

1 **Inducing Banana Fusarium Wilt Disease Suppression through Soil**
2 **Microbiome Reshaping by Pineapple-Banana Rotation Combined**
3 **with Biofertilizer Application**

4

5 Beibei Wang¹, Jinming Yang¹, Zongzhan Shen², Yannan Ou², Lin Fu³, Yan Zhao¹,
6 Rong Li^{2*}, Yunze Ruan¹, Qirong Shen²

7

8 ¹Hainan key Laboratory for Sustainable Utilization of Tropical Bio-resources, College
9 of tropical crops, Hainan University, 570228 Haikou, China

10 ²Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, National
11 Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative
12 Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural
13 University, Nanjing, 210095, P.R. China

14 ³ School of Life Science, Liaoning Universities, 110036, Shenyang, China

15

16 ***Corresponding author:** Rong Li (lirong@njau.edu.cn)

17

18

19

20

21

22

23

24 **Abstract**

25 Crop rotation and bio-organic fertilizer application have historically been employed as
26 efficient management strategies for soil-borne disease suppression through soil
27 microbiome manipulation. However, details of how this occurs, and to what extent the
28 combination of methods affects soil microbiota reconstruction from diseased soils
29 lacks investigation. In this study, pineapple-banana rotation combined with
30 biofertilizer application was used to suppress banana Fusarium wilt disease, and
31 effects on both bacterial and fungal communities were investigated using the Miseq
32 Illumine sequencing platform. Our results show that pineapple-banana rotation
33 significantly reduces Fusarium wilt disease incidence, and that the application of bio-
34 organic fertilizer causes additional suppression. Bacterial and fungal communities
35 thrive using rotation in combination with bio-organic fertilizer application: taxonomic
36 and phylogenetic α -diversity in both bacteria and fungi increase along with disease
37 suppression. Between the two strategies, bio-organic fertilizer application affects both
38 bacterial and fungal community composition most predominantly, followed by
39 rotation. Large-scale changes in the fungal community composition and special
40 *Burkholderia*-related network functions contribute to the observed soil borne-disease
41 suppression. Our results indicate that pineapple-banana rotation combined with bio-
42 organic fertilizer application has strong potential for the sustainable management of
43 banana Fusarium wilt disease.

44

45 **Keywords:** Banana Fusarium wilt; Pineapple-banana rotation; Biofertilizer; Disease
46 suppression; Microbiome structure

47

48

49 **1 Introduction**

50 Banana Fusarium wilt disease, which caused by *Fusarium oxysporum* f. sp. *cubense*
51 (FOC) race 4 forms a major constraint for yield and quality of banana production
52 (Ploetz, 2015; Butler, 2013). Multiple studies reveal that individual measures, such as
53 fumigation (Duniway, 2003; Liu et al., 2016), chemical fungicides (Nel et al., 2007),
54 crop rotation (Zhang et al., 2013b), and bio-control (Wang et al., 2013) have
55 particular effects on reducing the incidence of soil borne-disease by disrupting soil
56 microbial community membership and structure. Traditionally, fumigation, chemical
57 fungicides, or crop rotation is used in fields with high incidence rates, and bio-control
58 is used in low- or new-incidence fields because of its apparent mild effect (Shen et al.,
59 2018). However, single measures often have limited effectiveness, and a few studies
60 regarding soil borne-disease suppression focus on using multiple strategies to improve
61 control efficiency. Shen et al. (2018) reported that biofertilizer application after
62 fumigation with lime and ammonium bicarbonate was an effective strategy in banana
63 Fusarium wilt disease control. Thus, although many measures can individually slow
64 down the spread of Fusarium wilt disease (Pda et al., 2017), control effects can be
65 accelerated and amplified by using more than one agricultural practice.

66 Of all available management strategies, chemical pesticides are optimally
67 effective against soil-borne plant pathogens, but this strategy is not friendly to
68 environment, including pollute soil and water and induce the emergence of drug-
69 resistant strains (Le et al., 2016). Biological control using beneficial soil
70 microorganisms such as *Bacillus* and *trichoderma* against soil-borne pathogens is
71 considered as a sustainable alternative to chemical pesticides (Alabouvette et al., 2009;
72 Fravel et al., 2003; Qiu et al., 2012). Biofertilizers combine the advantage of
73 introducing beneficial microbes that will occupy niches with the inclusion of organic
74 material that will create additional niches for beneficial indigenous microbes (Cai et

75 al., 2017; Zhang et al., 2013). In our previous study, we investigated a biofertilizer
76 containing a *Bacillus* strain which isolated from rhizosphere of a continuously
77 cropped banana, we investigated its ability to promote banana growth and control
78 Fusarium wilt in banana (Shen et al., 2015; Fu et al., 2016; Fu et al., 2017). Therein,
79 we concluded that bio-organic fertilizer application is a practicable and worthy
80 measure for banana Fusarium wilt suppression.

81 Besides, crop rotation is also considered as an alternative method in soil-borne
82 disease control for its highly efficient and environmentally friendly (Krupinsky et al.,
83 2002). Crop rotation often breaks the microflora and chemical characteristics of the
84 single continuously cropped soil (Christen and Sieling, 2010; Yin et al., 2010).
85 However, rotation crop have different effects on the soil-borne diseases. The
86 mechanisms of crop rotation control soil-borne disease include inhibiting the
87 reproduction of pathogens through allelochemicals secretion, inducing the
88 antagonistic microbes against the pathogens, and improving rhizosphere microbial
89 community structure by leading different carbon into the soil through root exudates or
90 residues (Robert et al., 2014). In our previous work, banana-pineapple rotation was
91 picked out for its high-efficiency in banana Fusarium wilt disease prevention and
92 control, as well as bio-organic fertilizer application (Wang et al., 2015). However, the
93 combined control efficiencies of the two measures (pineapple-banana rotation and
94 bio-organic fertilizer application) remained unknown. Thus, there is a large need for
95 investigation of efficient disease suppression combination approaches to Fusarium
96 wilts control in banana, and hence work toward maintaining sustainable worldwide
97 industrial banana development.

98 The occurrence of soil-borne disease is mainly due to the imbalance of soil
99 microbial communities caused by soil-borne pathogen blooms (Mendes et al., 2014).
100 Effective soil-borne disease suppression management strategies must demonstrate

101 significant change on the soil microbial community in addition to FOC minimization
102 (Cha et al., 2016; Chaparro et al., 2012; Gerbore et al., 2014; Mazzola and Freilich,
103 2017). We proved the effectiveness of microbial agents for bio-control by changing
104 the structure of soil microbial communities in previous reports (Fu et al., 2017; Shen
105 et al., 2015). We also investigated the influences of quarterly rotation (pineapple) on
106 FOC population density and soil microbial community structure to attempt to explain
107 the mechanism of pineapple-banana rotation on soil borne-disease suppression (Wang
108 et al., 2015). Our results suggest that fungal community structure and several genera
109 introduced in rotation season may be the most critical factors in soil FOC decrease.

110 Unlike intercropping, *Fusarium* pathogen accumulation control through effective
111 crop rotation should be maintained longer, for at least two seasons, including rotation
112 and a subsequent season (Bullock, 1992; Lupwayi et al., 1998). The pineapple and
113 banana growth cycles in our rotation pattern require long durations (almost 15 and 10
114 months, respectively, in Hainan province, China). Thus, the soil microbial community
115 structure of the original season is very important in rotation validity evaluation.
116 Furthermore, how the soil microbial community structure changes using the combined
117 control efficiencies of the two measures (pineapple-banana rotation and bio-organic
118 fertilizer application) remained unknown.

