

1 Soil $\delta^{15}\text{N}$ is a better indicator of ecosystem nitrogen cycling than
2 plant $\delta^{15}\text{N}$: A global meta-analysis

批注 [f1]: Response to the comment 1
from RC2.

3 Kaihua Liao^{1,2*}, Xiaoming Lai^{1,2}, Qing Zhu^{1,2,3*}

4 ¹Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography
5 and Limnology, Chinese Academy of Sciences, Nanjing 210008, China

6 ²University of Chinese Academy of Sciences, Beijing 100049, China

7 ³Jiangsu Collaborative Innovation Center of Regional Modern Agriculture &
8 Environmental Protection, Huaiyin Normal University, Huaian 223001, China

9

10 Submitted to: *Soil*

11

* Corresponding author. Tel.: +86 25 86882139; fax: +86 25 57714759.
E-mail addresses: khliao@niglas.ac.cn (Kaihua Liao); qzhu@niglas.ac.cn (Qing Zhu)

12 **Abstract.** The nitrogen-15 (^{15}N) natural abundance composition ($\delta^{15}\text{N}$) in soils or
13 plants is a useful tool to indicate the openness of ecosystem N cycling. This study was
14 aimed to evaluate the influence of the experimental warming on soil and plant $\delta^{15}\text{N}$.
15 We applied a global meta-analysis method to synthesize 79 and 76 paired
16 observations of soil and plant $\delta^{15}\text{N}$ from 20 published studies, respectively. Results
17 showed that the mean effect sizes of the soil and plant $\delta^{15}\text{N}$ under experimental
18 warming were -0.524 (95% CI: -0.987 to -0.162) and 0.189 (95% CI: -0.210 to 0.569),
19 respectively. This indicated that soil $\delta^{15}\text{N}$ had negative response to warming at the
20 global scale, where warming had no significant effect on plant $\delta^{15}\text{N}$. Experimental
21 warming significantly ($p < 0.05$) decreased soil $\delta^{15}\text{N}$ in Alkali and medium-textured
22 soils, in grassland/meadow, under air warming, for 4-10 yr warming period and for an
23 increase of > 3 °C in temperature, whereas it significantly ($p < 0.05$) increased soil
24 $\delta^{15}\text{N}$ in neutral and fine-textured soils and for an increase of 1.5-3 °C in temperature.
25 Plant $\delta^{15}\text{N}$ significantly ($p < 0.05$) increased with increasing temperature in neutral
26 and fine-textured soils and significantly ($p < 0.05$) decreased in alkali soil. Latitude
27 did not affect the warming effects on both soil and plant $\delta^{15}\text{N}$. However, the warming
28 effect on soil $\delta^{15}\text{N}$ was positively controlled by the mean annual temperature, which is
29 related to the fact that the higher temperature can strengthen the activity of soil
30 microbes. The effect of warming on plant $\delta^{15}\text{N}$ had weaker relationships with
31 environmental variables compared with that on soil $\delta^{15}\text{N}$. This implied that soil $\delta^{15}\text{N}$
32 was more effective than plant $\delta^{15}\text{N}$ in indicating the openness of global ecosystem N
33 cycling.

批注 [f2]: Response to the comment 5 from RC1.

批注 [f3]: Response to the comment 6 from RC1.

批注 [f4]: Response to the comment 7 from RC1.

批注 [f5]: Response to the comment 1 from RC2.

批注 [f6]: Response to the comment 8 from RC1.

34 **1 Introduction**

35 Nitrogen (N) is one of the most important nutrient elements for plant growth and the
36 key limiting factors for vegetation productivity (McLay et al., 2001; Zhu et al., 2018;
37 Lu et al., 2020). On the one hand, if the available N in the soil is insufficient, it will
38 damage and weaken the ecosystem service function, including the supply of primary
39 material products, water conservation, climate regulation, etc. (Averill and Waring,
40 2018). On the other hand, if the available N in the soil is over supplied, it will also
41 damage the structure and function of the ecosystem, resulting in a series of
42 environmental problems such as soil acidification and imbalance of ecosystem
43 nutrient (Schrijver et al., 2008). The intermediate products of the N cycling processes,
44 such as nitrate nitrogen ($\text{NO}_3^- - \text{N}$), nitrous oxide (N_2O) and nitric oxide (NO), may
45 also cause eco-environmental pollution such as eutrophication of water body and
46 aggravation of climate-related issues (Liao et al., 2019). Therefore, it is of great
47 significance to reveal the openness of the ecosystem N cycle process for
48 understanding the plant N fixation and long-term trend of N cycling and protecting
49 the eco-environment (Wang et al., 2014; Wu et al., 2019). Openness is a measure of
50 both N inputs and outputs relative to internal cycling and determines both the
51 potential rate of N accumulation in the ecosystem and the potential for N losses
52 following a disturbance (Rastetter et al., 2021).

批注 [f7]: Response to the comment 9 from RC1.

批注 [f8]: Response to the comment 10 from RC2.

批注 [f9]: Response to the comment 10 from RC2.

批注 [f10]: Response to the comment 10 from RC2.

批注 [f11]: Response to the comment 2 from RC2.

批注 [f12]: Response to the comment 10 from RC1.

批注 [f13]: Response to the comment 10 from RC2.

56 loses from the ecosystem. Thus, the isotopic fractionation effect results in gradual $\delta^{15}\text{N}$
57 enrichment in the ecosystem (Aranibar et al., 2004). The larger the $\delta^{15}\text{N}$ value, the
58 higher degree of openness of N cycling. In addition, soil $\delta^{15}\text{N}$ also appears to reflect
59 the degree of decomposition of the organic matter, showing that $\delta^{15}\text{N}$ increases with
60 processing (Craine et al., 2015). A large number of studies have confirmed that
61 climate was the main factor regulating the soil and plant $\delta^{15}\text{N}$ (Craine et al., 2015;
62 Soper et al., 2015). Previous studies have demonstrated that precipitation had a
63 negative effect on soil and plant $\delta^{15}\text{N}$ from in-situ evidences to cross-sites syntheses
64 (Swap et al., 2004; Soper et al., 2015). However, the influence of temperature on soil
65 and plant $\delta^{15}\text{N}$ remained controversial. Some studies have showed that soil and plant
66 $\delta^{15}\text{N}$ increased with temperature (Amundson et al., 2003; Craine et al., 2015), while
67 others have indicated that $\delta^{15}\text{N}$ decreased with temperature (Cheng et al., 2009; Sheng
68 et al., 2014) or even there was no correlation between them (Yang et al., 2013). The
69 various studies suggested that the responses of soil and plant $\delta^{15}\text{N}$ to warming were
70 very complex and not well understood. In addition to climate factor, soil and plant
71 $\delta^{15}\text{N}$ are affected by a variety of other environmental factors, such as vegetation type,
72 topography, soil properties and management practices (Gurmessa et al., 2017; Wang et
73 al., 2019). However, we know little about the influences of environmental factors on
74 the warming effect on ecosystem N cycling, in terms of soil and plant $\delta^{15}\text{N}$.

批注 [f14]: Response to the comment
3 from RC2.

批注 [f15]: Response to the comment
from CC1.

