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Abstract. Land use is known to exert a dominant impact on a range of essential soil functions like water retention, carbon
sequestration, organic matter cycling and plant growth. At the same time, land use management is known to have a strong
influence on soil structure, e.g. through bioturbation, tillage and compaction. However, it is often unclear whether
differences in soil structure are the actual cause for differences in soil functions or just co-occurring.

This impact of land use (conventional and organic farming, intensive and extensive meadow, extensive pasture) on the
relationship between soil structure and short-term carbon mineralization was investigated at the Global Change Exploratory
Facility, in Bad Lauchstadt, Germany. Intact topsoil cores (upper 10 cm, n=75) were sampled from eachall land use
typetypes at the early growing season. Soil structure and microbial activity were measured using X-ray computed
tomography and respirometry, respectively.

Grasslands—had—aDifferences in _microstructural properties between land uses were small in comparison to the variation

within land uses. The most striking difference between land uses was larger macropore diameters in grassland soils due to

the presence of large biopores that are periodically destroyed in croplands. Grasslands had larger amounts of particulate

organic matter (POM), including root biomass, and also greater microbial activity than croplands, both in terms of basal

respiration and rate of carbon mineralization during growth. Fhis—was—caused-by-alarger—ameunt-of-particulate-organic

er(POM)-in-the-tepseil-of-¢ and he freauenthvpo ed-dependencv-of b espiration-en-seil-me T
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Variabitity-efVariation in basal respiration among all soil cores amounted to more than one order of magnitude (0.08-1.42 pg
CO,-C h* g™ soil) and was best describedexplained by POM mass (R’= = 0.53, p<0.001). Predictive power was hardly
improved by considering all bulk, microstructure and microbial properties jointly. The predictive power of image-derived
microstructural properties was low, because aeration was not limiting carbon mineralization and was sustained by pores
smaller than the image resolution limit (<30um). The frequently postulated dependency of basal respiration on soil moisture

was not evident even though some cores were apparently water limited, as it was likely disguised by the co-limitation with

POM mass. This finding was interpreted towards microbial hotspots which form on decomposing of plant residues and

which are decoupled from water limitation in bulk soil. The rate of glucose mineralization during growth was explained well

by substrate-induced respiration (R?=0.84) prior to growth, which was in turn correlated with total microbial biomass, basal
respiration and POM mass and again not affected by pore metrics.

These findings stress that soil structure had little relevance in predicting carbon mineralization in well-aerated soil, as this
predominantly took place in microbial hotspots around degrading POM that was detached from the pore structure and
moisture of the bulk soil. Land use therefore affects carbon mineralization in well-aerated soil mainly by the amount and
quality of labile carbon.

1. Introduction
Soil respiration is an important link in the global carbon (C) cycle as it releases soil-borne organic carbon back into the

atmosphere. Organic C is protected against mineralization by reduced bioavailability through sorption on reactive minerals

and physical protection in the soil pore network (Dungait et al., 2012;Schmidt et al., 2011). The balance between C storage

and C mineralization is thought to arise from an interplay between the molecular diversity of organic compounds and the
spatial heterogeneity and temporal variability of environmental conditions in soil (Lehmann et al., 2020). Soil moisture and
temperature are considered to be the environmental factors that exert a dominant control on C mineralization. The influence
is either direetlydirect through their control on reaction and diffusion rates or indirectlyindirect through their effect on

biomass production including plants and microfauna (Davidson et al., 2006). Land use related changes in soil management

can affect carbon mineralization in all of the aforementioned ways, i.e. through changes in thermal properties, water
retention and consumption as well as biomass production. The variability in carbon mineralization is thought to arise from
differences in substrate accessibility and soil aeration due to soil structure changes that modify the size and spatial
distribution of pores and, as a consequence, the exposure of organic carbon to microbial decomposition (Dungait et al.,
2012;Schmidt et al., 2011). Despite their obvious importance, larger-scale C cycling models are just starting to incorporate
these microscale interactions (Yan et al., 2018;Ebrahimi and Or, 2018;Meurer et al., 2020).

A major hurdle to fully account for structural constraints on C mineralization is the methodological challenge to combine
incubation studies with the investigation of soil microenvironments on identical samples. A viable option in this respect has
emerged with microstructure analyses of incubated soil samples via X-ray computed microtomography (X-ray CT). By
employing this combination of methods, the mineralization rate of the stable soil C pool turned out to depend-encorrelate
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‘ with the average pore neck diameter as a proxy for soil aeration for a loamy forest soil with a range of bulk densities that was
brought to the same water saturation and incubated for 35 days (Bouckaert et al., 2013). Long-term incubations (127 days) of

silt-loam soils with fixed bulk soil densities (1.4 g/cm3) and soil meisturewater contents (matric potential pF 2.5, water

content 25 vol%), but very different internal structure (undisturbed, sieved, slaked) exhibited no differences in C
mineralization rate after-passing-of-the-initialCO,-flush-caused-by-disturbanee-irrespective of substrate amendment (fructose,
vanillin) (Juarez et al., 2013). Even though the macropore space scanned at a coarse resolution (32pm32 um) differed vastly
between the structure treatments-in-terms-of-volume-fraction-and-merphelogy, the pore space scanned at a finer resolution of
3pm3 um was quite similar-iadicating. This indicated that the continuity of air and water at this soil moisture and thus the
supply with oxygen and dissolved substrates was too similar to evoke differences in C mineralization despite differences in

microbial abundance and community composition at the end of incubation. Seil-aggregates{5-6mmTwo months of pre-
incubation were chosen by Juarez et al. (2013) to omit the initial CO, flush caused by disturbance that is known to last for

more than a week (Herbst et al., 2016). Soil aggregates (5 — 6 mm) from a clay soil, adjusted to a matric potential of pF 2.7

and incubated for 1 day showed a six-fold variation in soil respiration (normalized for differences in organic C content) at
only a two-fold difference in organic carbon content (Rawlins et al., 2016). The internal pore surface area was best suited to
explain the difference in respiration, yet only at a fairly moderate correlation coefficient (Rr=0.44). It has been suggested
that the magnitude of protection of soil organic C against mineralization results from the interplay of how much C enters the
soil as plant biomass and exudates and how much of this newly added C is subsequently protected (Kravchenko et al., 2019).
This balance may be very different between different land uses and was shown, in a case study comparing continuous corn,
switchgrass, and native succession, to depend on the plant-stimulated pore formation in the size range of 30-150pm-as-these
— 150 um. These pores are associated with the highest enzyme activities and thus the highest capacity for microbial
transformation of carbon sources (Kravchenko et al., 2019). In summary, microstructure analysis may help to improve the
prediction of carbon mineralization rates in intact soil. However, from the previous findings it is already evident that a true
gain in predictability is not always warranted and depends on the environmental conditions encountered during incubation.

