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Abstract 24 

Understanding the relationship between soil microbial taxonomic compositions and 25 

functional profiles is essential for predicting ecosystem functions under various 26 

environmental disturbances. However, even though microbial communities are sensitive 27 

to disturbance, ecosystem functions remain relatively stable, as soil microbes are likely to 28 

be functionally redundant. Microbial functional redundancy may be more associated with 29 

“broad” functions carried out by a wide range of microbes, than with “narrow” functions 30 

specialized by specific microorganisms. Thus, a comprehensive study to evaluate how 31 

microbial taxonomic compositions correlate with “broad” and “narrow” functional 32 

profiles is necessary. Here, we evaluated soil metagenomes worldwide to assess whether 33 

functional and taxonomic diversities differ significantly between the five “broad” and the 34 

five “narrow” functions that we chose. Our results revealed that compared with the five 35 

“broad” functions, soil microbes capable of performing the five “narrow” functions were 36 

more taxonomically diverse, and thus their functional diversity was more dependent on 37 

taxonomic diversity, implying lower levels of functional redundancy in “narrow” 38 

functions. Co-occurrence networks indicated that microorganisms conducting “broad” 39 

functions were positively related, but microbes specializing “narrow” functions were 40 

interacting mostly negatively. Our study provides strong evidence to support our 41 

hypothesis that functional redundancy is significantly different between “broad” and 42 

“narrow” functions in soil microbes, as the association of functional diversity with 43 

taxonomy were greater in the five “narrow” rather than the five “broad” functions. 44 

 45 
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 48 

1. Introduction 49 

Microbial communities often exhibit incredible taxonomic diversity, with one gram of 50 

soil harboring millions of microbial species (Gans et al., 2005). However, how such 51 

diversity governs microbial functional potential and ecosystem processes is largely 52 

unknown. Though microbial taxonomic composition is generally sensitive to disturbance 53 

and often does not rapidly recover (Allison and Martiny, 2008), it is unclear how changes 54 

in microbial community composition would regulate ecosystem functioning. Mechanistic 55 

understanding of microbial systems, including microbial taxonomic compositions and 56 

functional potential, is essential for predicting ecosystem functioning under various 57 

environmental disturbances (Torsvik and Øvreås, 2002;Wellington et al., 2003;McGill et 58 

al., 2006).   59 

Though microbial community composition usually shifts in response to disturbance, 60 

ecosystem functions could remain relatively stable due to functional redundancy (Allison 61 

and Martiny, 2008). Microbial functional redundancy is an inevitable emergent property 62 

of microbial systems (Louca et al., 2018), as some metabolic functions can be performed 63 

by multiple species, which may thus be substitutable in certain ecosystem processes 64 

(Rosenfeld, 2002), implying that microbial taxonomy and function can be decoupled 65 

(Louca et al., 2016;Louca et al., 2017). The concept of functional redundancy can be 66 

“strict redundancy” meaning that microorganisms sharing the exact same set of functions 67 

can easily substitute each other, or alternatively “partial redundancy” denoting that 68 
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microbes have similarity in certain functions but still harbor difference in other functions, 69 

leading to partially dissimilar ecological requirements or environmental preference 70 

(Galand et al., 2018). In addition, microbial functional redundancy may be caused by 71 

more than just metabolic processes but other mechanical response to environmental 72 

disturbance, such as different foraging strategies, particles attachment and biofilm 73 

formation, nitrogen source usage, and resistance to antibiotics, which are difficult to be 74 

thoroughly evaluated in the current approach mostly focusing on metabolic redundancy 75 

(Louca et al., 2018). 76 

Microbial functional redundancy has been mainly observed in “broad” ecosystem 77 

processes (Yin et al., 2000;Rousk et al., 2009;Banerjee et al., 2016), but is perhaps less 78 

significant in “narrow” functions specialized by certain microorganisms (Schimel, 79 

1995;Balser et al., 2002). However, some studies simulating microbial diversity reduction 80 

and physiological processes challenged the hypothesis of microbial redundancy in soil 81 

microbes (Peter et al., 2011;Philippot et al., 2013;Delgado‐Baquerizo et al., 2016). 82 

Microbial functional redundancy is inevitable when a high-dimensional trait space is 83 

projected to a lower-dimensional function space of interest (Louca et al., 2018). Such 84 

apparent contradictory results suggest the degree of functional redundancy may arise 85 

from the definition of “redundancy” in different studies, our limitations in measuring the 86 

factors controlling niche space, and more importantly depending on the function of 87 

interest. Microbes conducting “broad” metabolic functions, such as carbon 88 

decomposition, are likely to distribute across most taxa (Crowther et al., 2019) and 89 

associate with high level of functional redundancy (Beier et al., 2017;Rivett and Bell, 90 

2018). “Narrow” functions, such as nitrification or methanogenesis, may be restricted to a 91 



