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Abstract. Land use is known to exert a dominant impact on a range of essential soil functions like water retention, carbon 

sequestration, organic matter cycling and plant growth. At the same time, land use management is known to have a strong 

influence on soil structure, e.g. through bioturbation, tillage and compaction. However, it is often unclear whether 

differences in soil structure are the actual cause for differences in soil functions or just co-occurring.  

This impact of land use (conventional and organic farming, intensive and extensive meadow, extensive pasture) on the 20 

relationship between soil structure and short-term carbon mineralization was investigated at the Global Change Exploratory 

Facility, in Bad Lauchstädt, Germany. Intact topsoil cores (upper 10 cm, n=75) were sampled from all land use types at the 

early growing season. Soil structure and microbial activity were measured using X-ray computed tomography and 

respirometry, respectively. 

Differences in microstructural properties between land uses were small in comparison to the variation within land uses. The 25 

most striking difference between land uses was larger macropore diameters in grassland soils due to the presence of large 

biopores that are periodically destroyed in croplands. Grasslands had larger amounts of particulate organic matter (POM), 

including root biomass, and also greater microbial activity than croplands, both in terms of basal respiration and rate of 

carbon mineralization during growth. Variation in basal respiration among all soil cores amounted to more than one order of 

magnitude (0.08-1.42 µg CO2-C h-1 g-1 soil) and was best explained by POM mass (R2 = 0.53, p<0.001). Predictive power 30 

was hardly improved by considering all bulk, microstructure and microbial properties jointly. The predictive power of 

image-derived microstructural properties was low, because aeration was not limiting carbon mineralization and was 

sustained by pores smaller than the image resolution limit (<30µm). The frequently postulated dependency of basal 

respiration on soil moisture was not evident even though some cores were apparently water limited, as it was likely disguised 

by the co-limitation with POM mass. This finding was interpreted towards microbial hotspots which form on decomposing 35 

of plant residues and which are decoupled from water limitation in bulk soil. The rate of glucose mineralization during 
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growth was explained well by substrate-induced respiration (R2=0.84) prior to growth, which was in turn correlated with 

total microbial biomass, basal respiration and POM mass and again not affected by pore metrics.  

These findings stress that soil structure had little relevance in predicting carbon mineralization in well-aerated soil, as this 

predominantly took place in microbial hotspots around degrading POM that was detached from the pore structure and 40 

moisture of the bulk soil. Land use therefore affects carbon mineralization in well-aerated soil mainly by the amount and 

quality of labile carbon. 

1. Introduction 
Soil respiration is an important link in the global carbon (C) cycle as it releases soil-borne organic carbon back into the 

atmosphere. Organic C is protected against mineralization by reduced bioavailability through sorption on reactive minerals 45 

and physical protection in the soil pore network (Dungait et al., 2012;Schmidt et al., 2011). The balance between C storage 

and C mineralization is thought to arise from an interplay between the molecular diversity of organic compounds and the 

spatial heterogeneity and temporal variability of environmental conditions in soil (Lehmann et al., 2020). Soil moisture and 

temperature are considered to be the environmental factors that exert a dominant control on C mineralization. The influence 

is either direct through their control on reaction and diffusion rates or indirect through their effect on biomass production 50 

including plants and microfauna (Davidson et al., 2006). Land use related changes in soil management can affect carbon 

mineralization in all of the aforementioned ways, i.e. through changes in thermal properties, water retention and 

consumption as well as biomass production. The variability in carbon mineralization is thought to arise from differences in 

substrate accessibility and soil aeration due to soil structure changes that modify the size and spatial distribution of pores 

and, as a consequence, the exposure of organic carbon to microbial decomposition (Dungait et al., 2012;Schmidt et al., 55 

2011). Despite their obvious importance, larger-scale C cycling models are just starting to incorporate these microscale 

interactions (Yan et al., 2018;Ebrahimi and Or, 2018;Meurer et al., 2020).  

A major hurdle to fully account for structural constraints on C mineralization is the methodological challenge to combine 

incubation studies with the investigation of soil microenvironments on identical samples. A viable option in this respect has 

emerged with microstructure analyses of incubated soil samples via X-ray computed microtomography (X-ray CT). By 60 

employing this combination of methods, the mineralization rate of the stable soil C pool turned out to correlate with the 

average pore neck diameter as a proxy for soil aeration for a loamy forest soil with a range of bulk densities that was brought 

to the same water saturation and incubated for 35 days (Bouckaert et al., 2013). Long-term incubations (127 days) of silt-

loam soils with fixed bulk soil densities (1.4 g/cm³) and soil water contents (matric potential pF 2.5, water content 25 vol%), 

but very different internal structure (undisturbed, sieved, slaked) exhibited no differences in C mineralization rate 65 

irrespective of substrate amendment (fructose, vanillin) (Juarez et al., 2013). Even though the macropore space scanned at a 

coarse resolution (32 µm) differed vastly between the structure treatments, the pore space scanned at a finer resolution of 3 

µm was quite similar. This indicated that the continuity of air and water at this soil moisture and thus the supply with oxygen 

and dissolved substrates was too similar to evoke differences in C mineralization despite differences in microbial abundance 
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and community composition at the end of incubation. Two months of pre-incubation were chosen by Juarez et al. (2013) to 70 

omit the initial CO2 flush caused by disturbance that is known to last for more than a week (Herbst et al., 2016). Soil 

aggregates (5 – 6 mm) from a clay soil, adjusted to a matric potential of pF 2.7 and incubated for 1 day showed a six-fold 

variation in soil respiration (normalized for differences in organic C content) at only a two-fold difference in organic carbon 

content (Rawlins et al., 2016). The internal pore surface area was best suited to explain the difference in respiration, yet only 

at a fairly moderate correlation coefficient (r=0.44). It has been suggested that the magnitude of protection of soil organic C 75 

against mineralization results from the interplay of how much C enters the soil as plant biomass and exudates and how much 

of this newly added C is subsequently protected (Kravchenko et al., 2019). This balance may be very different between 

different land uses and was shown, in a case study comparing continuous corn, switchgrass, and native succession, to depend 

on the plant-stimulated pore formation in the size range of 30 – 150 µm. These pores are associated with the highest enzyme 

activities and thus the highest capacity for microbial transformation of carbon sources (Kravchenko et al., 2019). In 80 

summary, microstructure analysis may help to improve the prediction of carbon mineralization rates in intact soil. However, 

from the previous findings it is already evident that a true gain in predictability is not always warranted and depends on the 

environmental conditions encountered during incubation. 

We therefore measured soil respiration under contrasting land uses (cropland vs. grassland) that are known to induce various 

soil structures. Soil respiration was measured in intact soil cores after exposing them to very different environmental 85 

conditions: 1. basal respiration at field water saturation and 2. substrate-induced respiration (SIR) at higher soil moisture. 

