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Abstract.  The study aims to analyze the ability of the most popular and widely used vegetation indices (VI’s), 8 

including NDVI, SAVI, EVI and TDVI, to discriminate and map soil salt contents compared to the potential of 9 

evaporite mineral indices such as SSSI and NDGI. The proposed methodology leverages on two complementary 10 

parts exploiting simulated and imagery data acquired over two study areas, i.e. Kuwait-State and Omongwa salt-pan 11 

in Namibia. In the first part, a field survey was conducted on the Kuwait site and 100 soil samples with various 12 

salinity levels and contents were collected; as well as, herbaceous vegetation cover canopy (alfalfa and forage 13 

plants) with various LAI coverage rates. In a Goniometric-Laboratory, the spectral signatures of all samples were 14 

measured and transformed using the continuum removed reflectance spectrum (CRRS) approach. Subsequently, 15 

they were resampled and convolved in the solar-reflective spectral bands of Landsat-OLI, and converted to the 16 

considered indices. Meanwhile, soil laboratory analyses were accomplished to measure pHs, electrical conductivity 17 

(EC-Lab), the major soluble cations and anions; thereby the sodium adsorption ratio was calculated. These elements 18 

support the investigation of the relationship between the spectral signature of each soil sample and its salt content. 19 

Furthermore, on the Omongwa salt-pan site, a Landsat-OLI image was acquired, pre-processed and converted to the 20 

investigated indices. Mineralogical ground-truth information collected during previous field work and an accurate 21 

Lidar DEM were used for the characterization and validation procedures on this second site. The obtained results 22 

demonstrated that regardless of the data source (simulation or image), the study site and the applied analysis 23 

methods, it is impossible for VI’s to discriminate or to predict soil salinity. In fact, the spectral analysis revealed 24 

strong confusion between signals resulting from salt-crust and soil optical properties in the VNIR wavebands. The 25 

CRRS transformation highlighted the complete absence of salt absorption features in the blue, red and NIR 26 

wavelengths. As well as the analysis in 2D spectral-space pointed-out how VI’s compress and completely remove 27 

the signal fraction emitted by the soil background. Moreover, statistical regressions (p ˂ 0.05) between VI’s and EC-28 

Lab showed insignificant fits for SAVI, EVI and TDVI (R
2 

≤ 0.06), and for NDVI (R
2
 of 0.35). Although the 29 

Omongwa is a natural flat salt playa, the four derived VI’s from OLI image are completely unable to detect the 30 

slightest grain of salt in the soil. Contrariwise, analyses of spectral signatures and CRRS highlighted the potential of 31 

the SWIR spectral domain to distinguish salt content in soil regardless of its optical properties. Likewise, according 32 

to Kuwait spectral data and EC-Lab analysis, NDGI and SSSI incorporating SWIR wavebands have performed very 33 

well and similarly (R
2
 of 0.72) for the differentiation of salt-affected soil classes. These statistical results were also 34 

corroborated visually by the maps derived from these evaporite indices over the salt-pan site, as well as by their 35 
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consistency with the validation points representing the ground truth. However, although both the indices have 36 

mapped the salinity patterns almost similarly, NDGI further highlights the gypsum content. While the SSSI show 37 

greater sensitivity to salt crusts present in the pan area that are formed from different mineral sources (i.e., halite, 38 

gypsum, etc.). 39 

1. Introduction 40 

Soil salinity or salinization is a global environmental threat, it occurs in different geographical zones characterized 41 

by different climatic conditions and can result from both natural and anthropogenic actions (Shahid et al., 2018). In 42 

humid zones, rainfalls exceeds the evaporation, thus the soluble salts are leached from the soil surface to deeper 43 

zone. While, semi-arid and arid lowlands are more affected because of near surface saline groundwater and due to 44 

evaporation exceeding precipitations (Dehaan and Taylor, 2002; Shahid and Rahman, 2011). Moreover, soil salinity 45 

is associated with several other physical factors including soil properties, permeability, geomorphology, geology, 46 

micro-topography, wastewater use and climate variability (Hartemink, 2014; Shahid and Behnassi, 2014; Dagar et 47 

al., 2016; Bannari and Al-Ali, 2020; Bannari et al., 2021). During the past decades the global warming has 48 

decreased precipitations, increased temperatures, reduced soil moisture regime and, subsequently, accelerated 49 

expansion of this menacing phenomenon. Indeed, it represents a serious problem for health and functionality of arid 50 

ecosystems, significant impacts on land desertification, reduction of crop production and economic aspects 51 

(Mougenot et al., 1993; Naing’OO et al., 2013; Arrouays et al., 2017; FAO, 2018; Ivushkin et al., 2019; Hassani et 52 

al., 2020); as well as on human wellbeing and sustainable development. Whereas, in irrigated agricultural lands, 53 

salinity occurs when salts are concentrated in soils by the evaporation of irrigation water. The major causes are a 54 

combination of poor land management and crude irrigation practices, which cause changes in soil and vegetation 55 

cover, and ultimately loss of vegetation and agricultural productivity (Metternicht and Zinck, 2003; Masoud and 56 

Koike, 2006; Corwin and Scudiero, 2019; Zhu et al., 2021; Gopalakrishnan and Kumar, 2021). Obviously, 57 

combating soil salinization should lead to enhance soil fertility, agricultural productivity and profitability, and 58 

ensure food security (Teh and Koh, 2016).  59 

Furthermore, it is common that both saline and sodic conditions occur together in the soil. Salinity refers to the 60 

amount of soluble salts in soil, such as sulfates (SO4), carbonates (CO3), and chlorides (Cl
-
) mainly of sodium (Na), 61 

Calcium (Ca), Potassium (K), Magnesium (Mg) and other cations to a lesser extent (Richards, 1954). The solubility 62 

of halite (NaCl), calcium sulphate-anhydrite (CaSO4) and gypsum (CaSO4.2H2O) is used as a standard for 63 

comparing the levels of salinity content in the soil. According to Richards (1954), a soil is said to be saline when it 64 

has an electrical conductivity of saturation extract (ECe) greater than 4 dS.m
-1

 at 25°C and a pHs ˂ 8.2. While 65 

sodicity refers to the exchangeable sodium (Na
+
) relative to exchangeable Ca

2+
 and Mg

2+
 in soil. Sodicity has a 66 

strong influence on the soil structure, dispersion occurs when the clay particles swell strongly and separate from 67 

each other on wetting. On drying, the soil becomes dense, cloddy, and without structure (Charters, 1993; Sumner et 68 

al. 1998). Sodic soils have a pHs greater than 8.2 and a preponderance of sodium, carbonate and bicarbonate 69 

(Richards 1954). Ranges of salinity are usually described as non-saline, very slightly saline, slightly saline, 70 

moderately saline, and strongly saline (high to extreme) based on the ECe values (USDA, 2014; Metternicht and 71 
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Zinck, 1997; Soil Science Division Staff, 2017). Traditionally, soil salinity is measured by geophysical method 72 

(EM38) in the field (apparent salinity) and through laboratory determination (EC-Lab) using water extracted from a 73 

saturated soil paste which is globally accepted a standard to quantify soil salinity (Norman, 1989; USDA, 2004 and 74 

2014; Zhang et al., 2005). Unfortunately, the laboratory method is expensive, time-consuming, and laborious when 75 

large area is to be investigated, especially for temporal salinity monitoring. Thus, remote sensing science, 76 

technology and image processing methods have outperformed ground-based methods, and they have been used for 77 

identifying, mapping and monitoring salt-affected zones (Masoud and Koike, 2006; Meternich and Zinck, 2009; 78 

Ben-Dor et al., 2009; Nawar et al., 2014; Wu et al., 2014; El-Battay et al., 2017; Bannari et al., 2018 and 2020; 79 

Bannari, 2019; Davis et al., 2019; Al-Ali et al., 2021).  80 

Previously, photo-interpretation approaches have been adopted to follow the development and the dynamics of 81 

soil salinity and sodicity in space and time (Manchanda and Khanna, 1979; Rao et al., 1991). These approaches have 82 

been based on the analysis of colour-infrared photographs or on the false color composites of images acquired from 83 

space with the first generation of Landsat sensors (MSS and TM). Nevertheless, the advancements in multispectral, 84 

hyperspectral, thermal, and radar technologies with significant radiometric performances and high signal-to-noise 85 

ratio (SNR) are providing the best and the newest opportunities for more precise and more effective salinization 86 

detection and prediction (Dehaan and Taylor, 2002; Metternicht and Zinck, 2003; Lasne et al., 2009; Fan et al., 87 

2016; Nurmemet et al., 2018; Abuelgasim et al., 2018; Hoa et al., 2019; Wang et al., 2020). Indeed, thanks to the 88 

free availability of remote sensing data acquired with different sensors onboard various platforms, soil salinity was 89 

modeled for global, regional and local scales using, respectively, coarse, moderate and high spatial resolutions, i.e., 90 

MODIS, Landsat, Sentinel, Ikonos, and Worldview (Shamsi et al., 2013; Alexakis et al., 2016; Bannari et al., 2017a; 91 

Kasim et al., 2018; Whitney et al., 2018; Ivushkin et al., 2019; Bannari, 2019; Moussa et al., 2020; Hassani et al., 92 

2020; Al-Ali et al., 2021). However, the most frequently used data to investigate and map soil salinity remain those 93 

acquired by remote sensing sensors with medium spatial and spectral resolutions, such as Landsat series (TM, 94 

ETM+, and OLI) and Sentinel-MSI (Joshi et al., 2002; Metternicht and Zinck, 2009; Fan et al., 2016; El-Battay et 95 

al., 2017; Bannari et al., 2018 and 2020; Davis et al., 2019; Taghadosi et al., 2019; Wang et al., 2019). 96 

Otherwise, in addition to remote sensing sensors technologies improvement and innovation, numerous image 97 

processing approaches and models were also developed and applied for soil salinity retrieval. They include mixture-98 

tuned matched filter approach (Dehaan and Taylor, 2003), regression of multi-spectral bands (Lobell et al., 2010; 99 

Fan et al., 2012; Sidike et al., 2014), partial least square regression (Fan et al., 2015; Wang et al., 2018; 100 

Gopalakrishnan and Kumar, 2020), multivariate adaptive regression splines (Nawar et al., 2015), artificial neural 101 

network model (Farifteh et al., 2008; Jiang et al., 2019; Boudibi et al., 2021), linear spectral mixture analysis (Ghosh 102 

et al., 2012; Masoud et al., 2019), spectral angle mapper (Bharti et al., 2015; Wang et al., 2021), support vector 103 

machines (Gleeson et al., 2010; Jiang et al., 2019), and machine learning regression (Wu et al., 2018; Hassani et al., 104 