We therefore measured soil respiration under contrasting land uses (cropland vs. grassland) that are known to induce various
soil structures. Soil respiration was measured in intact soil cores after exposing them to very different environmental

conditions: 1. basal respiration at field meisturewater saturation and 2. substrate—induced respiration (SIR) at higher soil
moisture. The rationale for repeated incubations of intact soil cores at different moisture and substrate availability was to
provide a more complete picture of links between microstructural properties and carbon mineralization. Our objectives were
to 1) investigate differences in soil structure and C mineralization induced by land use and 2) to explore as to how te-far
microstructural properties are—regquired—to—explain_variation in carbon mineralization rates. Bearing in mind that such
microstructure analyses are laborious and time consuming, we 3) aimed to assess #r-how far these microstructural properties

can be replaced by easily available bulk properties like water saturation, bulk density or particulate organic matter content.

2. Materials & Methods
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2.1. Site description
The Global Change Experimental Facility (GCEF) is situated at the field research station of the Helmholtz Centre for

Environmental Research in Bad Lauchstadt, Germany (51°23'33.1"N 11°52'56.5"E, 121 m a.s.l.). The site is characterized by
a sub-continental, temperate climate with an annual mean temperature of 9.7 °C (1993-2013) and a mean annual
precipitation of 525 mm (1993-2013). The soil type is a fertile Haplic Chernozem with on average 21% clay, 69% silt, and
10% sand in the topsoil layer (Altermann et al., 2005). The GCEF platform was established in 2013 and combines five land
use types with two climate treatments (Schédler et al., 2019). The full design comprises 50 large field plots (16x24 m),
which are arranged in ten blocks. Five of the blocks are subjected to ambient climate, while five are exposed to conditions of

a projected future climate. The five land use types werein each climate scenario are replicated five times, randomly assigned
to the five plots of each block-and. They include (1) conventional farming (CF), (2) organic farming (OF), (3) intensively
managed grassland wsedcut by mowing (IM), (4) extensively managed grassland usedcut by mowing (EM) and (5)
extensively managed grassland used as sheep pasture (EP). Each-treatment-combination—(land-use—x-eclimate)-isreplicated
five-times—across-the-experimentalplatferm—The land use types are managed according to common practices for Central
Europe and include the—full set of respective management measures (fertilizer and pesticide application, soil and plant
cultivation). On CF plots a rapeseed-wheat-barley crop rotation is cultivated, whereas rapeseed is replaced by a legume in
OF. The management of both croplands include conventional soil cultivation. For IM, a species-poor mixture of forage
grasses was established, consisting of Lolium perenne (20 %), ‘Festulolium’ (50 %), Dactylis glomerata (20 %) and Poa
pratensis (10 %). In contrast, a mixture of 56 plants species from the local gene pool, containing legumes, grasses and non-

leguminous dicots species, was sown in both extensively managed grasslands (EM, EP).

—For further details on treatments and management we refer to Schédler et al. (2019).
Importantly, both croplands were plowed (18" of February) and further cultivated with a rotary cultivator (4™ of March) few
months before sampling.

2.2. Field sampling
We focused on the 25 plots (5 land use types x 5 field replicates) exposed to ambient climatic conditions. Sampling took

place in early May 2020, when plants in the cropland plots (CF: rapeseed, OF: white clover) were at the beginning of
vegetation season. Intact soils cores were sampled with alsmingmaluminium rings (v=100cm3, h=4cm) in a depth between 3
and 10cm. Three soil cores were taken from each plot tetalingtotalling 75 samples. After sampling, the soil cores were stored
in bags under cool conditions, including the imaging—procedure,—unti—respiremetry—image acquisition, until

th

respirometry.H

2.3. Bulk properties
Bulk density (p) and initial water saturation (6/¢) were determined by weighing the soil cores before respirometry, as well

as after drying the cores at 105°C for 48 hours following respirometry. Thereby, bulk density was calculated with the final
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soil dry weight divided by the core volume (100 cm3). Water content (6) in the collected soil cores werewas determined by
mass differences of initial and final soil weights. Water saturation levels were obtained by normalizing the tetal-water
volumecontent (6) with total soil pere—velumeporosity (¢). Air contents (6,) during substrate-induced respiration were
calculated from the difference between ¢ and 6 + 6, after substrate-induced respirometry, with 6, representing the
volumetric glucose solution content. Finally,
Hitterwere-washed-eut-of the-soil cores usingwere dispersed during a wet sieving procedure (0.63 mm mesh size):) to extract

inorganic (sand, stones) and organic (roots, plant litter) components. Inorganic and organic components were subsequently

separated by hand and POM mass (m,.) was determined after drying for 48 hours at 70°C._This POM mass does not only

include organic material from previous years, but also the fresh root biomass that was cut off during sampling and only

started to decay during incubation. Additional explanatory variables, i.e. total C and C:N ratio, were determined for all plots

using soil samples collected at the 20" of March 2020 in the course of the continuous GCEF monitoring program. Total
carbon and nitrogen contents were measured from sieved (2 mm) fine soil using an elemental analyzer (Elementar Vario EL
111, Elementar, Hanau, Germany}):) and used to calculate C:N ratios. Total carbon was reported as total organic carbon

content (TOC) as the inorganic carbon content in the topsoil is negligible.