119 We hypothesized that *Fusarium* wilt can be effectively controlled in high-
120 incidence fields by pineapple-banana rotation, and that control efficiency can be
121 increased when bio-control is added to the rotation. Meanwhile scheme, this will
122 concurrently change soil microbial community membership and structure. Therefore,
123 based on our previous research, we conducted field experiments to investigate the
124 effects of pineapple-banana rotation combined with biofertilizer on next season
125 banana *Fusarium* wilt disease suppression and soil microbial communities. Our
126 objectives follow: 1) determine the direct abilities of pineapple-banana rotation alone

127 and pineapple-banana rotation combined with biofertilizer application to control
128 banana Fusarium wilt disease; 2) explore the characteristic of the soil microbial
129 communities prompted by crop rotation and biocontrol strategies after banana harvest
130 using the MiSeq platform; 3) evaluate the probable disease suppression mechanisms
131 caused by our rotation and bio-control strategy.

132 **2 Materials and Methods**

133 **2.1 Field experimental design**

134 The field experimental site was set in Hainan Wanzhong Industrial Co., Ltd., China, a
135 company that specializes in banana planting. The field soil had a chemical
136 background of pH 5.12, soil organic matter (SOM) 5.57 g kg⁻¹, NH⁴⁺-N 7.39mg kg⁻¹,
137 NO₃-N 6.68 mg kg⁻¹, available P 56.9 mg kg⁻¹ and available K 176.4 mg kg⁻¹. The
138 fertilizer was supplied by Lianye Bio-fertilizer Engineering Center, Ltd., Jiangsu,
139 China, detailed information was as follows: organic fertilizer (OF), first fermentation
140 with a 2:3 weight ratio use amino acid fertilizer and the pig manure; Bio-organic
141 fertilizer (BIO), with a two secondarily fermented based on OF according to the solid
142 fermentation method (Wang et al., 2013). The research was carried out in a field
143 which a serious Fusarium wilt disease incidence (>50%) was observed after a
144 continuously banana cropped for more than 6 years. Nine replicates in each treatment
145 were set up with a randomized complete block design, and area of each block was 300
146 m². Banana cultivar *Musa acuminate AAA Cavendish* cv. Brazil and pineapple cultivar
147 Golden pineapple were used in the Field experiment. Three treatments were assigned:
148 (1) banana continuously cropped for two years with common organic fertilizer applied
149 (BOF); (2) banana planted after pineapple rotation with common organic fertilizer
150 applied in banana season (POF); (3) Banana planted after pineapple rotation treatment
151 with bio-organic fertilizer applied (PBIO). In the rotation system, pineapple and

152 banana were planted in density of 45000 and 2,400 seedlings ha⁻¹, respectively. All
153 the organic fertilizer was applied to the soil at once as base fertilizer before banana
154 planted; other measures are consistent with common banana production.

155 **2.2 Banana Fusarium wilt disease incidence statistics**

156 Old leaves yellowing, stem crack and new leaves diminishing were the three typical
157 wilt symptoms of banana Fusarium wilt disease. Disease incidence was calculated
158 based on the appearance of the all three symptoms weekly since first sick banana
159 appeared. Finally, banana wilt disease incidence was determined in the harvest time.
160 The percentage of sick plants among the total banana plants was calculated as the
161 Fusarium wilt disease incidence.

162 **2.3 Soil sample collection and DNA extraction**

163 During the harvest time of last banana season, 5 healthy plants were randomly picked
164 out in each biological replicate plots for soil samples collection. Soil samples were
165 collected from four random sites at a distance of 10 cm from banana plant, a depth of
166 20 cm soil column were picked out using soil borer in each sampling site. All the 5
167 soil columns from each biological replicate plots were mixed for DNA extraction. All
168 mixed samples were placed in cold storage and transported to the laboratory. After
169 screening used a 2-mm soil sieve, total soil DNA was extracted using Clean Soil
170 DNA Isolation Kits (MoBio Laboratories Inc., Carlsbad, USA) from fine grained soil.
171 After a determination of DNA concentration and quality using NanoDrop 2000
172 (Thermo Scientific, USA), all soil DNA were diluted to a concentration of 20 ng µl⁻¹
173 for PCR amplification.

174 **2.4 Polymerase chain reaction amplification and Illumina Miseq sequencing**

175 Primers F520 (5'-AYTGGGYDTAAAGNG-3') and R802 (5'-
176 TACNVGGGTATCTAATCC-3') were chosen to amplify the V4 regions of 16 S

177 rRNA gene (Claesson et al., 2009). Primers ITS (5'-GGA AGT AAA AGT CGT
178 AAC AAG G-3') and ITS (5'-TCC TCC GCT TAT TGA TAT GC-3') were chosen
179 for amplification of the fungal ITS region (Schoch et al., 2012).

180 PCR reactions for each sample were performed according to established
181 protocols by Xiong et al. (2016). 27 cycles were performed to amplify the templates.
182 After purification, PCR products were diluted to a concentration of 10 ng μ l⁻¹. of
183 Fungal and bacterial PCR products sequencing were performed on the Illumina
184 MiSeq platform of Personal Biological Co., Ltd (Shanghai, China).

185 **2.5 Bioinformatic analysis**

186 Raw sequences were separated based on the unique 6-bp barcode and sheared of the
187 adaptor and primer using QIIME (Caporaso et al., 2010). Forward and reverse
188 sequences were merged after removal of low-quality sequences. Then, the merged
189 sequences were processed to build the operational taxonomic unit (OTU) at an
190 identity level of 97% according to the UPARSE pipeline. Next, representative
191 sequences of each OTU were classified in the RDP and UNITE databases for bacteria
192 and fungi, respectively (Edgar, 2013; Wang et al., 2007). All raw sequences were
193 deposited in NCBI, the accession number was SRP234066.

194 To compare the relative levels of OTU diversity across all samples, a rarefaction
195 curve was formed using Mothur software (Schloss et al., 2009). The fungal and
196 bacterial diversity was estimated using phylogenetic diversity (PD) indices and Chao1
197 richness which were also calculated based on neighbor-joining phylogenetic trees
198 generated using Mothur pipeline (Faith, 1992).

199 To compare bacterial and fungal community structures among all soil samples,
200 principal coordinate analysis (PCoA) was set up based on the unweighted UniFrac
201 metric matrix (Lozupone et al., 2005). Multiple regression tree (MRT), based on

202 Bray-Curtis distance metric, was carry out to evaluate the effects of rotation and
203 fertilizer type on the whole soil bacterial and fungal community by using vegan and
204 MVPART wrap package in R (version 3.2.0). In addition, to exclude the influence of
205 low abundance species, only the OTUs with average relative abundance of equal or
206 greater than 0.1% in each sample were retained (defined as retained OTUs).

207 **2.6 Network analyses**

208 Based on retained OTUs, interaction networks between OTUs were constructed using
209 the phylogenetic Molecular Ecological Network (pMEN) method according to (Zhou
210 et al., 2011) and (Deng et al., 2012). All analyses were performed using the Molecular
211 Ecological Network Analyses Pipeline (MENA). Cytoscape 2.8.2 software was used
212 to visualize the network.