2020). Definitely, these sophisticated and complicated methods require extensive training information and/or ground 105 

endmembers measurements. However, the simplicity of empirical and/or semi-empirical methods based on spectral 106 

indices are easier to transfer between sensors and can be used as a robust alternative compared to the revolutionary 107 

and complex modelling methods; because they are based on the knowledge of spectral absorption features that 108 
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characterize specifically the target under investigation (Rouse et al., 1974; Peon et al., 2017, Milewski et al., 2019). 109 

Moreover, they have the advantage of being reproducible, easily transferable and applicable in other geographic 110 

regions (Mulder et al., 2011). 111 

In the literature, some evaporite mineral indices have been proposed for soil salinity detection and mapping. For 112 

instance in Pakistan, Khan et al. (2001) proposed three soil salinity indices based on red and near-infrared (NIR) 113 

bands of LISS-II sensor onboard the Indian satellite IRS-1B. These indices are named Brightness Index (BI), 114 

Normalized Difference Salinity Index (NDSI) and Salinity Index (SI). Among them, the authors found that the 115 

NDSI is the most promising for different salinity classes’ characterization in semi-arid environment using satellite 116 

images and in situ observations. In irrigated agricultural land in Syria, Al-Khaier (2003) highlighted the importance 117 

of shortwave infrared (SWIR) bands of Landsat-ETM+ and ASTER for soil salinity contents discrimination. He 118 

proposed the Salinity Index (SI-ASTER-4,5) based on bands 4 and 5 of ASTER sensor (i.e., B4: 1.6-1.7 m and 119 

B5:2.145-2.185 m) or the bands 5 (SWIR-1) and 7 (SWIR-2) of Landsat-ETM+. Based on the field soil sampling 120 

and EC-Lab, the validation of this index showed a very good potential for salt-affected soil prediction. Moreover, in 121 

the context of a cooperative project between India and the Netherlands (IDNP, 2002) three soil salinity indices were 122 

proposed. These indices integrate the NIR and SWIR bands of Landsat-TM, and are named SI-1, SI-2 and SI-3. 123 

Combining field soil survey, soil chemical laboratory analysis, spectroscopy measurements and ALI-EO-1 image, 124 

Bannari et al. (2008a and 2016) demonstrated that the SWIR bands are more sensitive than other bandwidths to 125 

discriminate among different soil salinity classes, particularly slight and moderate salinity in irrigated agricultural 126 

lands. Consequently, they proposed the Soil Salinity and Sodicity Index (SSSI) integrating the SWIR bands of ALI-127 

EO or Landsat-OLI sensors. Recently, based on the gypsum absorption feature in 1.75 m and following the same 128 

concept behind the development of normalized difference vegetation index (NDVI), Milewski et al. (2019) proposed 129 

the normalized difference gypsum index (NDGI). This new index exploits the most relevant narrow wavelengths 130 

characterizing the gypsum absorption features: 1690 and 1750 m. It has been tested on Omongwa salt-pan area in 131 

Namibia, which is a natural flat salt playa dominated by evaporite minerals such as halite, gypsum, calcium 132 

carbonate, and minor content of clay (Mees, 1999; Fookes and Lee, 2018; Genderjahn et al., 2018). Using 133 

hyperspectral data acquired with diver sensors (space-borne Hyperion, airborne HySpex, and simulated space-borne 134 

EnMAP imagery), spectroradiometric measurements, XRD mineralogical analyses; as well as, applying continuum 135 

removed reflectance spectrum (CRRS), slop and half-area processing methods, the validation of NDGI provides 136 

satisfactory results (Milewski et al., 2019). Coincidentally, the NDGI is simply the SI-ASTER-4,5 proposed 16 years 137 

ago by Al-Khaier (2003). Otherwise, we end up with the same index under two different names and different 138 

authors, particularly when the SWIR bands of Landsat sensors or Sentinel-MSI are used, as well as the bands 4 and 139 

5 of ASTER. Obviously, the difference between them is clear when using hyperspectral data. 140 

In other respects, since the emergence of remote sensing as a new scientific discipline in the early 1970s, 141 

vegetation indices (VI’s) were involved as radiometric measurements of the spatial and temporal distribution of 142 

vegetation photo-synthetically active. Based on the strong chlorophyll absorption in red and intense reflectivity by 143 

the canopy biomass in NIR, these indices play an important role in deriving various biophysical and physiological 144 

parameters, including percentage of vegetation cover, leaf area index (LAI), absorbed photo-synthetically active 145 
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radiation (APAR), production rate of the biomass, etc. Moreover, their interest lies in the detection of changes in 146 

land use and the monitoring of the seasonal dynamics of vegetation on local, regional and global scales (Leeuwen et 147 

al., 1999). Based on the red and NIR bands, the NDVI was proposed by Rouse et al. (1974) at the dawn of remote 148 

sensing. Since these two spectral bands are generally present on Earth observation and meteorological satellites, and 149 

often contain more than 90% of the information relating to vegetation canopy (Baret, 1986; Bannari et al., 1995), the 150 

NDVI had taken a privileged place in the NASA/NOAA Pathfinder project (James and Kalluri, 1994). Thus, it was 151 

daily derived from NOAA-AVHRR data at the Earth scale. Subsequently, it was also derived every day from 152 

MODIS and SPOT-Vegetation data to produce a time series products for global vegetation assessment and 153 

monitoring at the regional and global scales (Chéret and Denux, 2011; Hameid and Bannari, 2016; Liu et al., 2021). 154 

Due to this glorious history and its simplicity, the NDVI has become the most widely used to assess vegetation. 155 

However, despite its popularity and its capability to reduce the sun illumination geometry and to normalize the 156 

topographic variations (Kaufman and Holben, 1993; Bannari et al., 1995), the NDVI shows some sensitivity to the 157 

atmosphere (scattering and absorption) and soil background artefacts (color, brightness, texture, etc.). To overcome 158 

these limitations, more than fifty VI’s have been developed and proposed for various applications and under specific 159 

conditions (Bannari et al., 1995). However, despite these new development and innovative efforts, the use of VI’s to 160 

characterize vegetation canopy remains limited by various physical factors that affect the recorded signal at the 161 

satellite level, such as atmosphere, sensor-drift, topography, soil background optical properties, saturation, linearity, 162 

and BRDF (Price, 1987; Myneni and Asrar, 1994; Running et al., 1994; Burgess et al., 1995; Bannari et al., 1996; 163 

Teillet et al., 1997; Huete et al., 1997; Bannari et al., 1999).  164 

Cert, the majority of these limiting factors can be corrected on remote sensing imagery or in situ measurements 165 

before the extraction of such index; except the impact of the optical properties of the soil background. This last 166 

factor has been considered in the theoretical concept supporting many VI’s development for minimising or removing 167 

completely the contribution of the soil underlying the canopy on the remotely sensed signal and, therefore, to 168 

enhance that resulting from the biomass. For instance, the soil adjusted vegetation index (SAVI) was proposed by 169 

Huete (1988) to minimize the artefacts caused by soil background on the estimation of vegetation cover fraction by 170 

incorporating a correction factor “L”. Moreover, to overcome the limitations of linearity and saturation, to reduce 171 

the noise of atmospheric effects, and to remove the artefacts of soil optical properties, the enhanced vegetation index 172 

(EVI) was proposed also by Huete et al. (2002). Furthermore, the transformed difference vegetation index (TDVI) 173 

was proposed by Bannari et al. (2002) to describe the vegetation cover fraction independently to the soil-174 

background, to reduce the saturation problem, and to enhance the vegetation dynamic range linearly. These indices 175 

(NDVI, SAVI, EVI, and TDVI) were developed and used to establish a close relationship between radiometric 176 

responses and vegetative cover densities. However, despite their particular mission of assessing and managing 177 

vegetation covers, many users of remote sensing applied these indices for soil salinity detection and mapping 178 

(Fernandez-Buces et al., 2006; Aldakheel, 2011; Allbed et al., 2014; Asfaw et al., 2016; Elhag, 2016; Azabdaftari 179 

and Suna, 2016; Ferdous and Rahman, 2017; Neto et al., 2017; Peng et al., 2019; Taghadosi et al., 2019; Nguyen et 180 

al., 2020; Zhu et al., 2021; Golabkesh et al., 2021). Hence the interest of this research to investigate what VI’s can 181 

really tell us about the discrimination of soil salinity classes’. The most popular and widely used indices presented 182 
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above (NDVI, SAVI, EVI and TDVI) are considered and compared to the newly proposed evaporite mineral indices 183 

(NDGI and SSSI). In this regard, a field survey was conducted for soil and vegetation cover sampling, soil 184 

laboratory analysis, spectral measurements in a Goniometric-Laboratory, and Landsat-OLI image were used. Two 185 

study-sites in arid environments are considered, the Kuwait-State in the Middle-East desert and the Omongwa salt-186 

pan located in the southwest of Kalahari desert in Namibia.  187 

2. Materials and Methods 188 

Fig. 1 summarizes the applied methodology by combining two independent datasets (simulated and image) acquired 189 

over two different study areas located in Kuwait and Namibia. On the Kuwait site, a field survey was conducted and 190 

100 soil samples were collected with various salt contents; as well as a vegetation cover was sampled at different LAI 191 

coverage rates. Then, the bidirectional reflectance factor was measured above each sample of soil and vegetation in a 192 

Goniometric-Laboratory using an Analytical Spectral Device (ASD) spectroradiometer (ASD, 2015). After the 193 

spectral measurements, laboratory analyses of soil samples were achieved to measure the water soluble cations (Ca
2+

, 194 

Mg
2+

, Na
+
, and K

+
) and anions (Cl

-
 and SO4

2-
) in the extract from saturated soil paste, the pH of saturated soil paste 195 