The rationale for repeated incubations of intact soil cores at different moisture and substrate availability was to provide a 

more complete picture of links between microstructural properties and carbon mineralization. Our objectives were to 1) 

investigate differences in soil structure and C mineralization induced by land use and 2) to explore as to how far 

microstructural properties explain variation in carbon mineralization rates. Bearing in mind that such microstructure analyses 90 

are laborious and time consuming, we 3) aimed to assess how  these microstructural properties can be replaced by easily 

available bulk properties like water saturation, bulk density or particulate organic matter content. 

2. Materials & Methods 

2.1.  Site description 
The Global Change Experimental Facility (GCEF) is situated at the field research station of the Helmholtz Centre for 95 

Environmental Research in Bad Lauchstädt, Germany (51°23'33.1"N 11°52'56.5"E, 121 m a.s.l.). The site is characterized by 

a sub-continental, temperate climate with an annual mean temperature of 9.7 °C (1993-2013) and a mean annual 

precipitation of 525 mm (1993-2013). The soil type is a fertile Haplic Chernozem with on average 21% clay, 69% silt, and 

10% sand in the topsoil layer (Altermann et al., 2005). The GCEF platform was established in 2013 and combines five land 

use types with two climate treatments (Schädler et al., 2019). The full design comprises 50 large field plots (16x24 m), 100 

which are arranged in ten blocks. Five of the blocks are subjected to ambient climate, while five are exposed to conditions of 

a projected future climate. The five land use types in each climate scenario are replicated five times, randomly assigned to 
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the five plots of each block. They include (1) conventional farming (CF), (2) organic farming (OF), (3) intensively managed 

grassland cut by mowing (IM), (4) extensively managed grassland cut by mowing (EM) and (5) extensively managed 

grassland used as sheep pasture (EP). The land use types are managed according to common practices for Central Europe 105 

and include the set of respective management measures (fertilizer and pesticide application, soil and plant cultivation). On 

CF plots a rapeseed-wheat-barley crop rotation is cultivated, whereas rapeseed is replaced by a legume in OF. The 

management of both croplands include conventional soil cultivation. For IM, a species-poor mixture of forage grasses was 

established, consisting of Lolium perenne (20 %), ‘Festulolium’ (50 %), Dactylis glomerata (20 %) and Poa pratensis (10 

%). In contrast, a mixture of 56 plants species from the local gene pool, containing legumes, grasses and non-leguminous 110 

dicots species, was sown in both extensively managed grasslands (EM, EP). For further details on treatments and 

management we refer to Schädler et al. (2019). Importantly, both croplands were plowed (18th of February) and further 

cultivated with a rotary cultivator (4th of March) few months before sampling. 

2.2. Field sampling 
We focused on the 25 plots (5 land use types x 5 field replicates) exposed to ambient climatic conditions. Sampling took 115 

place in early May 2020, when plants in the cropland plots (CF: rapeseed, OF: white clover) were at the beginning of 

vegetation season. Intact soils cores were sampled with aluminium rings (v=100cm³, h=4cm) in a depth between 3 and 10cm. 

Three soil cores were taken from each plot totalling 75 samples. After sampling, the soil cores were stored in bags under 

cool conditions, including the image acquisition, until respirometry.  

2.3.  Bulk properties 120 
Bulk density (𝜌𝜌) and initial water saturation (𝜃𝜃/𝜙𝜙) were determined by weighing the soil cores before respirometry, as well 

as after drying the cores at 105°C for 48 hours following respirometry. Thereby, bulk density was calculated with the final 

soil dry weight divided by the core volume (100 cm³). Water content (𝜃𝜃) in the collected soil cores was determined by mass 

differences of initial and final soil weights. Water saturation levels were obtained by normalizing the water content (𝜃𝜃) with 

total soil porosity (𝜙𝜙). Air contents (𝜃𝜃𝑎𝑎) during substrate-induced respiration were calculated from the difference between 𝜙𝜙 125 

and 𝜃𝜃 + 𝜃𝜃𝑔𝑔𝑔𝑔 after substrate-induced respirometry, with 𝜃𝜃𝑔𝑔𝑔𝑔 representing the volumetric glucose solution content. Finally, soil 

cores were dispersed during a wet sieving procedure (0.63 mm mesh size) to extract inorganic (sand, stones) and organic 

(roots, plant litter) components. Inorganic and organic components were subsequently separated by hand and POM mass 

(𝑚𝑚𝑟𝑟 ) was determined after drying for 48 hours at 70°C. This POM mass does not only include organic material from 

previous years, but also the fresh root biomass that was cut off during sampling and only started to decay during incubation. 130 

Additional explanatory variables, i.e. total C and C:N ratio, were determined for all plots using soil samples collected at the 

20th of March 2020 in the course of the continuous GCEF monitoring program. Total carbon and nitrogen contents were 

measured from sieved (2 mm) fine soil using an elemental analyzer (Elementar Vario EL III, Elementar, Hanau, Germany) 

and used to calculate C:N ratios. Total carbon was reported as total organic carbon content (TOC) as the inorganic carbon 

content in the topsoil is negligible.  135 
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2.4.  Microstructure analysis 
All soil cores were scanned with X-ray computed tomography (X-tek XT H 225; Nikon Metrology) at 150kV and 170µA 

with 2500 projections and two frames per projection. A 0.3 mm copper filter was used to reduce beam hardening artefacts. 

Tomograms were reconstructed with 8-bit grayscale and 30µm voxel size with the X-tek CT Pro software (Nikon 

Metrology). Gray scale contrast was stretched by setting the darkest and brightest 0.2 percentile to 0 and 255, respectively. 140 

All image processing was carried out with the Fiji bundle for ImageJ (Schindelin et al., 2012) and associated plugins. Image 

noise was reduced with a non-local means filter (Buades et al., 2005) prior to edge enhancement with an unsharp mask filter 

(Schlüter et al., 2014). The grayscale images were segmented into pores and background with Otsu’s method (Otsu, 1975) 

for pore structure analysis at the original resolution. Pore metrics of interest include visible porosity (𝜙𝜙vis), surface area 

density (𝑎𝑎), mean breadth (𝑏𝑏) and the Euler number density (𝜒𝜒), which were determined with the MorphoLibJ plugin 145 

(Legland et al., 2016). The pore topology metric 𝜒𝜒 counts the number of isolated pore objects positively and the number of 

redundant connections negatively, so that poorly connected and well-connected pore structures induce positive and negative, 

𝜒𝜒, respectively (Vogel et al., 2010). A complementary connectivity metric is the connection probability Γ, which reflects the 

probability of two randomly chosen pore voxels to belong to the same pore cluster. Pore clustering was carried out with the 

connected components labelling in MorpholibJ (Legland et al., 2016). The average pore distance (𝑑𝑑) was determined based 150 

on the Euclidean distance transform of soil voxels, i.e. shortest distance to a pore for all background voxels. The average 

pore diameter (Ø) was determined with the maximum inscribed sphere method termed Local Thickness in ImageJ (Fig. 1b). 

