
Response to reviewers: Estimating soil fungal abundance and

diversity at a macroecological scale with deep learning

spectrotransfer functions by Yang et al.

Reviewer 1

General comments

Trying to estimate soil fungi with vis-NIR spectroscopy is venturing down a very

slippery slope. Soil fungal abundance and diversity have no spectrally active

components. This is recognized by the authors in the Introduction. At best,

estimation of soil fungal abundance and diversity is based on indirect correlation with

properties that are spectrally active, such as clay minerals functional groups.

However, it is not even clear from the literature whether soil fungal abundance and

diversity have much relationship with these spectrally active soil components. With

the use of complex machine learning models, there is a serious risk of finding accurate

results simply because the model finds fortuitous relationships between

spectra/variables and the property of interest. Without any surprise, in this study

the model performing best is the most complex one: the deep learning model. The

simplest model, PLSR, performed poorly in nearly all cases. PLSR is yet the

benchmark method for spectroscopic modelling, and is not per se a simple model, it

uses the whole spectrum and makes statistical decomposition of the spectral data

(principal component analysis). This clearly suggests that the results of this study

cannot be trusted because the good results obtained by the 1D-CNN models are not

based on direct nor known indirect relationship with spectrally active soil

components. At best, there is some kind of indirect relationship with spectrally active

soil components which serve as proxy for the soil fungal abundance and diversity, but

it is difficult to prove that this relationship indeed exists based on the literature. The

reliability of this relationship would also then depend strongly on the relationship

found among the data by the deep learning model and on the specific study case and
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calibration data. For this reason alone, I do not endorse publication of this

manuscript. There is no reason from the existing literature to justify the use of

vis-NIR spectroscopy to estimate soil fungal abundance and diversity. It is misleading

to claim that spectroscopy can “serve to supplement the more expensive and

laborious molecular approaches”.

Authors: Where to begin...let us see if we can help the reviewer get a grip as we

would not like him/her to slip down the slope that he/she is on!

1. On the point that fungal abundance and diversity do not have ‘spectrally active

components’. Correct. Nowhere in our manuscript do we write that they do.

Most functional soil properties, e.g. cation exchange capacity, pH, clay content,

etc., do not have ‘spectrally active components’. Yet, spectroscopy is used to

estimate them because spectra hold information on clay minerals, iron oxides,

carbonates, colour (and chromophores), organic functional groups present in

organic matter, water, particle size. It is now well understood that estimates of

such functinal properties are due to (first or higher-order) correlations to those

‘spectrally active components’. It is in this manner that fungi can correlate to

the spectra, albeit with rather poor predictability, as we show in Figure 3

(submitted ms). Hence, the idea for spetro-transfer functions, but more on this

later.

2. Interestingly, the reviewer does not mention that the spectra measure organic

functional groups in organic matter. Spectroscopy provides a chemical

fingerprint of these functional groups (e.g., carbonyls, carboxyls, hydroxyls,

phenols, and phenyls). Although there are no absorptions that can be directly

assigned to soil fungi or microbial communities more generally, soil microbes are

dependent on organic compounds for energy, but also on clay minerals and iron

oxides for the supply of essential elements (Müller, 2015). For example, the

decomposers of saprotrophic fungi are involved in decomposing complex organic

material. They are dominant in soil containing more lignocellulose, recalcitrant
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aromatic polymers that consist of phenylpropane units joined by C–C and ether

linkages (Tunlid et al., 2013). Mutualists of mycorrhizal fungi are dominant in

soil containing more decomposed lignin polymers and humic-rich organic matter

that can form supramolecular aggregates. These aggregates are stabilised by

hydrophobic interactions and hydrogen bonding (Tunlid et al., 2013). Thus, soil

fungi are linked with ‘spectrally active components’ in soil, at the very least

from the perspective of carbon supply.