(pHs) and the electrical conductivity (EC-Lab) of the extract from saturated soil paste; as well as the sodium adsorption 196 

ratio (SAR) being calculated using standard calculation procedure (USDA, 2004 and 2014; Zhang et al., 2005). The 197 

results of these analyses provided reliable information on the type and degree of salinity and sodicity in each soil 198 

sample. Thus, they support the interpretation of the complex and close relationship between the soil-salt contents and 199 

their spectroradiometric behaviours. Furthermore, the measured spectra of the most representative soil salinity classes 200 

and LAI densities were transformed using the CRRS (Clark et al., 1987). Likewise, all measured spectra were 201 

resampled and convolved in the solar-reflective spectral bands of OLI sensor using the Canadian Modified Simulation 202 

of a Satellite Signal in the Solar Spectrum (CAM5S) radiative transfer code (Teillet and Santer, 1991), and the relative 203 

spectral response profiles characterizing the OLI sensor filters of each spectral band. Afterwards, the considered 204 

indices were calculated and analysed spectrally, as well as fitted statistically with EC-Lab. While, on the Omongwa salt 205 

pan site, the acquired OLI image was pre-processed and converted to the investigated indices. Published by Milewski 206 

et al. (2017), mineralogical ground-truth information collected during previous field work and analysed in the 207 

laboratory, and an accurate Lidar DEM were used for the characterization and validation of the results obtained on 208 

this second site.  209 

[ Figure 1 ] 210 

2.1. Study areas 211 

The state of Kuwait (Fig. 2) situated in the north western part of the Arabian Peninsula (29.40⁰ N and 47.50⁰ E) is 212 

characterized by an arid climate, very hot summers (47 
ᵒ
C) and irregular precipitations with an annual mean of 118 213 

mm. The main geomorphological features characterized the study area are escarpments, sand dunes, Sabkhas (pure 214 

salt accumulation), depressions, playas and alluvial fans (Al-Sarawi, 1995). These features are controlled by three 215 

types of surface deposits. The first is represented by Aeolian deposits such as dunes and sand sheet. The second is 216 

identified by evaporites including sodium chloride (halite, NaCl), calcium carbonate (calcite, CaCO3), gypsum 217 
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(CaSO4.2H2O), and anhydrite (CaSO4) in coastal and inland Sabkhas. The third include fluvial deposits such as 218 

pebbles and gravels, which are located along the Wadis channels. Each of these deposits has specific geomorphic 219 

characteristics based on their origin, topography that is generally flat with low relief, and climatic impacts. 220 

Geologically, Kuwait stratigraphy consists of two stratigraphic groups; Kuwait Group and Hasa Group (Milton, 221 

1967) consisting of six Formations, four of them are exposed in the outcrops represented by Dammam, Ghar, Mutla 222 

and Jal-AzZor Formations. In Hassa Group, the Dammam Formation (Eocene) consists of white fine grained cherty 223 

limestone and forms some karst; however, the three other Formations are composed mostly of sandy limestone, 224 

calcareous sandstones, sand and clay. Soils of Kuwait are mostly categorized as sandy with limited organic matter, 225 

very low nutrient and very high amount of calcareous materials. Moreover, Gatch layer occurs in many Kuwaiti 226 

soils, which is considered a calcic and/or gypsic pan (Milton, 1967).  227 

 228 

[ Figure 2 ] 229 

 230 

The Omongwa salt-pan area is a natural flat salt playa covering approximately 20 km
2
 (Fig. 3), located in the south-231 

west of Kalahari region in Namibia (23°43’S and 19°22’E) at 1200 m altitude above sea level (Genderjahn et al., 232 

2018). The climate is arid and hot, the average annual temperature is about 20°C with a maximum around 48°C 233 

during the summer (July and August), the average precipitation is about 220 mm/year, and the evaporation exceeds 234 

precipitations. This area is devoid of vegetation except some scattered halophytes in the peripheral neighbourhood 235 

of the north-western of the playa (Milewski et al., 2017). The pan soils are characterized by very low organic matter 236 

content and mixed evaporite sediments (photos in Fig. 3) including halite, gypsum, calcium carbonate, and minor 237 

content of clay (Mees, 1999; Fookes and Lee, 2018; Genderjahn et al., 2018). However, the upper soil surfaces are 238 

mostly dominated by halite crust in variable quantities (Bryant, 1996; Lowenstein and Hardie, 1985), which is 239 

formed over time due to the succession of flooding events in the winter and high temperatures during the summer, as 240 

well as the contribution of wind activity (Schuller et al., 2018; Milewski et al., 2017).  241 

 242 

[ Figure 3 ] 243 

2.1. Soil and vegetation cover sampling 244 

Soils of Kuwait are mostly sandy with a very low organic matter and are infertile (USDA, 1999). They have been 245 

classified into two main soil orders; the Aridisols occupying 70.8% and the Entisols occupying 23.2% of the area 246 

surveyed, while the other restricted and marginal groups are representing the remaining percentage (6.64%). These 247 

two soil orders are further classified into eight soil great groups based on morphological, mineralogical, chemical 248 

and physical characteristics (Omar and Shahid, 2013; USDA, 1999). The extreme soil salinity class (Sabkhas) 249 

occurs in the Aquisalids soil great group on coastal flats and inland Playas, which contain very high salt contents 250 

and gypsum. High soil salinity class is identified in Haplocalcids that attribute to layer of carbonate masses and salt 251 

contents. Moderate to low salinity class occurs in Petrocalcids soil, which is characterised by calcic hardpan 252 

overlying sandy to loamy soils and presence of scattering halophytes.  253 
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Field survey was organized in the center and the east of Kuwait territory (Fig. 2), it includes irrigated 254 

agricultural fields, desert land, urban areas, coastal zones, and low-land such as Bubiyan Island. Based on the 255 

fieldwork and soil map, the following soil salinity classes represented by photos in Fig. 2 were considered: non-256 

saline (A), low (B), moderate (C), high (D), very high, and extreme salinity (F). The field survey was organized 257 

during four days (15
th

 to 18
th

 May 2017), and geo-referenced 100 soil samples representing these classes were 258 

collected from upper layer of the soil (0 to 5 cm deep considering an area about 50 × 50 cm), placed and numbered 259 

in plastic bags. In addition, each soil sample was physically described (color, brightness, texture, etc.), 260 

photographed, and geographically localized using accurate GPS ( ≤ ± 30 cm). 261 

Furthermore, at a medium growth stage, herbaceous vegetation cover canopy (alfalfa and forage plants) with 262 

different LAI coverage rates were collected from the cultivated agricultural fields. A sampling quadrate of 50 cm by 263 

50 cm was used, and all the aboveground biomass (approximately 70 cm height) was harvested within this area. The 264 

samples were immediately stored in bags in a cooler and transported to the laboratory for spectroradiometric 265 

measurements as discussed in the following section 2.3.  266 

2.2. Soil laboratory analysis 267 

In the laboratory, the considered soil samples were air-dried, ground, and passed through 2 mm sieve. After the 268 

spectral signatures measurements, the saturated soil paste extract method was utilized to measure the EC-Lab and pH 269 

of saturated soil paste (pHs). Moreover, the major soluble cations (Ca
2+

, Mg
2+

, Na
+
, and K

+
) and anions (Cl

-
 and 270 

SO4
2-

) were measured, and the sodium adsorption ratio (SAR) was calculated. These analyses have been carried out 271 

at the soil laboratory using methods that meet the current international standards in soil science (Richards, 1954; 272 

Zhang et al., 2005; USDA, 2004 and 2014).   273 

2.3.  Spectroradiometric measurements 274 

Spectroradiometric measurements were acquired in the Goniometric-Laboratory using an ASD (Analytical Spectral 275 

Devices Inc., Longmont, CO, USA) FieldSpec-4 Hi-Res (high-resolution) spectroradiometer (ASD, 2015). Equipped 276 

with two detectors with hyperspectral resolution covering the VNIR and SWIR wavelengths (350 and 2500 nm), the 277 

ASD measures a continuous spectrum with a 1.4 nm sampling interval from 350 to 1000 nm and a 2 nm from 1000 278 

to 2500 nm; then it resamples the measurements in 1-nm intervals allowing the acquisition of 2151 contiguous 279 

bands per spectrum. The sensor is characterized by the programming capacity of the integration time, which allows 280 

an increase of the SNR as well as stability.  281 

The bidirectional reflectance spectra were measured above each air-dry soil sample at nadir with a field of view 282 

(FOV) of 25° and a solar (Halogen floodlights) zenith angle of approximately 5° by averaging forty measurements. 283 

The ASD was installed at a height of 60 cm approximately over the target, which makes it possible to observe a 284 

surface of approximately 700 cm
2
. Each soil sample was placed on a black surface to minimise the multiple 285 

scattering effects allowing only the observation and the measurements of the soil signal. For vegetation cover, the 286 

plants were fixed vertically in a black wooden box filled with soil to imitate the in-situ canopy at different LAI 287 

coverage’s. Similarly to soil samples, the box was placed on a large black surface to minimise the multiple 288 
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scattering impacts and only measure the signal reflected by the vegetation canopy. While at this time, the height of 289 

the ASD was about 100 cm over the canopy allowing the observation of a surface with a diameter of 44 cm. A laser 290 

beam was used to locate the center of the ASD-FOV over the center of each target. The reflectance factor of each 291 

sample (soil or vegetation) was calculated by rationing target radiance to the radiance obtained from a calibrated 292 

“Spectralon panel” (Labsphere, 2001) in accordance with the method described by Jackson et al. (1980). Moreover, 293 

the corrections were applied for the wavelength dependence and non-lambertian behaviour of the panel (Sandmeier 294 

et al., 1998; ASD, 2015; Ben-Dor et al., 2015). 295 

 296 

[ Figure 4 ] 297 

2.4.  Continuum-removal 298 

Spectral signatures are processed and transformed using numerous approaches to retrieve information regarding the 299 

change in reflectance of particular target over a specific bandwidth between 350 and 2500 nm (Van-Der-Meera, 300 

2004). For instance, absorption features (position, depth, width, and asymmetry) are used to quantitatively estimate 301 

the mineral or chemical composition of samples from the measured spectra in the field, in the laboratory and/or from 302 

hyperspectral images. To emphasize these absorption features, many approaches were proposed including relative 303 

absorption-band-depth (Crowley et al., 1989), spectral feature fitting technique, and Tricorder and Tetracorder 304 

algorithms (Clark et al., 2003). These approaches work on so-called CRRS approach, thus recognizing that the 305 

absorption in a spectrum has a continuum and individual absorption features (Clark et al., 1987; Van-Der-Meera, 306 

2004; Clark et al., 2014). Proposed by Clark and Roush (1984), CRRS transformation and analysis allows the 307 

isolation of individual absorption features in the hyperspectral signature of a specific target under investigation, 308 

analysis and comparison. It normalizes the original spectra and helps to compare individual absorption features from 309 

a common baseline (Clark et al., 1987). The continuum is a convex hull fit over the top of a spectrum under study 310 

using straight-line segments that connect local spectra maxima. The first and last spectral data values are on the hull; 311 

therefore, the first and last bands in the output continuum-removed data file are equal to 1.0. In other words, after 312 

continuum removed, a part of the spectrum without absorption features will have a value of 1, whereas complete 313 

absorption would be near to 0, with most absorptions falling somewhere in between. The CRRS approach was used 314 

for discriminating and mapping rocks and minerals (Clark et al., 1990; Clark and Swayze, 1995), soil salinity 315 