213 **2.7 Statistical analysis**

214 Differences statistical analyses between the three treatments were carried out in SPSS
215 20.0 and R software. Pearson correlations among disease incidence, different Phylum
216 and FOC relative abundance were analysed in R. Linear models were also proformed
217 using R after stepwise model selection using Akaike information criteria.

218 **3 Results**

219 **3.1 Disease incidence and relative abundance of *Fusarium***

220 Pineapple rotation and biofertilizer application effectively reduced *Fusarium* wilt
221 disease incidence in the next season's banana plantation (**Fig. 1B**). The incidences of
222 banana *Fusarium* wilt disease in POF and PBIO treatments were 33.3% and 12.3%,
223 respectively, which was significantly lower than that in BOF treatment, which
224 reached up to 66.8%. The treatment, PBIO with rotation and biofertilizer application,
225 showed the lowest disease incidence with a 63.1% decrease compared with POF (**Fig.**

226 **1B and Table S1).** The relative abundance of *Fusarium* shows the same tendency as
227 disease incidence, and disease incidence was significantly correlated to relative
228 abundance of *Fusarium*, as revealed by MiSeq sequencing data (**Fig. 1C**).
229

230

231 **Figure 1.** *Fusarium* relative abundance (A), *Fusarium* wilt disease incidence (B) and
232 Pearson correlations between *Fusarium* wilt disease incidence and *Fusarium* relative
233 abundance (C). BOF=Banana continuously cropped for two years with common organic
234 fertilizer applied; POF= Banana planted after Pineapple rotation with common organic
235 fertilizer applied in banana season; PBIO=Banana planted after Pineapple rotation treatment
236 with Bio-organic fertilizer applied; Bars above the histogram represent standard errors and
237 different letters indicate significant differences ($p < 0.05$) according to multivariate variance
238 analysis and multiple comparison results.

239 **3.2 General analyses of the high-throughput sequencing data**

240 After quality control, 908,506 16S rRNA and 1,950,262 ITS sequences were retained,
241 and based on 97% similarity, a total of 8,346 16S and 5,647 ITS OTUs were obtained.
242 For bacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria
243 and Verrucomicrobia were the most abundant phyla, with relative abundances all
244 greater than 1%. For fungi, Ascomycota, followed by Basidiomycota,
245 Chytridiomycota, Zycomycota, and Glomeromycota were the most abundant phyla
246 (**Fig. 2**). ANOVA analysis showed that Chlamydiae, Cyanobacteria/Chloroplast,
247 Gemmatimonadetes, Nitrospirae, Planctomycetes, and Verrucomicrobia abundances

248 were significantly higher in the PBIO and POF treatment samples compared with
 249 BOF treatments, besides, the relative abundance of Ascomycota was decreased in
 250 PBIO treatment (Duncan test, $p < 0.05$).

251

252

253 **Figure 2. Bubble chart of bacterial (A) and fungal (B) phyla in BOF, POF and PBIO**
 254 **treatments.** BOF=Banana continuously cropped for two years with common organic
 255 fertilizer applied; POF= Banana planted after Pineapple rotation with common organic
 256 fertilizer applied in banana season; PBIO=Banana planted after Pineapple rotation treatment
 257 with Bio-organic fertilizer applied; Values represent the average abundance across the nine
 258 replicate libraries for soil samples collected from each treatment.

259

260 **3.3 Effect of pineapple rotation and biofertilizer application on soil microbial**
 261 **diversity and community structure**

262 Rarefaction analyses, Chao1 and Faith's PD were preformed to characterize α -
 263 diversity. Rarefaction analyses showed that the number of OTUs tends to smooth at
 264 14,900 selected bacterial sequences and 34,943 fungal sequences. Compared with the
 265 BOF treatment, more OTUs were observed in the POF and PBIO treatments, both for
 266 bacteria and fungi, and the PBIO treatment exhibited the most OTUs of all treatments

267 (Table 1, Fig. S1). Compared with the BOF treatment, pineapple-banana rotation
268 treatments, POF and PBIO, increased both taxonomic and phylogenetic α -diversity in
269 both bacteria and fungi. In addition, the PBIO treatment showed the highest Chao1
270 richness and Faith's PD values (Table 1).

271 **Table 1.** Bacterial and fungal α -diversity indexes of three treatments. BOF=Banana
272 continuously cropped for two years with common organic fertilizer applied, POF=Banana
273 planted after Pineapple rotation with common organic fertilizer applied in banana season;
274 PBIO=Banana planted after Pineapple rotation treatment with Bio-organic fertilizer applied;
275 Values represent the average index of nine replicate. Means followed by the different letter
276 for a given factor are significantly different ($p < 0.05$; Duncan test).

	Treatment	Numbers of Otus	Chao1	Faith's PD
Bacteria	BOF	2606 \pm 71b	3906.81 \pm 275.21 b	48.47 \pm 1.51 b
	POF	2963 \pm 613 a	4444.28 \pm 189.98 a	51.61 \pm 0.87 a
	PBIO	3210 \pm 108 a	4751.95 \pm 149.49 a	52.10 \pm 1.11 a
Fungi	BOF	1163 \pm 64 b	1751.71 \pm 74.85 a	114.88 \pm 4.78 b
	POF	1277 \pm 708 ab	1705.78 \pm 126.73 a	120.24 \pm 2.12 b
	PBIO	1496 \pm 980 a	2096.32 \pm 323.60 a	127.31 \pm 7.91 a

277
278 We evaluated microbial community structure by PCoA based on a UniFrac
279 unweighted distance matrix to analyze differences of community composition in three
280 treatments. Fungal PCoA showed three distinct groups representing samples taken
281 from the three treatments. However, bacterial PCoA showed only two groups.
282 Unweighted UniFrac distances showed PBIO treatment separate from BOF and POF
283 treatments along the first component (PCoA1), both in bacteria and fungi. POF
284 treatment was separated from BOF treatment along the second component in fungi,
285 whereas in bacteria, POF and BOF treatments were not separate along the second
286 component (Fig. 3A).

Furthermore, MRT results indicated that Bio-fertilizer application acted the largest deterministic influence on composition of both bacterial and fungal community, and that cultivation was secondly important. Driven by fertilization, PBIO treatment was separate from BOF and POF treatments, then, BOF and POF treatments were driven by cultivation (Fig. 3B).

Figure 3. (A) UniFrac-unweighted principle coordinate analysis of fungal and bacterial community structures in different treatment. BOF=Banana continuously cropped for two years with common organic fertilizer applied, POF= Banana planted after Pineapple rotation with common organic fertilizer applied in banana season; PBIO=Banana planted after Pineapple rotation treatment with Bio-organic fertilizer applied. **(B) Multiple regression tree (MRT) analysis for the bacterial and fungal community showed the variables of fertilization and cultivation in each branch.**

300 **3.4 Effect of pineapple rotation and biofertilizer application on soil fungal and**
 301 **bacterial community composition**

302 Those phyla that significantly correlated with FOC abundance were selected for the
 303 evaluation of effects on soil fungal and bacterial community composition versus
 304 relative FOC abundance. Seven Bacteria phyla and three fungi phyla were
 305 significantly correlated with pathogen abundance (**Table S3 and S4**). Moreover, more
 306 fungi were significantly correlated with FOC abundance compared with bacteria,
 307 based on the percentage of FOC related phyla showing this trend (**Fig. 4B**).

