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Abstract. Soil fungi play important roles in the functioning of ecosystems, but they are challenging to measure. Using a con-

tinental scale dataset, we developed and evaluated a new method to estimate the relative abundance of the dominant phyla

and diversity of fungi in Australian soil. The method relies on the development of spectro-transfer functions with state-of-

the-art machine learning and using publicly available data on soil and environmental proxies for edaphic, climatic, biotic and

topographic factors, and visible–near infrared (vis–NIR) wavelengths, to estimate the relative abundances of the Ascomy-5

cota, Basidiomycota, Glomeromycota, Mortierellomycota and Mucoromycota and community diversity measured with the

abundance-based coverage estimator (ACE) index. The machine learning algorithms tested were partial least squares regres-

sion (PLSR), random forest (RF), Cubist, support vector machines (SVM), Gaussian process regression (GPR), XG-boost

(XGB) and one-dimensional convolutional neural networks (1D-CNNs). The spectro-transfer functions were validated with a

10-fold cross-validation (n = 577). The 1D-CNNs outperformed the other algorithms and could explain between 45 and 73 %10

of fungal relative abundance and diversity. The models were interpretable, and showed that soil nutrients, pH, bulk density, an

ecosystem water balance (a proxy for aridity) and net primary productivity were important predictors, as were specific vis–NIR

wavelengths that correspond to organic functional groups, iron oxide and clay minerals. Estimates of the relative abundance

for Mortierellomycota and Mucoromycota produced R2 ≥ 0.60, while estimates of the abundance of the Ascomycota and

Basidiomycota produced R2 values of 0.5 and 0.58, respectively. The spectro-transfer functions for the Glomeromycota and15

diversity were the poorest with R2 values of 0.48 and 0.45, respectively. There is no doubt that the method provides estimates

that are less accurate than more direct measurements with conventional molecular approaches. However, once the spectro-

transfer functions are developed, they can be used with very little cost, and could serve to supplement the more expensive and

laborious molecular approaches for a better understanding of soil fungal abundance and diversity under different agronomic

and ecological settings.20
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1 Introduction

Soil fungi are important components of microbial communities, which inhabit dynamic soil environments. They play critical

functional roles as decomposers, mutualists, and pathogens (Li et al., 2019). They impact nutrient cycling and ecosystem

services, such as soil carbon fixation, fertility and productivity (Vetrovsky et al., 2019; Delgadobaquerizo et al., 2016). Given25

the important functions that soil fungi perform, it is important to better characterise and understand their communities over

large scales. However, data on soil fungi are few or largely unavailable because the measurement of soil fungi, which needs

field sampling, followed by culture-based analysis or DNA sequencing, are laborious, time-consuming and costly. Using soil

sensing technologies, such as spectroscopy together with molecular approaches could greatly improve the utility of fungal

inventory data (Hart et al., 2020).30

Improvements in soil analytical methodologies provide an opportunity to increase sampling density for deriving a more

detailed understanding of soil properties, their spatial variation, soil condition, and to improve decision-making. Spectroscopic

techniques, such as visible–near infrared (vis–NIR) spectroscopy, have been developed to provide rapid estimates of soil prop-

erties (Viscarra Rossel et al., 2016). Soil vis–NIR spectra are largely nonspecific because of the overlapping absorptions of soil

constituents (Stenberg et al., 2010). Complex absorption patterns generated from soil constituents need to be mathematically35

extracted from the spectra and there are various methods that can be used to model soil properties with spectra. They include

multivariate statistical methods such as partial least squares regression (PLSR), and machine learning with different algorithms,

including neural networks (Viscarra Rossel and Behrens, 2010; Morellos et al., 2016; Liu et al., 2018; Tsakiridis et al., 2020;

Shen and Viscarra Rossel, 2021). Thus, vis–NIR spectra can integrally characterize the soil’s mineral-organic composition, and

combined with multivariate modelling, soil spectroscopy provides a rapid and cost-efficient method for soil characterisation40

(Viscarra Rossel and Brus, 2018).

Although there are no vis–NIR absorptions that can be directly assigned to soil microbial communities or diversity, soil

microbes are dependent on the fundamental soil composition: its minerals, organic matter and water content. For example, they

rely on organic matter for energy, on clay minerals and iron oxides for the supply of essential elements to grow (Müller, 2015).