3. The literature has shown that spectra can estimate biological soil properties (as

described above). For example, various authors have shown that vis–NIR

spectra can estimate microbial biomass, enzyme activity in soil, and respiration

(Coûteaux et al., 2003; Cohen et al., 2005; Zornoza et al., 2008; Chodak, 2011).

There have been several reports on estimating soil microbial community

composition with vis–NIR reflectance spectroscopy too. For instance, Zornoza

et al. (2008) and Davinic et al. (2012) performed vis–NIR modelling of groups

of microorganisms measured with traditional PLFA profiling. They could well

estimate (R2 >0.7) total PLFA biomass, total fungi, mycorrhizal fungi, total

bacteria, Gram-positive bacteria and Actinomycetes. Using mid-infrared

(mid-IR) spectroscopy, Nath et al. (2021) showed that they could estimate

various soil biological properties. We found no research that uses vis–NIR

spectra to infer soil microbial community composition based on 16S rRNA and

ITS gene metabarcoding. Hence the added novelty of our study.

4. On the comments around PLSR and the machine learning methods. Glad to

know the reviewer understands how PLSR and machine learning methods work.

We do too, so we will keep this brief and refer to Figure 3 in the manuscript to

make a few points that seem to have evaded the reviewer: (i) Our results clearly

show that the spectra alone can not well estimate fungal phyla abundance and

diversity, (ii) The soil and environmental data could better estimate fungi

because they control the abundance and distribution of fungi—of course, this
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has been well-reported (Delgadobaquerizo et al., 2018; Vetrovsky et al., 2019;

Tedersoo et al., 2014 ), (iii) By combining the spectra with the soil-environment

data (i.e. developing spectro-transfer functions), we could improve the

modelling and achieve the best accuracies, and (iv) The PLSR estimates of the

different phyla and ACE diversity were not too dissimilar to other machine

learning methods, but yes, our optimised CNNs did perform somewhat better.

5. We have shown that spectro-transfer functions could fairly accurately (although

as R2 notes, not superbly well) estimate fungal community composition and

diversity measured with ITS gene metabarcoding using a large dataset from

diverse ecosystems under different conditions. As stated in the manuscript, we

are under no illusion that our method will replace metabarcoding. However, we

propose that it could complement metabarcoding when many measurements are

needed. ITS gene metabarcoding analyses are expensive, laborious and require

specialised laboratories and methods. Once a spectro-transfer function is

developed, vis–NIR spectroscopy is much easier, faster and less costly to

measure, and soil-environmental data are more readily available. Since soil

fungal properties are sensitive and reliable indicators of soil health, there has

been much research to find variables related to soil fungal community to assess

degradation processes, restoration strategies or management practices.

Consequently, we think it worthwhile to research the development of

spectro-transfer functions to model soil fungal composition and diversity.

6. Finally, we hope to have addressed the reviewer’s concerns. We do not ask the

reviewer to trust our models or us for that matter; however, we do ask that

he/she reads our manuscript, tries to understand our results, interprets them

accurately and provides us with a fair, unbiased assessment.

In addiction to this major conceptual problem, I have also several important

comments that need to be addressed, please see below.
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Specific comments

This paper is very similar to the Soil Biology and Biochemistry paper: same

methodology, same data (fungi instead of bacteria, but still on the Australian BASE

dataset), same covariates, same concept.

Authors: The general concept of the spectro-transfer functions is similar in both

papers, but because we found modelling of fungi more challenging, we needed to

research different methods and we thought useful to report them. This paper looks at

fungal composition and diversity measured by ITS metabarcoding. To develop the

spectro-transfer functions we tested different strategies (using spectra, environmental

data, and a combination) and learning methods (7 different algorithms).

Combining spectral data and terrain into the modelling is not recommended and

not common is spectroscopic research. The authors provide as input to the model a

vector comprising both spectral data and environmental data found at site. The

rational for doing this is unclear, and providing too much data to complex models

will only aggravate the problem of finding spurious relationship among the data. This

way of modelling brings additional problem with the covariates used. For example,

the covariates called “mineralogy”, i.e. kaolinite, illite and smectite (Appendix), are

an interpolation of vis-NIR spectra band depth. So these covariates add redundant

information. Combining spectral data and environmental variables into a single

vector used for prediction is going too far into “unconscious” soil modelling.