75 Soil and air warming experiments have often been conducted to study the effect
76 of warming on the ecosystem N cycling at site scale (Schindlbacher et al., 2009). At
77 present, the effect of experimental warming on soil and plant $\delta^{15}\text{N}$ has not been

批注 [f16]: Response to the comment
11 from RC1.

批注 [f17]: Response to the comment
10 from RC2.

78 studied on a global scale. The objectives of this study were to: (i) detect the effect of
79 experimental warming on the soil and plant $\delta^{15}\text{N}$ based on a global meta-analysis of
80 20 studies; and (ii) identify the main factors influencing the warming effect on the soil
81 and plant $\delta^{15}\text{N}$. Specifically, we hypothesized that soil $\delta^{15}\text{N}$ is a better indicator of
82 ecosystem N cycling than plant $\delta^{15}\text{N}$.

批注 [f18]: Response to the comment
2 from RC1 and comments 1 and 4
from RC2.

83 **2 Materials and methods**

84 **2.1 Source of data and selection criteria**

85 Peer-reviewed journal articles and dissertations related to soil and plant $\delta^{15}\text{N}$ under
86 experimental warming were searched using Web of Science and China National
87 Knowledge Infrastructure (CNKI, <http://www.cnki.net>) until March 31, 2020 (Tab. 1).
88 The keywords used for the literature search were related to: “nitrogen isotope
89 composition”, “experimental warming” and “ecosystems nitrogen cycling”.

90 Our criteria were as follows: at least one of the target variables was contained,
91 including soils (different fractions, e.g., sand, silt, clay, aggregate and bulk soil) and
92 plants (leaves, shoots, roots and litters) $\delta^{15}\text{N}$; studies with climate gradients
93 (space-time substitution) were excluded and only field warming experimental studies
94 were included; only data from control and warming treatments were applied for
95 multifactor experiments; means, standard deviations (SD) (or standard errors (SE))
96 and sample sizes were directly provided or could be calculated from the studies; if one
97 article contained soil or plant $\delta^{15}\text{N}$ in multiple years, only the latest results were
98 applied since the observations should be independent in the meta-analysis (Hedges et
99 al., 1999).

批注 [f19]: Response to the comment
10 from RC2.

批注 [f20]: Response to the comment
5 from RC2.

批注 [f21]: Response to the comment
2 from RC1.

100 **2.2 Data extraction and statistical analysis**

101 In total, 20 published papers were selected from 54 published papers. The locations of
102 warming experiments were presented and their site information is listed in Tab. 1. For
103 each study, the means, the statistical variation (SE or SD) and the sample size values
104 for treatment and control groups were extracted for each response variable ($\delta^{15}\text{N}$). In
105 addition to $\delta^{15}\text{N}$, the latitude, longitude, altitude, soil pH, organic matter content,
106 vegetation type, mean annual precipitation (MAP) and mean annual temperature
107 (MAT) were also extracted if they were provided (Tab. 1). All data were extracted
108 from tables or digitized from graphs with the software GetData v2.2.4
109 (<http://www.getdata-graph-digitizer.com>). A total of 79 and 76 paired observations for
110 soil and plant $\delta^{15}\text{N}$ were obtained, respectively.

批注 [f22]: Response to the comment
12 from RC1.

111 The METAWIN 2.1 software (Sinauer Associates Inc., Sunderland, MA, USA)
112 (Rosenberg et al., 2000) was used to perform meta-analysis in this study. The Hedges'
113 d value was used as the effect size (Hedges et al., 1999). The absolute d value
114 indicated the magnitude of the treatment impact. Positive or negative d values
115 represented an increase or decrease effect of the treatment, respectively. Zero meant
116 no difference between treatment and control groups. Resampling tests were
117 incorporated into our meta-analysis using the bootstrap method (999 random
118 replicates). The mean effect size (calculated from 999 iterations) and 95% bootstrap
119 confidence intervals (CI) were then generated. If the 95% CI values of d did not
120 overlap zero, the effects of experimental warming on $\delta^{15}\text{N}$ were considered significant
121 at $p < 0.05$. We used a random effects model to test whether warming had a significant

批注 [f23]: Response to the
comment 9 from RC2.

批注 [f24]: Response to the comment
13 from RC1.

批注 [f25]: Response to the comment
14 from RC1.

批注 [f26]: Response to the comment
15 from RC1.

122 effect on $\delta^{15}\text{N}$. To examine whether experimental conditions alter the response
123 direction and magnitude of soil and plant $\delta^{15}\text{N}$, observations were further divided into
124 subgroups according to the soil acidity-alkalinity (acid ($\text{pH} < 6.5$), neutral ($6.5 < \text{pH} <$
125 7.5), and alkali ($\text{pH} > 7.5$)), vegetation types (forest/shrub, moss/lichen, and
126 grassland/meadow), warming treatments (soil warming, air warming, and both soil
127 and air warming), soil texture (fine-, medium-, and coarse-textured soil), length of
128 warming (< 4 yr, 4-10 yr, and > 10 yr), and increase in temperature (< 1.5 °C, 1.5-3 °C,
129 and > 3 °C). A random effects model with a grouping variable was used to compare

批注 [f27]: Response to the comment
6 from RC2.

130 responses among different subgroups. Linear regression analyses were applied to
131 assess the relationships between the Hedges' d values and environmental factors (i.e.,
132 latitude, altitude, MAT and MAP).

133 3 Results

134 Across all sites, the mean effect sizes of the soil and plant $\delta^{15}\text{N}$ under experimental
135 warming were -0.524 (95% CI: -0.987 to -0.162) and 0.189 (95% CI: -0.210 to 0.569),
136 respectively (Fig. 1). Experimental warming significantly ($p < 0.05$) decreased soil
137 $\delta^{15}\text{N}$ in Alkali (mean effect size = -2.484; 95% CI: -2.931 to -2.060) and
138 medium-textured (mean effect size = -0.676; 95% CI: -1.153 to -0.249) soils, in
139 grassland/meadow (mean effect size = -0.609; 95% CI: -1.076 to -0.190), under air
140 warming (mean effect size = -0.652; 95% CI: -1.081 to -0.273), for 4-10 yr warming
141 period (mean effect size = -0.652; 95% CI: -1.081 to -0.273) and for an increase of $>$
142 3 °C in temperature (mean effect size = -0.652; 95% CI: -1.081 to -0.273). However, it
143 significantly ($p < 0.05$) increased soil $\delta^{15}\text{N}$ in neutral (mean effect size = 0.359; 95%

144 CI: 0.078 to 0.620) and fine-texture soils (mean effect size = 2.394; 95% CI: 1.770 to
145 3.735), and for an increase of 1.5-3 °C in temperature (mean effect size = 0.409; 95%
146 CI: 0.070 to 0.707) (Fig. 2). Experimental warming did not significantly ($p > 0.05$)
147 change soil $\delta^{15}\text{N}$ under other experimental conditions.

148 In addition, experimental warming significantly ($p < 0.05$) increased plant $\delta^{15}\text{N}$ in
149 neutral (mean effect size = 3.157; 95% CI: 1.529 to 6.967) and fine-textured soils
150 (mean effect size = 1.202; 95% CI: 1.042 to 1.360), whereas it significantly ($p < 0.05$)
151 decreased plant $\delta^{15}\text{N}$ in alkali soil (mean effect size = -1.930; 95% CI: -2.325 to
152 -1.573) (Fig. 2). Experimental warming did not significantly ($p > 0.05$) change plant
153 $\delta^{15}\text{N}$ under other experimental conditions.