(Farifteh, 2007; Nawar et al., 2014; Bannari et al., 2018; Mousa et al., 2019; Milewski et al., 2019), as well as 316 

vegetation cover (Kokaly et al., 2003; Huang et al., 2004; Manevski et al., 2011). In this study, the continuum 317 

algorithm implemented in ENVI image processing system was used (ENVI, 2012). 318 

2.5.  Spectral sampling and convolving in Landsat-OLI bands 319 

As discussed above, the measured bidirectional reflectance factors with the ASD have a 1-nm interval allowing the 320 

acquisition of 2151 contiguous hyperspectral bands per spectrum. However, most multispectral remote sensing 321 

sensors measure the reflectance that is integrated over broad bands. Consequently, the measured spectra of each soil 322 

and each vegetation sample was resampled and convolved to match the solar-reflective spectral responses functions 323 
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characterizing the optics and electronics of OLI instrument in the VNIR and SWIR spectral bands. In this step, the 324 

resampling procedure considers the nominal width of each spectral band. Then, the convolution process was 325 

executed using the CAM5S radiative transfer code (RTC). This fundamental step simulates the signal received by 326 

OLI sensor at the top of the atmosphere from a surface reflecting solar and sky irradiance at sea level, considering 327 

the filter of each individual band, and assuming ideal atmospheric conditions without scattering or absorption 328 

(Steven et al., 2003; Zhang and Roy, 2016). The reflectance values of soil samples with various salinity degrees and 329 

vegetation cover with different LAI densities were simulated and generated at the satellite-sensor level in VNIR and 330 

SWIR spectral bands of OLI. Thus, the examined VI’s and evaporite indices were calculated and statistically 331 

analysed.   332 

2.6. Landsat-OLI image pre-processing 333 

Over Omongwa salt-pan site, the used Landsat-OLI image was acquired during the dry season the 28
th

 of September 334 

2016 (Fig. 3) by a very clear day without clouds or cirrus contaminated, and without shadow effects because 335 

topographic variations are absent in this area. Before processing and information extraction, pre-processing 336 

operations have been applied to this image (Teillet et al., 1994; Bannari et al., 1999). Indeed, radiometric sensor-337 

drift calibration and illumination geometry were corrected to convert the DN to the apparent reflectances at the top 338 

of atmosphere using the irradiance, solar zenith and azimuthal angle values, and absolute calibration parameters 339 

(gain and offset) delivered by USGS-EROS Center in the image metadata file. Thereafter, the atmospheric 340 

interferences measured by the nearest meteorological station to the study site during the acquisition of image were 341 

integrated in CAM5S RTC to simulate and calculate the required atmospheric correction parameters for ground 342 

refelectances retrieval (Pahlevan et al., 2014). The implementation and application of these pre-processing 343 

operations were combined in one-step using PCI-Geomatica (PCI, 2018) to avoid multiple resampling and to 344 

preserve the radiometric integrity of the image data.  345 

2.7. Spectra and image data processing 346 
 347 
Theoretically, salinity indices (SI) must be highly sensitive to different salinity contents present in the soil surface, 348 

allowing only a qualitative assessment. Nevertheless, they can also be integrated into semi-empirical or physical 349 

models for quantitative prediction of the salinity content classes in the soil (Al-Ali et al., 2021). To select the most 350 

informative soil salinity index, comparative studies have been completed by applying regression analyses between 351 

EC-Lab and SI derived from spectral measurements, satellite, airborne and drone images (Allbed et al., 2014; Bannari 352 

et al., 2018; Peng et al., 2019; Hu et al., 2019; Wei et al., 2020; Milewski et al., 2020; Gopalakrishnan and Kumar, 353 

2020). Often, obtained results vary depending on the spectral wavebands integrated in the equation of each index. 354 

For instance, in irrigated agricultural land in North Africa, the comparison among the SI discussed in the 355 

introduction above pointed out the very limited ability of these indices to differentiate between slight and moderate 356 

salinity classes (Bannari et al., 2016). But they have shown some potential to indicate the impact of soil salinity on 357 

the crop canopy stress. Considering a wide range of salinity contents (from slight to extreme) in arid landscape 358 

(Middle-East) (Shahid et al., 2010), these SI have poorly differentiated the salinity classes (El-Battay et al., 2017, 359 
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Bannari et al., 2017b; Al-Ali et al., 2021). On the other hand, these studies showed that the SSSI integrating the 360 

SWIR bands provided the best sensitivity to the presence of salts in the soil. As well as the NDGI (or, SI-ASTER-4,5) 361 

performed for evaporite minerals differentiation (Al-Khair, 2003; Milewski et al., 2019). Therefore, these two 362 

indices are considered in the present study and compared to the most popular and widely used VI’s (NDVI, SAVI, 363 

EVI and TDVI) to characterize the salinity status in the soil surface. The six indices were implemented and 364 

calculated from simulated data and Landsat-OLI image using EASI-modeling of PCI-Geomatica software (PCI, 365 

2018). 366 

 367 
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Where: R and NIR are the ground reflectance in the red (OLI-4) and near-infrared (OLI-5) spectral bands, “L” is a 375 

correction factor equal 0.5; SWIR1 and SWIR2 are the ground reflectance in shortwave infrared spectral bands, 376 

OLI-6 and OLI-7 bands, respectively.  377 

3. Results Analysis 378 
 379 

3.1.  Spectral and soil laboratory analyses  380 

The spectral signatures of the measured 100 soil samples are presented in Fig. 4. These spectra show important 381 

changes in the reflectance’s amplitudes and shapes highlighting several absorption features (position and depth). In 382 

the VNIR, they are influenced by several factors including mineralogical composition and assemblage, impurity, 383 

structure, size of salt crystals, and the soil optical properties (color brightness, texture, roughness, etc.). While, in the 384 

SWIR significant absorption features are influenced and controlled by the type and content of the salt mineralogy 385 

existing in each soil sample particularly the gypsum, sodium chloride (halite), calcium carbonate (calcite), and 386 

sodium bicarbonate (nahcolite). Since the impact of moisture content on the measured soil samples is completely 387 
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absent or insignificant (0 to 0.05%), only weak absorption bands near 970, 1160, 1350, 1800, and 2208 nm were 388 

observed in some samples (atmospheric water vapor absorption features in 1440 and 1920 nm are not considered in 389 

this analysis). 390 

Furthermore, the EC-Lab revealed that the obtained values are distributed progressively in a wider range between 391 

1.6 and 700 dS.m
-1

, respectively, for agricultural fields and Sabkha “salt scald” consisting of pure salt (halite). These 392 

soil samples present high quantities of chloride (Cl
- 

: 9.6 to 3932 meq/l), sodium (Na
+
: 23 to 3615 meq/l), 393 

magnesium (Mg
2+

: 7.8 to 1118 meq/l) and calcium (Ca
2+

: 39 to 230.4 meq/l) than other ions. The dominant ions in 394 

the soil samples are chloride (Cl
-
) and sodium (Na

+
) showing, respectively, an R

2
 of 0.98 and 0.87 with EC-Lab. 395 

While, the low relationship occurs with Ca
2+

 (R
2
 of 0.23) and moderate with Mg

2+
 (R

2
 of 0.48) and K

+
 (R

2
 of 0.46). 396 

The main sources of Cl
-
 in the soil are from seawater (level rise and spray), precipitation, salt dust, irrigation, and 397 

fertilization. Whereas, parent material, pedogenic processes, irrigation with saline-sodic waters and inappropriate 398 

soil drainage are the main sources of Na
+
. Likewise, it is observed that the EC-Lab and SAR increased gradually and 399 

very largely from non-saline (EC-Lab: 1.6 dS.m
-1

, SAR: 0.4) to extreme salinity in Sabkha (EC-Lab: 700 dS.m
-1

, SAR: 400 

445), yielding an R
2
 of 0.70 between each other. Moreover, the soil pH values ranged from 7 to 7.7 indicated 401 

slightly alkaline reaction due to the presence of bicarbonate (HCO3
-
) in the soils with a range from 4 to 10 meq.l

-1
; 402 

as well as, the CaCO3 ranged from 12.5 to 26% showing calcareous soil and parent materials, which significantly 403 

occurs in the arid regions. The results of these chemical analyses showed also the low quantities of organic matter 404 

(OM < 2.6%) in all soil samples, with an average of 0.58%. While the soil texture analysis showed an increase in 405 

salt content with a decrease in soil particle size, which obviously causing significant variation in the amplitude and 406 

the shape of the spectral signatures particularly in the VNIR. Definitely, this spectral confusion masked the effects 407 

of different salt contents in the soil. According to these laboratory analyses, we have a clear idea about the chemical 408 

components and their contents in each soil sample considered in this study.  409 

3.2. Spectral and CRRS Analysis 410 

To understand the impact of different salt contents on the spectral behaviour, among the 100 soil samples presented 411 

in Fig. 4 only eight samples are selected with different salinity contents. Their EC-Lab range between 2.4 and 507 412 

dS.m
-1

, pHs between 7.35 to 8.10, and SAR vary from 1.6 to 444.7 (mmoles/L)
0.5

. Fig. 5a illustrates their spectral 413 

signatures noted from A to H, and their characteristics descriptions are summarized in Table 1 (last eight samples in 414 

this table). These spectra show severe confusions in the VNIR regions, which are caused by the soil optical 415 

properties (i.e., color, brightness, texture, etc.) rather than the soil content in the soil. For instance, the reflectance 416 

spectra of sample “D” (195.3 dS.m
-1

) coincide with that of sample “H” (507 dS.m
-1

), although they do not have the 417 

same EC-Lab values, because the soil characteristics play a fundamental role in this confusion (Fig. 5a and Table 1). 418 

In fact, the sample “D” is a sandy soil with small amount of gypsum crystals and shells, and the beginning of salt 419 

crust formation (light gray and white color), while the sample “H” is a pure salt-sabkha (bright florescent halite 420 

crust). Similar confusion is also observed between the opposite samples “A” and “H”, respectively, with 2.4 and 507 421 

dS.m
-1

 values of EC-Lab. Moreover, the samples “A” and “G” are sandy soils with EC-Lab of 2.4 and 445.5 dS.m
-1