308
 309 **Figure 4. (A)** The relative abundance of Ascomycota, Gemmatimonadetes and Nitrospirae
 310 phyla in the three treatments and the linear regression relationship between the Ascomycota,
 311 Gemmatimonadetes and Nitrospirae phyla and the disease incidence. **(B)** Percentage of FOC

312 related bacterial and fungal phyla in all treatments. Different letters above the bars indicate a
313 significant difference at the 0.05 probability level according to the Duncan test.

314 **3.5 Key topological properties of the networks**

315 We built networks to show interactions among genera in the different treatments;
316 those OTUs with a more than 0.1% relative abundance were picked out from each
317 treatment. 301 OTUs were selected from the BOF treatment (122 bacterial and 179
318 fungal), 323 OTUs were selected from the PBIO treatment (152 bacterial and 171
319 fungal), and 324 OTUs were selected from the POF treatment (140 bacterial and 184
320 fungal). Random matrix theory was used to build the networks. As shown in **Fig. 5**,
321 each node represents an OTU, each link shows significant correlation between two
322 OTUs, red and green represent bacterial and fungal OTUs, respectively, and blue and
323 red represent positive and negative correlation, respectively.

324
325 **Figure 5. Network plots of bacterial and fungal communities in soil BOF (A), PBIO (B)**
326 **and POF(C).** BOF=Banana continuously cropped for two years with common organic
327 fertilizer applied, POF= Banana planted after Pineapple rotation with common organic
328 fertilizer applied in banana season; PBIO=Banana planted after Pineapple rotation treatment
329 with Bio-organic fertilizer applied; Red nodes indicate bacteria; Green nodes indicate fungi;

330 Red lines between nodes (links) indicate negative interaction; Blue lines indicate positive
331 interaction.

332

333 Networks with 286 (143 bacterial and 98 fungal), 245 (122 bacterial and 123
334 fungal), and 241 (163 bacterial and 123 fungal) nodes were picked out from BOF,
335 PBIO, and POF treatments, respectively. F/B represents ratio of fungal to bacterial
336 nodes. The F/B ratios were 0.69, 1.01, and 0.75 in BOF, PBIO, and POF treatments,
337 respectively. This result suggests more active fungal OTUs in the PBIO treatment
338 sample, followed by POF and BOF treatments.

339 The structure index network from the different treatments showed 24, 28, and 30
340 modules in BOF, PBIO, and POF treatments, respectively (**Table 2**).

341 **Table 2.** Topological properties of the empirical and associated random pMENs of microbial
342 communities under BOF, POF and PBIO. BOF=Banana continuously cropped for two years
343 with common organic fertilizer applied, POF=Banana planted after Pineapple rotation with
344 common organic fertilizer applied in banana season; PBIO=Banana planted after Pineapple
345 rotation treatment with Bio-organic fertilizer applied; Avg K=Average connectivity; Avg
346 CC=Average clustering coefficient; GD=Average path distance.

Treatment	Network size	R ²	Empirical networks				Random networks		
			AvgK	AvgCC	GD	Modularity	AvgCC	GD	Modularity
BOF	241	0.793	6.71	0.366	2.921	0.62 (30)	0.073	2.96	0.322
POF	286	0.796	5.64	0.412	3.739	0.64 (24)	0.041	3.34	0.385
PBIO	245	0.739	5.16	0.397	3.642	0.72 (28)	0.033	3.28	0.407

347

348 The threshold value Z_i was measures the connected degree between two nodes in
349 the same module, P_i was measures the connected degree between two nodes from
350 different modules. According to the Z_i and P_i values found in our study, all nodes

351 divide into four categories (**Fig. 6**). Three nodes categorize as generalists (module
 352 hubs) with intense connectivity to many nodes in the same modules, two from the
 353 PBIO network and one from the POF network. However, no module hubs were found
 354 in the BOF network. Fourteen nodes were categorized as connectors (generalists) with
 355 high connectivity to several modules, eight from the BOF network and six from the
 356 PBIO network. Interestingly, module hubs (generalists) were only found in pineapple-
 357 banana treatment (PBIO and POF), and connectors (generalists) and module hubs
 358 (generalists) were found at the same time only in pineapple-banana with bio-organic
 359 fertilizer applied treatment (PBIO). Annotation information from all generalists
 360 showed that bacterial OTU2 and OTU3013 belonging to *Burkholderia* were
 361 generalists in PBIO network, while were absent in POF and BOF networks.
 362 Additionally, another generalist OTU4869, from the PBIO network was identified as
 363 *Gp6* in Acidobacteria.

364
 365 **Figure 6. Zi-Pi plot showing the distribution of OTUs based on their topological roles.**
 366 Each symbol represents an OTU in different treatment. The threshold values of Zi and Pi for

367 categorizing OTUs were 2.5 and 0.62 respectively as proposed by Guimera and Amaral (2005)
368 and simplified by Olesen et al. (2007).

369 **3.6 Relationship between microbial indicators and incidence of banana Fusarium
370 wilt disease**

371 Bacterial and fungal structure (unweighted PCoA1), richness (Chao1), and Faith's PD;
372 Ascomycota, Gemmatimonadetes, and Nitrospirae phyla relative abundances; and
373 *Fusarium*, *Burkholderia*, and *Bacillus* genus relative abundances were selected in the
374 linear model and explored for the best contribution factor of disease incidence (**Table
375 3**).

376 **Table 3** Linear models (LM) for the relationships of microbial indicators with disease
377 incidence and the relative importance of each indicators. P was results of ANOVAs. The bold
378 value represent the *p* value is lower than 0.05 levels from the ANOVA result.

	df	F	P	Relative Importance
Bac-PCoA1	1	304.09	<0.0001	19.32%
Fun-PCoA1	1	1.11	0.31	16.32%
Bac-Chao1	1	4.10	0.062	9.60%
Fun-Chao1	1	1.11	0.309	4.19%
Bac-Faith's PD	1	1.59	0.227	6.80%
Fun-Faith's PD	1	1.64	0.221	6.05%
Ascomycota	1	2.11	0.168	1.93%
<i>Fusarium</i> Relative abundance	1	1.01	0.332	8.23%
Nitrospirae	1	0.88	0.363	7.29%
Gemmatimonadetes	1	0.04	0.852	2.61%
<i>Burkholderia</i>	1	0.76	0.399	10.17%
<i>Bacillus</i>	1	0.33	0.574	3.29%
Residuals	14			

Model summary: $R^2=0.9417$, AIC =123.26, $p < 0.0001$

Total response variance: 95.79%

379
380 Importantly, bacterial structure ($F = 304.09$, $p < 0.0001$, Relative Importance =
381 19.32%), fungal structure ($F = 1.11$, $p < 0.31$, Relative Importance = 16.32%), and

382 *Burkholderia* relative abundance ($F = 0.76$, $p < 0.399$, Relative Importance = 10.17%)
383 constrained disease incidence the most (with a relative importance more than 10%).

384 Besides, based on linear regression analyses between disease incidence and
385 selected microbial indicators, we found that bacterial structure ($F = 304.09$, $p <$
386 0.0001, Relative Importance = 19.32%) has significant relationship to disease
387 incidence.

388 **4 Discussion**

389 Our previous research proved the effectiveness of pineapple-banana rotation and bio-
390 organic fertilizer application were proved to be in the control of banana Fusarium wilt
391 disease (Wang et al., 2015; Fu et al., 2017). Soil microbial community change is an
392 important indicator for exploring mechanisms behind these two control measures. In
393 this study, disease incidence and soil microbial community characteristics during the
394 banana-growing season were measured to evaluate the control effect and potential
395 impact of rotation and bio-organic fertilizer application.