154 For soil and plant $\delta^{15}\text{N}$, their responses to experimental warming did not correlate
155 well with latitude ($p = 0.268$ and $p = 0.160$, respectively) (Fig. 3ab). However, the
156 Hedges' d values of soil $\delta^{15}\text{N}$ decreased significantly with altitude ($p < 0.001$) (Fig. 3c)
157 and increased significantly with MAT ($p < 0.001$) and MAP ($p < 0.001$) (Fig. 3eg). In
158 addition, the Hedges' d values of plant $\delta^{15}\text{N}$ were also found to increase significantly
159 with MAP ($p < 0.001$) (Fig. 3h). However, the responses of plant $\delta^{15}\text{N}$ to experimental
160 warming did not correlate well with altitude ($p = 0.109$) and MAT ($p = 0.002$) (Fig.
161 3df).

162 **4 Discussion**

163 A significant decreasing trend in soil $\delta^{15}\text{N}$ and no significant trend in plant $\delta^{15}\text{N}$ were
164 found in this study. This is somewhat inconsistent with previous findings. Chang et al.
165 (2017) observed that soil and plant $\delta^{15}\text{N}$ values decreased under warming in the

批注 [f28]: Response to the comment
1 from RC2.

166 Tibetan permafrost. However, Zhang et al. (2019) found that the warming treatment
167 significantly increased soil and plant $\delta^{15}\text{N}$ in a subtropical forest. The various studies
168 suggest that soil and plant $\delta^{15}\text{N}$ are controlled by interactive effects of N fixation and
169 mineralization. At the global scale, $\delta^{15}\text{N}$ of N input (~ 0) is generally lower than that
170 of soil, so greater N fixation or higher N input (deposition and fertilization) under
171 warming can result in a lower soil $\delta^{15}\text{N}$ (Sorensen and Michelsen, 2011; Rousk and
172 Michelsen, 2017; Wang et al., 2018).

批注 [f29]: Response to the comment
16 from RC1.

173 Soil pH has an important influence on nitrification, denitrification and N_2O
174 emissions from soils (Kyveryga et al., 2004). The results in this study showed that
175 when the soil was alkaline, the mean effect sizes of soil and plant $\delta^{15}\text{N}$ under warming
176 were negative, while when the soil was neutral, they were positive (Fig. 2ab).

批注 [f30]: Response to the comment
1 from RC2.

177 Compared with alkaline condition, the near neutral conditions are more suitable for
178 the biological activities of heterotrophic denitrifying bacteria (Simek and Cooper,
179 2002). Therefore, the denitrification activity is usually higher under neutral conditions,
180 resulting in an enrichment of soil and plant N pools with ^{15}N (Kyveryga et al., 2004).

批注 [f31]: Response to the comment
18 from RC1.

181 Vegetation type has limit effects on $\delta^{15}\text{N}$ under warming, except for soil $\delta^{15}\text{N}$ in
182 grassland/meadow (Fig. 2cd). This may be related to the differences in altitude, MAP
183 and MAT among three vegetation types (Tab. 1). Warming treatment was found to
184 have a substantial effect on soil $\delta^{15}\text{N}$, showing that the mean effect size of soil $\delta^{15}\text{N}$
185 under air warming was negative and less than that under soil warming (Fig. 2ef).

批注 [f32]: Response to the comment
1 from RC2.

批注 [f33]: Response to the comment
10 from RC2.

186 Salmon et al. (2016) have found that soil warming can increase N availability by
187 stimulating mineralization of organic matter in the warmed active layer. In addition,

批注 [f34]: Response to the comment
1 from RC2.

批注 [f35]: Response to the comment
7 from RC2.

188 air warming directly impacts aboveground temperatures and has an indirectly effect
189 on soil $\delta^{15}\text{N}$ (Pardo et al., 2006). From Fig. 2gh, the finer the soil texture, the more
190 significant the positive effect of warming on soil and plant $\delta^{15}\text{N}$. The possible reason
191 is that the finer the soil texture, the stronger the adsorption of various ions on the soil
192 and the smaller the leaching loss of the soil, resulting in the greater the residual
193 amount of ^{15}N in the soil (Webster et al., 1986). In addition, the longer warming
194 period and the greater increase in temperature resulted in the more negative effect of
195 warming on soil $\delta^{15}\text{N}$ (Fig. 2ik). Chang et al. (2017) deduced that N fixation was
196 greater under warming and consequently resulted in a lower soil $\delta^{15}\text{N}$.

批注 [f36]: Response to the comment 8 from RC2.

197 In the study of Mayor et al. (2015), who found that soil and plant $\delta^{15}\text{N}$ were
198 significantly ($p < 0.001$) and negatively correlated with latitude at the global scale.
199 However, the Hedges' d values of soil and plant $\delta^{15}\text{N}$ had weak correlations with
200 latitude in this study (Fig. 3). The warming effect on soil $\delta^{15}\text{N}$ was significantly ($p <$
201 0.001) influenced by altitude, MAT and MAP. Among these, the strongest correlation
202 was observed for MAT. Temperature has been demonstrated to be a key factor to
203 regulate the soil $\delta^{15}\text{N}$ by influencing the processes of N mineralization, nitrification
204 and denitrification (Craine et al., 2015). The higher temperature can strengthen the
205 activity of soil microbes and thereafter increase the N uptake for plants and soil N loss
206 from ammonia volatilization and gas N emissions, and thereby more ^{15}N -enriched
207 retains in soils (Wang et al., 2019). Craine et al. (2015) also proposed that warmer
208 sites have soil N that is elevated in ^{15}N , but has lower C:N. Once C:N is controlled,
209 there is little pattern in ^{15}N across temperature gradients. In other words, the

批注 [f37]: Response to the comment 4 from RC1 and comment 1 from RC2.

批注 [f38]: Response to the comment 19 from RC1.

批注 [f39]: Response to the comment 20 from RC1.

批注 [f40]: Response to the comment 21 from RC1.

210 relationship between soil $\delta^{15}\text{N}$ and climate is indirect, and mediated through climate
211 effects on soil properties (e.g., the concentrations of organic carbon and clay). High d
212 values of soil $\delta^{15}\text{N}$ corresponded to MAT of about 20 °C, which was the most suitable
213 temperature for nitrification and denitrification. However, warming had a substantial
214 negative impact on soil $\delta^{15}\text{N}$ when MAT decreased to around -5 °C. Recently, Rousk
215 et al. (2018) also found that the increase of temperature in the Arctic promoted the
216 biological N fixation, which can decrease the soil $\delta^{15}\text{N}$. The decrease of d values of
217 soil $\delta^{15}\text{N}$ with increasing altitude and decreasing MAP in this study might be caused
218 by the positive response of d values to MAT.

批注 [f41]: Response to the comment from CC1.

批注 [f42]: Response to the comment 4 from RC1.