, 422 

respectively; however, they exhibited approximately the same spectral behaviour and amplitude in the VNIR 423 
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according to their color (Fig. 5a and Table 1). Consequently, it is impossible to discern or to separate between “D” 424 

and “H” or “A” and “G” samples in the VNIR. This affirmation was also reported by Metternicht and Zinck (1997), 425 

who demonstrated that the soil textures can be a source of spectral confusion between soil salinity classes; as well as 426 

the color and roughness of the soil crusts influenced the reflectance in VNIR and, therefore, causing confusion 427 

among the salts contents in the soil. 428 

On the other hand, the Fig. 5a shows that when the EC-Lab values increase, also the difference among the salt-429 

affected soil spectra’s increase significantly and progressively from 1100 to 2500 nm region of the spectrum. In this 430 

SWIR domain, the spectral signatures of soil samples from “A” to “H” changed progressively in amplitude and 431 

shape according to EC-Lab contents (from 2.4 to 507 dS.m
-1

, see Table 1), as well as a function of SAR (from 1.6 to 432 

444.7 (mmoles/l)
0.5

). The ambiguity between “D” and “H” or “A” and “G” samples observed in the VNIR, is 433 

completely dismissed in the SWIR and it is easy to see gradually the spectral signature position of each sample 434 

according to its EC-Lab content. Definitely, the two SWIR bands of OLI show the highest potential to discriminate 435 

efficiently among different degrees of salinity in the soil (Fig. 5a). These results corroborate those of other 436 

researchers who had shown, for instance, that pure salt (halite, NaCl) does not induce absorption features in the 437 

VNIR (Hunt et al., 1971), and other authors reported some absorption features in SWIR wavebands around 1400, 438 

1900, and 2250 nm (Fig. 5a) that are attributed to dissolved salt in soil moisture and existing liquid in the soil 439 

(Mougenot et al., 1993; Howari et al., 2002a). Moreover, Howari et al. (2002b) and Farifteh (2007) showed that the 440 

depth of absorption features increased with increased salt content in the soil.  441 

 442 

[ Table 1 ] 443 

 444 

Furthermore, the CRRS transformation of the eight considred soil samples (Table 1) are illustraed in the Fig. 5b. A 445 

total absence of absorption features is observed between 525 and 920 nm, but some features between 350 and 525 446 

nm are revealed. Unfortunately, in this portion of wavelenghts that include the blue band of OLI is not conclusive 447 

because the increase in salinity content does not mean a significant and separate features among soil salinity classes. 448 

Indeed, in this specific electromagnetic window we observe that the sample “H” which is 10 time more saline than 449 

the sample “B” (EC-Lab of 507.0 and 50.5 dS.m
-1

, respectively) are showing similar absorption features. Moreover, 450 

the samples “A”, “C” and “E” with different salinity conetnts (EC-Lab of 26.2, 90.0 and 381.0 dS.m
-1

, respectively) 451 

are presenting comparable absorption features (Fig. 5b). This similarty is automatically related to the texture, 452 

raughness, color and brightness of soil samples and not for their salinity content degrees. Infact, “B” and “H” 453 

samples have the same color (white, 10YR 8/1), while the samples “A”, “C” and “E” are presenting a very slight 454 

mixt color and brigtness (white-beige, light-gray and light-gray-white) but showing similar Mensel color (10YR 7/2, 455 

Table 1). Moreover, CRRS pointed out that no absorption features charaterizes the salinity in the red and NIR bands 456 

(Fig. 5b). Therefore, this spectral transformation (CRRS) corroborates the original spectral signatures behaviour 457 

which means the impossibility to discriminate among soil salinity classes in VNIR spectral domains. Otherwise, 458 

numerous and significant absorption bands are observed between 920 and 2500 nm highlighting the more suitability 459 

of SWIR wavebands for soil salinity discrmination (i.e., absorption features beyond 950 nm were broadened). In 460 
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fact, CRRS has shown that increases in soil salinity (EC-Lab) induced automatic changes in the depth of absorption 461 

features, particularly in the water absorption bands, which were shifted toward shorter wavelengths. Consistent 462 

absorption features are observed at wavelengths of 980, 1175, 1448, 1933, and 2430 nm particularly for the pure salt 463 

(sodium chloride) and gypsum samples. These results are in agreement with the findings of Dehaan and Taylor 464 

(2002) and Farifteh (2007).    465 

 466 

[ Figure 5 ] 467 

 468 

Otherwise, Fig. 6a illustrates the measured spectral signatures of vegetation cover samples at different LAI rates. 469 

These typical spectra of healthy vegetation show the absorption of the visible electromagnetic radiation by the 470 

photosynthetic pigmentation in plants tissues (i.e., carotenoids and chlorophyll). It is well known that each pigment 471 

has different spectral absorption features allowing remote sensing to assess vegetation conditions and, therefore, 472 

give an indication of its overall physiological state (Bannari et al., 2007 and 2008b). The red-edge transition region 473 

between the visible and NIR, from 675 to 750 nm, is informative about vegetation cover diseases and early detection 474 

of pest-attacks (Thenkabail et al., 2018). While in the NIR, a large fraction of the incoming electromagnetic 475 

radiation is reflected toward space according to the biomass density. As we discussed before and also reported by 476 

other studies (Thenkabail et al., 2004; Pacheco et al., 2008), the VNIR spectral domains are the most prominent 477 

regions for green vegetation cover discrimination and the most used in VI’s equations. Whereas, in the SWIR 478 

wavelengths, the solar radiation is absorbed by the water content available in the canopy. These wavebands are 479 

indicators of water stress due to water-deficiency in the canopy (Gao et al., 1996; Champagne et al., 2003). 480 

Furthermore, the CCRS emphasizes the wavelengths where significant and gradual changes occurred depending on 481 

the LAI density (Fig. 6b), as well as on the carotene and chlorophyll contents particularly in the blue and red bands 482 

(Fig. 6b). Exceptions occur in the red-edge region (from 675 to 750 nm), and part of NIR spectrum (from 750 to 900 483 

nm), where absorption features are absent. However, at the shorter wavelengths of the NIR from 935 to 1300 nm, 484 

some narrow bands appear characterizing water absorption features. While, stronger absorption features are 485 

observed after 1350 nm (1400-1800 and 1950-2350 nm) due to the variability of internal water content. Therefore, 486 

the subject covered in this section is evident and basically well known by remote sensing community. However, it is 487 

very important to show for the users that the spectral behaviour caused by the internal variability of bio-488 

physiological parameters (carotenoids, chlorophyll, and water) of vegetation cover is completely different to that 489 

due to the evaporite minerals in VNIR and SWIR wavebands as illustrate by the Figs. 5 and 6.   490 

 491 

[ Figure 6 ] 492 

3.3. Indices validation based on simulated data and measured EC-Lab 493 

In this section, the analysis of VI’s capability for soil salinity discrimination was undertaken in two different ways. 494 

The first involves a 2D spectral-space analysis (scatter-plot) relating each index to the reflectance in the red band 495 

(Fig. 7). Among the 100 sampled soils, only 20 samples are considered in this analysis. Their EC-Lab values are 496 
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ranging from 2.4 dS.m
-1

 (non-saline soil) to 635 dS.m
-1

 (pure salt, sabkha), and their characteristics are summarized 497 

in Table 1. The 2D spectral-space illustrates how the fraction of vegetation cover is perfectly highlighted by the VI’s 498 

(Fig. 7), and predicted correctly and gradually from 50% to 95% proportionally to the increased LAI rates. Whereas 499 

bare soil samples are compressed towards the hypothetical soil-line (Jackson et al., 1983; Huete et al., 1994a and 500 

1994b; Bannari et al., 1996) with null values regardless of their salt content. Indeed, they are quantified by VI’s 501 

considering their color in a very limited range values between 0% and 8% for very salty soils with dark and bright 502 

color, respectively. Consequently, undoubtedly VI’s cannot exhibit the spatial patterns variability or provide precise 503 

and reliable information about the soil salinity. This finding corroborate those of spectral and CRRS analyses. 504 

Accordingly, if these indices compress and/or eliminate signals coming from the underlying soils, how is it possible 505 

for theme to discriminate the salinity classes, particularly in a large OLI pixel area of 900 m
2
 with mixt information 506 

of salty soil and vegetation cover fraction?  507 

 508 

[ Figure 7 ] 509 

 510 

Furthermore, the second part of this analysis considers the totality of 100 soil samples applying a first order 511 

polynomial regression (p ˂ 0.05) between the measured EC-Lab and predicted salinity based on the examined VI’s 512 

(Fig. 8). Obtained results showed insignificant fits for SAVI, EVI and TDVI (R
2 

≤ 0.06), as well as for NDVI (R
2
 of 513 

0.35). Once more, these statistical fits corroborate the spectral signatures and 2D spectral-space analyses, and the 514 

CRRS transformations results that VI’s based on VNIR wavebands are not appropriate for correct and accurate 515 

discrimination among various soil salinity classes. Unlike VI’s, the evaporite minerals indices have the highest 516 

power for soil salinity discrimination with R
2
 of 0.71 and 0.72 for NDGI (or SI-ASTER-4,5) and SSSI (Figs. 8e and 8f), 517 

respectively. These results are due to the absorption features of salts (gypsum, halite, etc.) in SWIR bands, which are 518 

integrated in the equations of the both indices. Overall, the results are satisfactory and consistent with previous 519 

studies. Indeed, in irrigated agricultural land with slight and moderate salinity, the validation of SSSI derived from 520 

ALI EO-1 with respect to the ground truth showed an excellent fit with R
2
 of 0.96 (Bannari et al., 2016). Al-Khaier 521 

(2003) showed a good potential of NDGI named also SI-ASTER-4,5 (R
2
 of 0.86) for soil salinity detection in irrigated 522 

agricultural land in Syria using ASTER and ETM+ images. On the basis of spectral measurements of soil samples 523 

collected from Omongwa salt-pan, Milewski et al. (2019) have demonstrated the performance of NDGI for gypsum 524 

content prediction (R
2
 of 0.84). However, they have shown that this capacity varies with the spatial and spectral 525 

characteristics of the image data used and other sources of problems. Indeed, when NDGI was extracted from 526 

airborne (HySpex) and satellite (Hyperion) hyperspectral images acquired over the pan, the obtained fits showed an 527 

R
2
 of 0.79 for HySpex with 2.4 m pixel size compared to R

2
 of 0.71 for Hyperion with 30 m pixel size. Eventually, 528 

this variability can be caused by several problems including the mixture of mineral component fractions within the 529 

pixel size, the low-quality of sensor SNR especially for Hyperian (Kruse, 2001), the residual errors of atmospheric 530 

absorption (Khurshid et al., 2006), the sensitivity of SWIR wavebands to some fragments of senescent vegetation 531 