2.4. Microstructure analysis
All soil cores were scanned with X-ray computed tomography (X-tek XT H 225; Nikon Metrology) at 150kV and 170pA

with 2500 projections and two frames per projection. A 0.3 mm copper filter was used to reduce beam hardening artefacts.
Tomograms were reconstructed with 8-bit grayscale and 30um voxel size with the X-tek CT Pro software (Nikon
Metrology). Gray scale contrast was stretched by setting the darkest and brightest 0.2 percentile to 0 and 255, respectively.
All image processing was carried out with the Fiji bundle for ImageJ (Schindelin et al., 2012) and associated plugins. Image
noise was reduced with a non-local means filter (Buades et al., 2005) prior to edge enhancement with an unsharp mask filter
(Schliter et al., 2014). The grayscale images were segmented into pores and background with Otsu’s method (Otsu, 1975)
for pore structure analysis at the original resolution. Pore metrics of interest include visible porosity (¢y;s), surface area
density (a), mean breadth (b) and the Euler number density (x), which were determined with the MorphoLibJ plugin
(Legland et al., 2016). The pore topology metric y counts the number of isolated pore objects positively and the number of
redundant connections negatively, so that poorly connected and well-connected pore structures induce positive and negative,
X, respectively (Vogelet-al--2010)(Vogel et al., 2010). A complementary connectivity metric is the connection probability T,
which reflects the probability of two randomly chosen pore voxels to belong to the same pore cluster. Pore clustering was
carried out with the connected components labelling in MorpholibJ (Legland et al., 2016). The average pore distance (d) was
determined based on the Euclidean distance transform of soil voxels, i.e. shortest distance to a pore for all background
voxels. The average pore diameter (@) was determined with the maximum inscribed sphere method termed Local Thickness
in ImageJ (Fig. 1b). The critical pore diameter @, reflects the bottleneck diameter at which pore continuity from top to
bottom is lost (Koestel, 2018).
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In addition to these pore metrics, the volume fraction of particulate organic matter (POM) was determined via supervised,
machine-learning based image segmentation with ilastik {Semmeretal—2011).(Berg et al., 2019). A parallel random forest
classifier was used to segment pores, POM, soil matrix and rocks (Fig. 1b) by deploying a multi-dimensional feature space
that included the original gray values as well as gradient (1st derivative of gray values) and texture information (2nd
derivative of gray values) after Gaussian smoothing with a strength of 6=[0.3,0.7,1.0]. In this way, characteristic traits of
each material like the aperture of cracks, the inherent heterogeneity of the organic fabric or the homogeneity of quartz grains
was harnessed for material detection. The classifier was trained with a few test lines for each material class in a small
number of images (six out of 75). The images had to be downscaled to a voxel size of 60pum to make segmentation tractable.

2.5. Respirometry
Basal respiration (pg) rates were determined from intact soil cores (100cm3) at 22°C and fieldthe water saturation in the field

at the date of sampling using an automated respiration analyzer (Respicond V, Sweden). Emitted CO, is trapped in 10 mL of

0.6 M KOH solution and measured through the increase in electric impedance at a given voltage. Soil cores were incubated
for two days and the average respiration rate determined for the period after some initial equilibration. Respirometry was
conducted on 60 out of 75 soil cores distributed evenly among cropland (CF and OF, 15 each) and grassland soil (IM, EM
and EP, 10 each).

The same 60 soil cores were subsequently amended with a glucose containing mineral salt solution (glucose — 0.28 M;
(NH,),SO, - 0.07 M; KH,PO, — 0.025 M; MgSO, - 0.125 M) to measure substrate-induced respiration (SIR) (Anderson and
Domsch, 1978) and to infer microbial growth kinetics from it (Stenstrom et al., 1998;Panikov, 1995). The solution was
added to the field moist soil cores in two steps. First, the bottom of the soil cores was covered with a textile before placing
them for 30min in the glucose-nutrient bath with a shallow water table so that the solution was sucked in by capillary rise.
Thereafter, 4 mL of the glucose-nutrient solution were added from the top of the core with a pipette and allowed to infiltrate
for 10min. Finally, the fully saturated soil cores were drained from macropores with low capillarity by placing the soil cores
on a dry sand bed for 10min. After drainage, soil cores were placed into the Respicond for 48h at 22°C. The absorbed
volume of glucose-nutrient solution was measured after the SIR approach via weight loss upon oven-drying as described
above and accounting for the antecedent field meoisture-water saturation. The amount of absorbed glucose solution was
different for every soil core and increases with decreasing field water content 8 and increasing porosity ¢. However, for all
soil cores glucose-C was provided in excess, i.e. the CO, uptake capacity of the respirometer was exceeded with only a
fraction of the mineralized C. The time, t,,, until the capacity of the respirometer was exceeded (73mg CO,-C at the given
KOH concentration), was determined for every soil core (Fig. 2). In addition, an empirical model for microbial growth
kinetics (Wutzler et al., 2012) of the form

psi(t) = A+ BeMt @
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was fitted to the substrate-induced growth respiration stage of each time series using ModelMaker-3 software (SB
Technology Ltd)—where). Here, pg; is the substrate-induced respiration rate at time t, A is the growth-independent CO,
release rate, B is the growth-dependent CO, release rate and p is the microbial specific growth rate. The identification of a
lag phase and initial substrate-induced respiration prior to growth (p, = A + B) was obstructed by uncertain data during
initial equilibration of the CO, readings and had to be substituted by data extrapolation and a subjective definition of a lag

phase as shown in Fig. 2. The active microbial fraction was determined as

_ AMB_ B(1-1) @
" TMB A+B(1-1)

where AMB is the active microbial biomass participating in growth, TMB is the total microbial biomass and 2 is a basic
stoichiometric constant of 0.9 during unlimited growth (Akimenko et al., 1983)

2.6. Statistical Analysis
Statistical arabysisanalyses were performed with R (R Core Team, 2018) and figures were produced with package ggplot2

(Wickham, 2016). Normality of residuals and homogeneity of variances were tested with the Shapiro-Wilk test and Levene
test at a level of p>0.05, respectively. If these criteria were met, then one-factorial ANOVA followed Tukey HSD Postdoc
test were carried out to identify significant differences between land use types at a level of p<0.05 using the agricolae
package (de Mendiburu, 2019). If the criteria were not met, then a non-parametric Kruskal-Wallis test was carried out at a
level of p<0.05 with the same package. For simplicity, Pearson correlations between two variables are reported, irrespective
whether normality in the residuals is fulfilled.

