GammaU)/ mg kg−1 100 m

Potassium (GammaK)/ mg kg−1 100 m

vis–NIR Absorbance at 208 wavelengths 10 nm

Algorithms of machine learning

The PLSR is a linear regression model widely used in the quantitative analysis of diffuse reflectance spectra in soil (Vis-

carra Rossel, 2008). This method uses a latent variable (known as component) approach to model covariance structures in two

projected spaces of the predicted and observed variables (Wold et al., 2001). We performed PLSR using the pls library in the10

software R. Number of components parameter was tuned from 1 to 20 using 10-fold cross validation.
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The SVM method employs classification and regression analysis to solve linear and nonlinear multivariate problems (Suykens

et al., 2002). Here, a Kernel function of Gaussian radial basis function (RBF) was used. Parameters penalty (C) and gamma (γ)

of the RBF were optimized during modeling. SVM was performed using the kernlab library in the software R.

The RF is a ensemble learning classification and regression algorithm consisting of many decisions trees (Breiman, 2001).15

It uses bagging and feature randomness when building each individual tree and merges them together to get a more accurate

and stable prediction. RF prediction performance is sensitive to three user-defined parameters: the number of trees (ntree) in

the forest, the minimum number of data in each node (nodesize), and the number of predictors tried at each node (mtry). RF

model was performed using the RandomForest library in the software R.

The GPR model, a form of Bayesian non-linear regression (Rasmussen and Williams, 2005), was trained using using the20

kernlab library in the software R. A GPR model is defined primarily by the selection of a covariance function, which defines

how the expected value of the target variable changes as values change across the input space. The covariance function contains

several parameters, which are optimized during modeling including a length-scale for each feature (l), and a noise free signal

variance (σ2
f ), the noise variance (σ2

n).

The XGBoost was a scalable and efficient tree boosting systems (Friedman, 2001). The XGBoost algorithm is superior25

to the traditional gradient boosting machine method. Over-fitting was controlled with a more regular model formalization

method for more reliable performance (Chen and Guestrin, 2016). The XGBoost model has been described in detail by Chen

et al. (2019).The XGBoost library in the software R was used for building the XGBoost model. Several parameters including

nrounds, eta, gamma,and subsample were optimized in the modeling.

The CUBIST model is a form of piece-wise linear decision tree (Quinlan, 1992),which we have used and described in some30

detail elsewhere (Viscarra Rossel and Webster, 2012). Briefly, CUBIST uses a recursive partitioning of the predictor variable

space and partitions the data into subsets that are more similar with respect to the predictors in the data. A unique linear model

is then applied to predict the response within each partition. The advantage of Cubist is that they enable different linear models

to capture the linearity in different parts of the predictor variable space, leading to smaller, more interpretable. Two parameters

including the committee models(C) and the number of neighbouring observations(N) were adjusted during modeling.35

A convolutional neural network (CNN) consists of multiple processing layers which can extract representations of the input

data at various abstract levels (Lecun et al., 2015). Its internal layers include convolutional layers, pooling layers and fully

connected layers. A convolutional layer scans its input with multiple filters and generates corresponding feature maps; A

pooling layer down-samples its input for dimension reduction and invariance to small shifts; Fully-connected layers follows

to calculate the model outputs. The architecture of the CNNs brings about several advantages: local correlation (Lecun et al.,40

2015), minimal preprocessing (LeCun et al., 1990, 1995), and a high number of connections with a low number of free

parameters (LeCun et al., 1990).

Convolutional neural networks have numerous applications across disciplines, such as natural language processing (Kim,

2014; Kalchbrenner et al., 2014; Collobert et al., 2011), object detection and recognition (Gonzalez, 2007; Szegedy et al.,

2015), drug discovery (Wallach et al., 2015), etc. Recent studies have also exploited CNNs for soil spectroscopy (Veres et al.,45

2015) One-dimensional CNNs (1D-CNNs) and two-dimensional CNNS (2D-CNNs) are commonly used for soil property

3



predictions (Liu et al., 2018; Ng et al., 2019; Padarian et al., 2019; Tsakiridis et al., 2020; Veres et al., 2015). One-dimensional

CNNs take raw spectra data or preprocessed 1D array as inputs whereas 2D-CNNs process spectrograms generated from raw

spectra. One-dimensional CNNs outperform other models such as Partial Least Squares regression, Cubist and Support Vector

Regression, including 2D-CNNs in soil property prediction (Ng et al., 2019; Tsakiridis et al., 2020). This might because the50

1D-CNNs can effectively exploit the local correlations between the adjacent spectral wavelengths (Veres et al., 2015).

