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Abstract. The nitrogen-15 (**N) natural abundance composition (5"°N) in soils or f
rom RC1.

plants is a useful tool to indicate the openness of ecosystem N cycling. This study was
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aimed to evaluate the influence of the experimental warming on soil and plant 5"°N.
from RC1.

We applied a global meta-analysis method to synthesize 79 and 76 paired

~| #it¥E [f4): Response to the comment 7

observations of soil and plant 5°N from 20 published studies, respectively. Results
from RC1.

showed that the mean effect sizes of the soil and plant 5'°N under experimental
warming were -0.524 (95% CI: -0.987 to -0.162) and 0.189 (95% CI: -0.210 to 0.569),

respectively. This indicated that soil 3">N had negative response to warming at the

e HEIE [f5]: Response to the comment 1

global scale, where warming had no significant effect on plant 8*°N.| Experimental
from RC2.

warming significantly (p < 0.05) decreased soil 5°N in Alkali and medium-textured
soils, in grassland/meadow, under air warming, for 4-10 yr warming period and for an
increase of > 3 °C in temperature, whereas it significantly (p < 0.05) increased soil
8"N in neutral and fine-textured soils and for an increase of 1.5-3 °C in temperature.
Plant §"N significantly (p < 0.05) increased with increasing temperature in neutral
and fine-textured soils and significantly (p < 0.05) decreased in alkali soil. Latitude
did not affect the warming effects on both soil and plant 5'°N. However, the warming
effect on soil 5°N was positively controlled by the mean annual temperature, which is
related to the fact that the higher temperature can strengthen the activity of soil
microbes. The effect of warming on plant §°N had weaker relationships with
environmental variables compared with that on soil 5"°N. This implied that soil 3'°N

was more effective than plant 8*°N in indicating the openness of global ecosystem N

| #L¥E [f6]: Response to the comment 8
' from RC1.

cycling.
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1 Introduction

Nitrogen (N) is one of the most important nutrient elements for plant growth and the
key limiting factors for vegetation productivity (McLay et al., 2001; Zhu et al., 2018;
Lu et al., 2020). On the one hand, if the available N in the soil is insufficient, it will
damage and weaken the ecosystem service function, including the supply of primary
material products, water conservation, climate regulation, etc. (Averill and Waring,
2018). On the other hand, if the available N in the soil is over supplied, it will also
damage the structure and function of the ecosystem, resulting in a series of

environmental problems such as soil acidification and imbalance of ecosystem

nutrient (Schrijver et al., 2008). The intermediate products of the N cycling processes,

such as nitrate nitrogen (NO3 — N), nitrous oxide (N2O) and nitric oxide (NO), may

also cause eco-environmental pollution jsuch as eutrophication of water body and

“| #ik¥E [£7]: Response to the comment 9

from RC1.
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10 from RC2.

aggravation of climate-related issues| (Liao et al., 2019). Therefore, it is of great

HEE [f9]: Response to the comment
10 from RC2.

significance to reveal the openness of the ecosystem N cycle process for
understanding the plant N fixation and long-term trend of N cycling and protecting
the eco-environment (Wang et al., 2014; Wu et al., 2019). Openness is a measure of
both N inputs and outputs relative to internal cycling and determines both the
potential rate of N accumulation in the ecosystem and the potential for N losses

following a disturbance (Rastetter et al., 2021). |

HL¥E [£10]: Response to the comment
10 from RC2.

The ®N natural abundance composition (5*°N) in soils or plants (leaves, shoots,

fine roots and litter) \is often used td indicate the openness of ecosystem N cycling

| #L¥E [f11]: Response to the comment

2 from RC2.

(Robinson, 2001). This is because the lighter isotope of N always preferentially
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loses from the ecosystem. Thus, the isotopic fractionation effect results in gradual BN

enrichment in the ecosystem (Aranibar et al., 2004). The larger the 3"°N value, the -

higher degree of openness of N cycling. In addition, soil 8N also appears to reflect

the degree of decomposition of the organic matter, showing that 5'°N increases with

processing (Craine et al., 2015). |A large number of studies have confirmed that -

climate was the main factor regulating the soil and plant 8*°N (Craine et al., 2015;
Soper et al., 2015). Previous studies have demonstrated that precipitation had a
negative effect on soil and plant §**N from in-situ evidences to cross-sites syntheses
(Swap et al., 2004; Soper et al., 2015). However, the influence of temperature on soil
and plant 3"°N remained controversial. Some studies have showed that soil and plant
8"N increased with temperature (Amundson et al., 2003; Craine et al., 2015), while
others have indicated that >N decreased with temperature (Cheng et al., 2009; Sheng
et al., 2014) or even there was no correlation between them (Yang et al., 2013). The
various studies suggested that the responses of soil and plant 5°N to warming were
very complex and not well understood. In addition to climate factor, soil and plant
8"N are affected by a variety of other environmental factors, such as vegetation type,
topography, soil properties and management practices (Gurmesa et al., 2017; Wang et
al., 2019). However, we know little about the influences of environmental factors on

the warming effect on ecosystem N cycling, in terms of soil and plant 5*°N.