Partial least square regression was conducted in order to identify the amount of explained variability of a target variable

(pg, texc) by @ combination of explanatory variables. FhisPseudo-replicates, i.e. the 2 — 3 soil cores from the same plot, were

considered individually to explore the full range of variation in target variables. Explanatory variables, which were only

available as plot averages (TOC, C:N ratio) were therefore not considered. Partial least square regression was either done for

the pooled data set (all land uses, n=60) or individually for grassland soil cores (IM+EM+EP; n=30) and cropland soil cores
(CF+OF, n=30). To do so, the target variables (pg, t.,.) and explanatory variables (p, 8/¢, m,, ¢yis, a, b, x, T, d, 0, @,

Pos W, 7, (and pj for target variable ¢,,.}}) see Table 1 for meaning of symbols) were tested for normal distribution-are-. If

needed, they were transformed to reach normal distributions and linear relationships of data (i.e., a logarithmic
transformation or a logistic transformation (logit(x) = log(x/(1 — x))).

There was collinearity between many variables of the present study, which excludes simple linear regressions to explore the
variability of basal and substrate-indueeinduced respiration. Partial least square regression (PLSR) with Leave-One-Out
Cross-validated R? allows for collinearity between variables and identifies the most important explanatory variables to
predict the target variables. Permutation testing served to describe components that best explained pz and t,,.. Robust
confidence intervals against deviations from normality were obtained from bootstrapping (R package boot v. 1.3-24)
(Davison and Hinkley, 1997;Canty and Ripley, 2019). The smoothed bootstrap was used by resampling from multivariate

7
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kernel density (R package kernelboot v. 0.1.7) (Wolodzko, 2020) as sample sizes were relatively small (60 in pooled and 30
in grouped data). The BCa bootstrap confidence interval of 95% of R? was a measure to explain the variability in each
response variable (Efron, 1987).

PLSR was repeated for a series of simplifications: a) complex model with all bulk, microstructural and microbial explanatory
variables (8 /¢ for pg and 8, as well as pg for t.,.); b) complex model including only bulk and microstructural properties
(n=%%11for pg and n=12 for t,,., excluding p,, i, 1,), ¢) a VIP model that includes only the most informative variables
identified by PLSR (n=3-5; composition varies between target variables and land use combinations), d) manuathy-selected
{pairs of} explanatory variables_selected based on expert knowledge that serve as a base line reference (n=1-2; choice

depends on target variables).

3. Results
3.1. Bulk properties

At the early growing season (May) the young plants in both croplands (CF, OF) had transpired less water than the permanent
vegetation cover in the three grasslands (IM, EM, EP) resulting in a significant difference in field water saturation (Table 1).
In fact, the water contents in grassland were already close to the permanent wilting point at that soil depth (6= 0.09
mm3/mm3 at pF 4.2, personal communication by Max KeehreKdhne). The POM content (>_0.63mm)63 _mm), mainly
comprising roots and old plant residues incorporated by plowing, was significantly lower in the farmingcropland plots (CF,
OF) than in the grassland plots (IM, EM, EP) (Table 1). The TOC content followed the identical order, whereas soil C:N
ratios did not differ significantly between any of the land uses (Table 1). Surprisingly, there was no difference in average
bulk density between any of the land uses (Table 1). However, in farmingcropland plots the variability in bulk density was
greater than in grasslands. This was triggered by randomized sampling locations within a plot that may either fall into areas
loosened by plowing or areas compacted by traffic. The volumetric air content in the soil cores after the uptake of glucose

solution was on average around 0.1 (mm3/mm3) for all land uses._Thus, if oxygen supply was limited during growth on

glucose in intact soil cores, it was on average the same for all land uses.

3.2. Microstructure properties
The visible microstructure in the topsoil differed vastly between land uses but also among soil cores of the same land use.

The 2D slices of selected X-ray CT images in Fig. 3f are not meant to be representative for the land usebut-exemplary-te
shew. Instead, they cover the entire variability in size and volume fraction of pores as well as the volume fraction of
particulate organic matter. The visible porosity deesdid not differ across land uses, but hashad a much higher variability in
farmingcropland plots (Fig. 3a, Table 1). VisibleThe regression between visible porosity (>0.03mm) and bulk density were

stronghy-cerrelatedhad a high goodness of fit (Fig. 3b, R2=0.74, p<0.001), since it is mainly the macroporosity that is affected
by soil management. There was a number of other pore metrics like surface area, mean breadth, Euler number and mean pore

distance that also did not differ between land uses (Table 1). The mean pore diameter was significantly larger in grassland
than in farmingcropland plots (Fig. 3c, Table 1), because a certain fraction of the pore space was contributed by large

8
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biopores including taproot channels and earthworm burrows, which are periodically destroyed by plowing in farming plots.
Likewise, the critical pore diameter was significantly larger in EP and EM than in OF and even lower in CF. Interestingly,
the critical pore diameter in IM was more similar to that in OF, indicating that biopores in intensive meadow are less often
continuous from top to bottom. Following the pattern of the POM content (m,.), the POM volume was significantly higher in
grassland than in cropland soil (Fig. 3d, Table 1). The eerrelatiorgoodness of fit between image-derived POM volume and
POM content determined by wet sieving (Fig. 3e, R?=0.53) was somewhat lower than eerrelationthat for independently
determined proxies for porosity discussed above. This iswas likely caused by incomplete POM detection by both methods
and the differences in the lower size cut-off (downscaled image resolution of 0.06mm vs 0.63mm mesh size of sieve) as well
as between mass density and volume density-.