These organic and mineral properties are well represented and have a direct response in soil vis–NIR spectra (Stenberg et al.,45

2010). Therefore, vis–NIR spectra have been used to model various functional soil properties, such as soil organic carbon,

cation exchange capacity, pH, clay content (Shi et al., 2015), as well as soil microbial communities (Davinic et al., 2012; Yang

et al., 2019). For the latter, if the microbial biomass is present in the soil organic matter, then the spectra might well detect their

functional constituents.

There are studies that use environmental proxies, (or covariates) at continental and global scales to model soil microbial50

properties using various methods, including linear regressions and machine learning (Serna-Chavez et al., 2013; Griffiths et al.,

2011; Vetrovsky et al., 2019; Yang et al., 2019; Delgadobaquerizo et al., 2018a). However, we found no published studies that

used vis–NIR spectra or a combination of spectra with other soil and environmental covariates (i.e. spectro-transfer functions)

to infer fungal abundance or diversity. In a previous study, Yang et al. (2019) showed that vis–NIR spectra combined with other

soil and environmental data could estimate soil bacterial abundance and diversity. Here, our hypotheses are: (i) spectroscopic55
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models with machine learning can estimate soil fungal abundance and diversity at the continental scale, and (ii) spectro-transfer

functions with additional predictors to capture other soil and environmental properties that affect soil fungi will improve the

accuracy of the estimates.

Thus, our objective is to develop and test the spectroscopic method for estimating soil fungal abundance and diversity over

a large scale, and our aims are to:60

(i) Compare the modelling of fungal abundance and diversity with vis–NIR spectra only (spectroscopic models), with

readily available soil and environmental data only (environmental models) and with the combined set of vis–NIR spectra

and readily available soil and environmental data (spectro-transfer functions), and

(ii) Test different statistical and machine learning algorithms for the modelling.

2 Methods65

2.1 Soil sampling and laboratory analyses

We used 577 soil samples from the Biomes of Australian Soil Environments (BASE) project (Bissett et al., 2016). In that

project, sampling were undertaken from soil that supports diverse plant communities across Australia. The sampling was

carried out during the growing season when hydrothermal conditions are most conducive to typical plant growth. In the higher

rainfall forested regions of the continent, the soil samples were collected mostly in spring and summer from September to70

February. In the shrublands and grasslands of the semi-arid and arid interior, soil samples were collected in spring from

September to November. In the transitional zone between the southeast coast and the more arid interior, soil samples were

collected in mainly autumn from March to May. Samples came from two soil depths (0–0.1m and 0.2–0.3m), covering five

typical Australian ecosystem types, including cropland, forest, grassland, shrubland, and woodland (Fig. 1a). Woodlands in

Australia represent ecosystems which contain widely spaced trees, the crowns of which do not touch. Woodlands consist of75

areas with fewer and more scattered trees than forests. In temperate Australia, woodlands are mainly dominated by Eucalyptus

species. Temperate woodlands occur predominantly in regions with a mean annual rainfall of between 250–800mm, forming

a transitional zone between the higher rainfall forested margins of the continent and the shrub and grasslands of the arid

interior. Each sample was partitioned into subsamples for DNA sequencing (see below) and air-dried and crushed to a particle

size of ≤2 mm for physicochemical analyses. The soil properties analyzed were total organic carbon and soil nutrients (e.g.80

ammonium, nitrate, phosphorus, potassium), pH, exchangeable cations (aluminium, sodium, magnesium, calcium), and texture

(sand, silt and clay). The methods are described in (Bissett et al., 2016). Subsamples of the ≤2 mm portions were used for the

spectroscopic analysis (see below).
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Figure 1. (a) Sampling sites and the range of ecosystem types across Australia (b) The mean relative abundances of dominant fungal phyla

and unclassified "Others" taxa in five ecosystem types. Individual abundance of each phylum and their cumulative abundance were shown in

the graph.

2.2 Derivation of fungal abundance and diversity

The methods for DNA extraction and sequencing are detailed in Bissett et al. (2016). Briefly, the soil DNA was extracted in85

triplicate following methods used in the Earth Microbiome Project1. Sequencing occurred with an Illumina MiSEQ, which

is described in the BASE protocols2. Summarising, amplicons targeting the fungal ITS region were prepared and sequenced

for each sample. The ITS amplicons were sequenced using 300 bp paired end sequencing. ITS1 regions were extracted using

ITSx Bengtsson-Palme et al. (2013). Sequences comprising full and partial ITS1 regions were passed to the Operational

Taxonomic Units (OTU) selection and assigning workflow Bissett et al. (2016), which followed guidelines described in the90

BASE protocols3 and in Bissett et al. (2016). These are based on the most current version of UNITE database (version 8.2,

updated 15-01-2020) for molecular identification of fungi Nilsson et al. (2018). We used the final sample-by-OTU data matrix

and annotated taxonomy file for the analyses of fungal diversity and composition.