The critical pore diameter ∅𝑐𝑐 reflects the bottleneck diameter at which pore continuity from top to bottom is lost (Koestel, 

2018). 

In addition to these pore metrics, the volume fraction of particulate organic matter (POM) was determined via supervised, 155 

machine-learning based image segmentation with ilastik (Berg et al., 2019). A parallel random forest classifier was used to 

segment pores, POM, soil matrix and rocks (Fig. 1b) by deploying a multi-dimensional feature space that included the 

original gray values as well as gradient (1st derivative of gray values) and texture information (2nd derivative of gray values) 

after Gaussian smoothing with a strength of σ=[0.3,0.7,1.0]. In this way, characteristic traits of each material like the 

aperture of cracks, the inherent heterogeneity of the organic fabric or the homogeneity of quartz grains was harnessed for 160 

material detection. The classifier was trained with a few test lines for each material class in a small number of images (six 

out of 75). The images had to be downscaled to a voxel size of 60µm to make segmentation tractable. 

2.5.  Respirometry 
Basal respiration (𝑝𝑝𝐵𝐵) rates were determined from intact soil cores (100cm³) at 22°C and the water saturation in the field at 

the date of sampling using an automated respiration analyzer (Respicond V, Sweden). Emitted CO2 is trapped in 10 mL of 165 

0.6 M KOH solution and measured through the increase in electric impedance at a given voltage. Soil cores were incubated 

for two days and the average respiration rate determined for the period after some initial equilibration. Respirometry was 
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conducted on 60 out of 75 soil cores distributed evenly among cropland (CF and OF, 15 each) and grassland soil (IM, EM 

and EP, 10 each). 

The same 60 soil cores were subsequently amended with a glucose containing mineral salt solution (glucose – 0.28 M; 170 

(NH4)2SO4 – 0.07 M; KH2PO4 – 0.025 M; MgSO4 – 0.125 M) to measure substrate-induced respiration (SIR) (Anderson and 

Domsch, 1978) and to infer microbial growth kinetics from it (Stenström et al., 1998;Panikov, 1995). The solution was 

added to the field moist soil cores in two steps. First, the bottom of the soil cores was covered with a textile before placing 

them for 30min in the glucose-nutrient bath with a shallow water table so that the solution was sucked in by capillary rise. 

Thereafter, 4 mL of the glucose-nutrient solution were added from the top of the core with a pipette and allowed to infiltrate 175 

for 10min. Finally, the fully saturated soil cores were drained from macropores with low capillarity by placing the soil cores 

on a dry sand bed for 10min. After drainage, soil cores were placed into the Respicond for 48h at 22°C. The absorbed 

volume of glucose-nutrient solution was measured after the SIR approach via weight loss upon oven-drying as described 

above and accounting for the antecedent field water saturation. The amount of absorbed glucose solution was different for 

every soil core and increases with decreasing field water content 𝜃𝜃 and increasing porosity 𝜙𝜙. However, for all soil cores 180 

glucose-C was provided in excess, i.e. the CO2 uptake capacity of the respirometer was exceeded with only a fraction of the 

mineralized C. The time, 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒 , until the capacity of the respirometer was exceeded (73mg CO2-C at the given KOH 

concentration), was determined for every soil core (Fig. 2). In addition, an empirical model for microbial growth kinetics 

(Wutzler et al., 2012) of the form 

𝑝𝑝𝑆𝑆𝑆𝑆(𝑡𝑡) = 𝐴𝐴 + 𝐵𝐵𝑒𝑒µ𝑡𝑡 (1) 

 
was fitted to the substrate-induced growth respiration stage of each time series using ModelMaker-3 software (SB 185 

Technology Ltd). Here, 𝑝𝑝𝑆𝑆𝑆𝑆  is the substrate-induced respiration rate at time 𝑡𝑡, 𝐴𝐴  is the growth-independent CO2 release 

rate, 𝐵𝐵 is the growth-dependent CO2 release rate and µ is the microbial specific growth rate. The identification of a lag phase 

and initial substrate-induced respiration prior to growth (p0 = A + B) was obstructed by uncertain data during initial 

equilibration of the CO2 readings and had to be substituted by data extrapolation and a subjective definition of a lag phase as 

shown in Fig. 2. The active microbial fraction was determined as 190 

𝑟𝑟0 = 𝐴𝐴𝐴𝐴𝐴𝐴
𝑇𝑇𝑇𝑇𝑇𝑇

=
𝐵𝐵(1−𝜆𝜆)

𝐴𝐴+𝐵𝐵(1−𝜆𝜆)
 (2) 

 
where 𝐴𝐴𝐴𝐴𝐴𝐴 is the active microbial biomass participating in growth, 𝑇𝑇𝑇𝑇𝑇𝑇 is the total microbial biomass and 𝜆𝜆 is a basic 

stoichiometric constant of 0.9 during unlimited growth (Akimenko et al., 1983)  

2.6. Statistical Analysis 
Statistical analyses were performed with R (R Core Team, 2018) and figures were produced with package ggplot2 

(Wickham, 2016). Normality of residuals and homogeneity of variances were tested with the Shapiro-Wilk test and Levene 195 

test at a level of p>0.05, respectively. If these criteria were met, then one-factorial ANOVA followed Tukey HSD Postdoc 
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test were carried out to identify significant differences between land use types at a level of p<0.05 using the agricolae 

package (de Mendiburu, 2019). If the criteria were not met, then a non-parametric Kruskal-Wallis test was carried out at a 

level of p<0.05 with the same package. For simplicity, Pearson correlations between two variables are reported, irrespective 

whether normality in the residuals is fulfilled. 200 

Partial least square regression was conducted in order to identify the amount of explained variability of a target variable 

(𝑝𝑝𝐵𝐵, 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒) by a combination of explanatory variables. Pseudo-replicates, i.e. the 2 – 3 soil cores from the same plot, were 

considered individually to explore the full range of variation in target variables. Explanatory variables, which were only 

available as plot averages (TOC, C:N ratio) were therefore not considered. Partial least square regression was either done for 

the pooled data set (all land uses, n=60) or individually for grassland soil cores (IM+EM+EP; n=30) and cropland soil cores 205 

(CF+OF, n=30). To do so, the target variables (𝑝𝑝𝐵𝐵, 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒) and explanatory variables (𝜌𝜌, 𝜃𝜃/𝜙𝜙, 𝑚𝑚𝑟𝑟, 𝜙𝜙vis, 𝑎𝑎, 𝑏𝑏, 𝜒𝜒, Γ, 𝑑𝑑, Ø, Ø𝑐𝑐, 

𝑝𝑝𝑜𝑜, µ, 𝑟𝑟𝑜𝑜 (and 𝑝𝑝𝐵𝐵 for target variable 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒) see Table 1 for meaning of symbols) were tested for normal distribution. If needed, 

they were transformed to reach normal distributions and linear relationships of data (i.e., a logarithmic transformation or a 

logistic transformation (logit(x) = log (x (1 − x))⁄ ).  