Soil and air warming experiments jhave often been conducted to study the effect

of warming on the ecosystem N cycling at site scale (Schindlbacher et al., 2009). At

present, the effect of experimental warming on soil and plant §°N has not been

HEI¥E [f14]: Response to the comment
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studied on a global scale. The objectives of this study were to: (i) detect the effect of
experimental warming on the soil and plant 5N based on a global meta-analysis of
20 studies; and (ii) identify the main factors influencing the warming effect on the soil
and plant 5°N. Specifically, we hypothesized that soil 8°N is a better indicator of

ecosystem N cycling than plant 5"°N. |

2 Materials and methods

2.1 Source of data and selection criteria

Peer-reviewed journal articles and dissertations related to soil and plant 8*°N under
experimental warming were searched using Web of Science and China National

Knowledge Infrastructure (CNKI, http://www.cnki.net) until March 31, 2020 (Tab. 1).

The keywords used for the literature search were related to: “nitrogen isotope

composition”, “experimental warming” and “ecosystems nitrogen cycling”.

Our criteria were as follows: at least one of the target variables was contained, |

including soils (different fractions, e.g., sand, silt, clay, aggregate and bulk soil) and

plants (leaves, shoots, roots and litters) 8"°N; studies with climate gradients

(space-time substitution) were excluded and only field warming experimental studies

were included; only data from control and warming treatments were applied for
multifactor experiments; means, standard deviations (SD) (or standard errors (SE))
and sample sizes were directly provided or could be calculated from the studies; if one
article contained soil or plant 8°N in multiple years, only the latest results were
applied since the observations should be independent in the meta-analysis (Hedges et

al., 1999). |

#LIE [f18]: Response to the comment
2 from RC1 and comments 1 and 4

from RC2.
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2.2 Data extraction and statistical analysis

In total, 20 published papers were selected from L'S4 published papers. The locations of

warming experiments were presented and their site information is listed in Tab. 1. For
each study, the means, the statistical variation (SE or SD) and the sample size values

for treatment and control groups were extracted for each response variable (3"°N). In

addition to 8°N, the latitude, longitude, altitude, soil pH, prganic matter content,

vegetation type, mean annual precipitation (MAP) and mean annual temperature

(MAT) were also extracted if they were provided (Tab. 1). All data were extracted -

from tables or digitized from graphs with the software GetData v2.2.4

(http://www.getdata-graph-digitizer.com). A total of 79 and 76 paired observations for

soil and plant 8"°N were obtained, respectively.

The METAWIN 2.1 software (Sinauer Associates Inc., Sunderland, MA, USA)
(Rosenberg et al., 2000) was used to perform meta-analysis in this study. The Hedges’
d value was used as the effect size (Hedges et al., 1999). The absolute d value
indicated the magnitude of the treatment impact. Positive or negative d values
represented an increase or decrease effect of the treatment, respectively. Zero meant
no difference between treatment and control groups. \Resampling tests were

incorporated into our meta-analysis using the bootstrap method (999 random

replicates). The mean effect size (calculated from 999 iterations) and 95% bootstrap -

confidence intervals (CI) were then generated. If the 95% CI values of d did not
overlap zero, the effects of experimental warming on 8*°N were considered significant

at p < 0.05. We used a random effects model to test whether warming had a significant

e HEIE [f22]: Response to the comment
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effect on 8"°N. To examine whether experimental conditions alter the response
direction and magnitude of soil and plant 8*°N, observations were further divided into
subgroups according to the soil acidity-alkalinity (acid (pH < 6.5), neutral (6.5 < pH <
7.5), and alkali (pH > 7.5)), vegetation types (forest/shrub, moss/lichen, and
grassland/meadow), warming treatments (soil warming, air warming, and both soil
and air warming), &oil texture (fine-, medium-, and coarse-textured soil), length of

warming (< 4 yr, 4-10 yr, and > 10 yr), and increase in temperature (< 1.5 °C, 1.5-3 °C,

and > 3 °C). A random effects model with a grouping variable was used to compare

responses among different subgroups. Linear regression analyses were applied to
assess the relationships between the Hedges’ d values and environmental factors (i.e.,
latitude, altitude, MAT and MAP).