To eliminate bias on the diversity comparison caused by unbalanced sequencing, samples were resampled at the same

sequencing depth using functions of the RAM library in the R software(R Core Team, 2014). The BASE dataset sought95

to produce as many sequences as resources allow with a minimum sequencing number of 10,000 per sample. Here, 11 000

sequences (the median number of sequences in the samples) were used as the resampling depth, because the majority of

samples only had this amount of sequences, but also because the rarefaction curves started to flatten out for all 577 samples at

this sequencing depth. This suggested that the sequencing number was sufficient (Fig. S2 in the Supplementary Information).

1http://www.Earthmicrobiome.Org/emp-standard-protocols/dna-extraction-protocol/
2https://ccgapps.Com.Au/bpa-metadata/base/information
3https://ccgapps.com.au/bpa-metadata/base/information
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To quantify community diversity, we then calculated the abundance-based coverage estimator (ACE) index (Lozupone and100

Knight, 2008) from the resampled sample-by-OTU matrix. The relative abundance of fungal phyla were then determined using

the ratio of sequences number classified at each phylum to the total number of sequences of each sample.

2.3 Soil visible–near-infrared spectroscopy

We measured the diffuse reflectance spectra of all air-dried ≤ 2 mm soil samples with the Labspec® vis–NIR spectrometer

(Malvern Panalytical, Boulder, Colorado, USA) following the protocols described in Viscarra Rossel et al. (2016). The spectral105

range of the spectrometer is 350 to 2500 nm. Due to the low signal-to-noise ratio at the start and end of each spectrum, for our

analysis, we kept only spectra in the range between 380 and 2450 nm. As the spectra are highly collinear, to reduce redundancy

in the data, we re-sampled them to a resolution of 10 nm. The measurements were performed with the instruments high intensity

contact probe (PaNalytic, Boulder, Colorado, USA), and a Spectralon® white reference panel was used for calibration once

every 10 measurements.110

For the modelling and interpretation, we first transformed the reflectance (R) spectra to apparent absorbance, using A= log10(1/R),

and then used the Savitzky-Golay method with a window of size 7, a quadratic polynomial and first derivative Savitzky and

Golay (1964) to remove baseline effects and to improve the signal-to-noise ratio. To visualise the spectra, we further fitted

each reflectance (R) spectrum with a convex hull and computed the deviations from the hull (Clark and Roush, 1984). These

continuum removed (CR) spectra help to visualise the characteristic absorptions, more clearly than the Savitzky-Golay first115

derivatives (SG1Der) absorbance spectra.

2.4 Modelling soil fungal abundance and diversity

We developed spectroscopic models, environmental models, and spectro-transfer functions for estimating soil fungal abundance

and diversity (see below). The spectroscopic models used only the vis–NIR spectra, the environmental models used only the

publicly available soil and environmental data that represent the soil forming factors soil, climate, vegetation, terrain and parent120

material (Jenny, 1994), and the spectro-transfer functions used the vis—NIR spectra together with soil and environmental data.

We assembled a set of readily available soil and environmental maps that represented climate, terrain, vegetation, and parent

material. To relate the these covariates to the fungal data, we extracted values from these maps using the geographic coordinates

of the sample set. The soil property data came from the Australia-wide fine spatial resolution (90 × 90 m) digital soil maps of

total organic carbon, total nitrogen, total phosphorus, bulk density, effective cation exchange capacity, available water capacity,125

pH, and soil texture (sand, silt, and clay) (Viscarra Rossel et al., 2015), as well as maps of the clay minerals kaolinite, illite,

and smectite (Viscarra Rossel, 2011). To represent climate, we used data on mean annual temperature (MAT), mean annual

precipitation (MAP), solar radiation, and evapotranspiration (Xu and Hutchinson, 2011) and the Prescott index (PI) (Prescott,

1950), which is calculated as the ratio of precipitation to evapotranspiration. To capture functional landscape characteristics,

we used a digital elevation model (DEM) from the 3-arc second shuttle radar topographic mission (SRTM) and derived terrain130

attributes (Gallant et al., 2011). To represent vegetation, we used data on net primary productivity (NPP) (Haverd et al., 2013),

and on the fraction of photosynthetically active radiation intercepted by the sunlit canopy of the evergreen (Fpar-e) and woody
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(Fpar-r) vegetation (Donohue et al., 2009). To represent parent material, we used gamma radiometrics, which comprises data on

potassium, uranium, and thorium (Minty et al., 2009). Supplementary Table S2 lists these data and their main characteristics.