396 Our previous results indicate that the pineapple-banana rotation treatments
397 significantly reduce Fusarium wilt disease incidence when compared with banana
398 monoculture. Moreover, the application of bio-organic fertilizer enhances this
399 suppression ability. Shen et al., (2018) reported that bio-fertilizer application after
400 fumigation with lime and ammonium bicarbonate was highly effectively in banana
401 Fusarium wilt disease control. Thus, although many measures can slow down the
402 spread of Fusarium wilt disease, effective control can be enhanced by the combined
403 use of more than one measure (Pda et al., 2017). So, in the current study, we explored
404 the the combined use effect of pineapple-banana rotation and bio-organic fertilizer

405 application to provide a promising strategy to manage banana Fusarium wilt disease.
406 And the results were consistent with the previous reports.

407 Significantly higher Chao1 and Faith's PD were detected in rotation and
408 biofertilizer treatment. Previous studies have shown high positive correlation between
409 disease suppression and a high diversity of bacteria with a concurrent low diversity of
410 fungi (Bonanomi et al., 2010; Fu et al., 2017). However, inconsistent with these
411 results, pineapple-banana rotation and biofertilizer treatment (PBIO) harbor a
412 significantly higher fungal richness and diversity than the other two treatments (BOF
413 and POF). This agrees with two other previous studies that indicated the importance
414 of fungal diversity in the suppressive capacity of vanilla soils and potato cropping
415 system (Xiong et al., 2017). Many previous studies have shown that the decrease of
416 soil pH is an important factor leading to soil-borne diseases. And microbial diversity
417 has been seen to increase with higher soil pH values (Liu et al., 2014; Shen et al.,
418 2013). We observed that soil pH increased in rotation and bio-organic fertilizer
419 treatment (**Table S2**), therefore, the high bacterial and fungal diversity observed in
420 our rotation and bio-organic fertilizer system may be due to high soil pH.

421 Both PCoA ordinations and MRT results reveal significant differences in
422 microbial community structure after rotation and biofertilizer applications. This is
423 supported by previous studies stating that rotation (Helena et al., 2016; Hartmann et
424 al., 2015) and bio-organic fertilizer application (Sun et al., 2015) altered soil
425 microbial community composition. Despite the apparent cultivation, MRT analysis
426 revealed fertilization effects on microbial community composition, indicating that
427 bio-organic fertilizer application in banana season was the most important factor in
428 determining microbial community composition. The result was similar to previous
429 results where bio-organic fertilizer application was the largest factor in determining
430 microbial community composition rather than temporal variability (Fu et al., 2017).

431 This is also a powerful illustration of the necessity of bio-organic fertilizer application
432 in pineapple-banana rotation.

433 Phyla level results show that rotation and biofertilizer application decreases the
434 relative abundance of Ascomycota, and increases the relative abundance of
435 Chlamydiae, Gemmatimonadetes, Nitrospire, Planctomycetes, and Verrucomicrobia,
436 which are all associated with disease suppression in previous reports (Trivedi et al.,
437 2017; Shen et al., 2018). Our fungal result is consistent with previous observations of
438 low Ascomycota phylum abundance in suppressive soil, which is logical because
439 Ascomycetes constitutes the largest group of soil pathogens (Lu et al., 2013).
440 Furthermore, this tendency was observed in our previous report in which a decrease of
441 Ascomycetes was considered as important factors in FOC decrease during the
442 pineapple season (Wang et al., 2015). The bacterial result is partly consistent with
443 previous observations that rotations with wild rocket and Indian mustard increase the
444 *Nitrospira* and Gemmatimonadetes content (Jin et al., 2019). It's worth noting that our
445 BIO was secondary fermentation with *Bacillus* added, while, *Bacillus* genus was not
446 enriched in the BIO treatment soil. Moreover, microbial structure appeared to be the
447 most constrained factor with disease incidence in linear models between microbial
448 indicators and the incidence of banana Fusarium wilt disease. Xiong et al (2017)
449 suggest that microbial species introduced by biofertilizer application induce wilt
450 suppression by microbiome transform, rather than pathogen suppression directly.
451 Alteration of the soil microbiome may cause more response than the added *Bacillus*
452 itself in the PBIO treatment sample in our case as well.

453 We earlier confirmed that pineapple-banana rotation reduces the amount of
454 *Fusarium oxysporum* mainly by modulating fungal communities during pineapple
455 season (Wang et al., 2015). In the present research, compared with bacteria, a higher
456 percentage of FOC-correlation genus in fungi was observed in all treatments. Even

457 though more kinds of bacteria are related to FOC, more percentage of fungi shows
458 relevance. These results agree with findings of Mona et al. (2014) and Cai et al.
459 (2017), who reported that fungal communities have a more crucial response to soil
460 factors changes than bacterial communities. It is worth noting that fungal
461 communities were more dissimilar between the Pineapple-banana rotation and Maize-
462 banana rotation treatments than bacteria in our previous studies (Wang et al., 2015).
463 Thus, the higher FOC-relevance found in fungal community both in the pineapple and
464 banana season further reinforced the importance of fungal community changes in our
465 case.

466 Several researchers have used microbial molecular ecological networks to study
467 complex microbial ecological systems in suppressive soils, including corn-potato
468 rotations (Lu et al., 2013) and vanilla (Xiong et al., 2017). We found microbial
469 molecular ecological networks to reveal distinct differences between the microbial
470 communities associated with the three treatments in our research. More fungal OTUs
471 were picked up in the PBIO treatment samples, followed by the POF and BOF
472 treatments, based on the F/B ratio. Although the OTUs selected to build the network
473 are only a part of the whole system, there is no doubt that these OTUs are very
474 important for soil function (Coyte et al., 2015). Therefore, we conclude that the large
475 number of fungal OTUs present in the system may lead to changes in soil function.
476 PBIO, POF, and BOF soils harbored modules with modularity values of 0.718, 0.642,
477 and 0.616, respectively, in this study. Modularity represents how well the network
478 was organized (Zhou et al., 2011). Thus, PBIO network, which possess high
479 modularity, has more connections between nodes in the same modules, followed by
480 POF and BOF. The altered networks compared with POF and BOF may partially
481 contribute latent attributes to higher disease suppression in our rotation and bio-
482 organic fertilizer application trials. Furthermore, no module hubs (generalists) are

483 present in the BOF network, whereas all three module hubs are found in the
484 pineapple-banana rotation network as *Zi-Pi* relationship indicated. In all three
485 networks, connectors (generalists) and module hubs (generalists) were found at the
486 same time only with the PBIO treatment. Generalists typically only occupy a small
487 fraction of a community; however, the presence of those generalists is quite important
488 (Zhou et al., 2011; Jens et al., 2011). These nodes could enhance connecters within or
489 among modules. If the network is poorly connected, or not connected at all, the
490 community is predicted to be disordered and fluxes of energy, material, and
491 information would not be efficient (Lu et al., 2013). So in our case, these generalists
492 found in PBIO suggest that the microbial community structure was more orderly and
493 powerful than the other two treatments.