3.3. Respiration properties
Basal respiration at field meisturewater saturation was highest in extensive pasture and lowest in both farmingcropland plots

with intermediate rates for both meadows (Fig. 4a;, Table 1). BasalVariation in basal respiration eorrelated-stronghycould be
well explained with_variations in POM content (Fig. 4b, R?=0.53, p<0.001) and only slightly less with POM volume density
(R2=0.35, not shown). Surprisingly, basal respiration was completely independent of initial water saturation when pooled
across land uses, even though the entire range between supposedly critical dryness and optimal conditions was covered (Fig.
4c). Furthermore, basal respiration was independent of visible porosity (Fig. 4d)

Substrate-induced respiration in the first hours after glucose addition (p, = A + B) was up to 3.5 times higher in all
grasslands than in both farmingcropland treatments (Fig. 5a). The eerrelation-betweencorrespondence of basal respiration
and initial substrate-induced respiration prior to growth was highly significant (Fig. 5b, R2=0.59, p<0.001)-and-ameunted-te).
The glucose addition resulted in a six-fold increase in respiration rates-by-glucese—addition, which is in agreement with

previous incubation studies (Wardle and Ghani, 1995;Hund and Schenk, 1994)-and. This increase indicated_previous
limitation of microbial activity in all collected soils due to substrate deficiency (Blagodatskaya and Kuzyakov, 2013). The
correlationgoodness of fit deteriorated slightly (R?=0.31, p<0.001), when those samples with exceptionally high pp due to
high root biomass and those samples with exceptionally low p, that might have been caused by insufficiently precise

estimation of lag time were disregarded.

Due to higher initial microbial activity, the added glucose was consumed much faster in grassland soils and reached the CO,
uptake capacity of the respirometer much sooner as compared to cropland soils (Fig. 5c, Fig. S 1). The logarithm of this time
of capacity excess, t,,., was tightly linked to p, (Fig. 5d, R?=0.84, p<0.001) and to a similar extend to total microbial
biomass TMB (not shown, R2=0.60, p<0.001);-which) TMB is coupled with p, through eq. (2). Only two parameters of the
model (eg. 1) that was fitted to the exponential increase in CO, release were different between grasslands and croplands
(Table 1). The growth-independent respiration rate A and the growth-dependent respiration rate B (just as its sum p,) were

both significantly smaller in cropland soils, which accounts for the fact that initial CO, release rate directly after glucose



295 addition were lower. The microbial growth constant u did not differ between land uses. Following the pattern of the total

biomass, the active microbial biomass was higher in grasslands than in croplands. The variability in the active fraction of

microbial biomass was, however, too high among replicates to evoke significant differences between land uses.

300

305 3.4. Prediction of respiration properties
ManyNot all bulk and microstructure properties were relevant for explaining the observed variation soil respiration across

land uses. In fact, many microstructural properties eerrelatecorrelated significantly among each other and with bulk
properties (complete correlation matrix in Fig. S 2). Likewise, many respiration properties eerrelatecorrelated among each
other (partly by definition and accounted for by only considering the independent variables pg, po, 1o and w in the following)
310 and with microstructural and bulk properties (Fig. S 2). This collinearity among microstructural, bulk and microbial
parameters is directly accounted for by partial least squares regression (PLSR):) and quantified in biplots in the supporting
information (Fig. S 3, Fig. S 4).

Simple regressions of basal respiration with selected bulk or microstructure properties in the previous section already
highlighted the importance of POM content, m,., for explaining the variability in basal respiration pz (R?=0.53, p<0.001).
315 The predictive power of m,. on pg is reduced to a median R? of 0.34 by PLSR with data normalization and boot strapping.
The predictive power of the complex model for basal respiration among all land uses only increased to R2=0.43 when all
abiotic and microbial variables were considered as explanatory variables (Fig. #6a)—whicha). This increase can mainly be
attributed to a higher degree of explained variability in grassland soils (from R2=0.27 to R2=0.53). This gain in predictive
power of the complex model ean-be-attributed-towas caused by the added information content of microbial parameters-as-its
320| emission. This follows from the fact that a complex model in which microbial parameters are excluded (all-pq- o-t) restts

na-tewer—almestidenticathad low predictive power-ike, similar to the simplest model with m,. only. Indeed, the VIP model

for grasslands include p,, m,, 8/¢, p, and u in descending order of importance. In general, the explained variability was
higher for grasslands and very poor for cropland soils. The explained variability is increased by 0.1-0.2 in comparison to the
bootstrapping median and reaches R2>0.60, if supposed outlier samples are discarded by the Leave-one-out procedure. The

325| surprisingly low information content of field-watersaturation onfirmed-The-collinearity-of many-explanatory-variables-i
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The explained variability observed for the time of capacity excess, t..., after glucose addition is excellent for the full

complexity model in the pooled data set (R?=0.93, Fig. 87a). The model is better suited to explain the differences between
grassland and cropland soils than to explain the variability within the two groups. A reduction in model complexity to the
VIP model and even p, as the only explanatory variable does hardly reduce predictive power. The omission of microbial
parameters (all-p,- ro-u) reducesreduced the explained variability in ¢,,. of the pooled land uses to R2=0.58;mainky. The

coefficient of determination is lower because bulk and microstructure variables eancould only explain the variability

between grassland and cropland, and to a lower degree within grasslands, but not at all the variability in t,,. among cropland
soils-as. This is shown exemplarily for pore surface area a. Differences in metabolic pathways due to different aeration of
soil cores, e.g. between loosened and compacted soil in croplands, eancould be ruled out as unaccounted source of

variability, as these should have been clearly reflected in image-derived pore metrics like ¢,,;c and I' and even more directly