The spectra and the covariates were centred and scaled before the modelling of fungal abundance and diversity. The al-135

gorithms that we tested were partial least squares regression (PLSR) (Wold et al., 2001), gaussian process regression(GPR)

(Rasmussen and Williams, 2005), support vector machines (SVM) (Suykens et al., 2002), random forest(RF) (Breiman, 2001),

CUBIST (Quinlan, 1992), extreme gradient boost (XGBoost) (Friedman, 2001) and optimised 1D convolutional neural networks

(1D-CNNs) (Shen and Viscarra Rossel, 2021). The algorithms and their implementation are described in the Supplementary

Information linked to this article.140

The predictability of the spectroscopic models and the spectro-transfer functions were assessed using 10-fold cross-validations.

We evaluated the estimates using the Nash Sutcliffe model efficiency, other wise known as the coefficient of determination (R2),

which represent the fraction of the explained variance based on the 1:1 line of estimated versus measured values (Janssen and

Heuberger, 1995). The R2 was computed as 1-RSS/TSS, where RSS is the residual sum of squares and TSS is the total sum of

squares. The root mean squared error (RMSE), which measures inaccuracy, the standard deviation of the error (SDE), which145

measures imprecision and the mean error (ME), which measures bias (Viscarra Rossel and McBratney, 1998). Inaccuracy

(RMSE) embraces both the bias (ME) and the imprecision (SDE) (Viscarra Rossel and McBratney, 1998). Their relationship

is given by RMSE2 =ME2 +SDE2.

To interpret the models, we calculated their variable importance as follows. For the PLSR, GPR, SVM, Cubist, RF and

XGBoost models, variable importance was calculated using the varImp function in the caret library (Kuhn et al., 2008) of the150

software R. To calculate the variable importance of the CNN models, we used permutation variable importance. In our case,

we run 1000 permutations and measured the decrease in RMSE after a predictor was permuted (randomly rearranged). The

permutation breaks the relationship between the predictor and the response variables, and a reduction in RMSE indicates how

much the model depends on the particular predictor. An advantage of this approach is that it can be applied on any estimator

and does not require retraining the model (Breiman, 2001; Fisher et al., 2019). In order to compare the importance between155

different fungal phyla and diversity, we scaled the importance values between 0 and 1. In the results, we only report the variable

importance of the model that performed best.

3 Results

In total, more than 60 million quality filtered sequences in the whole dataset were obtained, with an average of 107 310

sequences per sample. When we clustered the sequences at 97% similarity level 202 200 OTUs were detected. Each sample160

had an average of 666 OTUs. Sixteen phyla were identified in total and 5 dominant phyla, with relative abundance > 2%, were

approximately present in most soils. This represented nearly 88% of the sequence number. The relative abundance of fungal

phyla varied across ecosystem types (Fig. 1b).

Ascomycota (mean 0.43, SD 0.21) was the most abundant phylum, followed by Basidiomycota (mean 0.37, SD 0.24) (Ta-

ble 1). Dominant fungal phyla showed a high degree of variability, with an averaging 83% coefficient of variation (CV). The165
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ACE index showed a wide range from 81 to 1823 (mean 563, SD 315). The rich soil biodiversity of the data resulted from the

extensitive soil sampling taken from diverse vegetation, soils, and climates across Australia.

Table 1. The descriptive statistics of relative abundance of dominant phyla and community diversity (n = 577).