Authors: We wonder who does not recommend using different data in modelling?

and simply because it isn’t commonly done, does the reviewer suggest that we

shouldn’t either? A couple of rather strange and subjective statements. Our rationale

is clearly stated: we wished to test spectro-transfer functions. Of course, there are

other examples in the soil and environmental sciences literature where spectra and

other environmental data are combined in modelling. For example (amongst many

other), Pullanagari et al. (2018) integrated airborne hyperspectral, topographic, and

soil data for estimating pasture quality with Random Forest. Guo et al. (2019)

5



combined environmental factors and vis–NIR spectra to estimate soil organic matter

with geospatial techniques. On the covariates, we see no issue with using data on soil

clay minerals in the modelling, even if they were derived from specific absorptions in

the near-infrared. The data were measured independently. We are unsure of the

meaning of ‘unconcious soil modelling’, however, we hope that the reviewer is

conscious that we perform the modelling using best-practice, and that we interpret

the modelling (see Figure 5), finding that the interpretation was as reasonable as one

might expect with this type of modelling.

To my understanding (because the writing needs to be improved and made more

precise) the modelling is made on the absorbance spectra whereas the interpretation

is made on a different model based on the continuum removed reflectance spectra.

This is not correct. Interpretation should be made on the same model that the

authors choose to be the best, not on a model fitted on different data. The authors

are interpreting a model that was not used during modelling.

Authors: On the matter of the writing, it would serve the reviewer (and us) well if

he/she could point out where and how our writing is lacking so that we might better

address the comment. The manuscript was read and edited by the native English

speaking authors as well as colleagues in our institutions before submission. We note

that Reviewer 2 wrote that the paper is ‘...overall well written and is very well

structured’. About the form of the spectra used for interpretation, there may be some

misunderstanding here. Figure 2 is a stand-alone representation of the continuum

removed spectra, which is simply to show that fungi actually show response in the

vis–NIR. We used the continuum removed spectra because it helps to visualise the

absorptions, more clearly than the absorbance first derivative spectra. Yes, the

modelling was performed on the absorbance spectra, that is correct. Because the

models were derived using absorbance spectra, their interpretation was made using

these spectra and that interpretation is reported in Figure 5. To prevent confusion,

we will include both types of spectra in Figure 2, the continuum removed and the
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absorbance, first derivative spectra.

The BASE dataset contains more than 577 samples. Also, in the SBB paper 681

samples are used for bacteria. Why are not all data used? What is the reason to

discard some observations? This should be clearly described in the Methods section

of the manuscript.

Authors: We wrote this in the submitted manuscript, lines 86–90. When we

calculated community diversity, to remove the bias induced by unbalanced

sequencing, each sample was resampled at the same sequencing depth. The BASE

dataset sought to produce as many sequences as resources allow with a minimum

sequencing number of 10,000 per sample. Here, each sample was re-sampled at depth

of 11,000 sequences to eliminate the unbalanced sequencing as shown in the

Supplementary Figure 1. We chose 11,000 sequences as the resampling depth mainly

because many samples only had this sequences number but also the rate of increase in

the rarefaction curves is small at this depth. Doing this produced 577 data, which is

therefore different that of the bacterial study.

The environmental variables used as covariates are outdated (Appendix). For

example, the prescott index map for Australia is made at 5 km, but indeed

downscaled at 90 m. The mineral maps (kaolinite, illite and smectite) are an

interpolated product based on the band depths of vis-NIR spectra -should not be

used here to avoid redundancy. The soil texture maps of 2015 are outdated, there are

new ones since several months (see the paper

https://www.publish.csiro.au/sr/pdf/SR20284). The vegetation maps are also very

outdated. The authors used the old ones based on 250 m and 1 km resolution

products, but there are new ones since several months based on Landsat 30 m data,

see for example:

http://data.auscover.org.au/xwiki/bin/view/Product+pages/Landsat+Seasonal+Fractional+Cover.