There was collinearity between many variables of the present study, which excludes simple linear regressions to explore the 210 

variability of basal and substrate-induced respiration. Partial least square regression (PLSR) with Leave-One-Out Cross-

validated R2 allows for collinearity between variables and identifies the most important explanatory variables to predict the 

target variables. Permutation testing served to describe components that best explained 𝑝𝑝𝐵𝐵  and 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒 . Robust confidence 

intervals against deviations from normality were obtained from bootstrapping (R package boot v. 1.3-24) (Davison and 

Hinkley, 1997;Canty and Ripley, 2019). The smoothed bootstrap was used by resampling from multivariate kernel density 215 

(R package kernelboot v. 0.1.7) (Wolodzko, 2020) as sample sizes were relatively small (60 in pooled and 30 in grouped 

data). The BCa bootstrap confidence interval of 95% of R2 was a measure to explain the variability in each response variable 

(Efron, 1987). 

PLSR was repeated for a series of simplifications: a) complex model with all bulk, microstructural and microbial explanatory 

variables (𝜃𝜃/𝜙𝜙 for 𝑝𝑝𝐵𝐵 and 𝜃𝜃𝑎𝑎 as well as 𝑝𝑝𝐵𝐵 for 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒); b) complex model including only bulk and microstructural properties 220 

(n=11for 𝑝𝑝𝐵𝐵  and n=12 for 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒 , excluding 𝑝𝑝𝑜𝑜 , µ, 𝑟𝑟𝑜𝑜 ), c) a VIP model that includes only the most informative variables 

identified by PLSR (n=3-5; composition varies between target variables and land use combinations), d) pairs of explanatory 

variables selected based on expert knowledge that serve as a base line reference (n=1-2; choice depends on target variables). 

3. Results 

3.1. Bulk properties 225 
At the early growing season (May) the young plants in both croplands (CF, OF) had transpired less water than the permanent 

vegetation cover in the three grasslands (IM, EM, EP) resulting in a significant difference in field water saturation (Table 1). 

In fact, the water contents in grassland were already close to the permanent wilting point at that soil depth (𝜃𝜃= 0.09 

mm³/mm³ at pF 4.2, personal communication by Max Köhne). The POM content (> 0.63 mm), mainly comprising roots and 
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old plant residues incorporated by plowing, was significantly lower in the cropland plots (CF, OF) than in the grassland plots 230 

(IM, EM, EP) (Table 1). The TOC content followed the identical order, whereas soil C:N ratios did not differ significantly 

between any of the land uses (Table 1). Surprisingly, there was no difference in average bulk density between any of the land 

uses (Table 1). However, in cropland plots the variability in bulk density was greater than in grasslands. This was triggered 

by randomized sampling locations within a plot that may either fall into areas loosened by plowing or areas compacted by 

traffic. The volumetric air content in the soil cores after the uptake of glucose solution was on average around 0.1 235 

(mm³/mm³) for all land uses. Thus, if oxygen supply was limited during growth on glucose in intact soil cores, it was on 

average the same for all land uses. 

3.2. Microstructure properties 
The visible microstructure in the topsoil differed vastly between land uses but also among soil cores of the same land use. 

The 2D slices of selected X-ray CT images in Fig. 3f are not meant to be representative for the land use. Instead, they cover 240 

the entire variability in size and volume fraction of pores as well as the volume fraction of particulate organic matter. The 

visible porosity did not differ across land uses, but had a much higher variability in cropland plots (Fig. 3a, Table 1). The 

regression between visible porosity (>0.03mm) and bulk density had a high goodness of fit (Fig. 3b, R²=0.74, p<0.001), 

since it is mainly the macroporosity that is affected by soil management. There was a number of other pore metrics like 

surface area, mean breadth, Euler number and mean pore distance that also did not differ between land uses (Table 1). The 245 

mean pore diameter was significantly larger in grassland than in cropland plots (Fig. 3c, Table 1), because a certain fraction 

of the pore space was contributed by large biopores including taproot channels and earthworm burrows, which are 

periodically destroyed by plowing in farming plots. Likewise, the critical pore diameter was significantly larger in EP and 

EM than in OF and even lower in CF. Interestingly, the critical pore diameter in IM was more similar to that in OF, 

indicating that biopores in intensive meadow are less often continuous from top to bottom. Following the pattern of the POM 250 

content (mr), the POM volume was significantly higher in grassland than in cropland soil (Fig. 3d, Table 1). The goodness 

of fit between image-derived POM volume and POM content determined by wet sieving (Fig. 3e, R²=0.53) was somewhat 

lower than that for independently determined proxies for porosity discussed above. This was likely caused by incomplete 

POM detection by both methods and the differences in the lower size cut-off (downscaled image resolution of 0.06mm vs 

0.63mm mesh size of sieve) as well as between mass density and volume density. 255 

3.3. Respiration properties 
Basal respiration at field water saturation was highest in extensive pasture and lowest in both cropland plots with 

intermediate rates for both meadows (Fig. 4a, Table 1). Variation in basal respiration could be well explained with variations 

in POM content (Fig. 4b, R²=0.53, p<0.001) and only slightly less with POM volume density (R²=0.35, not shown). 