(i.e., absorption by cellulose and lignin) (Bannari et al., 2015), and the specular effect caused by BRDF problems 532 
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(Mishra et al., 2014). However, despite these small variations, the NDGI successfully completed its mission 533 

providing satisfactory results.   534 

 535 

[ Figure 8 ] 536 

3.3. Derived soil salinity maps analysis 537 

For the interpretation, analysis and validation of the salinity maps derived from Landsat-OLI image acquired over 538 

Omongwa salt-pan site, 14 soil samples collected from the top-surface representing mineralogical ground truth 539 

classes were used (Table 2). These points were sampled and analysed in 2014 and 2015, and published by Milewski 540 

et al. (2017). Moreover, since the soil salinity dynamics occur in response to the way that water moves through and 541 

over the landform following the terrain morphology and topography under the gravity effects (Moore et al., 1993; 542 

Kinthada et al., 2013; Bannari et al., 2021), an accurate Lidar DEM was used (Fig. 9). Generated with a spatial 543 

resolution of 1 m and a vertical accuracy of ±10 cm (Milewski et al., 2017), this DEM undoubtedly supports our 544 

understanding of the topographic impact on the spatial distribution of salinity classes across the pan site. A transects 545 

(A-B) traced from southwest to northeast on the DEM shows the elevation variation between 1227.00 and 1227.80 546 

m with a convex shape and a depth of 80 cm promoting water accumulation, particularly in centre-east and north-547 

east (Fig. 9). 548 

 549 

[ Table 2 ] 550 

 551 

[ Figure 9 ] 552 

 553 

Fig. 10 illustrates the soil salinity maps derived based on NDVI, SAVI, EVI and TDVI. It is observed that these 554 

indices are blind and unable to detect the presence of salinity in the middle or at the edges of Omongwa pan, 555 

although it is natural flat salt crust playa as shown in Fig. 3. These cartographic products visually corroborate the 556 

results obtained through the analyses of 2D spectral-space (scatter-plots) and CRRS, as well as the statistical fits 557 

with EC-Lab. In the center, north and east of the pan some non-classified pixels (black pixels) are due to the absence 558 

of signals that are absorbed by the accumulated water in low topographic areas. Faithful to their mission of detecting 559 

the presence of vegetation, these indices maps are highlighting the presence of scattered halophytes in the peripheral 560 

neighbourhood (north-east and east) of the pan playa. Obviously, this is wrong information about soil salinity 561 

outside the salt-pan. In fact, these results were anticipated because in remote sensing domain it is well known that 562 

the primordial and main mission of VI’s is the detection and characterization of photo-synthetically active 563 

vegetation cover as discussed before. Further, they cannot provide any information about the soil because their basic 564 

concept removes the contribution of the soil background from the total signal remotely sensed at the top of 565 

atmosphere as shown in the simulation results. However, in contrast to these results some scientists claim the 566 

predictive power of VI’s for soil salinity discrimination and mapping. For instance, Allbed et al. (2014) found that 567 

the SAVI extracted from the IKONOS image is useful for assessing the soil salinity in areas dominated by date palm 568 
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trees. On the other hand, when analyzing vegetation cover growth over agricultural lands in South Dakota based on 569 

the time series of MODIS VI, Lobell et al. (2010) observed that EVI was significantly correlated with soil salinity 570 

and more sensitive to changes in salinity stress than NDVI. While, over agricultural soils in California, Whitney et 571 

al. (2018) showed that the temporal interpretation of the time series of MODIS VI’s can probably be used to 572 

measure the canopy response to stress caused by soil salinity. Contrary to the conclusions of Lobbel et al. (2010), 573 

Whitney et al. (2018) observed that the strength of the correlation coefficients between VIs and salinity was 574 

generally better for NDVI than for EVI. 575 

 576 

[ Figure 10 ] 577 

 578 

In the PCI-Geomatica image processing system, the histograms of the derived salinity maps applying SSSI and 579 

NDGI (Fig. 11) were thresholded based on the major salinity classes including non-saline (blue), low (cyan or sky-580 

blue-green), moderate (clear green), high (yellow), very high (orange-red) and extreme salinity (red-purple). Indeed, 581 

the values of the centroids of the clusters representing these classes were considered; as well as, the standard 582 

deviation value was chosen to limit the overlap between the classes considered and to reduce the chance of a pixel 583 

being classified into more than one class. Fig. 11 shows the spatial distribution of salinity classes across the study 584 

area and in the outer-peripheral regions of the pan. In general, it is observed that the both indices (SSSI and NDGI) 585 

mapped the salinity patterns almost similarly by reflecting the results of the statistical fits discussed above. 586 

However, although the NDGI detects the presence of salinity, it further highlights the gypsum content; particularly 587 

in the borders of the pan (i.e., south, southwest, and north). While, the SSSI further highlights the main salt crusts 588 

present in the pan area that are formed from different mineral sources, including halite, gypsum, calcite, and 589 

sepiolite; as reported ago two decades by Mees (1999) and also recently confirmed by Milewski et al. (2017 and 590 

2019). Moreover, these results are logical since the less soluble carbonates can be found at the edge of the pan, 591 

followed by a succession of sulphates to chlorides towards the central area with lower topography as shown by 592 

DEM (Shaw and Bryant, 2011). 593 

 594 

[ Figure 11 ] 595 

 596 

Furthermore, the 14 points representing the ground truth (Table 2) are used for the results validation and analysis 597 

process. Their mineralogy is dominated by halite (which appears as white bright and florescent salt crust surface in 598 

Fig. 3), followed by the gypsum as a second most abundant crust (Table 2). Their EC-Lab values are ranging between 599 

17.6 and 129.7 dS.m
-1

, and the pH is greater than 8.2 reflecting a strong sodicity coupled with salinity. 600 

Superimposed on salinity maps derived by NDGI and SSSI indices (Fig. 11), most of these points coincide perfectly 601 

with areas showing a high content of salt or gypsum, particularly in the southern borders of the playa. Following the 602 

topographic characteristics of the pan area, a total absence of salinity is observed in the center and center-east parts 603 

of the pan (black pixels) due to the presence of water which absorbs the signal in the SWIR wavelengths. While in 604 

the south and north-western of central part, where the topography is slightly raised, moderate and high salinity 605 
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classes are noted by the both indices but more emphasized with SSSI than NDGI. Indeed, because the halite crust 606 

covers the majority of pan playa surfaces, inside and outside, with variable contents. Whereas, the gypsum-halite 607 

crust mixture surrounded the border as a natural boundary between the interior and the peripheral margin of the pan 608 

highlighting a very high to extreme salinity class caused, probably, by the displacement of salt from the surface to 609 

the playa edges due to wind action and erosion, as well as by human movements (Bryant, 1996). Moreover, it is also 610 

observed that high, very high and extreme salinity classes are associated with slightly high elevation.  611 

According to mineralogical ground truth, the validation points P63, P64, P65 and 172 in the southern region of 612 

the pan are dominate by the gypsum crust (33% to 83%) associated with a small amount of halite (5% to 36%). This 613 

terrain truth is detected and well mapped by the two indices, but NDGI highlighted more the gypsum belt in south 614 

and southwest (Fig. 11). In this region the topography is slightly high and decreases toward the centre-east of the 615 

pan, and then it becomes relatively higher in the north and north-west. Points P66 and P67 located on a small 616 

circular ridge in the south-central part of the pan with a slight elevation, have almost similar contents of halite and 617 

gypsum (45%). However, the salt content in these two points is more stressed in the SSSI map. As well as, nearby 618 

points 143 dominated by halite (52%) followed by gypsum (38%) and point 171 with 50% of halite and 27% of 619 

quartz, the SSSI map shows more sensitivity to this class than that of NDGI (Fig. 11). The zone surrounding sample 620 

point 141 which is nearly pure halite (94%) mixed with very low content of gypsum (3%) is better enhanced by 621 

SSSI than NDGI.  622 

Further north of the pan site, areas around the validation points P69, P70 and P71 located at slightly high 623 

elevation (~ 1227.8 m) are mapped as very high to extreme salinity classes by SSSI, which also indicates that overall 624 

there is an important increase of the salt content in this northern space. These results can be explained by the fact 625 

that the SSSI is more sensitive to the halite crust accumulated on the surface which is exposed and clearly visible to 626 

the FOV of the Landsat-OLI from space; while the other minerals (less soluble) are precipitated under the layer of 627 

halite (Chivas, 2007). The NDGI predict this zone as a moderate salinity class because the mineralization nearby 628 

these points indicates the absence or slight content of gypsum and a main mixture of quartz, halite, calcite and 629 

sepiolite (Table 2). Indeed, this region was mapped by Milewski et al. (2017) as combined fractions of calcite and 630 

sepiolite based on linear spectral mixture analysis (LSMA), hyperspectral imagery and measured endmembers in the 631 

field. Nevertheless in the present study, the evaporite indices are applied to the broad bandwidth of the OLI sensor 632 

which does not allow the extraction of mineralogical fraction maps like LSMA, but rather a map of salinity showing 633 

all salt minerals existing at the surface of study area. However, the results obtained here are very satisfactory and 634 

very similar to those obtained by LSMA but all the fractions are combined in one and unique extreme salinity class. 635 

Likewise, the results obtained by NDGI in the present study using the OLI image acquired in September 2016 are 636 

generally quite similar to those obtained by Milewski et al. (2017). However, only minor differences are observed 637 

between the results of these works, because the pan center is heterogeneous and highly dynamic in time (Schuller et 638 

al., 2018).  639 

The outer region of the pan, particularly in the east and north, exhibits different salinity classes ranging from 640 

moderate to extreme are, probably, associated with wind and dust-storm processes. Indeed, Aeolian salts occur in 641 

arid lands consequently through the erosion of salt playa surfaces transported by wind (high concentrations of fine-642 
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grain of salt) and deposited in this area forming sandy-salt-encrusted surfaces. The areas covered by these classes 643 

are certainly located geographically in zones where the wind and sand-storms speed is high. According to 644 

Abuduwaili et al. (2010), the main source of saline dust is the abundance of unconsolidated salt located in enclosed 645 

basins that are affected by strong wind and human disturbance. This type of salinity source has also been widely 646 

observed in the arid Australian landscapes (Zinck and Metternicht, 2009), in the desert of Gobi in China-Mongolia 647 

border region (Wang et al., 2012), in eastern Asia and western Pacific (Zhu and Yang, 2010), in dry playas in the 648 

Mojave Desert, USA (Reynolds et al., 2007), in the shorelines of the Salton Sea in California (Buck et al., 2011), 649 

Aral sea basin-Uzbekistan (Xenarios et al., 2020) and in the deserts of Kuwait (Bannari and Al-Ali, 2020). 650 