Variables Mean Median St. Dev. Range Coeff. var. (%)

Abundance

Ascomycota 0.43 0.42 0.21 0.04–0.98 49

Basidiomycota 0.37 0.32 0.24 0.01–0.92 65

Mortierellomycota 0.04 0.02 0.04 0.00–0.36 100

Glomeromycota 0.02 0.01 0.01 0.00–0.41 50

Mucoromycota 0.02 0.01 0.03 0.00–0.55 150

Diversity

ACE 563 503 315 81–1823 56

Fig. 2 shows the CR reflectance and SG1Der absorbance spectra with the characteristic absorption features. Soil with differ-

ent fungal diversity show variations in absorptions, particularly around those that are due to Fe-oxides (400–800 nm), minerals

(around 1400 nm, 1900 nm and 2200 nm) and organic compounds (throughout the vis–NIR spectrum) (Stenberg et al., 2010).170

Soil with the lower fungal diversity showed a more pronounced absorbance around 600 nm as shown in Fig. 2. In our study, the

soil with lower fungal diversity mainly come from the central and western Australia. In these areas, soil subjected to intense

weathering regimes and can accumulate large quantities Fe oxides (total soil Fe2O3 larger than 10%) in surficial environments,

and strongly absorbed in the visible region (Viscarra Rossel et al., 2010). These highly iron-rich lateritic soil occur with acidic

pH, high H2O and Al activities, and has been shown not conductive to the development of fungal diversity (Viscarra Rossel175

et al., 2010).
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Figure 2. Continuum removed (CR) spectra and the Savitzky-Golay first derivatives (SG1Der) absorbance spectra curves colored by fungal

ACE diversity

3.1 Modelling

With the different algorithms, the spectroscopic models (i.e. with only the vis–NIR spectra) could explain 9–45% of the vari-

ation in fungal phyla relative abundance and diversity. Spectroscopic models of the Glomeromycota were the least successful,

with R2 values ranging from 0.09 using SVM to 0.30 using 1D-CNN, while those of the Mortierellomycota produced the180

largest R2 values, ranging from 0.32 using XGBoost to 0.45 using 1D-CNN (Fig. 3). The models of diversity had R2 values

ranging from 0.14 with PLSR to 0.35 using 1D-CNN.

The models derived with the readily available soil and environment data could explain 14–60% of the variation in fun-

gal phyla relative abundance and diversity with the different algorithms. These environmental models were generally better

performed than spectroscopic models, with an average 10% additional variance explained.185

Combining the vis–NIR spectra and soil and environmental data further improved the modelling and their explanatory power.

The spectro-transfer functions (i.e. with the combined set of vis–NIR spectra and other soil and environmental data) performed,
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on average, 20% better than the spectroscopic models and 10% better than environmental models. Depending on the algorithm

used, they could explain between 17–73% of the variation in fungal phyla relative abundance and diversity (Fig. 3). The

spectro-transfer functions of Glomeromycota produced R2 values ranging from 0.17 using PLSR to 0.48 using 1D-CNN. The190

spectro-transfer functions of the Mortierellomycota and Mucoromycota produced the largest R2 values ranging from 0.51 to

0.73 (Fig. 3).

Generally, PLSR and GPR were the least successful methods, while SVM, RF, Cubist and XGBoost were similarly successful

for estimating fungal phyla relative abundance and diversity (Fig. 3). The 1D-CNN spectro-transfer functions were 13–31%

more successful compared to other machine learning methods as they could explain between 45–73% of the variation in fungal195

relative abundance and diversity (Fig. 3).

Figure 3. The coefficient of determination (R2) for the vis–NIR spectroscopic models, soil and environmental models and the spectro-

trasnfer functions that used combined set of the vis–NIR and readily available soil and environmental covariates, to estimate soil fungal

phyla abundance and diversity (n = 577). The different statistical and machine learning methods were partial least squares regression (PLSR),

gaussian process regression (GPR), support vector machines (SVM), random forest(RF), CUBIST, extreme gradient boost (XGBoost) and

optimised 1D convolutional neural networks (1D-CNNs).

3.2 1D-CNNs spectro-transfer functions

The final architectures and optimised hyperparameters of the 1D-CNNs are given in Supplementary Table S3. As deep learning

models are dataset dependent, the optimisation returned a different architecture for each response variable. Overall, the 1D-

CNNs used simple architectures with less than 4 convolutional layers (Supplementary Table S3). Scatter plots of the measured200

versus estimated values of relative abundance and diversity using 1D-CNNs spectro-transfer functions and their validation

statistics are shown in Fig. 4. Estimates of the relative abundance of Mortierellomycota and Mucoromycota produced R2

values ≥ 0.60, while estimates of Ascomycota and Basidiomycota produced 0.5≤ R2 < 0.6. Estimates of Glomeromycota

and ACE produced 0.4≤ R2 < 0.5. The estimates were relatively unbiased (small ME), although generally small values

were overestimated and large values were underestimated (Fig. 4). Imprecision contributed to the majority of the RMSE.205
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The imprecision of our estimates was a result of absence of repeated sampling and high adaptability of soil fungi to the wide

range of environments.