219 The relationships between the d values and environmental variables for plant
220 $\delta^{15}\text{N}$ were weaker than those for soil $\delta^{15}\text{N}$ (Fig. 3). The possible reason is that several
221 other factors (e.g., plant N concentrations and species richness) might co-regulate
222 plant $\delta^{15}\text{N}$ (Wu et al., 2019). This is consistent with the study of Craine et al. (2009),
223 who found different inflection points in soil and plant $\delta^{15}\text{N}$ relationships with MAT. In
224 addition, plants are generally depleted in ^{15}N relative to soils. Above results implied
225 that soil $\delta^{15}\text{N}$ was more efficient in indicating the openness of ecosystem N cycling
226 than plant $\delta^{15}\text{N}$ at the global scale. Although the present study provided a global
227 meta-analysis of the responses of $\delta^{15}\text{N}$ to experimental warming, the magnitude of
228 these responses might be uncertain. For example, a small number of observations
229 were obtained in moss/lichen under soil warming and both soil and air warming
230 treatments, which would affect the results of meta-analysis. Future research should
231 take more experimental data into account in order to better investigate the warming

批注 [f43]: Response to the comment from CC1.

批注 [f44]: Response to the comment 22 from RC1.

232 effects on $\delta^{15}\text{N}$.

233 **6 Conclusions**

234 Our global meta-analysis indicated a significant decreasing trend in soil $\delta^{15}\text{N}$ and no
235 significant trend in plant $\delta^{15}\text{N}$ under experimental warming. Latitude did not affect the

236 warming effects on $\delta^{15}\text{N}$. However, the warming effect on $\delta^{15}\text{N}$ was related to soil
237 acidity-alkalinity, texture, vegetation type, warming treatment and period, increase in
238 temperature, altitude, MAT and MAP. The effect of warming on soil $\delta^{15}\text{N}$ was better
239 correlated with environmental variables compared with that on plant $\delta^{15}\text{N}$. Our
240 findings should be useful for understanding the underlying mechanisms of the
241 response of ecosystem N cycling to global warming.

242 **Data availability.** The data that support the findings of this study are available from
243 the corresponding author upon request.

244 **Author contributions.** KL and QZ designed this study, KL and XL performed the
245 meta-analysis, KL and QZ obtained funding, and KL and XL wrote the paper with
246 contributions from QZ.

247 **Competing interests.** The authors declare that they have no conflict of interest.

248 **Acknowledgements.** We thank two anonymous reviewers and editor for their efforts
249 on this paper. Support for this research was provided by the National Natural Science
250 Foundation of China and by Chinese Academy of Sciences.

251 **Financial support.** This study was financially supported by the National Natural
252 Science Foundation of China (41771107 and 42171077), the Key Research Program
253 of Frontier Sciences, Chinese Academy of Sciences (QYZDB-SSW-DQC038), and

批注 [f45]: Response to the comment
1 from RC2.

254 the Youth Innovation Promotion Association, Chinese Academy of Sciences
255 (2020317).

256 **Review statement.** This paper was reviewed by two anonymous referees.

257 **References**

258 Aerts, R., Callaghan, T. V., Dorrepaal, E., van Logtestijn, R. S. P., and Cornelissen, J.
259 H. C.: Blackwell Publishing Ltd Seasonal climate manipulations result in
260 species-specific changes in leaf nutrient levels and isotopic composition in a
261 sub-arctic bog. *Funct. Ecol.*, 23, 680–688,
262 <https://doi.org/10.1111/j.1365-2435.2009.01566.x>, 2009.

263 Amundson, R., Austin, A. T., Schuur, E. A. G., Yoo, K., Matzek, V., Kendall, C.,
264 Uebersax, A., Brenner, D., and Baisden, W.T.: Global patterns of the isotopic
265 composition of soil and plant nitrogen. *Global Biogeochem. Cy.*, 17, 1031,
266 <https://doi.org/10.1029/2002GB001903>, 2003.

267 Anadon-Rosell, A., Ninot, J. M., Palacio, S., Grau, O., Nogués, S., Navarro, E.,
268 Carmen Sancho, M., and Carrillo, E.: Four years of experimental warming do not
269 modify the interaction between subalpine shrub species. *Oecologia*, 183, 1167–
270 1181, <https://doi.org/10.1007/S00442-017-3830-7>, 2017.

271 Aranibar, J. N., Otter, L., Macko, S. A., Feral, C. J. W., Epstein, H. E., Dowty, P. R.,
272 Eckardt, F., Shugart, H. H., and Swap, R. J.: Nitrogen cycling in the soil-plant
273 system along a precipitation gradient in the Kalahari sands. *Global Change Biol.*,
274 10, 359–373, <https://doi.org/10.1111/j.1365-2486.2003.00698.x>, 2004.

275 Averill, C., and Waring, B.: Nitrogen limitation of decomposition and decay: How

276 can it occur? *Global Change Biol.*, 4, 1417–1427,

277 <https://doi.org/10.1111/gcb.13980>, 2018.

278 Bijoor, N. S., Czimczik, C. I., Pataki, D. E., and Billings, S. A.: Effects of temperature

279 and fertilization on nitrogen cycling and community composition of an urban

280 lawn. *Global Change Biol.*, 14, 2119–2131,

281 <https://doi.org/10.1111/j.1365-2486.2008.01617.x>, 2008.

282 Chang, R., Wang, G., Yang, Y., and Chen, X.: Experimental warming increased soil

283 nitrogen sink in the Tibetan permafrost. *J. Geophys. Res. Biogeosci.*, 122, 1870–

284 1879, <https://doi.org/10.1002/2017JG003827>, 2017.

285 Cheng, W. X., Chen, Q. S., Xu, Y. Q., Han, X. G., and Li, L. H.: Climate and

286 ecosystem ^{15}N natural abundance along a transect of Inner Mongolian grasslands:

287 Contrasting regional patterns and global patterns. *Global Biogeochem. Cy.*, 23,

288 GB2005, <https://doi.org/10.1029/2008GB003315>, 2009.

289 Cheng, X., Luo, Y., Xu, X., Sherry, R., and Zhang, Q.: Soil organic matter dynamics

290 in a North America tallgrass prairie after 9 yr of experimental warming.

291 *Biogeosciences*, 8, 1487–1498, <https://doi.org/10.5194/bg-8-1487-2011>, 2011.

292 Craine, J. M. et al.: Convergence of soil nitrogen isotopes across global climate

293 gradients. *Sci. Rep.*, 5, 8280, <https://doi.org/10.1038/srep08280>, 2015.

294 Dawes, M. A., Schleppi, P., Hättenschwiler, S., Rixen, C., and Hagedorn, F.: Soil

295 warming opens the nitrogen cycle at the alpine treeline. *Global Change Biol.*, 23,

296 421–434, <https://doi.org/10.1111/gcb.13365>, 2017.

297 Deane-Coe, K. K., Mauritz, M., Celis, G., Salmon, V., Crummer, K. G., Natali, S. M.,

298 and Schuur, E. A. G.: Experimental warming alters productivity and isotopic
299 signatures of tundra mosses. *Ecosystems*, 18, 1070–1082,
300 <https://doi.org/10.1007/s00442-015-3427-y>, 2015.

301 Gonzalez-Meler, M. A., Silva, L. B. C., Dias-De-Oliveira, E., Flower, C. E., and
302 Martinez, C. A.: Experimental air warming of a *Stylosanthes capitata*, vogel
303 dominated tropical pasture affects soil respiration and nitrogen dynamics. *Front.*
304 *Plant sci.*, 8, 46, <https://doi.org/10.3389/fpls.2017.00046>, 2017.