Moreover, Aeolian processes were also identified as important salt sediments transport processes in salt playa in 651 

semi-arid south-central of Tunisia (Millington et al., 1989). 652 

4. Discussion 653 

The chemical analyses of the 100 examined soil samples disclosed high quantities of chloride (Cl
-
), sodium (Na

+
), 654 

magnesium (Mg
2+

) and calcium (Ca
2+

). Nevertheless, the chloride and sodium contents fitted very significantly with 655 

EC-Lab, R
2
 of 0.98 for Cl

-
and 0.87 for Na

+
. It is also revealed that the EC-Lab and SAR values changed progressively 656 

in a wider ranges between non-saline samples (EC-Lab = 1.6 dS.m
-1

, and SAR = 0.4) collected from agricultural fields 657 

and extreme saline soils (EC-Lab = 700 dS.m
-1

, and SAR = 445) sampled from pure salt (halite) and gypsum in 658 

Sabkha. Moreover, the spectral signatures of the considered soil samples illustrate important changes in the 659 

reflectance’s amplitudes and shapes (Fig. 4). They revealed severe confusions in the VNIR, which are caused by the 660 

soil optical properties rather than the soil salinity contents. These observations are consistent with the results of 661 

other researchers (Irons et al., 1989; Huete 1989; Metternicht and Zinck, 2003; Bannari et al., 1996 and 2018). 662 

While, the spectra pointed out several absorption features that are linked to the salt mineralogy including gypsum, 663 

halite, calcite and nahcolite, especially in the SWIR wavebands as reported by other scientists (Csillag et al., 1993; 664 

Howari et al., 2002a; Katawatin and Kotrapat, 2005; Farifteh et al., 2008; Mashimbye, 2013; Bannari et al., 2018; 665 

Al-ali et al., 2021). For example, pure halite (NaCl) is transparent and its chemical composition and structure does 666 

not show any absorption features in the VNIR spectral domains, corroborating the finding of Hunt et al. (1971 and 667 

1972). Whereas, absorption bands near the 1420, 1920, and 2250 nm in the spectra of halite are attributed to 668 

moisture and fluid inclusions, as also reported by several authors (Crowley, 1991; Mougenot et al., 1993; Howari et 669 

al., 2002a; Farifteh, 2007). 670 

The CCRS transformations corroborate the trends of spectral signatures and highlighted the confusions in the 671 

VNIR that are caused by the soil optical properties rather than the salt contents in the soil. For instance, very severe 672 

confusion is noted between the soils samples “A” with EC-Lab of 2.4 dS.m
-1

 and “G” with 445.5 dS.m
-1

; despite this 673 

important difference in salt contents they exhibit approximately the same spectral behaviour and amplitude in the 674 

VNIR according to their color and texture (Fig. 5a and Table 1). Consequently, it is impossible to discern or to 675 

separate between soil salinity classes in the VNIR. While when the EC-Lab values increased also the difference 676 

among the salt-affected soil spectra’s increased significantly and progressively in the SWIR (Fig. 5a). In this 677 

spectral region, the spectra of soil samples “A” to “H” changed progressively in amplitude and shape due to the 678 
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increasing values of EC-Lab (from 2.4 to 507 dS.m
-1

). Nevertheless, the noted ambiguity between “A” and “G” 679 

samples in the VNIR is completely dismissed in the SWIR.  Indeed, it is easy to see gradually the spectral signature 680 

position of each sample according to its EC-Lab content; as well as, the CRRS has shown that increases in soil 681 

salinity (EC-Lab) induced automatic changes in the depth of absorption features. For instance, CRRS analyses of 682 

halite-rich soil “H” sample showed consistent absorption features at 960, 1160, 1420, 1780 and 1920 nm and they 683 

become deeper, broader, and more asymmetrical with increasing salt content in the soil. Based on several statistical 684 

analyses including CRRS, spectral matching techniques, hierarchical classification, and Mann–Whitney U‐test; 685 

Farifteh (2007) demonstrated rigorously that the SWIR spectral domain contain the most crucial information about 686 

soil salinity differentiation. These findings are in agreement with the results of other scientists who characterized 687 

several soils rich in sulfates minerals, carbonates and bicarbonates, sodium chloride, etc. (Bowers and Hanks, 1965; 688 

Mougenot et al., 1994; Verma et al., 1994; Owen, 1995; Howari et al., 2002a and 2002b; Farifteh et al., 2008; Weng 689 

et al., 2008; Masoud, 2014; Nawar et al., 2015; Neto et al., 2017; Bannari et al., 2018; Milewski et al., 2019). 690 

Accordingly, the SWIR-1 and SWIR-2 bands of OLI show the highest potential to discriminate efficiently among 691 

different degrees of salinity in the soil. 692 

Otherwise, spectral analysis and CCRS transformation of LAI at different densities confirmed the relevance of 693 

VNIR and SWIR for the assessment of the vegetation cover from viewpoints of biomass, physiological 694 

pigmentation and stress. In addition, the 2D spectral-space analysis highlighted the primordial utility of VI’s to 695 

differentiate the vegetation covers perfectly proportionally to their LAI rates. Unfortunately, the investigated VI’s 696 

compress the bare soils samples towards the hypothetical soil-line with null values regardless of their salt contents. 697 

These irrelevant results are in agreement with those of spectral and CRRS analyses, since VI’s are based on blue, 698 

red and NIR bands that are not conclusive for soil salinity differentiation. Moreover, statistical regressions (p ˂ 699 

0.05) between the measured EC-Lab and predicted salinity based on VI’s are very insignificant for SAVI, EVI and 700 

TDVI (R
2 

≤ 0.06), as well as for NDVI (R
2
 of 0.35). Certainly, these simulations in an ideal and controlled 701 

environment lead to rigorous validation and comparison procedures between the considered indices. In fact, 702 

atmospheric interferences are absent, SNR is high, fragments of senescent vegetation are absent, salt contents are 703 

well known in soil samples and, consequently, the results obtained are optimal and realistic. These finding are 704 

consistant with other results obtained by some researchers who fitted EC-Lab with VI’s derived from simulated data, 705 

satellite or drone images. For instance, Golabkesh al. (2021) obtained very weak relationship with NDVI (R
2
 of 706 

35%), Ferdous and Rahman (2017) revealed insignificant fit (R
2
 ≤ 0.03) with SAVI and NDVI, and Zhang et al. 707 

(2011) demonstrated also a low regression trend (R
2
 ˂ 0.28) for NDVI. These weaknesses are mainly due to the 708 

ambiguous information about soil salinity in the VNIR bands. Moreover, based on spectral data and Landsat-OLI 709 

image, Al-Ali et al. (2021) demonstrated that the soil salinity models integrating VI’s and/or the VNIR bands are 710 

inappropriate and inaccurate to predict soil salinity.   711 

Over the Omongwa salt-pan site, although the higher albedo of the site centre in the image is principally due to 712 

halite crust developed and accumulated during many years as illustrated by true color composite RGB of Landsat-713 

OLI image (Fig. 3), the derived soil salinity maps using VI’s are completely unable to detect the slightest grain of 714 

salt in the soil. Obviously, the visual analysis of these maps validate and corroborates the previous analyses (i.e., 715 
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spectral, CCRS, 2D spectral-space, and statistical fits) based on simulated data. Obviously, these results were 716 

anticipated knowing that the primordial and main mission of VI’s are the detection and characterization of 717 

vegetation canopy by removing the contribution of the soil background from the signal remotely sensed at the top of 718 

atmosphere. Probably, it is possible for VI’s to anticipate the vegetation canopy stress caused by the underlying soil 719 

salinity (Lobell et al., 2010; Zhang et al., 2011; Bannari et al., 2016; Whitney et al., 2018), but they do not have the 720 

ability to discriminate and predict soil salinity classes. Definitely, the widespread use of VI’s carries inherent risks 721 

misuse by users who exploit remote sensing as a tool, and who have received little or no education in remote sensing 722 

domain (Huang et al., 2020). Indeed, remote sensing is not limited to the story of having an image processing 723 

software packages and free satellite images, but it is a multi-disciplinary and multi-concept scientific fields. It is 724 

based on complex comprehension of a wide range of electromagnetic radiation, reflected or emitted, and its 725 

interaction with the biosphere-atmosphere environment. Hence the interest of this research to investigate whether the 726 

potential of VI’s for soil salinity discrimination is a myth or a reality. 727 

Furthermore, considering the simulated data over Kuwait site or the Landsat-OLI image acquired over Omongwa 728 

salt-pan, SWIR wavebands are distinguished by their potential to differentiate among several salt contents in the 729 

soil. The spectral signatures analysis and CRRS transformation showed that increases in soil salinity (EC-Lab) 730 

induced automatic changes in the depth of absorption features in SWIR. Statistical regressions between the EC-Lab 731 

and evaporite mineral indices showed an excellent and similar discriminating power (R
2
 of 0.72) for NDGI and SSSI 732 

(Figs. 8e and 8f). Moreover, the salinity maps derived by these two indices illustrate a good spatial distribution of 733 

salinity classes across the study area and in the outer-peripheral regions of the pan (Fig. 11). The both indices 734 

mapped the spatial distribution of salinity patterns almost similarly, corroborating the results obtained from 735 

simulated data and statistical fits discussed above. Overall, the validation of these maps shows a good agreement 736 

with the field truth. However, although the NDGI detects the presence of salinity, it further highlights the gypsum 737 

content; particularly in the borders of the pan (i.e., south, southwest, and north). While, the SSSI further highlights 738 

the main salt crusts present in the pan area that are formed from different mineral sources, including halite, gypsum, 739 

calcite, and sepiolite; as reported by Mees (1999) and confirmed by Milewski et al. (2017 and 2019). In general, 740 

these results are due to the absorption features of salts (gypsum, halite, etc.) in SWIR bands, which are integrated in 741 

the equations of the both indices. Likewise, Al-Ali et al. (2021) showed that the soil salinity models integrating the 742 

SWIR wavebands are the most promising for predicting and quantifying the salt-affected soil classes. Obviously, the 743 

results obtained in the present study are accomplished from Landsat-OLI data but they can also be achieved from 744 

Sentinel-MSI because we demonstrated that these two sensors can be used jointly to monitor accurately the soil 745 

salinity and it’s dynamic in time and space in arid landscape (Bannari et al., 2020). 746 

5. Conclusions 747 

In the present study, we analyzed the potential and limits of vegetation indices compared to evaporite mineral 748 

indices for soil salinity discrimination and mapping in arid landscapes. To achieve these, combined approaches that 749 

exploit simulated spectral data and OLI image acquired over two study sites were used. The first site is the Kuwait-750 