Figure 4. Performance of the CNN spectro-transfer functions for estimate of the relative abundance of dominant fungal phyla and diversity

index. The spectro-transfer functions used vis–NIR spectra with other publicly available data on soil environmental variables. The plots show

measured vs. estimated values using a 10-folds cross validation. The gray points represent no overlap with any other points, and the black

points represent at least two points that overlap.

The important variables in the 1D-CNNs spectro-transfer functions of phyla relative abundance and diversity were vis–NIR

wavelengths representing organic matter, iron oxide and clay minerals (Fig. 5).
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Figure 5. Important predictors of relative abundance of fungal phyla and diversity index measured by the variable importance of the 1D-

CNNs spectro-transfer functions (n = 577) derived with publicly accessible data that represent soil (S), climate (C), vegetation (V), terrain

(T), parent material (PM) and visible–near infrared (vis–NIR) spectra. The dots in red, orange, and blue color indicated the most, medium,

and least important level. The importance value for the majority of wavelengths were low and close to zero value, thus these wavelengths

were not shown to make the figure clearer.

The identified wavelengths mostly coincided with absorptions that are related to carbon functional groups found in organic210

matter, including C-H, N-H, C-O, with a smaller number of wavelengths coinciding with those that are related to clay minerals
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and Fe-oxides (Table 2). The organic functional groups, C-H alkyl and methyls, N-H of amines, and C-O of carbohydrates,

which might indicate the presence of relatively labile forms of carbon, and were important in the models of fungal phyla but not

of ACE diversity. The C=O of amides and carboxylic acids, which represent stable forms of carbon were not as important in

modeling (Fig. 5). Other wavelengths that represent Fe-oxides and clay minerals were also important in the models, indicating215

the different ecological niches and physiological characteristics (Table 2).

Table 2. Absorption band assignment for the most important vis–NIR wavelengths in the 1D-CNN models. The assignment of vis–NIR

absorptions from Viscarra Rossel and Behrens (2010); Stenberg et al. (2010).

ACE Ascomycota Basidiomycota Mortierellomycota Glomeromycota Mucoromycota

Fe-oxides 390 390 410, 460

Clay minerals 2190, 2240 1330, 2190, 2210 1330, 2140 1360, 2140 1330, 2150

Organics

C-H of aromatics 1630, 1650

N-H of amine 2070, 2090, 2110 1010 2060 780, 2030 2060

C-H of alkyl asymmetric- 890, 1290 1250, 1280 1740 1270, 1280

symmetric doublet

C=O of carboxylic acids

C=O of amides

C-H of aliphatics

C-H of methyls 1840, 2440 1770, 1800, 1810 1880

1830, 2450

C-OH of phenolics

C-O of carbohydrates 2260 2410, 2290 2300 2300

Other soil properties, such as total organic carbon and pH were important variables in the spectro-transfer functions of

Ascomycota and Basidiomycota, and fungal diversity. Total organic carbon and total nitrogen were important in the spectro-

transfer functions of Mortierellomycota and Mucoromycota and bulk density was important in the spectro-transfer functions of

Glomeromycota, Ascomycota and ACE diversity (Fig. 5). As well as soil properties, climatic factors such as the PI and PET,220

and vegetation, represented by Fpar-e and NPP were also important in the modelling of fungal phyla relative abundance and

community diversity. The variables that we used to represent terrain, and parent material exerted less influence in the models

(Fig. 5).