305 Gurmessa, G. A., Lu, X. K., Gundersen, P., Fang, Y. T., Mao, Q. G., Hao, C., and Mo,
306 J. M.: Nitrogen input N-15 signatures are reflected in plant N-15 natural
307 abundances in subtropical forests in China. *Biogeosciences*, 14, 2359–2370,
308 <https://doi.org/10.5194/bg-14-2359-2017>, 2017.

309 Hedges, L. V., Gurevitch, J., and Curtis, P. S.: The meta-analysis of response ratios in
310 experimental ecology. *Ecology*, 80, 1150–1156,
311 [https://doi.org/10.1890/0012-9658\(1999\)080\[1150:TMAORR\]2.0.CO;2](https://doi.org/10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2), 1999.

312 Hudson, J. M. G., Henry, G. H. R., and Cornwell, W. K.: Taller and larger: shifts in
313 Arctic tundra leaf traits after 16 years of experimental warming. *Global Change*
314 *Biol.*, 17, 1013–1021, <https://doi.org/10.1111/j.1365-2486.2010.02294.x>, 2011.

315 Kyveryga, P. M., Blackmer, A. M., Ellsworth, J. W., and Isla, R.: Soil pH effects on
316 nitrification of fall-applied anhydrous ammonia. *Soil Sci. Soc. Am. J.*, 68, 545–
317 551, <https://doi.org/10.2136/sssaj2004.0545>, 2004.

318 Liao, K., Lai, X., Zhou, Z., Zeng, X., Xie, W., Castellano, M. J., and Zhu, Q.:
319 Whether the rock fragment content should be considered when investigating

320 nitrogen cycle in stony soils? J. Geophys. Res. Biogeosci., 124, 521–536,
321 <https://doi.org/10.1029/2018JG004780>, 2019.

322 Lim, H., Oren, R., N äsholm, T., Str ömgren, M., Lundmark, T., Grip, H., and Linder,
323 S.: Boreal forest biomass accumulation is not increased by two decades of soil
324 warming. Nat. Clim. Change, 9, 49–52,
325 <https://doi.org/10.1038/s41558-018-0373-9>, 2019.

326 Lu, Y., Gao, Y., and Yang, T.: A review of mass flux monitoring and estimation
327 methods for biogeochemical interface processes in watersheds. J. Geogr. Sci., 30,
328 881–907, <https://doi.org/10.1007/s11442-020-1760-5>, 2020.

329 Lv, C., Zhang, Q., Hao, Y., Chen, Y., and Yang, Y.: Influence of short-term warming
330 on the composition of stable carbon and nitrogen isotopes in *Cunninghamia*
331 *lanceolata* in subtropical region of China. Forest Res., 31, 27–32,
332 <https://doi.org/10.13275/j.cnki.lykxyj.2018.05.004>, 2018. (in Chinese)

333 Mayor, J., Bahram, M., Henkel, T., Buegger, F., Pritsch, K., and Tedersoo, L.:
334 Ectomycorrhizal impacts on plant nitrogen nutrition: emerging isotopic patterns,
335 latitudinal variation and hidden mechanisms. Ecol. Lett., 18, 96–107,
336 <https://doi.org/10.1111/ele.12377>, 2015.

337 McLay, C., Dragten, R., Sparling, G., and Selvarajah, N.: Predicting groundwater
338 nitrate concentrations in a region of mixed agricultural land use, a comparison of
339 three approaches. Environ. Pollut., 115, 191–204,
340 [https://doi.org/10.1016/S0269-7491\(01\)00111-7](https://doi.org/10.1016/S0269-7491(01)00111-7), 2001.

341 Munir, T. M., Khadka, B., Xu, B., and Strack, M.: Mineral nitrogen and phosphorus

342 pools affected by water table lowering and warming in a boreal forested peatland.

343 *Ecology*, 10, e1893, <https://doi.org/10.1002/eco.1893>, 2017.

344 Natali, S. M., Schuur, E. A. G., and Rubin, R. L.: Increased plant productivity in

345 Alaskan tundra as a result of experimental warming of soil and permafrost. *J.*

346 *Ecol.*, 100, 488–498, <https://doi.org/10.1111/j.1365-2745.2011.01925.x>, 2012.

347 Pardo, L. H., et al.: Regional assessment of N saturation using foliar and root $\delta^{15}\text{N}$.

348 *Biogeochemistry*, 80, 143–171, <https://doi.org/10.1007/s10533-006-9015-9>,

349 2006.

350 Peng, A.: Effects of artificial warming on alpine meadow in the permafrost region of

351 Qinghai-Tibet Plateau. Master dissertation, The University of Chinese Academy

352 of Sciences, 2017. (in Chinese)

353 Rastetter, E. B., Kling, G. W., Shaver, G. R., Crump, B. C., Gough, L., and Griffin, K.

354 L.: Ecosystem recovery from disturbance is constrained by N cycle openness,

355 vegetation-soil N distribution, form of N losses, and the balance between

356 vegetation and soil-microbial processes. *Ecosystems*, 24, 667–685,

357 <https://doi.org/10.1007/s10021-020-00542-3>, 2021.

358 Robinson, D.: $\delta^{15}\text{N}$ as an integrator of the nitrogen cycle. *Trends Ecol. Evol. (Amst.)*,

359 16, 153–162, [https://doi.org/10.1016/S0169-5347\(00\)02098-X](https://doi.org/10.1016/S0169-5347(00)02098-X), 2001.

360 Rosenberg, M., Adams, D., and Gurevitch, J.: *MetaWin: Statistical Software for*

361 *Meta-Analysis*. Sinauer Associates, Sunderland, MA, USA, 2000.

362 Rousk, K., and Michelsen, A.: Ecosystem nitrogen fixation throughout the snow-free

363 period in subarctic tundra: Effects of willow and birch litter addition and

364 warming. *Global Change Biol.*, 23, 1552–1563,

365 <https://doi.org/10.1111/gcb.13418>, 2017.

366 Rousk, K., Sorensen, P. L., and Michelsen, A.: What drives biological nitrogen

367 fixation in high arctic tundra: Moisture or temperature? *Ecosphere*, 9, e02117,

368 <https://doi.org/10.1002/ecs2.2117>, 2018.

369 Rui, Y., Wang, S., Xu, Z., Wang, Y., Chen, C., Zhou, X., Kang, X., Lu, S., Hu, Y.,

370 Lin, Q., and Luo, C.: Warming and grazing affect soil labile carbon and nitrogen

371 pools differently in an alpine meadow of the Qinghai–Tibet Plateau in China. *J.*

372 *Soils Sediments*, 11, 903–914, <https://doi.org/10.1007/s11368-011-0388-6>, 2011.

373 Salmon, V. G., Soucy, P., Mauritz, M., Celis, G., Natali, S. M., Mack, M. C., and

374 Schuur, E. A. G.: Nitrogen availability increases in a tundra ecosystem during

375 five years of experimental permafrost thaw. *Global Change Biol.*, 22, 1927–1941,

376 <https://doi.org/10.1111/gcb.13204>, 2016.

377 Schaeffer, S. M., Sharp, E., Schimel, J. A. P., and Welker, J. M.: Soil–plant N

378 processes in a High Arctic ecosystem, NW Greenland are altered by long-term

379 experimental warming and higher rainfall. *Global Change Biol.*, 19, 3529–3539,

380 <https://doi.org/10.1111/gcb.12318>, 2013.