5 
 

few phylogenetic clades (Schimel and Gulledge, 1998), and are hypothesized to exhibit 92 

less redundancy than “broad” functions (Schimel, 1995;Rocca et al., 2015). Today, 93 

multifunctionality (Hector and Bagchi, 2007) has to be accounted for to avoid 94 

overestimating functional redundancy (Gamfeldt et al., 2008). By assessing multiple 95 

functions, the relationship between microbial diversity and ecosystem function can be 96 

better quantified in the soil (Bastida et al., 2016;Delgado-Baquerizo et al., 2016). 97 

Nowadays, metagenomics have been increasingly used as a promising comparative 98 

tool (Tringe et al., 2005) to study the relationship between functional and taxonomic 99 

diversities (Fierer et al., 2012a;Fierer et al., 2012b;Fierer et al., 2013;Pan et al., 2014;Leff 100 

et al., 2015;Souza et al., 2015). The growing wealth of soil metagenome data thus poised 101 

well to aid in the generalization of global patterns of microbial attributes and 102 

standardizing frameworks for consistent representation of microbial community (Chen et 103 

al., 2021;Xu et al., 2021). However, a synthetic metagenomic analysis to assess how 104 

general microbial taxonomic and functional diversities differ between “broad” and 105 

“narrow” functions across the globe is still lacking.  106 

Here, we constructed soil metagenomic datasets of taxonomic and functional 107 

diversities of five “broad” and five “narrow” functions across seventeen climate zones. 108 

We typically chose SEED Subsystems database (Overbeek et al., 2013) that has diverse 109 

classification at level 1, allowing us to conduct comparison between “broad” versus 110 

“narrow” functions. We selected five “narrow” functions, namely N (Nitrogen 111 

Metabolism), P (Phosphorous Metabolism), K (Potassium Metabolism), S (Sulfur 112 

Metabolism), and Fe (Iron Acquisition and Metabolism). These are typical functional 113 

categories of specific nutrient cycling in Subsystems Level 1 and are only performed by 114 
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certain groups of soil microbes (Schimel, 1995). The five “broad” functions selected were 115 

AAD (Amino Acids and Derivatives), CHO (Carbohydrates), CBS (Clustering-based 116 

Subsystems), CVPGP (Cofactors, Vitamins, Prosthetic Groups, Pigments), and Protein 117 

(Protein Metabolism), which are the most abundant functional categories in Subsystems 118 

level 1, and  represent broad-scale functions acquired by a relatively larger group of 119 

diverse soil microbes (Balser et al., 2002). We further constructed the pairwise similarity 120 

of function and taxonomy based on the relative abundance of functional and taxonomic 121 

compositions, respectively, for the five “broad” and the five “narrow” functions. We 122 

hypothesized that the taxonomic similarity of soil microbes would be more linearly 123 

correlated to the functional similarity for the five “narrow” functions in comparison to the 124 

five “broad” functions. Therefore, using these global soil metagenomes, our objective 125 

was to test whether the taxonomic compositions of soil microbes that conduct the five 126 

“narrow” functions are more dependent on the functional compositions, leading to a 127 

lower level of functional redundancy in the “narrow” functions than the “broad” 128 

functions. 129 

 130 

2. Materials and Methods  131 

2.1. Data collection 132 

To ensure that the quality and completeness of the metagenomes analyzed were of 133 

standard, we carefully selected soil metagenomes in MG-RAST server that have been 134 

published in peer-reviewed journals. We searched peer-reviewed publications from 2012 135 

to 2018 from the Web of Science database using search terms such as “soil 136 

metagenome”, “shotgun sequencing”, and “MG-RAST” to source the metagenomic data 137 



7 
 

used in this study to their publications. We included soil metagenomes publicly available 138 

in the MG-RAST database that are generated using shotgun sequencing without 139 

amplification or that were directly deposited by peer-reviewed studies into the MG-140 

RAST database. We then extracted data matrix of taxonomic and functional compositions 141 

of soil metagenomes from MG-RAST public server (https://www.mg-rast.org/) based on 142 

the Study ID and/or MG-RAST ID reported in the publications. Details of each soil 143 

metagenome extracted from publications and MG-RAST database was given in Table S1.  144 

The functional database that we used in this study, SEED Subsystems, is a 145 

categorization system which organizes gene functional categories into a hierarchy with 146 

three levels of resolution (Level 3, 2 and 1) (Overbeek et al., 2013). To download the 147 

taxonomic compositions to soil microbes to conduct “broad” and “narrow” functions, for 148 

each soil metagenome, in the ‘Analysis’ function of the MG-RAST server 149 

(https://www.mg-rast.org/mgmain.html?mgpage=analysis), we loaded both SEED 150 

Subsystems (Level 3, 2 and 1) as functional profiles and RefSeq (Tatusova et al., 2013) 151 

databases (genus, family, order, class, and phylum levels) as taxonomic compositions 152 