4 Discussion

Soil fungi play essential and diverse functional roles in ecosystem. However, they are challenging to investigate due to labori-225

ous, time-consuming and costly field sampling, and laboratory analysis. We show that spectro-transfer functions with readily

accessible vis–NIR spectra and publicly available soil and environmental data could variably estimate (R2 ranging from 0.45-

0.73) soil fungal abundance and diversity measured with ITS gene metabarcoding. The spectro-transfer functions explained less

than 60% of the variance in the two dominant phyla, the Ascomycota and Basidiomycota, representing 80% of the total fungal
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relative abundance. In comparison, the spectro-transfer functions could explain more than 70% of the variance in the Mortierel-230

lomycota and Mucoromycota, which were less abundant in soil. The reason for the different predictability might be the coarse

phylum-level identity. Compared with the Mortierellomycota and Mucoromycotawere, the Ascomycota and Basidiomycota

are more complex phylogenetic classifications and consist of more diverse taxa with different phenotypic traits. These taxa

have distinct ecological functions and environmental preferences, which might have reduced the predictability of their relative

abundance at the phylum level. Classifying taxa with similar habitat preferences or studying at a finer taxonomic resolution235

might provide better predictability and understanding of soil fungal communities. The spectro-transfer function for the ACE

index could only explain around 50% of the variance in diversity. The reason might be that local geography, environmental

conditions, and difficult-to-proxy long-term natural selection and evolution affect community diversity.

The general concept of using proxies has been used in other studies to attempt more rapid estimation of microbial properties

towards the diagnosis of soil quality. For example, Horrigue et al. (2016) developed a statistical predictive model of soil240

microbial biomass according to environmental parameters including soil physico-chemical and climatic characteristics across

France. Their model (R2 = 0.67) provided a reference value of microbial biomass for a given pedoclimatic condition to enable

rapid diagnosis of soil quality across France. Other similar studies exist, for example Griffiths et al. (2016) who focused on the

estimation of bacterial community structure and diversity at the Europe scale ITS gene metabarcoding analyses are expensive,

laborious and require specialised laboratories and methods, while spectroscopic measurements are faster, less expensive, and245

soil-environmental data are more readily available. When many measures are needed, for example, to assess, characterise and

improve our understanding of soil fungal communities and their associated functions at different scales, the approach could

complement molecular techniques (Hart et al., 2020). For instance, to characterise spatial variation (i.e. for mapping), one needs

many measurements that would be too expensive with only metabarcoding. In this case, estimates with the spectro-transfer

functions (R2=0.45–0.73) could complement the metabarcoding analysis to represent the variability present better. As a whole,250

the spatial characterisation will be more accurate than when only taking a few very precise measurements. This is the rationale

for the characterisation of soil properties in space and time with sensing (Viscarra Rossel et al., 2011). The soil covariates

in the model are derived from digital soil maps and not from measured soil samples. The reason is that using measured data

would increase the cost of the approach significantly, making the approach less attractive. We note that the uncertainty in the

spectro-transfer estimates caused by using the digital soil map predictors will propagate to the spectro-transfer functions and255

thereby lowering the precision of the estimates.

We do not expect that the spectro-transfer method will produce estimates that are as accurate as the more conventional

molecular methods, even with further improvements in modelling and better covariates. This is because we understand that

the modelling of living organisms is dynamic and hugely complex. Fungi vary over space and time (Duan et al., 2018), often

showing that their prevalence in different habitats differs seasonally (Talley et al., 2002). The inconsistent correlations of fungi260

with climate and plant hosts observed in various ecosystems may be due to seasonal variation and spatial heterogeneity across

single time point studies (Kivlin and Hawkes, 2016). Thus, temporal sampling is needed to capture the seasonal dynamics of

microbial communities.
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Our research uses soil fungal measurements at a single point in time and there are likely to be many undetermined controlling

factors, including seasonal variability and complex biological interactions. Despite this drawback, our approach allows us to265

infer the distribution of soil fungal communities and diversity more simply and at a lesser cost, to help better understand

the diversity and biogeography of soil fungi in different habitats. Thus, our approach shows promise and could complement

molecular methods. We hope that our study will stimulate further research towards achieving more widespread characterisation

of fungal abundance and diversity, which will help to deepen our understanding of fungal biology, biogeography and their

environmental controls. Different spectra, new sensing technologies and improved methods could also improve the spectro-270

transfer approach.

Out of the seven statistical and machine learning models tested, the optimised 1D-CNNs were the most successful for

estimating fungal phyla relative abundance and diversity, consistently producing the highest cross-validation R2 values. The

reason might be that the 1D-CNNs can automatically ‘learn’ the non-linear and complex relations between the soil fungal

variables and the covariables. The models extract large features during convolution and adjust the weights of each covariate275

during the model iterations, which are also back-propagated (Breiman, 2001; Lecun et al., 2015). Although 1D-CNNs have

been used for the spectroscopy modeling of soil physicochemical properties (Ng et al., 2019; Tsakiridis et al., 2020; Shen and

Viscarra Rossel, 2021), to our best knowledge, this present study is the first to develop spectro-transfer functions for estimating

soil fungal abundance and diversity.