494 Annotation information from all the generalists found in our study show that
495 bacterial OTU2 and OTU3013 belong to *Burkholderia*, which were generalists in the
496 PBIO network, but were not observed in the POF and BOF networks.
497 Correspondingly, a high abundance of *Burkholderia* and high percentage of
498 antagonistic *Burkholderia* was found during pineapple season in our previous report
499 (Wang et al., 2015). In addition, our linear model analysis shows that besides bacterial
500 and fungal structure, *Burkholderia* relative abundance constrains disease incidence
501 with the high Relative Importance factor of 10.17%. *Burkholderia* genus was versatile
502 organisms for its powerful function of occupying ecological niche and variety
503 functions include biological control and plant growth promotion and so on in
504 agriculture (Coenye and Vandamme, 2003). This suggests that even though the
505 relative abundance of *Burkholderia* in PBIO was not that high, it is the change of
506 network structure in the rotation and bio-organic fertilizer treatments that attribute to
507 the general wilt suppression activity, and that change may specifically be due to
508 special functions of *Burkholderia*. Additionally, one generalist in the PBIO treatment

509 sample was identified as *Gp6* in Acidobacteria. Although no Acidobacteria
510 antimicrobial activities have previously been recorded, several studies have
511 demonstrated the Acidobacteria is greatly affected by soil pH and *Gp6* was positively
512 correlated with soil pH (Bartram et al., 2014; Jones et al., 2009). Therefore, the
513 special function of *Gp6* in PBIO network probably results from an increase in soil pH.

514 **5 Conclusions**

515 An expansion of previous work, this study revealed that pineapple-banana rotation
516 combined with bio-organic fertilizer application during the banana season is effective
517 in reducing *Fusarium spp.* abundance and banana Fusarium wilt. Several different
518 analyses indicate that bacterial and fungal communities, especially fungal structure,
519 are changed by rotation and bio-organic fertilizer application. Bio-organic fertilizer
520 inhibits Fusarium wilt disease by changing the soil microbial structure, rather than
521 any designated microorganism. Large changes in the fungal community and special
522 *Burkholderia* functions in the network are likely the most responsible factors for soil
523 borne-disease suppression. Pineapple-banana rotation combined with bio-organic
524 fertilizer application has strong potential for the sustainable management of banana
525 Fusarium wilt disease.

526 **Data availability**

527 All data are available. The sequencing data have been submitted to the NCBI
528 Sequence Read Archive database (SRP234066).

529 **Author contributions**

530 Rong Li and Beibei Wang designed the research and wrote the manuscript. Beibei
531 Wang, YannanOu and ZongzhuhanShen performed trials and conducted fieldwork.
532 Beibei Wang and Jinming Yang analyzed the data. Rong Li, Lin Fu, Yunze Ruan,
533 Yan Zhao and Qirong Shen participated in the design of the study, provided

534 comments and edited the manuscript. All authors read and approved the final
535 manuscript.

536 **Competing interests**

537 The authors declare that the research was conducted in the absence of any commercial
538 or financial relationships that could be construed as a potential conflict of interest.

539 **Acknowledgments**

540 This work was supported by the National Natural Science Foundation of China
541 (41867006 and 31760605), the Hainan Provincial Natural Science Foundation of
542 China (320RC483), the National Key Research and Development Program of China
543 (2017YFD0202101).

544 **References**

545 Alabouvette, C., Olivain, C., Migheli, Q., and Steinberg, C.: Microbiological control
546 of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing
547 *Fusarium oxysporum*, New. Phytol., 184, 529-544,
548 <https://doi.org/10.1111/j.1469-8137.2009.03014.x>, 2009.

549 Bartram, A. K., Jiang, X., Lynch, M. D. J., Masella, A. P., Nicol, G. W., Jonathan, D.,
550 and Neufeld, J. D.: Exploring links between pH and bacterial community
551 composition in soils from the Craibstone Experimental Farm, FEMS Microbiol.
552 Ecol., 403, <https://doi.org/10.1111/1574-6941.12231>, 2014.

553 Bonanomi, G., Antignani, V., Capodilupo, M., and Scala, F.: Identifying the
554 characteristics of organic soil amendments that suppress soilborne plant diseases,
555 *Soil Biol. Biochem.*, 42, 136-144, <https://doi.org/10.1016/j.soilbio.2009.10.012>,
556 2010.

557 Bullock, D. G.: Crop rotation, Crit Rev Plant Sci., 11, 309-326,
558 <https://doi.org/10.1080/07352689209382349>, 1992.

559 Butler, D.: Fungus threatens top banana, *Nature.*, 504, 195-196,
560 <https://doi.org/10.1038/504195a>, 2013.

561 Cai, F., Pang, G., Li, R. X., Li, R., Gu, X. L., Shen, Q. R., and Chen, W.: Bioorganic
562 fertilizer maintains a more stable soil microbiome than chemical fertilizer for

563 monocropping, Biol.Fertil. Soils., 53, 861-872, <https://doi.org/10.1007/s00374-017-1216-y>, 2017.

564

565 Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello,
566 E. K., Fierer, N., Peña, A., Goodrich, J. K., and Gordon, J. I.: QIIME allows
567 analysis of high-throughput community sequencing data, Nat. Methods., 7, 335–
568 336, <https://doi.org/10.1038/nmeth.f.303>, 2010.

569 Cha, J. Y., Han, S., Hong, H. J., Cho, H., and Kwak, Y. S.: Microbial and biochemical
570 basis of a Fusarium wilt-suppressive soil, ISME J., 10, 119-129,
571 <https://doi.org/10.1038/ismej.2015.95>, 2016.

572 Chaparro, J. M., Sheflin, A. M., Manter, D. K., and Vivanco, J. M.: Manipulating the
573 soil microbiome to increase soil health and plant fertility, Biol.Fertil. Soils., 48,
574 489-499, <https://doi.org/10.1007/s00374-012-0691-4>, 2012.

575 Christen, O. and Sieling, K.: Effect of Different Preceding Crops and Crop Rotations
576 on Yield of Winter Oil-seed Rape (*Brassica napus L.*), J Agron Crop Sci., 174,
577 265-271, <https://doi.org/10.1111/j.1439-037X.1995.tb01112.x>, 2010.

578 Claesson, M. J., O'Sullivan, O., Wang, Q., Nikkila, J., and Marchesi, J. R.:
579 Comparative Analysis of Pyrosequencing and a Phylogenetic Microarray for
580 Exploring Microbial Community Structures in the Human Distal Intestine, PLoS
581 One., 4, e6669-, <https://doi.org/10.1371/journal.pone.0006669>, 2009.

582 Coenye, T. and Vandamme, P.: Diversity and significance of *Burkholderia* species
583 occupying diverse ecological niches, Environ. Microbiol., 5, 719-729,
584 <https://doi.org/10.1046/j.1462-2920.2003.00471.x>, 2003.

585 Coyte, K. Z., Schluter, J., and Foster, K. R.: The ecology of the microbiome:
586 Networks, competition, and stability, Science., 350, 663-666,
587 <https://doi.org/10.1126/science.aad2602>, 2015.

588 Deng, Y., Jiang, Y., Yang, Y., He, Z., Luo, F., and Zhou, J.: Molecular ecological
589 network analyses, BMC Bioinformatics., 13, 113, <https://doi.org/10.1186/1471-2105-13-113>, 2012.

590

591 Duniway, J. M.: Status of Chemical Alternatives to Methyl Bromide for Pre-Plant
592 Fumigation of Soil, Phytopathology., 92, 1337-1343,
593 <https://doi.org/10.1094/PHYTO.2002.92.12.1337>, 2003.