Surprisingly, basal respiration was completely independent of initial water saturation when pooled across land uses, even 260 

though the entire range between supposedly critical dryness and optimal conditions was covered (Fig. 4c). Furthermore, 

basal respiration was independent of visible porosity (Fig. 4d) 
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Substrate-induced respiration in the first hours after glucose addition (𝑝𝑝0 = 𝐴𝐴 + 𝐵𝐵 ) was up to 3.5 times higher in all 

grasslands than in both cropland treatments (Fig. 5a). The correspondence of basal respiration and initial substrate-induced 

respiration prior to growth was highly significant (Fig. 5b, R²=0.59, p<0.001). The glucose addition resulted in a six-fold 265 

increase in respiration rates, which is in agreement with previous incubation studies (Wardle and Ghani, 1995;Hund and 

Schenk, 1994). This increase indicated previous limitation of microbial activity in all collected soils due to substrate 

deficiency (Blagodatskaya and Kuzyakov, 2013). The goodness of fit deteriorated slightly (R²=0.31, p<0.001), when those 

samples with exceptionally high 𝑝𝑝𝐵𝐵 due to high root biomass and those samples with exceptionally low 𝑝𝑝0 that might have 

been caused by insufficiently precise estimation of lag time were disregarded. 270 

 

Due to higher initial microbial activity, the added glucose was consumed much faster in grassland soils and reached the CO2 

uptake capacity of the respirometer much sooner as compared to cropland soils (Fig. 5c, Fig. S 1). The logarithm of this time 

of capacity excess, 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒 , was tightly linked to 𝑝𝑝0  (Fig. 5d, R²=0.84, p<0.001) and to a similar extend to total microbial 

biomass 𝑇𝑇𝑇𝑇𝑇𝑇 (not shown, R²=0.60, p<0.001) 𝑇𝑇𝑇𝑇𝑇𝑇 is coupled with 𝑝𝑝0 through eq. (2). Only two parameters of the model 275 

(eq. 1) that was fitted to the exponential increase in CO2 release were different between grasslands and croplands (Table 1). 

The growth-independent respiration rate 𝐴𝐴  and the growth-dependent respiration rate 𝐵𝐵  (just as its sum 𝑝𝑝0 ) were both 

significantly smaller in cropland soils, which accounts for the fact that initial CO2 release rate directly after glucose addition 

were lower. The microbial growth constant 𝜇𝜇 did not differ between land uses. Following the pattern of the total biomass, the 

active microbial biomass was higher in grasslands than in croplands. The variability in the active fraction of microbial 280 

biomass was, however, too high among replicates to evoke significant differences between land uses.  

3.4. Prediction of respiration properties 
Not all bulk and microstructure properties were relevant for explaining the observed variation soil respiration across land 

uses. In fact, many microstructural properties correlated significantly among each other and with bulk properties (complete 

correlation matrix in Fig. S 2). Likewise, many respiration properties correlated among each other (partly by definition and 285 

accounted for by only considering the independent variables 𝑝𝑝𝐵𝐵, 𝑝𝑝0, 𝑟𝑟0 and 𝜇𝜇 in the following) and with microstructural and 

bulk properties (Fig. S 2). This collinearity among microstructural, bulk and microbial parameters is directly accounted for 

by partial least squares regression (PLSR) and quantified in biplots in the supporting information (Fig. S 3, Fig. S 4). 

Simple regressions of basal respiration with selected bulk or microstructure properties in the previous section already 

highlighted the importance of POM content, 𝑚𝑚𝑟𝑟, for explaining the variability in basal respiration 𝑝𝑝𝐵𝐵 (R²=0.53, p<0.001). 290 

The predictive power of 𝑚𝑚𝑟𝑟 on 𝑝𝑝𝐵𝐵 is reduced to a median R² of 0.34 by PLSR with data normalization and boot strapping. 

The predictive power of the complex model for basal respiration among all land uses only increased to R²=0.43 when all 

abiotic and microbial variables were considered as explanatory variables (Fig. 6a). This increase can mainly be attributed to 

a higher degree of explained variability in grassland soils (from R²=0.27 to R²=0.53). This gain in predictive power of the 

complex model was caused by the added information content of microbial parameters. This follows from the fact that a 295 



10 
 

complex model in which microbial parameters are excluded (all-𝑝𝑝0- 𝑟𝑟0-𝜇𝜇) had low predictive power, similar to the simplest 

model with 𝑚𝑚𝑟𝑟 only. Indeed, the VIP model for grasslands include 𝑝𝑝𝑜𝑜, 𝑚𝑚𝑟𝑟, 𝜃𝜃/𝜙𝜙, 𝜌𝜌, and µ in descending order of importance. 

In general, the explained variability was higher for grasslands and very poor for cropland soils. The explained variability is 

increased by 0.1-0.2 in comparison to the bootstrapping median and reaches R²>0.60, if supposed outlier samples are 

discarded by the Leave-one-out procedure. The surprisingly low information content of water saturation in the field is 300 

confirmed. 

The explained variability observed for the time of capacity excess, 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒 , after glucose addition is excellent for the full 

complexity model in the pooled data set (R²=0.93, Fig. 7a). The model is better suited to explain the differences between 

grassland and cropland soils than to explain the variability within the two groups. A reduction in model complexity to the 

VIP model and even 𝑝𝑝0 as the only explanatory variable does hardly reduce predictive power. The omission of microbial 305 

parameters (all-𝑝𝑝0- 𝑟𝑟0-𝜇𝜇) reduced the explained variability in 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒  of the pooled land uses to R²=0.58.  The coefficient of 

determination is lower because bulk and microstructure variables could only explain the variability between grassland and 

cropland, and to a lower degree within grasslands, but not at all the variability in 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒  among cropland soils. This is shown 

exemplarily for pore surface area 𝑎𝑎. Differences in metabolic pathways due to different aeration of soil cores, e.g. between 

loosened and compacted soil in croplands, could be ruled out as unaccounted source of variability, as these should have been 310 

clearly reflected in image-derived pore metrics like 𝜙𝜙𝑣𝑣𝑣𝑣𝑣𝑣 and Γ and even more directly in air content 𝜃𝜃𝑎𝑎. In fact, 𝜃𝜃𝑎𝑎 after 

glucose addition correlated less with the speed of glucose mineralization 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒 than 𝜃𝜃/𝜙𝜙 in the field prior to glucose addition 

did (Fig. S 2). 

4. Discussion 

4.1.  Land use impact on soil properties and respiration 315 
Land use specific soil management affected soil structural properties, which showed particular large differences between 

grasslands and croplands. The lack of tillage in grasslands promoted the continuity of large biopores formed by taproots and 

earthworms, which was reflected in larger average and critical macropore diameters (∅,∅𝑐𝑐, Table 1) (Schlüter et al., 2020). 

At the same time, the continuous cover with perennial vegetation and the lack of mechanical disturbance by tillage promoted 

the built-up of soil organic C in grassland topsoils (TOC, Table 1) (Poeplau and Don, 2013). Differences between grassland 320 

and cropland soil in terms of plant residues, root biomass as well as water saturation in the topsoil (𝑚𝑚𝑟𝑟, 𝑣𝑣𝑟𝑟 ,𝜃𝜃/𝜙𝜙, Table 1) 

were likely related to the fact that crops were still in an early growth stage, and had not established a dense root network, 

which limited water uptake and transpiration at the time of sampling in May. This discrepancy would have been smaller for 

winter crops (Thorup-Kristensen et al., 2009) and are likely to vanish during a growing season (Schlüter et al., 2013;Perkons 

et al., 2014). A somewhat surprising result was the equal average bulk densities in all land uses, as tillage is known to reduce 325 

bulk density in topsoils (Strudley et al., 2008;Palm et al., 2014). A bulk density of 1.4 g cm-3 is rather typical for grasslands 

at the Bad Lauchstädt site (Altermann et al., 2005), whereas previously reported bulk densities of tilled soils in other field 

trials on site tend to be higher, in the range of 1.46-1.62 g cm-3 (Eden et al., 2012) or lower, in the range of 1.12-1.27 g cm-3 
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(personal communication, Max Köhne) depending on soil management and sampling time. Bulk densities do not only 

undergo a seasonal variation, but are also spatially quite variable depending on whether or not remnants of old or recent 330 

wheel tracks are sampled (Roger-Estrade et al., 2004). 