3 Results

Across all sites, the mean effect sizes of the soil and plant 3"°N under experimental
warming were -0.524 (95% CI: -0.987 to -0.162) and 0.189 (95% CI: -0.210 to 0.569),
respectively (Fig. 1). Experimental warming significantly (p < 0.05) decreased soil
8N in Alkali (mean effect size = -2.484; 95% CI: -2.931 to -2.060) and
medium-textured (mean effect size = -0.676; 95% CI: -1.153 to -0.249) soils, in
grassland/meadow (mean effect size = -0.609; 95% CI: -1.076 to -0.190), under air
warming (mean effect size = -0.652; 95% ClI: -1.081 to -0.273), for 4-10 yr warming
period (mean effect size = -0.652; 95% CI: -1.081 to -0.273) and for an increase of >
3 °C in temperature (mean effect size = -0.652; 95% CI: -1.081 to -0.273). However, it

significantly (p < 0.05) increased soil 8*°N in neutral (mean effect size = 0.359; 95%

e HL¥E [f27]: Response to the comment
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ClI: 0.078 to 0.620) and fine-texture soils (mean effect size = 2.394; 95% CI: 1.770 to
3.735), and for an increase of 1.5-3 °C in temperature (mean effect size = 0.409; 95%
Cl: 0.070 to 0.707) (Fig. 2). Experimental warming did not significantly (p > 0.05)
change soil 5'°N under other experimental conditions.

In addition, experimental warming significantly (p < 0.05) increased plant §*°N in
neutral (mean effect size = 3.157; 95% CI: 1.529 to 6.967) and fine-textured soils
(mean effect size = 1.202; 95% CI: 1.042 to 1.360), whereas it significantly (p < 0.05)
decreased plant "N in alkali soil (mean effect size = -1.930; 95% CI: -2.325 to
-1.573) (Fig. 2). Experimental warming did not significantly (p > 0.05) change plant
8N under other experimental conditions.

For soil and plant 8*°N, their responses to experimental warming did not correlate
well with latitude (p = 0.268 and p = 0.160, respectively) (Fig. 3ab). However, the
Hedges’ d values of soil 8*°N decreased significantly with altitude (p < 0.001) (Fig. 3c)
and increased significantly with MAT (p < 0.001) and MAP (p < 0.001) (Fig. 3eg). In
addition, the Hedges’ d values of plant §°N were also found to increase significantly
with MAP (p < 0.001) (Fig. 3h). However, the responses of plant 5'°N to experimental
warming did not correlate well with altitude (p = 0.109) and MAT (p = 0.002) (Fig.
3df).

4 Discussion

A significant decreasing trend in soil 5"°N and no significant trend in plant 5"°N were

found in this study. This is somewhat inconsistent with previous findings. Chang etal. -

(2017) observed that soil and plant 8"°N values decreased under warming in the

- HL¥E [£28]: Response to the comment
1 from RC2.
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Tibetan permafrost. However, Zhang et al. (2019) found that the warming treatment
significantly increased soil and plant 8N in a subtropical forest. The various studies
suggest that soil and plant §*°N are controlled by interactive effects of N fixation and
mineralization. At the global scale, §°N of N input (~ 0) is generally lower than that
of soil, so greater N fixation or higher N input (deposition and fertilization) under
warming can result in a lower soil "N (Sorensen and Michelsen, 2011; Rousk and

Michelsen, 2017; Wang et al., 2018).

Soil pH has an important influence on nitrification, denitrification and N,O
emissions from soils (Kyveryga et al., 2004). fl'he results in this study showed that

when the soil was alkaline, the mean effect sizes of soil and plant §"°N under warming

were negative, while when the soil was neutral, they were positive (Fig. 2ab).|

Compared with alkaline condition, the near neutral conditions are more suitable for
the biological activities of heterotrophic denitrifying bacteria (Simek and Cooper,

2002). Therefore, the denitrification activity is usually higher under neutral conditions,

resulting in an enrichment of soil and plant N pools with °N (Kyveryga et al., 2004). -

Vegetation type has limit effects on 8"°N under warming, except for soil 8*°N in

grassland/meadow (Fig. 2cd). This may be related to the differences in altitude, MAP -

and MAT among three vegetation types (Tab. 1). Warming treatment was found to

have a substantial effect on soil 5'°N, showing that the mean effect size of soil 5°N

under air warming was negative and less than that under soil warming (Fig. 2ef).|

Salmon et al. (2016) have found that soil warming can increase N availability by

stimulating mineralization of organic matter in the warmed active layer. [In addition,

\
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air warming directly impacts aboveground temperatures and has an indirectly effect

on soil 8"°N (Pardo et al., 2006). From Fig. 2gh, the finer the soil texture, the more -

significant the positive effect of warming on soil and plant 5"°N. The possible reason
is that the finer the soil texture, the stronger the adsorption of various ions on the soil
and the smaller the leaching loss of the soil, resulting in the greater the residual
amount of N in the soil (Webster et al., 1986). In addition, the longer warming
period and the greater increase in temperature resulted in the more negative effect of
warming on soil 8*°N (Fig. 2ik). Chang et al. (2017) deduced that N fixation was
greater under warming and consequently resulted in a lower soil 5°N. |

In the study of Mayor et al. (2015), who found that soil and plant 5°N were
significantly (p < 0.001) and negatively correlated with latitude at the global scale.