594 Edgar, R. C.: UPARSE: highly accurate OTU sequences from microbial amplicon
595 reads, Nat. Methods., 10, 996-998, <https://doi.org/10.1038/nmeth.2604>, 2013.

596 Faith, D. P.: Conservation evaluation and phylogenetic diversity, *Biol. Conserv.*, 61,
597 1-10, [https://doi.org/10.1016/0006-3207\(92\)91201-3](https://doi.org/10.1016/0006-3207(92)91201-3), 1992.

598 Fravel, D., Olivain, C., and Alabouvette, C.: *Fusarium oxysporum* and its biocontrol,
599 *New. Phytol.*, 157, 493-502, <https://doi.org/10.1046/j.1469-8137.2003.00700.x>,
600 2003.

601 Fu, L., Ruan, Y., Tao, C., Li, R., and Shen, Q.: Continous application of bioorganic
602 fertilizer induced resilent culturable bacteria community associated with banana
603 *Fusarium* wilt suppression, *Sci. Rep.*, 6, 27731,
604 <https://doi.org/10.1038/srep27731>, 2016.

605 Fu, L., Penton, C. R., Ruan, Y., Shen, Z., Xue, C., Li, R., and Shen, Q.: Inducing the
606 rhizosphere microbiome by biofertilizer application to suppress banana *Fusarium*
607 wilt disease, *Soil Biol. Biochem.*, 104, 39-48,
608 <https://doi.org/10.1016/j.soilbio.2016.10.008>, 2017.

609 Gerbore, J., Benhamou, N., Vallance, J., Floch, G., Grizard, D., Regnault-Roger, C.,
610 and Rey, P.: Biological control of plant pathogens: advantages and limitations
611 seen through the case study of *Pythium oligandrum*, *Environ. Sci. Pollut. R.*, 21,
612 4847-4860, <https://doi.org/10.1007/s11356-013-1807-6>, 2014.

613 Hartmann, M., Frey, B., Mayer, J., Mäder, P., and Widmer, F.: Distinct soil microbial
614 diversity under long-term organic and conventional farming, *ISME J.*, 9, 1177-
615 1194, <https://doi.org/10.1038/ismej.2014.210>, 2015.

616 Helena, C., Lurdes, B., Susana, R.-E., and Helena, F.: Trends in plant and soil
617 microbial diversity associated with Mediterranean extensive cereal-fallow
618 rotation agro-ecosystems, *Agric., Ecosyst. Environ.*, 217, 33-40,
619 <https://doi.org/10.1016/j.agee.2015.10.027>, 2016.

620 Jens, M. O., Jordi, B., Yoko L, D., and Pedro, J.: The modularity of pollination
621 networks, *Proc. Natl. Acad. Sci. USA.*, 104, 19891-19896,
622 <https://doi.org/10.1073/pnas.0706375104>, 2011.

623 Jin, X., Wang, J., Li, D., Wu, F., and Zhou, X.: Rotations with Indian Mustard and
624 Wild Rocket Suppressed Cucumber Fusarium Wilt Disease and Changed
625 Rhizosphere Bacterial Communities, *Microorganisms.*, 7, 57,
626 <https://doi.org/10.3390/microorganisms7020057>, 2019.

627 Jones, R. T., Robeson, M. S., Lauber, C. L., Hamady, M., Knight, R., and Fierer, N.:
628 A comprehensive survey of soil acidobacterial diversity using pyrosequencing

629 and clone library analyses, ISME J., 3, 442-453,
630 <https://doi.org/10.1038/ismej.2008.127>, 2009.

631 Krupinsky, J. M., Bailey, K. L., McMullen, M. P., Gossen, B. D., and Turkington, T.
632 K.: Managing Plant Disease Risk in Diversified Cropping Systems, Agron J., 94,
633 198-209, <https://doi.org/10.2134/agronj2002.1980>, 2002.

634 Le, C. R., Simon, T. E., Patrick, D., Maxime, H., Melen, L., Sylvain, P., and Sabrina,
635 S.: Reducing the Use of Pesticides with Site-Specific Application: The Chemical
636 Control of *Rhizoctonia solani* as a Case of Study for the Management of Soil-
637 Borne Diseases, PLoS One., 11, e0163221-,
638 <https://doi.org/10.1371/journal.pone.0163221>, 2016.

639 Liu, J., Sui, Y., Yu, Z., Shi, Y., Chu, H., Jin, J., Liu, X., and Wang, G.: High
640 throughput sequencing analysis of biogeographical distribution of bacterial
641 communities in the black soils of northeast China, Soil Biol. Biochem., 70, 113-
642 122, <https://doi.org/10.1016/j.soilbio.2013.12.014>, 2014.

643 Liu, L., Kong, J., Cui, H., Zhang, J., Wang, F., Cai, Z., and Huang, X.: Relationships
644 of decomposability and C/N ratio in different types of organic matter with
645 suppression of *Fusarium oxysporum* and microbial communities during reductive
646 soil disinfestation, Biol. Control., 101, 103-113,
647 <https://doi.org/10.1016/j.biocontrol.2016.06.011>, 2016.

648 Lozupone, C., Hamady, M., and Knight, R.: UniFrac—An online tool for comparing
649 microbial community diversity in a phylogenetic context, Nat. New Biol., 241,
650 184-186, <https://doi.org/10.1186/1471-2105-7-371>, 2005.

651 Lu, L., Yin, S., Liu, X., Zhang, W., Gu, T., Shen, Q., and Qiu, H.: Fungal networks in
652 yield-invigorating and -debilitating soils induced by prolonged potato
653 monoculture, Soil Biol. Biochem., 65, 186-194,
654 <https://doi.org/10.1016/j.soilbio.2013.05.025>, 2013.

655 Lupwayi, N. Z., Rice, W. A., and Clayton, G. W.: Soil microbial diversity and
656 community structure under wheat as influenced by tillage and crop rotation, Soil
657 Biol. Biochem., 30, 1733-1741, [https://doi.org/10.1016/S0038-0717\(98\)00025-X](https://doi.org/10.1016/S0038-0717(98)00025-X),
658 1998.

659 Mazzola, M. and Freilich, S.: Prospects for Biological Soilborne Disease Control:
660 Application of Indigenous Versus Synthetic Microbiomes, Phytopathology., 107,
661 256, <https://doi.org/10.1094/PHYTO-09-16-0330-RVW>, 2017.

662 Mendes, L. W., Kuramae, E. E., Navarrete, A. A., Veen, J. V., and Tsai, S. M.:
663 Taxonomical and functional microbial community selection in soybean
664 rhizosphere, ISME J., 8, 1577-1587, <https://doi.org/10.1038/ismej.2014.17>, 2014.

665 Mona, N., Högberg., Stephanie, A., Yarwood., and David, D., Myrold.: Fungal but
666 not bacterial soil communities recover after termination of decadal nitrogen
667 additions to boreal forest, Soil Biol. Biochem., 2014,72, 35-43,
668 <https://doi.org/10.1016/j.soilbio.2014.01.014>, 2014.

669 Nel, B., Steinberg, C., Labuschagne, N., and Viljoen, A.: Evaluation of fungicides and
670 sterilants for potential application in the management of Fusarium wilt of banana,
671 Crop Prot., 26, 697-705, <https://doi.org/10.1016/j.cropro.2006.06.008>, 2007.