381 Schindlbacher, A., Zechmeister-Boltenstern, S., and Jandl, R.: Carbon losses due to

382 soil warming: do autotrophic and heterotrophic soil respiration respond equally?

383 *Global Change Biol.*, 15, 901–913,

384 <https://doi.org/10.1111/j.1365-2486.2008.01757.x>, 2009.

385 Schnecker, J., Borken, W., Schindlbacher, A., and Wanek, W.: Little effects on soil

386 organic matter chemistry of density fractions after seven years of forest soil
387 warming. *Soil Biol. Biochem.*, 103, 300–307,
388 <https://doi.org/10.1016/j.soilbio.2016.09.003>, 2016.

389 Schrijver, A. D., Verheyen, K., Mertens, J., Staelens, J., Wuyts, K., and Muys, B.:
390 Nitrogen saturation and net ecosystem production. *Nature*, 451, E1,
391 <https://doi.org/10.1038/nature06578>, 2008.

392 Sheng, W., Yu, G., Fang, H., Liu, Y., Wang, Q., Chen, Z., and Zhang, L.: Regional
393 patterns of ^{15}N natural abundance in forest ecosystems along a large transect in
394 eastern China. *Sci. Rep.*, 4, 4249, <https://doi.org/10.1038/srep04249>, 2014.

395 Simek, M., and Cooper, J. E.: The influence of soil pH on denitrification: progress
396 towards the understanding of this interaction over the last 50 years. *Eur. J. Soil
397 Sci.*, 53, 345–354, <https://doi.org/10.1046/j.1365-2389.2002.00461.x>, 2002.

398 Soper, F. M., Richards, A. E., Siddique, I., Aidar, M. P. M., Cook, G. D., Hutley, L.
399 B., Robinson, N., and Schmidt, S.: Natural abundance ($\delta^{15}\text{N}$) indicates shifts in
400 nitrogen relations of woody taxa along a savanna-woodland continental rainfall
401 gradient. *Oecologia*, 178, 297–308, <https://doi.org/10.1007/s00442-014-3176-3>,
402 2015.

403 Sorensen, P. L., and Michelsen, A.: Long-term warming and litter addition affects
404 nitrogen fixation in a subarctic heath. *Global Change Biol.*, 17, 528–537,
405 <https://doi.org/10.1111/j.1365-2486.2010.02234.x>, 2011.

406 Swap, R. J., Aranibar, J. N., Dowty, P. R., Gilhooly, W. P., and Macko, S. A.: Natural
407 abundance of ^{13}C and ^{15}N in C₃ and C₄ vegetation of southern Africa: patterns

408 and implications. *Global Change Biol.*, 10, 350–358,

409 <https://doi.org/10.1111/j.1365-2486.2003.00702.x>, 2004.

410 Wang, C., Wang, X., Liu, D., Wu, H., Lv, X., Fang, Y., Cheng, W., Luo, W., Jiang, P.,

411 Shi, J., Yin, H., Zhou, J., Han, X., and Bai, E.: Aridity threshold in controlling

412 ecosystem nitrogen cycling in arid and semi-arid grasslands. *Nat. Commun.*, 5,

413 4799, <https://doi.org/10.1038/ncomms5799>, 2014.

414 Wang, Q., Nian, J., Xie, X., Yu, H., Zhang, J., Bai, J., Dong, G., Hu, J., Bai, B., Chen,

415 L., Xie, Q., Feng, J., Yang, X., Peng, J., Chen, F., Qian, Q., Li, J., and Zuo, J.:

416 Genetic variations in *ARE1* mediate grain field by modulating nitrogen

417 utilization in rice. *Nat. Commun.*, 9, 735,

418 <https://doi.org/10.1038/s41467-017-02781-w>, 2018.

419 Wang, X., Jiang, Y., Ren, H., Yu, F., and Li, M.: Leaf and soil $\delta^{15}\text{N}$ patterns along

420 elevational gradients at both treelines and shrublines in three different climate

421 zones. *Forests*, 10, 557, <https://doi.org/10.3390/f10070557>, 2019.

422 Webster, C.P., Belford, R.K., and Cannell, R.Q.: Crop uptake and leaching losses of

423 ^{15}N labelled fertilizer nitrogen in relation to waterlogging of clay and sandy

424 loam soils. *Plant Soil*, 92, 89–101, 1986.

425 Wu, J., Song, M., Ma, W., Zhang, X., Shen, Z., Tarolli, P., Wurst, S., Shi, P.,

426 Ratzmann, G., Feng, Y., Li, M., Wang, X., and Tietjen, B.: Plant and soil's $\delta^{15}\text{N}$

427 are regulated by climate, soil nutrients, and species diversity in alpine grasslands

428 on the northern Tibetan Plateau. *Agr. Ecosyst. Environ.*, 281, 111–123,

429 <https://doi.org/10.1016/j.agee.2019.05.011>, 2019.

430 Yang, Y. H., Ji, C. J., Robinson, D., Zhu, B., Fang, H. J., Shen, H. H., and Fang, J. Y.:
431 Vegetation and soil ^{15}N natural abundance in alpine grasslands on the tibetan
432 plateau: patterns and implications. *Ecosystems*, 16, 1013–1024,
433 <https://doi.org/10.1007/s10021-013-9664-1>, 2013.

434 Zhang, Q., Zhou, J., Li, X., Yang, Z., Zheng, Y., Wang, J., Lin, W., Xie, J., Chen, Y.,
435 and Yang, Y.: Are the combined effects of warming and drought on foliar
436 C:N:P:K stoichiometry in a subtropical forest greater than their individual effects?
437 *For. Ecol. Manage.*, 448, 256–266, <https://doi.org/10.1016/j.foreco.2019.06.021>,
438 2019.

439 Zhao, Y., Xu, L., Yao, B., Ma, Z., Zhang, C., Wang, F., and Zhou, H.: Influence of
440 simulated warming to the carbon, nitrogen and their stability isotope-($\delta^{13}\text{C}$, $\delta^{15}\text{N}$)
441 contents in alpine meadow plant leaves. *Acta Bot. Boreal Occident Sin.*, 36,
442 777–783, <https://doi.org/10.7606/j.issn.1000-4025.2016.04.0777>, 2016. (in
443 Chinese)

444 Zhu, Q., Castellano, M. J., and Yang, G. S.: Coupling soil water processes and the
445 nitrogen cycle across spatial scales: Potentials, bottlenecks and solutions.
446 *Earth-Sci. Rev.*, 187, 248–258, <https://doi.org/10.1016/j.earscirev.2018.10.005>,
447 2018.

Table 1: Site characteristics from a global meta-analysis of 20 studies.