4. Discussion
4.1. Land use impact on soil properties and respiration

Land use specific soil management affected soil structural properties, which showed particular large differences between
grasslands and croplands. The lack of tillage in grasslands premetespromoted the continuity of large biopores formed by
taproots and earthworms, which was reflected in larger average and critical macropore diameters (@, @., Table 1) (Schluter et
al., 2020). At the same time, the continuous cover with perennial vegetation and the lack of mechanical disturbance by
tillage promoted the built-up of soil organic C in grassland topsoils (TOC, Table 1) (Poeplau and Don, 2013). Differences
between grassland and cropland soil in terms of plant residues, root biomass as well as water saturation in the topsoil
(m,, v, 0/¢, Table 1) were likely related to the fact that crops were still in an early growth stage, and had not established a
dense root network, which limitslimited water uptake and transpiration at the time of sampling in May. This discrepancy
would have been smaller for winter crops (Thorup-Kristensen et al., 2009) and are likely to vanish during a growing season
(Schliter et al., 2013;Perkons et al., 2014). A somewhat surprising result was the equal average bulk densities in all land
uses, as tillage is known to reduce bulk density in topsoils (Strudley et al., 2008;Palm et al., 2014). A bulk density of 1.4 g
cm’® is rather typical for grasslands at the Bad Lauchstadt site (Altermann et al., 2005), whereas previously reported bulk
densities of tilled soils in other field trials on site tend to be higher, in the range of 1.46-1.62 g cm™ (Eden et al., 2012) or

lower, in the range of 1.12-1.27 g cm™ (personal communication, Max &eehneKohne) depending on soil management and
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sampling time. Bulk densities do not only undergo a seasonal variation, but are also spatially quite variable depending on
whether or not remnants of old or recent wheel tracks are sampled (Roger-Estrade et al., 2004).

There were also subtle, but consistent differences within cropland and grassland treatments. Organic farming had
significantly larger critical pore diameters (@.,) and tended to have slightly higher POM volume densities (v,, p=0.106),
presumably due to the more prominent presence of large crop residues from the previous growing seasons. Indeed, OF had a
7.5% higher straw production compared to CF in 2019 (data from continuous GCEF monitoring program). This however, did
not entail significant differences in carbon mineralization under ambient-cenditions-field water saturations. In grasslands,
basal respiration differed significantly in the order IM < EM < EP (Table 1), even though there were no clear differences in
bulk properties, microstructural properties or microbial parameters derived from subsequent substrate-induced respiration
between the two meadows and the pasture. The lower basal respiration of IM soil, compared to EM and EP sails, is likely
caused by the lower root biomass, represented by the lower POM content in our study. However, none of the available data
sets could explain the observed differences between EM and EP. Thus, this difference is possibly caused by the microbial
community structure and its trait composition which is known to affect C mineralization rates (Guo et al., 2020;Nazaries et
al., 2015;Auffret et al., 2016). In addition, nutrient availability and C:N ratios of the decaying plant residues, in particular the

cut-off roots, might have implications on carbon mineralization, but are not well represented by the C:N ratios measured in

soil (Table 1).

In summary, six years of different land use induced significant changes in soil properties that are expected to change slowly
TOC content), while others remained unchanged (bulk density, C:N ratio). In addition, some land uses differed in soil

roperties that are expected to follow a seasonal pattern (e.g. POM volume, pore diameter) induced by different vegetation

cover during a growing season and presence or absence of tillage. Finally, plots from different land uses also varied in terms

of spatial heterogeneity. The combination of all these effects constitute a comprehensive dataset of soil structures for testing
which minimum set of bulk and microstructure properties is required to predict soil respiration across a range of

heterotrophic respiration rates in intact soil cores differing by at least one order of magnitude (0.08-1.42 ug CO,-C h™* g*

soil).

heterotroph asn on--100-em3 of inta faYata) ald mg atn na-more-than-oneorder of maagn de (008 4

Hg-CO,-C-h™g™soil)—This-basal-respirationThe variation of basal respiration rates was best described by the POM content
of the sample. The POM contents also differed by more than one order of magnitude (0.3-4.6 mg g™ soil) because 1) in

croplands roots were still young and POM predominantly contributed by plant residues from the last growing season and 2)
due to spatial variability in root length density especially within grassland plots. Macroporosity (¢,;s) had no impact on
basal respiration. This apparently contradicts previous studies, which showed that soil compaction reduced soil respiration
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under various levels of water saturation (Liebig et al., 1995). A subsequent study revealed that this reduction of carbon

mineralization was particularly strong in a loamy sand soil when bulk densities were higher than 1.5 g cm™ and plant
(De Neve
and Hofman, 2000). Unamended soil or less compacted soil showed less of a response. In the present study those soil cores

residues were present at the same timew

with high POM content had low bulk density and vice versa, implying countervailing environmental impacts on basal
respiration which may have caused its indifference to macroporosity (¢.,;s). Surprisingly, water saturation had no measurable
effect on carbon mineralization, even though it was very low (6/¢ < 0.2) in some grassland cores. It is likely that the
decaying root material-which-started-to-decay-after-sampling retained enough water by natural absorbance (Kravchenko et
al., 2017) and released easily degradable substrates through cell lysis after sampling to act as microbial hotspots despite the
onset of substrate limitation in an otherwise dry soil. In general, thesedrier soil cores that-were driest—alse—had-the
highestassociated with higher POM volume (R2=0.39, p<0.001), which counterbalanced the substrate limitation effect in

bulk soil. In none of the soil cores was the initial water saturation was-high enough to induce a deficiency of soil aeration. A
large part of air-filled porosity was not even resolved at a voxel size of 30um. That is why visible macroporosity (¢,,;s) and
all other pore metrics that are highly correlated with ¢, (Fig. S 2) do not add any substantial predictive power for basal
respiration, which is in accordance with previous findings (Juarez et al., 2013). In addition, since image-derived ¢.,;s; and v,
are highly correlated with p and m,. (Fig. 3,Fig. S 2)), they can be substituted by simple bulk properties without loss in
predictive power. Our findings indicate that carbon mineralization in well-aerated topsoils that contain fresh POM is
biologically driven and mainly governed by carbon availability (Kuzyakov et al., 2009) and less by abiotic processes

{diffusion;-deserption-chemicalreactions)-as proposed by the regulatory gate hypothesis (Kemmitt et al., 2008)-, at least not

by access or diffusion limitation imposed by soil structure.