672 Pda, B., Scf, A., Olp, B., Ic, C., D , S., Jd, E., and Mh, A.: Disease suppressiveness to
673 Fusarium wilt of banana in an agroforestry system: Influence of soil
674 characteristics and plant community, Agric., Ecosyst. Environ., 239, 173-181,
675 <https://doi.org/10.1186/1471-2105-7-371>, 2017.

676 Ploetz, R. C.: Fusarium Wilt of Banana, Phytopathology., 105, 1512, 2015.

677 Qiu, MH, Zhang, RF, Xue, SS, SQ, Shen, and QR: Application of bio-organic
678 fertilizer can control Fusarium wilt of cucumber plants by regulating microbial
679 community of rhizosphere soil, Biol.Fertil. Soils., 48, 807-816,
680 <https://doi.org/10.1007/s00374-012-0675-4>, 2012.

681 Robert, P., Larkin, J., M., and Halloran.: Management Effects of Disease-Suppressive
682 Rotation Crops on Potato Yield and Soilborne Disease and Their Economic
683 Implications in Potato Production, Am J Potato Res., 91, 429-439,
684 <https://doi.org/10.1007/s12230-014-9366-z>, 2014.

685 Schloss, P., Westcott, S., Ryabin, T., Hall, J., Hartmann, M., Hollister, E., Lesniewski,
686 R., Oakley, B., Parks, D., Robinson, C., Sahl, J., Stres, B., Thallinger, G., Van
687 Horn, D., and Weber, C.: Introducing mothur: Open-Source, Platform-
688 Independent, Community-Supported Software for Describing and Comparing
689 Microbial Communities, Appl. Environ. Microbiol., 75, 7537-7541,
690 <https://doi.org/10.1128/AEM.01541-09>, 2009.

691 Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A.,
692 and Chen, W.: Nuclear ribosomal internal transcribed spacer (ITS) region as a
693 universal DNA barcode marker for Fungi, P Natl Acad Sci USA., 109, 6241-
694 6246, <https://doi.org/10.1073/pnas.1117018109>, 2012.

695 Shen, C., Xiong, J., Zhang, H., Feng, Y., Lin, X., Li, X., Liang, W., and Chu, H.: Soil
696 pH drives the spatial distribution of bacterial communities along elevation on
697 Changbai Mountain, *Soil Biol. Biochem.*, 57, 204-211,
698 <https://doi.org/10.1016/j.soilbio.2012.07.013>, 2013.

699 Shen, Z., Ruan, Y., Xue, C., Zhang, J., and Li, R.: Rhizosphere microbial community
700 manipulated by 2 years of consecutive biofertilizer application associated with
701 banana Fusarium wilt disease suppression, *Biol.Fertil. Soils.*, 51, 553–562,
702 <https://doi.org/10.1007/s00374-015-1002-7>, 2015.

703 Shen, Z., Xue, C., Taylor, P., Ou, Y., Wang, B., Zhao, Y., Ruan, Y., Li, R., and Shen,
704 Q.: Soil pre-fumigation could effectively improve the disease suppressiveness of
705 biofertilizer to banana Fusarium wilt disease by reshaping the soil microbiome,
706 *Biol.Fertil. Soils.*, 54, 793–806, <https://doi.org/10.1007/s00374-018-1303-8>,
707 2018.

708 Sun, R., Zhang, X. X., Guo, X., Wang, D., and Chu, H.: Bacterial diversity in soils
709 subjected to long-term chemical fertilization can be more stably maintained with
710 the addition of livestock manure than wheat straw, *Soil Biol. Biochem.*, 88, 9-18,
711 <https://doi.org/10.1016/j.soilbio.2015.05.007>, 2015.

712 Trivedi, P., Delgado-Baquerizo, M., Trivedi, C., Hamonts, K., Anderson, I. C., and
713 Singh, B. K.: Keystone microbial taxa regulate the invasion of a fungal pathogen
714 in agro-ecosystems, *Soil Biol. Biochem.*, 111, 10-14,
715 <https://doi.org/10.1016/j.soilbio.2017.03.013>, 2017.

716 Wang, B., Li, R., Ruan, Y., Ou, Y., and Zhao, Y.: Pineapple–banana rotation reduced
717 the amount of *Fusarium oxysporum* more than maize–banana rotation mainly
718 through modulating fungal communities, *Soil Biol. Biochem.*, 86, 77-86,
719 <https://doi.org/10.1016/j.soilbio.2015.02.021>, 2015.

720 Wang, B., Yuan, J., Zhang, J., Shen, Z., Zhang, M., Li, R., Ruan, Y., and Shen, Q.:
721 Effects of novel bioorganic fertilizer produced by *Bacillus amyloliquefaciens*
722 W19 on antagonism of Fusarium wilt of banana, *Biol.Fertil. Soils.*, 49, 435-446,
723 <https://doi.org/10.1007/s00374-012-0739-5>, 2013.

724 Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R.: Nave Bayesian Classifier for
725 Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy, *Appl.*
726 *Environ. Microbiol.*, 73, 5261, <https://doi.org/10.1128/AEM.00062-07>, 2007.

727 Xiong, W., Li, R., Ren, Y., Liu, C., Zhao, Q., Wu, H., Jousset, A., and Shen, Q.:
728 Distinct roles for soil fungal and bacterial communities associated with the

729 suppression of vanilla Fusarium wilt disease, *Soil Biol. Biochem.*, 107, 198-207,
730 <https://doi.org/10.1016/j.soilbio.2017.01.010>, 2017.

731 Xiong, W., Zhao, Q., Xue, C., Xun, W., Zhao, J., Wu, H., Rong, L., and Shen, Q.:
732 Comparison of Fungal Community in Black Pepper-Vanilla and Vanilla
733 Monoculture Systems Associated with Vanilla Fusarium Wilt Disease, *Front.*
734 *Microbiol.*, 7, 117, <https://doi.org/10.3389/fmicb.2016.00117>, 2016.

735 Yin, W., Jie, X., Shen, J., Luo, Y., Scheu, S., and Xin, K.: Tillage, residue burning
736 and crop rotation alter soil fungal community and water-stable aggregation in
737 arable fields, *Soil Till Res.*, 107, 71-79,
738 <https://doi.org/10.1016/j.still.2010.02.008>, 2010.

739 Zhang, F., Zhen, Z., Yang, X., Wei, R., and Shen, Q.: *Trichoderma harzianum* T-E5
740 significantly affects cucumber root exudates and fungal community in the
741 cucumber rhizosphere, *Appl. Soil Ecol.*, 72, 41-48,
742 <https://doi.org/10.1016/j.apsoil.2013.05.016>, 2013a.

743 Zhang, H., Mallik, A., and Zeng, R. S.: Control of Panama Disease of Banana by
744 Rotating and Intercropping with Chinese Chive (*Allium Tuberosum* Rottler):
745 Role of Plant Volatiles, *J. Chem. Ecol.*, 39, 243-252,
746 <https://doi.org/10.1007/s10886-013-0243-x>, 2013b.

747 Zhou, J., Deng, Y., Luo, F., He, Z., and Yang, Y.: Phylogenetic Molecular Ecological
748 Network of Soil Microbial Communities in Response to Elevated CO₂, *mBio.*,
749 2, : e00122-00111., <http://mbio.asm.org/content/2/4/e00122-11.short>, 2011.

750