Also, all the topographic covariates are now available at 30 m resolution and easy to

download through the TERN repository: https://shiny.esoil.io/Covariates/.
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Authors: The spatial data that we used is from around 2011–2017. The BASE soils

were collected within that period so there is no reason to use newer data in this

research. We see no reason why we should re-run all our analysis simply because

there are newer maps of soil texture (Note that based on our assessments, when

tested with independent data, the new texture maps provide insignificant

improvements in overall accuracy compared to Figure 8 in Viscarra Rossel et al.

(2015)). Similarly for the comments around resolution. Please note that the Prescott

index layer that we used was produced at an approximate 90 m pixel resolution (by

CSIRO terrain data analysts) using down-scaled climatic data. Also, why should we

re-run all our analysis simply because there are newer, higher resolution datasets? We

think it more important to use datasets of similar age. We have responded to the

comments on the mineralogy maps.

The use of various machine learning methods is not of interest and there is the

risk that this study simply becomes a comparison of validation statistics. Not clear

what the added value is of applying seven methods. In this way, the manuscript runs

the risk of being about the models and their comparison, rather than about

understanding whether vis-NIR spectral data can effectively predict soil fungi. I think

SOIL’ readership is rather interested in the latter. Any model that here predicts

better than another is case-study specific, and is unlikely to interest soil scientists

who are the readers of this journal. Further, a model is usually chosen carefully with

the problem in hand. Several of the models used by the authors are in fact very

similar, they are all non-linear. The problem is here that none of the models

described in the Appendix are thoroughly explained and it is not clear how the

authors actually implemented all this. I could make many questions on each of the

models, but my best advice here would be to reduce the model count to the minimum

(PLSR and DL), otherwise most readers will probably see this manuscript as a

programming exercise.

Authors: We disagree that the testing of the different methods is of no interest and
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disagree with the suggestion to only report results for PLSR and DL. The purpose of

our paper is to develop predictive spectro-transfer functions for fungal abundance and

diversity and this requires us to test different algorithms for the modelling. Contrary

to the comment that this might confuse readers about the purpose of the manuscript,

our result show that all of the algorithms perform similarly (see Figure 3), and this

should provide readers with confidence that the response captured by the modelling is

‘real’ and the modelling with the spectro-transfer functions robust. On the comment

that ’a model is usually chosen carefully with the problem in hand’—this is not

necessarily our experience with empirical modelling and machine learning. Usually,

depending on the purpose, the datasets, etc., one needs to test different algorithms to

find the most appropriate one. On the comment around the similarity of the

algorithms, we tested one linear model (PLSR), three tree-based models (RF,

XGBoost, Cubist) that work quite differently, SVM, Gaussian Processes and

optimised CNNs. We chose those different methods because they provide a good and

varied range of methods. We would be very surprised if after reading our manuscript

readers thought that it was a ’programming exercise’, particularly as we devote large

portions of the results and discussion to interpreting our results and also provide

Table 2 and Figure 5 for this purpose. We provide clear descriptions of the

algorithms and their implementation in the Methods and Supplementary Information.

Our descriptions are not exhaustive because these methods are not new and have

been widely used and reported in other literature, which we cite.

It is unclear why the authors describe the accuracy statistics this way and what

was done. With the information provided, the interpretation of these statistics is also

unprecise. For example, the coefficient of determination of the linear model can be

interpreted as amount of variance explained only in the case of a linear model with

intercept. So the R2 that the authors report in the manuscript is similar to a squared

correlation coefficient, and should not be interpreted as percent of variance explained.