The question remains, which everleckedadditional parameters could have substantially improved predictive power with
respect to basal respiration. It is unlikely, that the POM distribution in space (clustering vs. even distribution) (Schliter et al.,
2019), which in principal could also be analyzed with X-ray CT, would have mattered, since the supply with oxygen for
basal respiration was sufficient in all samples. Information on microbial diversity such as microbial functional gene
abundance related to oxidative and hydrolytic enzymes was recently reported to add another 5-19% in predictive power and
reduce model uncertainty by 55-71% (Guo et al., 2020). Furthermore, different microbial communities may exert different C

mineralization rates due to different carbon use efficiency (Domeignoz-Horta et al., 2020)._Local variations in organic matter

quality and nutrient availability could also have played a role in carbon mineralization that was not accounted for in the

PLSR analysis as that information was not available at the soil core level. For instance, the biodegradability of old crop

residues and fresh, cut-off roots are likely to be very different.

The speed of CO; release (t,,.) after glucose addition was chosen as an additional target variable to provide a more complete
picture of links between microstructural properties and carbon mineralization. The logarithm of this release time was highly
correlated with the respiration rate at the beginning of incubation (log(t.,.) ~ po, R?=0.84, Fig. 5d) and total microbial

biomass, which is derived from it (TMB, R2=0.60, not shown). This causal relationship has to be log-linear, since the
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substrate is consumed with exponential dynamics after growth sets in—whereas-the. The growth itself seems to be similar for
all treatments (in terms of p) indicating similarity in functional structure of microbial community and in intrinsic traits of
dominating decomposers. In addition, limited oxygen supply at air contents of approx. 0.1 mm?® mm irrespective of land use
(Table 1) likely impaired unlimited aerobic growth and thus inhibited differences in u. If the growth rate u, as the second
driver of CO, efflux next to initial activity (in terms of p, or TMB), would have differed more among soil cores, it would
presumably have reduced predictive power of initial microbial biomass and required to take them jointly into account.
Maximum microbial specific growth rate for unlimited aerobic growth in sieved, unconsolidated soils is considered as an
eco-physiological indicator sensitive to climate conditions (Lipson et al., 2009;Salazar-Villegas et al., 2016), nutrient
availability (Loeppmann et al., 2020), soil types (Loeppmann et al., 2018), and stages of plant residues decomposition.
However, the sensitivity of u to different land uses within the same soil type still remains to be tested. Destroying the intact
structure is known to have a tremendous impact on microbial activity. Heterotrophic respiration is very different for sieved
and intact soil at the same bulk density and soil moisture in the first weeks after disturbance (Herbst et al., 2016). Our results

indicated that also the capacity to grow on glucose is constrained in intact soil structure, presumably by diffusion limitations
of the substrate or oxygen. Likewise, a faster growth in microsites may be disquised by a delayed CO, release due to CO,

diffusion limitations in intact soil. Future studies that focus on this direct comparison will have to clarify this. The prediction

of t,.. from independent bulk or pore metrics without microbial variables derived from the glucose experiment is still fairly
good (all-p,- ro-u in Fig. 8, R?=0.58) thanks to the correlation of total microbial biomass with POM content (m,), basal
respiration (p,) and even antecedent water saturation (6/¢) despite being changed by glucose addition (Fig. S 2). There are

some significant correlations between t,,. and microstructural parameters like £-3,8andw-connection probability (I"),

average and critical pore diameter (@, ®.) and POM volume density (v,) (Fig. S 2). However, it is evident that the causal

relationship is in fact linked to substrate-induced respiration as a function of total microbial biomass, and that these
microstructural properties do not carry any additional information. If only simple bulk properties were used as explanatory

variables, then m,. was again the most relevant parameter.
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Additional incubation experiments after repeated sampling of the plots at different stages of the_crop rotation, growing

season and different precipitation history, including the different climate scenarios of the GCEF, will provide a more
comprehensive data set in the future. By this, the governing state variables responsible for carbon mineralization vary a lot
more due to different-soil-moisture—different-plants—within-the-crop-rotation—or—by-seasonally—changing-shest-to-root-C

aHocation—raties—seasonally changing soil POM contents brought about by roots and fresh litter, different soil moisture as

well as varying shoot-to-root C allocation ratios of plants. Finally, a sizeable amount of basal respiration was likely

contributed by the decay of cut-off roots that would not have occurred, if soil respiration was measured on-site. Such field

CO, measurements with comparable spatial footprint and environmental conditions like in laboratory incubations would be

an important step to gauge the effect of intact rhizosphere vs. decaying detritusphere on carbon mineralization.

5. Conclusions
To conclude, our findings confirmed the influence of land use on carbon mineralization and revealed the underlying drivers..

Surprisingly, neither water saturation in the field, which is one of the main drivers of basal respiration known for disturbed,

soil, nor land-use specific microstructural soil properties improved the prediction of carbon mineralization. If strong

correlations between microstructural variables and carbon mineralization were observed, then they did not arise from

causation but collinearity, and could easily by replaced with cheap bulk properties without substantial loss in predictive
power. The POM content, including root biomass and other plant residues, was the bulk property that described variation in

basal respiration best across all land uses under well-aerated conditions. Thus, our findings indicated that in intact soil cores,

the decomposition of particulate organic matter, in particular the root residues that started to degrade after sampling,

contributed a large share of CO, emissions, which masked the commonly described variation of C mineralization related to

soil water saturation. The POM content also exerted a strong impact on the speed of glucose mineralization. This is because