State in Middle-East and the second site is the Omongwa salt-pan in Namibia. Field survey was organized and 100 751 
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soil samples with various salt contents were collected, as well as samples of vegetation covers with different LAI 752 

densities. Spectroradiometric measurements were acquired in a Goniometric-Laboratory above the soil and 753 

vegetation samples using the ASD spectrometer. To understand the complexity of the close relationship between the 754 

salt contents in the soil and their spectral signatures, soil chemical analyses were accomplished. Indeed, soluble 755 

cations and anions, pH and EC-Lab were measured, and the SAR was calculated. Furthermore, the spectra of the most 756 

representative soil salinity classes and LAI densities were transformed using the CRRS. Likewise, all measured 757 

spectra were resampled and convolved in the solar-reflective spectral bands of OLI sensor. Afterwards, the indices 758 

were calculated and analysed in 2D spectral-space, and fitted statistically (p ˂ 0.05) with EC-Lab. Moreover, the 759 

acquired OLI image over Omongwa salt pan site was pre-processed and converted to the considered indices. 760 

Accurate Lidar DEM was used to support visual analysis and interpretation, as well as mineralogical ground-truth 761 

information collected and analysed previously were considered for the characterization and validation of the derived 762 

maps on this second site.    763 

The results show that the soil spectral signatures are very sensitive to soil salinity contents. Their shapes, forms 764 

and amplitudes changed gradually depending on the salt contents (EC-Lab). According to chemical soil laboratory 765 

analyses, the measured amounts of EC-Lab in the examined soil samples are due to the chloride, sodium, magnesium 766 

and calcium which pointed out several absorption features in the spectra, particularly in the SWIR wavebands. On 767 

the other hand, it is also observed that the soil optical properties (color, brightness, texture, roughness, etc.) have an 768 

impact on these spectra, especially in the VNIR spectral domains. Overall, spectral analysis and CCRS 769 

transformation highlighted severe confusions of soil salinity classes in the VNIR wavelengths due to soil artefacts 770 

rather than the salt contents. Moreover, they revealed that blue band integrated in EVI equation is inconclusive for 771 

soil salinity differentiation, and the salts minerals absorption features are completely absent in the red and NIR 772 

bands that are generally used by VI’s. While the SWIR wavebands show the highest potential for efficient 773 

discrimination among soil salinity classes. 774 

Furthermore, spectral signatures analysis and CRRS transformation showed that the VNIR and SWIR fulfill their 775 

essential conditions to be sensitive to vegetation cover density and its physiological constituents. In addition, 2D 776 

spectral-space investigation results highlighted the primordial utility of VI’s to differentiate the vegetation covers 777 

perfectly and proportionally to rates of LAI. While, regardless the salt contents in the soil samples, VI’s are not 778 

conclusive as their fundamental concept eliminates the underlying soil contribution on the remotely sensed signal. 779 

These unsuccessful results are corroborated by statistical fits (p ≤ 0.05), between the measured EC-Lab and VI’s, who 780 

achieved very low coefficients of determination, R
2
 ≤ 0.06 for SAVI, EVI, and TDVI, and R

2
 of 0.35 for NDVI. 781 

Likewise, although the higher albedo of Omongwa salt-pan site due to halite crust developed and accumulated over 782 

years, the soil salinity maps derived from OLI image based on VI’s are completely unable to detect the slightest 783 

grain of salt in the soil. Overall, regardless the data used, the processing method, the study site and the validation 784 

procedures, the results obtained converge toward the same conclusions that it is impossible for VI’s to detect the 785 

spatial patterns variability or to provide precise and reliable information about the soil salinity classes. 786 

Finally, considering the simulated data over Kuwait site, statistical regressions between the measured EC-Lab and 787 

the evaporite mineral indices showed significant discriminating power (R
2
 of 0.72) for NDGI and SSSI. Moreover, 788 
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the derived maps from the OLI image based on these two indices over Omongwa salt-pan surface illustrated a good 789 

spatial distribution of salinity classes across and in the outer-peripheral regions of the pan site. Overall, the 790 

validation of these maps shows an excellent agreement with the field truth. However, although the NDGI detects the 791 

presence of salinity, it highlights the gypsum content; particularly in borders of the pan (i.e., south, southwest, and 792 

north). While, the SSSI further accentuates the main salt crusts present in the pan area that are formed from different 793 

mineral sources, including halite, gypsum, calcite, and sepiolite. In general, these results are due to the absorption 794 

features of gypsum and halite in SWIR bands, which are integrated in the equations of the both indices. 795 

Accordingly, NDGI and SSSI can be used to predict and monitor soil salinity and its dynamics in time and space in 796 

arid landscapes. 797 
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Figure 1: Methodology Flowchart. 1302 
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 1313 

Figure 2: Maps of Kuwait study site location and soil salinity with photos illustrating salinity classes (Maps and 1314 

photos from: Bannari and Al-Ali, 2020). 1315 

 1316 

 1317 

Figure 3. Location map of Omongwa salt playa site in Namibia in Africa (a, from Esri), Landsat-OLI RGB image 1318 

(b), and photos (c-f) illustrating the accumulation of salt crust (source: https://www.namibiansun.com/news/gecko-1319 

denies-legal-threat2017-12-01).  1320 
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 1332 

Figure 4. Spectral signatures of 100 soil samples with different degrees of salinity. 1333 
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 1348 

 1349 

Figure 5. Spectral signatures of some soil samples with different salt contents (a) and their continuum removal with 1350 

OLI filters profiles in blue, red, NIR and SWIR bands (b). 1351 
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 1358 

Figure 6. Spectral signatures of vegetation cover with different LAI (a) and their continuum removal with OLI 1359 

filters profiles in blue, red, NIR and SWIR bands (b). 1360 
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  1372 

Figure 7. Sensitivity of VI’s to discriminate soil salinity contents and LAI rates. 1373 
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 1389 

Figure 8. Statistical fits between the considered VI’s and EC-Lab. 1390 
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Figure 9. Lidar DEM characterizing the topographic variability across the pan site (Milewski et al., 2017). 1393 
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 1395 

Figure 10. Assumed soil salinity maps derived based on VI’s. 1396 
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 1398 

Figure 11. Soil salinity maps derived by evaporite mineral indices: SSSI and NDGI. 1399 
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Table 1. Description of some considered soil samples. 1420 

Sample 

Number 

Sample 

Name  

Munsell 

Color 

EC  

(dS.m
-1

) 
pHs 

SAR 

(mmoles/L)
0.5

 
Texture Description 

1 K-19 7.5 YR 18.2 6.77 30.20 Sandy 
Sandy soil without gypsum and 

shells  

2 K-84 10 YR 635.0 6.24 449.50 
Sandy-Clay-

Loam 

Crust of salt with small amount of 

gypsum 

3 K-88 10 YR 583.0 6.46 468.10 
Sandy-Clay-

Loam 

Crust of salt with small amount of 

gypsum 

4 S-10-1 10YR 7/2  247.5 8.85 309.26 Sandy-Loam 
Dominant salt crust with gypsum 

crystals 

5 S-41-1 10YR 8/1 506.9 6.90 425.00 Pure salt (halit) Salt scald-Sabkha   

6 S-49-2 10YR 7/3 108.6 7.70 256.00 Sandy Sandy saline soil without gypsum 

7 Ba-33-B 18YR 8/1 7.3 8.16 57.79 Loamy-Sandy 
Sandy soil with slight salinity, 

agricultural farm  

8 Ba-33-C 5Y 8/1 5.5 8.39 55.13 Loamy-Sandy 
 Sandy soil with slight salinity, 

agricultural farm 

9 Ba-15-C 10YR 8/1 399.0 7.71 298.85 Sandy-Loam  
Pure gypsum crystal deposited by 

wind erosion 

10 Ba-16-C 10YR 7/1 388.0 7.61 403.56 Sandy-Loam Gypsum rocks at the surface 

11 
Pure-salt-

Dry 
10YR 8/1 509.0 7.50 465.00 Pure salt (halite) Salt scald-Sabkha 

12 
Pure-

Salt-Wet 
10YR 8.1 512.0 7.10 389.00 Pure salt (halite) Salt scald-Sabkha 

13 A 10YR 7/6 2.4 7.7 1.60 Sandy 
Sandy soil without gypsum and 

shells 

14 B 10YR 8/1 55.6 8.10 84.50 
Sandy-Clay-

Loam 

With small amount of gypsum 

crystals and shells 

15 C 10YR 7/2 119.6 7.71 162.00 Loamy-Sandy 
Sandy soil with small amount of 

gypsum crystals and shells 

16 D 10YR 7/2 195.3 7.47 225.90 Sandy-Loam 

Beginning of salt crust formation. 

Small amount of gypsum crystals 

and shells 

17 E 10YR 7/2 333.0 7.57 325.20 
Sandy-Clay-

Loam 

Beginning of salt crust formation. 

Small amount of gypsum crystals 

and shells 

18 F 10YR 7/2 406.5 7.35 403.60 
Sandy-Clay-

Loam 

Crust of salt with gypsum, 

calcium carbonate, and small 

amount of shells 

19 G 5Y 8/1 445.5 7.60 415.20 Sandy 

Mixture of pure gypsum crystal 

and salt deposited by wind 

erosion 

20 H 10YR 8/1 507.0 7.60 444.70 Pure salt (halite) Salt scald-Sabkha 
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Table 2. Laboratory analyses of Omongwa soil surface samples (locations in Fig. 11). 1426 

Point 

Number 

EC-Lab 

(dS.m
-1

) 
pHs 

Mineralogy analysis (in %) 
Soil 

Halite Gypsum Quartz Calcite Sepiolite 

P63 17.6 8.6 5 75 19 0 0 Sandy 

P64 17.6 8.6 36 47 17 - - - 

P65 42.3 8.5 14 83 3 - - - 

P66 42.3 8.5 41 44 13 - 1 - 

P67 80.7 8.4 46 45 3 - 5 Sandy and Silty 

P69 36.5 8.7 15 0 28 41 15 - 

P70 33.7 8.6 16 27 32 15 11 - 

P71 33.7 8.6 7 0 26 47 6 - 

141 33.7 8.6 94 3 1 0 0 - 

142 23.4 8.8 9 15 63 7 5 - 

143 129.7 8.3 52 38 1 4 5 Silty and Sandy 

151 48.2 9.2 21 7 64 8 0 Sandy and Silty 

171 98.0 9.0 50 17 27 4 - - 

172 42.3 8.7 17 33 41 8 - - 

These laboratory analyses results are adapted from Milewski et al. (2017). 1427 
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