There were also subtle, but consistent differences within cropland and grassland treatments. Organic farming had 

significantly larger critical pore diameters (∅𝑐𝑐,) and tended to have slightly higher POM volume densities (𝑣𝑣𝑟𝑟 , p=0.106), 

presumably due to the more prominent presence of large crop residues from the previous growing seasons. Indeed, OF had a 

7.5% higher straw production compared to CF in 2019 (data from continuous GCEF monitoring program). This however, did 335 

not entail significant differences in carbon mineralization under field water saturations. In grasslands, basal respiration 

differed significantly in the order IM < EM < EP (Table 1), even though there were no clear differences in bulk properties, 

microstructural properties or microbial parameters derived from subsequent substrate-induced respiration between the two 

meadows and the pasture. The lower basal respiration of IM soil, compared to EM and EP soils, is likely caused by the lower 

root biomass, represented by the lower POM content in our study. However, none of the available data sets could explain the 340 

observed differences between EM and EP. Thus, this difference is possibly caused by the microbial community structure and 

its trait composition which is known to affect C mineralization rates (Guo et al., 2020;Nazaries et al., 2015;Auffret et al., 

2016). In addition, nutrient availability and C:N ratios of the decaying plant residues, in particular the cut-off roots, might 

have implications on carbon mineralization, but are not well represented by the C:N ratios measured in soil (Table 1).  

In summary, six years of different land use induced significant changes in soil properties that are expected to change slowly 345 

(TOC content), while others remained unchanged (bulk density, C:N ratio). In addition, some land uses differed in soil 

properties that are expected to follow a seasonal pattern (e.g. POM volume, pore diameter) induced by different vegetation 

cover during a growing season and presence or absence of tillage. Finally, plots from different land uses also varied in terms 

of spatial heterogeneity. The combination of all these effects constitute a comprehensive dataset of soil structures for testing 

which minimum set of bulk and microstructure properties is required to predict soil respiration across a range of 350 

heterotrophic respiration rates in intact soil cores differing by at least one order of magnitude (0.08-1.42 µg CO2-C h-1 g-1 

soil). 

 

4.2.  Controlling factors of respiration 
The variation of basal respiration rates was best described by the POM content of the sample. The POM contents also 355 

differed by more than one order of magnitude (0.3-4.6 mg g-1 soil) because 1) in croplands roots were still young and POM 

predominantly contributed by plant residues from the last growing season and 2) due to spatial variability in root length 

density especially within grassland plots. Macroporosity (𝜙𝜙𝑣𝑣𝑣𝑣𝑣𝑣 ) had no impact on basal respiration. This apparently 

contradicts previous studies, which showed that soil compaction reduced soil respiration under various levels of water 

saturation (Liebig et al., 1995). A subsequent study revealed that this reduction of carbon mineralization was particularly 360 

strong in a loamy sand soil when bulk densities were higher than 1.5 g cm-3 and plant residues were present at the same time 
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(De Neve and Hofman, 2000). Unamended soil or less compacted soil showed less of a response. In the present study those 

soil cores with high POM content had low bulk density and vice versa, implying countervailing environmental impacts on 

basal respiration which may have caused its indifference to macroporosity (𝜙𝜙𝑣𝑣𝑣𝑣𝑣𝑣). Surprisingly, water saturation had no 

measurable effect on carbon mineralization, even though it was very low (𝜃𝜃/𝜙𝜙 < 0.2) in some grassland cores. It is likely 365 

that the decaying root material retained enough water by natural absorbance (Kravchenko et al., 2017) and released easily 

degradable substrates through cell lysis after sampling to act as microbial hotspots despite the onset of substrate limitation in 

an otherwise dry soil. In general, drier soil cores were associated with higher POM volume (R²=0.39, p<0.001), which 

counterbalanced the substrate limitation effect in bulk soil. In none of the soil cores was the initial water saturation high 

enough to induce a deficiency of soil aeration. A large part of air-filled porosity was not even resolved at a voxel size of 370 

30µm. That is why visible macroporosity (𝜙𝜙𝑣𝑣𝑣𝑣𝑣𝑣) and all other pore metrics that are highly correlated with 𝜙𝜙𝑣𝑣𝑣𝑣𝑣𝑣 (Fig. S 2) do 

not add any substantial predictive power for basal respiration, which is in accordance with previous findings (Juarez et al., 

2013). In addition, since image-derived 𝜙𝜙𝑣𝑣𝑣𝑣𝑣𝑣  and 𝑣𝑣𝑟𝑟  are highly correlated with 𝜌𝜌 and 𝑚𝑚𝑟𝑟  (Fig. 3,Fig. S 2), they can be 

substituted by simple bulk properties without loss in predictive power. Our findings indicate that carbon mineralization in 

well-aerated topsoils that contain fresh POM is biologically driven and mainly governed by carbon availability (Kuzyakov et 375 

al., 2009) and less by abiotic processes as proposed by the regulatory gate hypothesis (Kemmitt et al., 2008), at least not by 

access or diffusion limitation imposed by soil structure. 

The question remains, which additional parameters could have substantially improved predictive power with respect to basal 

respiration. It is unlikely, that the POM distribution in space (clustering vs. even distribution) (Schlüter et al., 2019), which 

in principal could also be analyzed with X-ray CT, would have mattered, since the supply with oxygen for basal respiration 380 

was sufficient in all samples. Information on microbial diversity such as microbial functional gene abundance related to 

oxidative and hydrolytic enzymes was recently reported to add another 5-19% in predictive power and reduce model 

uncertainty by 55-71% (Guo et al., 2020). Furthermore, different microbial communities may exert different C 

mineralization rates due to different carbon use efficiency (Domeignoz-Horta et al., 2020). Local variations in organic matter 

quality and nutrient availability could also have played a role in carbon mineralization that was not accounted for in the 385 

PLSR analysis as that information was not available at the soil core level. For instance, the biodegradability of old crop 

residues and fresh, cut-off roots are likely to be very different. 