References	Country/Region	Vegetation types	Soil pH	Soil type	OMC ^a (%)	Latitude	Longitude	Altitude (m a.s.l)	MAT ^b (°C)	MAP ^c (mm)	批注 [f46]: Response to the comment 1 from RC1 and comment 9 from RC2.
Anadon-Rosell et al. (2017)	Spain	Subalpine shrub	4.49~4.6 3	Mineral soil	13.15~14.04	41.39 °N	2.17 °E	2250	3	1146.4	
Zhang et al. (2019)	China	<i>C. lanceolata</i> seedlings	5.07	Oxisol	-	26.32 °N	117.6 °E	300	19.1	1670	
Lim et al. (2019)	Sweden	Boreal forests	5.92~6.4 4	A thin, podzolic, sandy soil	-	64.12 °N	19.45 °E	310	2.4	600	
Deane-Coe et al. (2015)	USA	Tundra mosses	-	Gelisol	-	63.88 °N	149.23 °W	700	-2.7~-1	138~228	
Bijoor et al. (2008)	USA	Turfgrass lawn	-	Alkaline alo clay	-	33.7 °N	117.7 °W	30	18.6	352	
Chang et al. (2017)	China	Alpine meadow	9.1~9.3	Gelisols	5.5	34.73 °N	92.89 °E	4750	-5.3	269.7	
Gonzalez-Meler et al. (2017)	Brazil	Grasslands	5.0	Dystrophic red latosols	-	21.17 °S	47.86 °W	578	21.5	1100	
Natali et al. (2012)	USA	Shrubs, sedges and mosses	-	Gelisol	-	63.88 °N	149.23 °W	700	-1	178~250	
Munir et al. (2017)	Canada	Shrubs, mosses and trees	-	-	-	55.27 °N	112.47 °W				
Salmon et al. (2016)	USA	<i>Eriophorum vaginatum</i>	-	Gelisols	-	63.88 °N	149.23 °W	700	-1.45	200	
Rui et al. (2011)	China	Alpine	-	-	-	37.62 °N	101.2 °E	3200	-2	500	

Aerts et al. (2009)	Sweden	meadow Shrubs, mosses and trees	-	-	-	68.35 °N	18.82 °E	340	0.5	303
Cheng et al. (2011)	USA	Tallgrass prairie	Neutral pH	Nash-Lucien complex	-	34.98 °N	97.52 °W		16	911.4
Dawes et al. (2017)	Switzerland	Alpine treeline	-	Sandy Ranker and Podzols	-	46.77 °N	9.87 °E	2180	9.2	444
Schaeffer et al. (2013)	Greenland	Prostrate dwarf-shrub herb tundra	-	Turbic cryosols	-	76 °N	68 °W		4~8	<200
Schnecker et al. (2016)	Austria	Spruce forest	Near neutral pH	A mosaic of shallow Chromic Cambisols and Rendzic Leptosols	8.55~14.96	47.58 °N	11.64 °E	910	6.9	1506
Hudson et al. (2011)	Canada	Heath, willow and meadow	-	-	-	78.88 °N	75.78 °W		8.6~10. 4	
Lv et al. (2018)	China	<i>Cunninghamia lanceolata</i> juveniles	-	Red soil	2.21	26.32 °N	118 °E		19.1	1585
Zhao et al. (2016)	China	Alpine meadow	-	Alpine meadow soils	-	37.48 °N	101.2 °E	3200~3250	-1.7	600
Peng (2017)	China	Alpine meadow	-	Alpine meadow soils	-	34.73 °N	92.89 °E	3200~4800	-5.03	267.4~426.3

^aSoil organic matter content; ^bMean annual temperature; ^cMean annual precipitation. If the soil organic carbon content was provided in the literature, soil

organic matter content was determined by multiplying the organic carbon content by a coefficient of 1.724.

List of Figures:

Figure 1: Effect sizes of the experimental warming on soil and plant $\delta^{15}\text{N}$ from a global meta-analysis of 20 studies. The error bars indicate effect sizes and 95% bootstrap confidence intervals (CI). The warming effect was statistically significant if the 95% CI did not bracket zero. The sample size for each variable is shown next to the bar.

Figure 2: Factors influencing the effect sizes of the soil and plant $\delta^{15}\text{N}$ under experimental warming from a global meta-analysis of 20 studies, including (a-b) soil acidity-alkalinity, (c-d) vegetation types, (e-f) warming treatments, (g-h) soil texture, (i-j) length of warming and (k-l) increase in temperature. The error bars indicate effect sizes and 95% bootstrap confidence intervals (CI). The warming effect was statistically significant if the 95% CI did not bracket zero. The sample size for each variable is shown next to the bar.

Figure 3: Relationships between the Hedges' d values of soil and plant $\delta^{15}\text{N}$ with the latitude, altitude, mean annual temperature (MAT) and mean annual precipitation (MAP) under experimental warming.

Figure 1

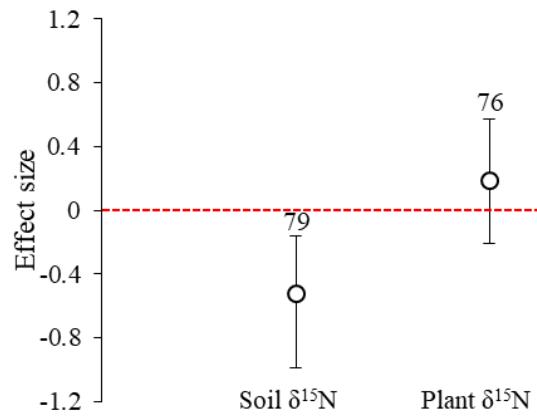
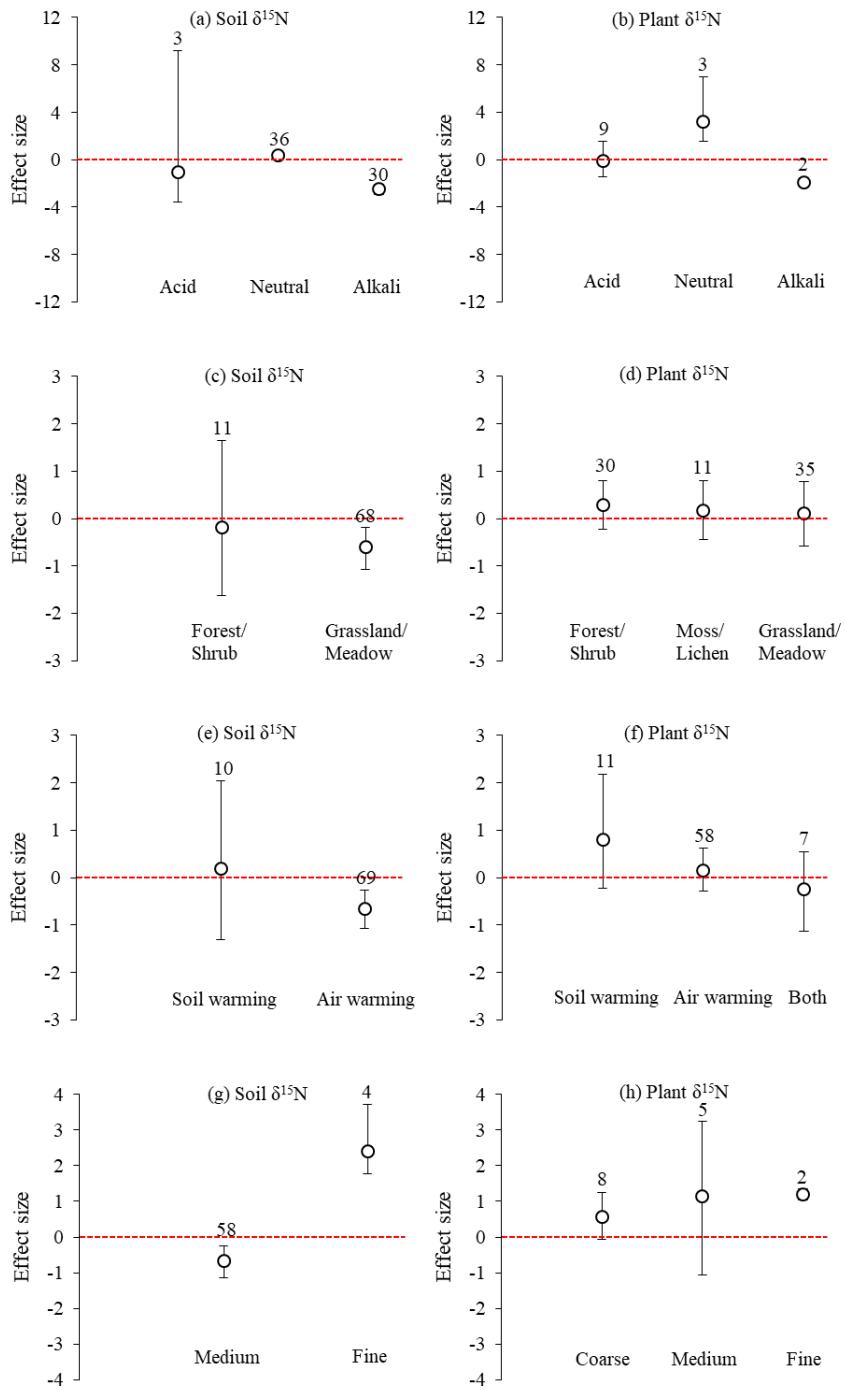