POM governed the initial microbial biomass, whereas the growth on glucose was equally constrained in all soil cores by

diffusion limitations imposed by the intact pore structure.
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able 1: Arithmetic mean (mean) and standard deviation (sd) of variables for five different land uses grouped according to bulk
properties, image-derived microstructure properties and respiration properties. TOC and C:N are based on plot averages, all
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o

conventional organic farming  intensive extensive extensive
farming CF OF meadow IM meadow EM pasture EP

property unit mean sd mean sd mean sd mean sd mean sd
| bulk density p gem® 1.41 0.09 141 010 141 0.04 1.42 007 138 0.07
| field water saturation 6/¢ mm®mm> 0.50a 0.10 047a 011 0.29b 0.06 0.26b 0.05 0.30b 0.10
| SIR air content 6, mm3/mm? 0.09b 0.03 0.10ab 002 0.dlab 0.01 0.1l1ab 0.02 0.12a 0.03
| TOC content mg&l 19.1b 0.8 19.0b 0.3 20.5ab 0.6 21.3a 1.0 21.3a 1.4
| C:N ratio : 136 06 133 11 134 05 139 08 134 0.2
| POM content m,. mg&l 1.00b 0.46 1.19b 0.51 1.76a 0.63 221a 0.98 2.18a 0.67
| visible porosity ¢,;s mm®mm> 0.13 0.07 0.14 0.05 0.15 0.01 0.16 0.03 0.16 0.03
| surface area density a mm2mm> 2.30 0.79 2.58 0.84 245 036 237 0.23 2.51 0.38
| mean breadth density b mm mm™> 1.59 0.46 1.74 0.39 1.65 044 137 0.25 1.56 0.33
| Euler number density y mm? 131 3.21 033 339 137 0.89 147 0.81 1.34 1.06
| connection probability I' - 0.73 ¢ 0.24 0.79bc 0.23 0.92ab 0.02 0.92a 0.03 092a 0.02
| mean pore diameter @ mm 021b 005 0.21b 0.03 0.36a 0.25 0.37a 0.14 0.40a 0.16
| critical pore diameter @, mm 0.28¢ 010 041b 0.06 0.51b 021 0.82a 0.57 0.74a 0.37
| mean pore distance d mm 0.18 0.04 0.17 0.04 0.16 0.02 0.17 0.02 0.16 0.02
| POM volume density v, mm®cm?® 10.7b 3.2 156b 5.6 21.2a 59 219a 7.6 215a 4.0
| basal respiration pg gg&gi 0.32¢ 0.14 0.36¢ 0.09 0.42bc 0.15 0.56b 033 0.70a 0.23
| growth independent release A gg&igi 0.61b 035 0.56b 042 173 a 125 199a 134 211a 1.44
| growth dependent release B gCO,-Cg h® 036b 029 050b 038 1.15a 055 1.10a 078 1.43a 1.20
| substrate induced release po gg@;;gi 0.97b 0.36 1.06b 0.55 2.88a 1.13 3.09a 0.85 3.54a 1.30
| erowthrateu e 0.10 003 009 002 009 003 010 005 0.10 0.03 /{ Formatted: Superscript
| total microbial biomass TMB ggggi 86b 46 90b 65 299a 212 276a 151  312a 120 //{ Formatted: Superscript
| active microbial biomass AMB gggg‘i 6.0c 6.3 8.7 bc 8.1 209a 145 202ab 186 19.5ab  19.2 /{ Formatted: Superscript
| active fraction ry - 0.09 012 0.14 020 014 016 013 019 0.09 0.09
‘ time of capacity excess te. h 39.5a 3.0 39.4a 4.5 26.7b 2.5 26.1b 22 24.3b 4.6
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720| FEigure 1: Visualization of image processing steps for a 2D section of an X-ray CT image from a) the gray scale data to b) image
segmentation results based on supervised, machine-learning based segmentation (pores yellow, POM pink, matrix green, rocks
brown) and c) pore diameters based on local thickness. The sample was selected from an extensive pasture plot.
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Figure 2: Example of a time series of CO, release after glucose addition at t=-1h and first measurement at t=0h. The fluctuations
in CO, readings during the first hours (empty circles) were discarded and replaced by a constant substrate induced respiration
rate po_during an initial lag phase. The parameters pu, A, B and p,_are derived from a model fit, whereas t,,.(time until a total of
73mg CO,-C was respired) is directly calculated from the time series.
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Figure 3: Selected microstructure properties (a, ¢, d) and relation to selected bulk properties (b, e) for different land uses.
Columns and error bars represented mean and standard deviation at the plot level (n=5), whereas dots represent individual soil

cores. Numbered dots in subfigures a-e correspond to the five selected X-ray CT samples, for which 2D sections are shown below.
Different letters in barplots (a,c.d) indicate significant differences (p<0.05) between land use types.
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Figure 4: a) Basal respiration (pg) as a function of a) land use, b) POM mass (m,.), ¢) field water saturation (6/¢) and d) visible
porosity (>30um) (¢,;s). The numbered dots correspond to the samples depicted in Fig. 3f. Different letters in the barplot
(subfigure a) indicate significant differences (p<0.05) between land use types.
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Figure 5; Initial substrate-induced respiration prior to growth (p,) as a function of (a) land use and (b) basal respiration (pg) as
well as time until capacity excess of the respirometer (t,.) as a function of (c) land use and (d) substrate induced respiration (p,).

High POM and uncertain lag in (b) indicate those samples that have been excluded from regression analysis. Different letters in
barplots (a,c) indicate significant differences (p<0.05) between land use types.
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Figure 6: a) Explained variability (R?) of basal respiration, pj, by different combinations of explanatory variables for all land uses
(pooled) or only cropland (CF+OF) and grassland (IM+EM+EP), respectively. The all-p,-r,-u_model includes all explanatory
variables, except fo microbial variables. The VIP model include the variables of importance to predict p,_(Please refer to the text
for more information). T no variability explained.
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Figure 7: Explained variability (R?) of time of capacity excess, t,y., during substrate induced respiration (t,.) by differentﬂ Formatted: Caption

755| combinations of explanatory variables for all land uses (pooled) or only cropland (CF+OF) and grassland (IM+EM+EP),
respectively. The all-p,-r,-u_model includes all explanatory variables, except for microbial variables. The VIP model include the
variables of importance to predict t,,._(Please refer to the text for more information).t no variability explained.
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