However, the Hedges’ d values of soil and plant §°N had weak correlations with

latitude in this study (Fig. 3)] The warming effect on soil >N was significantly (p <

0.001) influenced by altitude, MAT and MAP. Among these, the strongest correlation

was observed for MAT. Temperature has been demonstrated to be a key factor to

regulate the soil 8*°N by influencing the processes of N mineralization, nitrification

and denitrification (Craine et al., 2015). The higher temperature can strengthen the -

activity of soil microbes and thereafter increase the N uptake for plants and soil N loss
from ammonia volatilization and gas N emissions, and thereby more °N-enriched
retains in soils (Wang et al., 2019). Craine et al. (2015) also proposed that warmer
sites have soil N that is elevated in N, but has lower C:N. Once C:N is controlled,
there is little pattern in *°N across temperature gradients. In other words, the
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relationship between soil 5'°N and climate is indirect, and mediated through climate

values of soil 5™°N corresponded to MAT of about 20 °C, which was the most suitable
temperature for nitrification and denitrification. However, warming had a substantial
negative impact on soil 3"°N when MAT decreased to around -5 °C. Recently, Rousk
et al. (2018) also found that the increase of temperature in the Arctic promoted the
biological N fixation, which can decrease the soil 8°N. The decrease of d values of
soil 8"°N with increasing altitude and decreasing MAP in this study might be caused
by the positive response of d values to MAT.

The relationships between the d values and environmental variables for plant
8"N were weaker than those for soil 8*°N (Fig. 3). The possible reason is that several
other factors (e.g., plant N concentrations and species richness) might co-regulate
plant 3"°N (Wu et al., 2019). [This is consistent with the study of Craine et al. (2009),
who found different inflection points in soil and plant §*°N relationships with MAT. In

addition, plants are generally depleted in °N relative to soils. /Above results implied

that soil 6'°N was more efficient in indicating the openness of ecosystem N cycling
than plant 8"°N at the global scale. Although the present study provided a global
meta-analysis of the responses of 5°N to experimental warming, the magnitude of
these responses might be uncertain. For example, a small number of observations
were obtained in moss/lichen under soil warming and both soil and air warming

treatments, which would affect the results of meta-analysis. Future research should

take more experimental data into account in order to better investigate the warming
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effects on 6*°N.
6 Conclusions

Our global meta-analysis indicated a significant decreasing trend in soil "°N and no

significant trend in plant >N under experimental warming. [Latitude did not affect the

warming effects on 5"°N. However, the warming effect on §"°N was related to soil
acidity-alkalinity, texture, vegetation type, warming treatment and period, increase in
temperature, altitude, MAT and MAP. The effect of warming on soil >N was better
correlated with environmental variables compared with that on plant §*°N. Our
findings should be useful for understanding the underlying mechanisms of the
response of ecosystem N cycling to global warming.
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Table 1: Site characteristics from a global meta-analysis of 20 studies.
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organic matter content was determined by multiplying the organic carbon content by a coefficient of 1.724.
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List of Figures:

Figure 1: Effect sizes of the experimental warming on soil and plant 5°N from a
global meta-analysis of 20 studies. The error bars indicate effect sizes and 95%
bootstrap confidence intervals (Cl). The warming effect was statistically significant if
the 95% CI did not bracket zero. The sample size for each variable is shown next to
the bar.

Figure 2: Factors influencing the effect sizes of the soil and plant °N under
experimental warming from a global meta-analysis of 20 studies, including (a-b) soil
acidity-alkalinity, (c-d) vegetation types, (e-f) warming treatments, (g-h) soil texture,
(i-j) length of warming and (k-I) increase in temperature. The error bars indicate effect
sizes and 95% bootstrap confidence intervals (Cl). The warming effect was
statistically significant if the 95% CI did not bracket zero. The sample size for each
variable is shown next to the bar.

Figure 3: Relationships between the Hedges’ d values of soil and plant §°N with the
latitude, altitude, mean annual temperature (MAT) and mean annual precipitation

(MAP) under experimental warming.
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