Figure 2

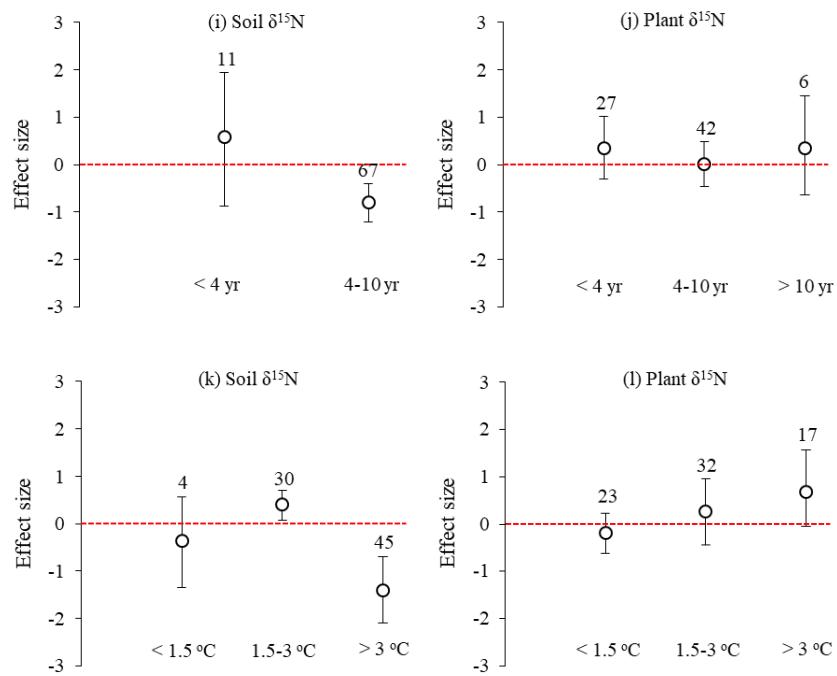
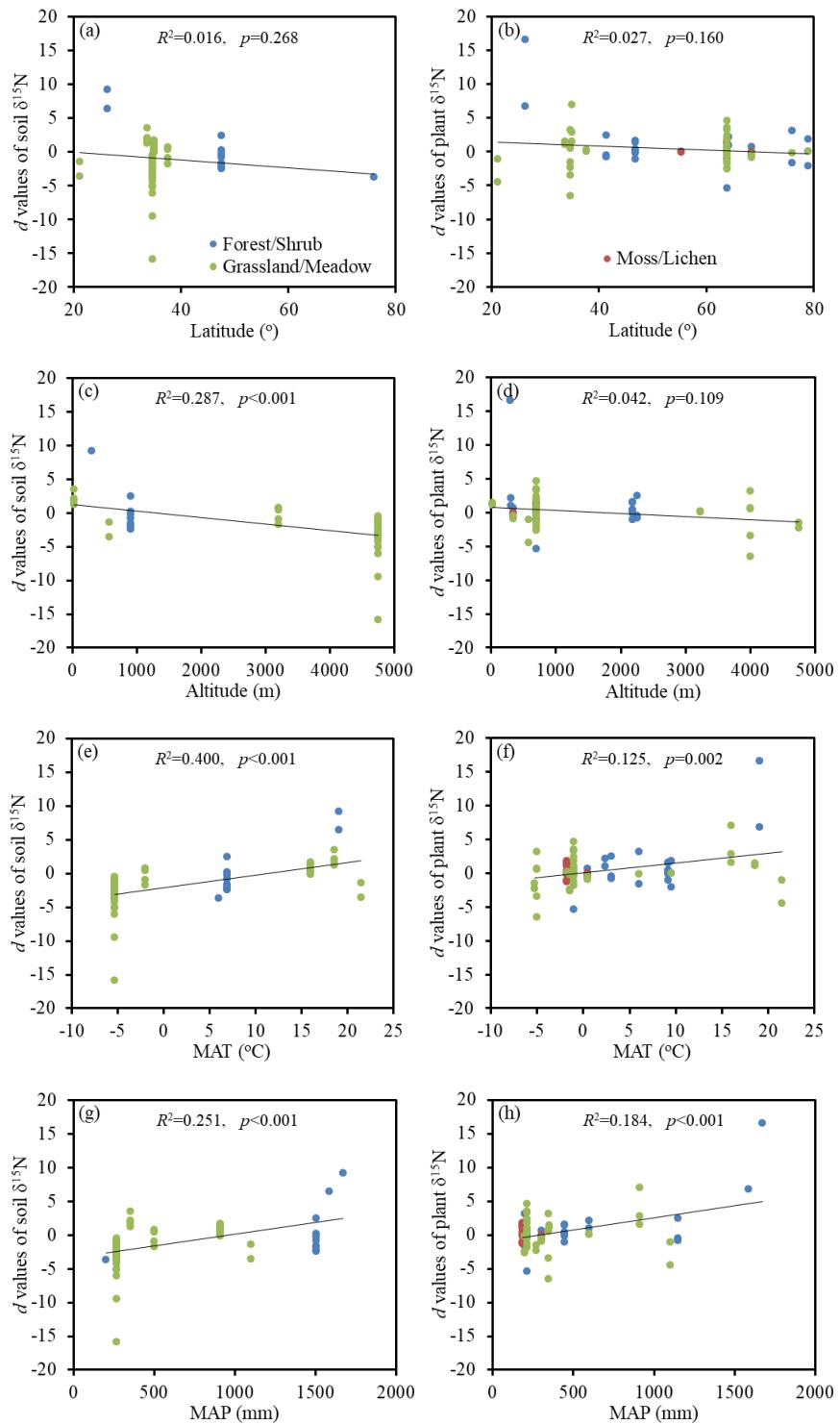



Figure 3