See also the Wikipedia page, last paragraph of the intro:
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https://en.wikipedia.org/wiki/Coefficient$_$of$_$determination. Further,

decomposition of the RMSE into a bias and variance component is very well known in

the literature and adds nothing to the paper. How the authors call it with

“inaccuracy” and “imprecision” is not well accepted in the statistical literature. The

decomposition is so well known that it is described in Wikipedia:

https://en.wikipedia.org/wiki/Mean$_$squared$_$error or in any introductory

statistic book, see, for example, page 298 in the book ”Elementary Statistics for

Geographer”, by Burt et al. (2009), Third Edition.

https://www.routledge.com/Elementary-Statistics-for-Geographers/

Burt-Barber-Rigby-Robeson-Horner/p/book/9781572304840. Note that in both

cases, they do not use terms such as “inaccuracy” and “imprecision” and I would

agree not to use them.

Authors: Our reporting of the evaluation statistics are useful and correct.

Reporting of the RMSE, ME and SDE describes the relevant errors because they

represent the bias (ME), the imprecision (SDE) and thus the inaccuracy (RMSE) of

the estimates, noting that RMSE2 = ME2 + SDE2. That is, if the model predictions

are unbiased, then imprecision will be the only contributor to their inaccuracy, and

this seems to be the case for most of our results. We have cited Viscarra Rossel and

Mcbratney (1998) who described the reporting of erros in this way, following the

paper by Kempthorne and Allmaras (1965). The reviewer can find more detail in

those texts. We additionally report the R2, which is a more ‘contextualized’ measure

of performance that can be used for more general assessments and comparisons to

other work. R2 we report definitely represent the proportion of the variation in the

dependent variable that is predictable from the independent variable(s).

The methods section of the manuscript does not clearly describe what was done.

For example, there are many methods available to compute the variable importance.

At lines 137-140, the only description is “VarImp for caret” and permutation

importance for the 1D-CNN models. This is not a description that allows one to
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reproduce these results. What is done in caret VarImp? For the permutation

importance of the 1D-CNN model, how is correlation among wavelengths accounted

for (permutation is very sensitive to correlation)? How many permutations? What is

the metric used (RMSE difference, ratio?)? What is the unit?

Authors: We disagree that our methods are unclear. The manuscript was also read

by other colleagues before submission and Reviewer 2 could understand the methods,

writing that the paper is ‘...overall well written and is very well structured’. However,

we agree that the description of variable importance is a little brief. We will revise

and improve the description of our implementation of the variable importance.

Permutation importance measures the changes in a metric (e.g. RMSE) after a

feature is permuted, where the relationship between the feature and the targets are

broken. It can be applied on any estimator and does not require retraining the model.

We used permutation importance and the RMSE) with 1000 permutations to

calculate the variable importance of the CNN models. The importance values

measures the RMSE increase after permutating the particular feature. In order to

compare the importance between different fungal phyla and diversity, we scaled the

importance values between 0 and 1. Note that we are aware of the issues with using

permutation, however, we felt that for this study and with vis–NIR spectra, it would

suffice if we used a large number of permutations to calculate the variable

importance. We understand permutation importance has its limitations and that

there are other methods to decipher CNNs, however they too have strengths and

limitations (Fisher, et al., 2019). Although we think that it would be out of scope

here, if the editor suggests, we could use another method that can better handle

multicollinearity, e.g. SHAP (SHapley Additive exPlanations) (Lundberg and Lee,

2017). However, doing so might not necessarily improve our results or change our

conclusions, but it would significantly complicate and lengthen the manuscript.

In Fig. 5, the importance should have a unit. What is the unit? How comes that

covariates and spectra, which have very different units, can all have importance
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values between 0 and 1? Usually a standardization can be made to the covariates and

spectral data prior to use permutation on them. If this was done, please report it in

the methods section and also use the same standardized input data for modelling.

There is no reason to use different data and model for modelling and interpretation.

Authors: The spectra and the covariates were centred and scaled before the

modelling. This is clearly stated in the submitted manuscript line 126. For

Permutation importance, please see our previous response.
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