The speed of CO2 release (𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒) after glucose addition was chosen as an additional target variable to provide a more complete 

picture of links between microstructural properties and carbon mineralization. The logarithm of this release time was highly 

correlated with the respiration rate at the beginning of incubation (log(𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒) ~ 𝑝𝑝0, R²=0.84, Fig. 5d) and total microbial 390 

biomass, which is derived from it (𝑇𝑇𝑇𝑇𝑇𝑇, R²=0.60, not shown). This causal relationship has to be log-linear, since the 

substrate is consumed with exponential dynamics after growth sets in. The growth itself seems to be similar for all treatments 

(in terms of μ) indicating similarity in functional structure of microbial community and in intrinsic traits of dominating 

decomposers. In addition, limited oxygen supply at air contents of approx. 0.1 mm3 mm-3 irrespective of land use (Table 1) 

likely impaired unlimited aerobic growth and thus inhibited differences in 𝜇𝜇. If the growth rate 𝜇𝜇, as the second driver of 395 
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CO2 efflux next to initial activity (in terms of 𝑝𝑝0 or 𝑇𝑇𝑇𝑇𝑇𝑇), would have differed more among soil cores, it would presumably 

have reduced predictive power of initial microbial biomass and required to take them jointly into account. Maximum 

microbial specific growth rate for unlimited aerobic growth in sieved, unconsolidated soils is considered as an eco-

physiological indicator sensitive to climate conditions (Lipson et al., 2009;Salazar-Villegas et al., 2016), nutrient availability 

(Loeppmann et al., 2020), soil types (Loeppmann et al., 2018), and stages of plant residues decomposition. However, the 400 

sensitivity of 𝜇𝜇 to different land uses within the same soil type still remains to be tested. Destroying the intact structure is 

known to have a tremendous impact on microbial activity. Heterotrophic respiration is very different for sieved and intact 

soil at the same bulk density and soil moisture in the first weeks after disturbance (Herbst et al., 2016). Our results indicated 

that also the capacity to grow on glucose is constrained in intact soil structure, presumably by diffusion limitations of the 

substrate or oxygen. Likewise, a faster growth in microsites may be disguised by a delayed CO2 release due to CO2 diffusion 405 

limitations in intact soil. Future studies that focus on this direct comparison will have to clarify this. The prediction of 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒  

from independent bulk or pore metrics without microbial variables derived from the glucose experiment is still fairly good 

(all-𝑝𝑝0 -  𝑟𝑟0 -𝜇𝜇  in Fig. 8, R2=0.58) thanks to the correlation of total microbial biomass with POM content (𝑚𝑚𝑟𝑟 ), basal 

respiration (𝑝𝑝𝑏𝑏) and even antecedent water saturation (𝜃𝜃/𝜙𝜙) despite being changed by glucose addition (Fig. S 2). There are 

some significant correlations between 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒  and microstructural parameters like connection probability (𝛤𝛤 ), average and 410 

critical pore diameter (∅,∅𝑐𝑐) and POM volume density (𝑣𝑣𝑟𝑟) (Fig. S 2). However, it is evident that the causal relationship is in 

fact linked to substrate-induced respiration as a function of total microbial biomass, and that these microstructural properties 

do not carry any additional information. If only simple bulk properties were used as explanatory variables, then 𝑚𝑚𝑟𝑟 was 

again the most relevant parameter. 

Additional incubation experiments after repeated sampling of the plots at different stages of the crop rotation, growing 415 

season and different precipitation history, including the different climate scenarios of the GCEF, will provide a more 

comprehensive data set in the future. By this, the governing state variables responsible for carbon mineralization vary a lot 

more due to seasonally changing soil POM contents brought about by roots and fresh litter, different soil moisture as well as 

varying shoot-to-root C allocation ratios of plants. Finally, a sizeable amount of basal respiration was likely contributed by 

the decay of cut-off roots that would not have occurred, if soil respiration was measured on-site. Such field CO2 420 

measurements with comparable spatial footprint and environmental conditions like in laboratory incubations would be an 

important step to gauge the effect of intact rhizosphere vs. decaying detritusphere on carbon mineralization. 

 

5. Conclusions 
To conclude, our findings confirmed the influence of land use on carbon mineralization and revealed the underlying drivers.. 425 

Surprisingly, neither water saturation in the field, which is one of the main drivers of basal respiration known for disturbed, 

soil, nor land-use specific microstructural soil properties improved the prediction of carbon mineralization. If strong 

correlations between microstructural variables and carbon mineralization were observed, then they did not arise from 
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causation but collinearity, and could easily by replaced with cheap bulk properties without substantial loss in predictive 

power. The POM content, including root biomass and other plant residues, was the bulk property that described variation in 430 

basal respiration best across all land uses under well-aerated conditions. Thus, our findings indicated that in intact soil cores, 

the decomposition of particulate organic matter, in particular the root residues that started to degrade after sampling, 

contributed a large share of CO2 emissions, which masked the commonly described variation of C mineralization related to 

soil water saturation. The POM content also exerted a strong impact on the speed of glucose mineralization. This is because 

POM governed the initial microbial biomass, whereas the growth on glucose was equally constrained in all soil cores by 435 

diffusion limitations imposed by the intact pore structure. 
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Table 1: Arithmetic mean (mean) and standard deviation (sd) of variables for five different land uses grouped according to bulk 
properties, image-derived microstructure properties and respiration properties. TOC and C:N are based on plot averages, all 665 
other directly at the soil core level.; Small letters represent significant differences among treatments (p<0.05). TOC Total organic 
carbon, POM Particulate Organic Matter. 

  

conventional 
farming CF 

organic farming 
OF 

intensive 
meadow IM 

extensive 
meadow EM 

extensive 
pasture EP 

property unit mean sd mean sd mean sd mean sd mean sd 

bulk density ρ g cm-3 1.41 0.09 1.41 0.10 1.41 0.04 1.42 0.07 1.38 0.07 

field water saturation 𝜃𝜃/𝜙𝜙 mm³ mm-3 0.50 a 0.10 0.47 a 0.11 0.29 b 0.06 0.26 b 0.05 0.30 b 0.10 

SIR air content 𝜃𝜃𝑎𝑎 mm³/mm³ 0.09 b 0.03 0.10 ab 0.02 0.11 ab 0.01 0.11 ab 0.02 0.12 a 0.03 