Our results shown that the 1D-CNN spectroscopic models (with only vis–NIR spectra) could explain, on average, 40% of280

the variation in the relative abundance of fungal phyla and community diversity (R2 values of 0.30–0.45). It is because these

spectra characterise the soil’s organic and mineral composition, which serves to supply energy and the elements that fungi use

to promote vital activities (Müller, 2015). Microbial activities are closely associated with the types and amounts of organic

matter and our results indicate that the most important vis–NIR wavelengths in the modelling of fungal relative abundance and

community diversity corresponds to functional groups in the different types of organic compounds in the soils (Viscarra Rossel285

and Hicks, 2015) (Fig. 5 and Table S2 in Supplementary information).

The 1D-CNN spectro-transfer functions (with vis–NIR spectra and other soil and environmental data) improved the mod-

elling. This suggests that other variables that represent climate, soil nutrients, pH, vegetation, are important predictors of fungal

growth. Their use in the spectro-transfer functions provided additional and supplementary information for the modelling. On

average, these models could explain 60% of the variation in abundance of fungal phyla relative abundance and diversity (R2290

values of 0.45–0.73).

The soil organic and mineral composition, represented by the vis–NIR spectra, were the most important predictors in the

models for fungal relative abundance and community diversity. Additionally, total organic carbon and pH were important

predictors of fungal diversity and the relative abundance of Ascomycota and Basidiomycota. Although most soil fungi do not

require strict pH ranges for habitation and growth (Rousk et al., 2009; Zhao and Shen, 2018), some basophilic or acidophilic295

fungi are sensitive to changes in pH (Gai et al., 2006) and saprophytic fungi are thought to be more sensitive to soil pH,

compared to other fungi (Kivlin and Hawkes, 2016). Soil bulk density was an important predictor of fungal diversity and the

relative abundance of Glomeromycota. Many fungi, including those that form arbuscular mycorrhiza, such as Glomeromycota,
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infect plants roots achieving mutualistic symbiosis (Schubler et al., 2001). Denser soil bulk density could reduce the availability

of soil nutrients and water, leading to poor development of plant roots and a smaller infection rate for the symbiosis. The PI and300

evapotranspiration were the most important climatic predictors of fungal abundance and diversity in the models. PI represents

the soil-water balance which has been shown to affect soil microbial growth at various studies (Bachar et al., 2010; Blankinship

et al., 2011; Maestre et al., 2015; Delgadobaquerizo et al., 2018b). Because soil-water stress could strongly restrict microbial

activity and distribution by controlling the availability of soil nutrients, pH and oxygen (Delgadobaquerizo et al., 2018b). NPP

and Fpar-e were important predictors of fungal diversity and the relative abundance of the five dominant phyla. Larger values305

of NPP and Fpar-e occur due to greater biomass production and thus more accumulation of litter and coarse organic matter in

soil. Soil fungi are some of the decomposers of litter and soil organic matter, including cellulose and lignin, which are often

resistant to bacterial decomposition (Treseder and Lennon, 2015; Nicolas et al., 2019).

5 Conclusions

Our study contributes to the development of methods that could complement, not replace, molecular approaches for character-310

ising and better understanding the diversity and biogeography of soil fungi. We have shown that deep learning spectro-transfer

functions are a promising new method for estimating soil fungal communities’ relative abundance and diversity. The optimised

1D-CNNs outperformed the six other machine learning algorithms tested for estimating the relative abundance of fungal phyla

and diversity. The spectro-transfer functions (with vis–NIR spectra and soil and environmental data) produced more accurate

estimates (R2 0.45–0.73) than the spectroscopic models (only vis–NIR spectra; R2 0.36–0.55) and models with only the soil315

and environmental data (R2 0.38–0.60). As well as the soil organic and mineral composition, represented by vis–NIR spectra,

other edaphic, climatic, and biotic factors including soil nutrients, pH, bulk density, potential evapotranspiration, the soil-

water balance and net primary productivity were important predictors in the modelling. We hope that our study will provide

food-for-thought for further research on the measurement and estimation of fungal abundance and diversity. We believe that

improvements will be possible as new technologies and methodologies develop that will also help to deepen our understanding320

of fungal biology and biogeography.
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