Convolutional neural networks (CNNs) consist of multiple processing layers which allows CNNs to learning increasingly

complex representations (Lecun et al., 2015). Recent studies showed that one dimensional neural networks (1D-CNNs) pro-

duced more accurate soil property predictions than other statistical and machine learning methods (Liu et al., 2018; Tsakiridis

et al., 2020; Veres et al., 2015). Here, we developed a 1D-CNN for each target using the automated hyperparameter tuning55

framework for 1D-CNNs (Shen & Viscarra Rossel, 2021). We optimised hyperparameters: number of convolutional, pooling,

and fully-connected layers; kernel size, number of filters, padding type (Same or Valid), strides, and activation in convolutional

layers; pool type (AveragePooling or MaxPooling), pool size, padding type and strides in pooling layers; Number of units and

activation in fully-connected layers; and dropout rates. In this study, the 1D-CNNs were developed using the deep learning

framework TensorFlow (Abadi et al., 2016).60

Architectures and optimised hyperparameters of the 1D-CNNs spectro-transfer functions

The 1D-CNN architectures are given in Table 2. The 1D-CNNs consists of a number of Convolutional layers and Fully-

connected layers, joined by a Flatten layer. In the case of Glomeromycoata, pooling layers were also used. A Dropout layer

was also used after each Convolutional and Fully-connected layer to prevent overfitting.
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Table 2. Architectures of the 1D-CNN spectro-transfer functions

Phyla and diversity Layer type Kernel size Filters/Units Padding Strides Activation

Ascomycota Convolutional (5,1) 48 Same 2 Swish

Convolutional (3,1) 126 Same 1 Swish

Flatten - - - - -

Fully-connected - 509 - - ELU

Fully-connected - 239 - - ELU

Fully-connected - 141 - - SELU

Fully-connected - 1 - - Linear

Basidiomycota Convolutional (6,1) 102 Valid 4 SELU

Convolutional (3,1) 99 Valid 2 ReLU

Flatten - - - - -

Fully-connected - 283 - - ELU

Fully-connected - 184 - - ELU

Fully-connected - 98 - - SELU

Fully-connected - 1 - - Linear

Mortierellomycota Convolutional (3,1) 4 Same 2 SELU

Flatten - - - - -

Fully-connected - 404 - - ReLU

Fully-connected - 399 - - SELU

Fully-connected - 83 - - ELU

Fully-connected - 1 - - Linear

Glomeromycota Convolutional (7,1) 71 Valid 2 ReLU

Convolutional (3,1) 84 Same 1 LeakyReLU

AveragePooling (7,1) - Same 1 -

Convolutional (6,1) 48 Same 1 LeakyReLU

Convolutional (4,1) 124 Valid 3 ReLU

MaxPooling (4,1) - Same 3 -

Flatten - - - - -

Fully-connected - 213 - - SELU

Fully-connected - 80 - - ELU

Fully-connected - 33 - - ELU

Fully-connected - 1 - - Linear

Mucoromycota Convolutional (5,1) 121 Same 4 SELU

Convolutional (8,1) 17 Valid 1 Swish

Convolutional (3,1) 24 Same 1 SELU

Flatten - - - - -

Fully-connected - 183 - - SELU

Fully-connected - 137 - - ELU

Fully-connected - 115 - - Swish

Fully-connected - 1 - - Linear

Diversity Convolutional (2,1) 66 Same 2 LeakyReLU

Flatten - - - - -

Fully-connected - 469 - - SELU

Fully-connected - 321 - - ReLU

Fully-connected - 255 - - Swish

Fully-connected - 1 - - Linear
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