TOC content mg g-1 19.1b 0.8 19.0b 0.3 20.5ab 0.6 21.3a 1.0 21.3a 1.4 

C:N ratio - 13.6 0.6 13.3 1.1 13.4 0.5 13.9 0.8 13.4 0.2 

POM content 𝑚𝑚𝑟𝑟 mg g-1 1.00 b 0.46 1.19 b 0.51 1.76 a 0.63 2.21 a 0.98 2.18 a 0.67 

visible porosity ϕ𝑣𝑣𝑣𝑣𝑣𝑣 mm³ mm-3 0.13 0.07 0.14 0.05 0.15 0.01 0.16 0.03 0.16 0.03 

surface area density 𝑎𝑎 mm² mm-3 2.30 0.79 2.58 0.84 2.45 0.36 2.37 0.23 2.51 0.38 

mean breadth density 𝑏𝑏 mm mm-3 1.59 0.46 1.74 0.39 1.65 0.44 1.37 0.25 1.56 0.33 

Euler number density 𝜒𝜒 mm-3 1.31 3.21 0.33 3.39 1.37 0.89 1.47 0.81 1.34 1.06 

connection probability Γ - 0.73 c 0.24 0.79 bc 0.23 0.92 ab 0.02 0.92 a 0.03 0.92 a 0.02 

mean pore diameter ∅ mm 0.21 b 0.05 0.21 b 0.03 0.36 a 0.25 0.37 a 0.14 0.40 a 0.16 

critical pore diameter ∅𝑐𝑐 mm 0.28 c 0.10 0.41 b 0.06 0.51 b 0.21 0.82 a 0.57 0.74 a 0.37 

mean pore distance 𝑑𝑑 mm 0.18 0.04 0.17 0.04 0.16 0.02 0.17 0.02 0.16 0.02 

POM volume density 𝑣𝑣𝑟𝑟  mm³ cm-3 10.7 b 3.2 15.6 b 5.6 21.2 a 5.9 21.9 a 7.6 21.5 a 4.0 

basal respiration pB µg CO2-C g-1 h-1 0.32 c 0.14 0.36 c 0.09 0.42 bc 0.15 0.56 b 0.33 0.70 a 0.23 

growth independent release A µg CO2-C g-1 h-1 0.61 b 0.35 0.56 b 0.42 1.73 a 1.25 1.99 a 1.34 2.11 a 1.44 

growth dependent release B µg CO2-C g-1 h-1 0.36 b 0.29 0.50 b 0.38 1.15 a 0.55 1.10 a 0.78 1.43 a 1.20 

substrate induced release p0 µg CO2-C g-1 h-1 0.97 b 0.36 1.06 b 0.55 2.88 a 1.13 3.09 a 0.85 3.54 a 1.30 

growth rate μ h-1 0.10 0.03 0.09 0.02 0.09 0.03 0.10 0.05 0.10 0.03 

total microbial biomass TMB µg C g-1 86 b 46 90 b 65 299 a 212 276 a 151 312 a 120 

active microbial biomass AMB µg C g-1 6.0 c 6.3 8.7 bc 8.1 20.9 a 14.5 20.2 ab 18.6 19.5 ab 19.2 

active fraction r0 - 0.09 0.12 0.14 0.20 0.14 0.16 0.13 0.19 0.09 0.09 

time of capacity excess texc h 39.5 a 3.0 39.4 a 4.5 26.7 b 2.5 26.1 b 2.2 24.3 b 4.6 
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 670 
Figure 1: Visualization of image processing steps for a 2D section of an X-ray CT image from a) the gray scale data to b) image 
segmentation results based on supervised, machine-learning based segmentation (pores yellow, POM pink, matrix green, rocks 
brown) and c) pore diameters based on local thickness. The sample was selected from an extensive pasture plot. 

 

 675 
Figure 2: Example of a time series of CO2 release after glucose addition at t=-1h and first measurement at t=0h. The fluctuations 
in CO2 readings during the first hours (empty circles) were discarded and replaced by a constant substrate induced respiration 
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rate 𝒑𝒑𝟎𝟎 during an initial lag phase. The parameters 𝝁𝝁, 𝑨𝑨, 𝑩𝑩 and 𝒑𝒑𝟎𝟎 are derived from a model fit, whereas 𝒕𝒕𝒆𝒆𝒆𝒆𝒆𝒆(time until a total of 
73mg CO2-C was respired) is directly calculated from the time series. 

 680 

 
Figure 3: Selected microstructure properties (a, c, d) and relation to selected bulk properties (b, e) for different land uses. 
Columns and error bars represented mean and standard deviation at the plot level (n=5), whereas dots represent individual soil 
cores. Numbered dots in subfigures a-e correspond to the five selected X-ray CT samples, for which 2D sections are shown below. 
Different letters in barplots (a,c,d) indicate significant differences (p<0.05) between land use types. 685 
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Figure 4: a) Basal respiration (𝒑𝒑𝑩𝑩) as a function of a) land use, b) POM mass (𝒎𝒎𝒓𝒓), c) field water saturation (𝜽𝜽/𝝓𝝓) and d) visible 
porosity (>30µm) (𝛟𝛟𝒗𝒗𝒗𝒗𝒗𝒗). The numbered dots correspond to the samples depicted in Fig. 3f. Different letters in the barplot 
(subfigure a) indicate significant differences (p<0.05) between land use types. 690 
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Figure 5: Initial substrate-induced respiration prior to growth (𝒑𝒑𝒐𝒐) as a function of (a) land use and (b) basal respiration (𝒑𝒑𝑩𝑩) as 
well as time until capacity excess of the respirometer (𝒕𝒕𝒆𝒆𝒆𝒆𝒆𝒆) as a function of (c) land use and (d) substrate induced respiration (𝒑𝒑𝒐𝒐). 
High POM and uncertain lag in (b) indicate those samples that have been excluded from regression analysis. Different letters in 695 
barplots (a,c) indicate significant differences (p<0.05) between land use types. 
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Figure 6: a) Explained variability (R²) of basal respiration, 𝒑𝒑𝒃𝒃, by different combinations of explanatory variables for all land uses 
(pooled) or only cropland (CF+OF) and grassland (IM+EM+EP), respectively. The all-𝒑𝒑𝒐𝒐-𝒓𝒓𝒐𝒐-𝝁𝝁 model includes all explanatory 700 
variables, except fo microbial variables. The VIP model include the variables of importance to predict 𝒑𝒑𝒃𝒃 (Please refer to the text 
for more information). † no variability explained. 
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Figure 7: Explained variability (R²) of time of capacity excess, 𝒕𝒕𝒆𝒆𝒆𝒆𝒆𝒆 , during substrate induced respiration (tave) by different 705 
combinations of explanatory variables for all land uses (pooled) or only cropland (CF+OF) and grassland (IM+EM+EP), 
respectively. The all-𝒑𝒑𝒐𝒐-𝒓𝒓𝒐𝒐-𝝁𝝁 model includes all explanatory variables, except for microbial variables. The VIP model include the 
variables of importance to predict 𝒕𝒕𝒆𝒆𝒆𝒆𝒆𝒆  (Please refer to the text for more information).† no variability explained. 
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