(Chen et al., 2021). The detailed protocols of MG-RAST server were followed to analyze 153 

the metagenomic functions (Meyer et al., 2008;Wilke et al., 2017). To obtain the 154 

taxonomic compositions of soil microbes that conduct the selected “broad” and “narrow” 155 

functions, we chose ‘RefSeq’ as source and ‘genus’ as level, and in ‘function filter’ we 156 

added the functional categories in Subsystems Level 1 that we are interested in, including 157 

five “broad” functions of AAD (Amino Acids and Derivatives), CHO (Carbohydrates), 158 

CBS (Clustering-based Subsystems), CVPGP (Cofactors, Vitamins, Prosthetic Groups, 159 

Pigments), and Protein (Protein Metabolism), of which the relative abundance was 5-160 
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13%. The functions of AAD, CHO, CBS, CVPGP, and Protein were the most abundant 161 

functional categories in Subsystems Level 1, which were used to represent broad-scale 162 

functions acquired by a large group of diverse soil microbes. Correspondingly, five 163 

“narrow” functions were chosen, namely N (Nitrogen Metabolism), P (Phosphorous 164 

Metabolism), K (Potassium Metabolism), S (Sulfur Metabolism), and Fe (Iron 165 

Acquisition and Metabolism), of which the relative abundance was 0.8-1.4%, as these are 166 

typical functional categories of specific nutrient cycling in Subsystems Level 1 and are 167 

only performed by certain groups of soil microbes. The genus level was used as the 168 

taxonomic classification level across different datasets. Following default setting in MG-169 

RAST, if the species were classified into the higher classification levels than genus but 170 

failed to be identified at the genus level, they were classified into “unclassified” groups. 171 

Across different studies, there were 2.16 ± 0.85 % of sequences belonging to the 172 

“unclassified” groups, showing that most taxonomic groups could be classified into the 173 

genus level. Total hits of taxonomic compositions of soil microbes conducting each 174 

function at Subsystems Level 1 were calculated as the sums of hits in different taxonomic 175 

categories at RefSeq genus level.  176 

The comparative metagenomic analyses were performed using default settings 177 

(maximum e-value cutoff = 1e-5, minimum identity cutoff = 60%, and minimum 178 

alignment length = 50) (Meyer et al., 2008). We then merged the taxonomic compositions 179 

of data matrix of each functions extracted from different studies together to generate new 180 

datasets of microbial taxonomic compositions annotated by the RefSeq database. The 181 

reason why we chose the Subsystems database for functional grouping rather than KEGG 182 

Orthology (KO) (Kanehisa et al., 2015), Clusters of Orthologous Groups (COG) 183 
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(Galperin et al., 2014), and Non-supervised Orthologous Groups (NOG) (Huerta-Cepas et 184 

al., 2015) databases was that Subsystems had more diverse classification at Level 1, 185 

allowing us to conduct direct comparison between “broad” versus “narrow” functions. 186 

We chose RefSeq database rather than the traditional ribosomal RNA databases, such as 187 

RDP (Ribosomal Database Project) (Cole et al., 2008), Greengenes (DeSantis et al., 188 

2006), or Silva LSU/SSU (Pruesse et al., 2007) databases, because taxonomic hits in the 189 

RefSeq database were over 1000-fold higher than the rRNA databases, rendering the 190 

resolution comparable to functional hits for comparison between “broad” and “narrow” 191 

functions. To increase the coverage of our datasets, soil metagenomes with/without 192 

assembly were both included.  193 

The geographic coordinates of latitudes (LAT) and longitudes (LONG) of each soil 194 

metagenome were directly obtained from publications. Based on LAT and LONG, 195 

climate data of mean annual temperature (MAT) and precipitation (MAP) of study sites 196 

for each soil metagenome were extracted from the WorldClim dataset (Fick and Hijmans, 197 

2017) using the R package ‘raster’ (Hijmans et al., 2015). To examine how microbial 198 

taxonomic diversities of “broad” and “narrow” functions differ globally, soil 199 

metagenomic data was classified into seventeen climate zones based on the main 200 

classification of Koeppen-Geiger Climatic Zones (Kottek et al., 2006) using the R 201 

package ‘kgc’ (Bryant et al., 2017). 202 

 203 

2.2. Statistical Analyses 204 

To minimize bias caused by different sequencing depths and read lengths among studies, 205 

we standardize the hits of each taxonomic (or functional) category in each data to relative 206 
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abundance by dividing them by the total number of hits. To calculate the pairwise 207 

similarity of taxonomy based on the relative taxonomic abundance at genus level of 208 

microbes conducting the five “broad” and five “narrow” functions, we calculated Bray-209 

Curtis similarity following log transformation of the compositional taxonomic data by 210 

constructing pairwise Bray-Curtis similarity matrix between each pair of two samples for 211 

each functional categories at Subsystems database at Level 1, which were further 212 

transformed to lists of pairwise Bray-Curtis similarities ordered by sample pair names in 213 

PRIMER 7 (Plymouth Routines in Multivariate Ecological Research Statistical Software, 214 

v7.0.13, PRIMER-E Ltd, UK) (Clarke and Gorley, 2015). To calculate the pairwise 215 

similarity of function, based on the functional abundance at function gene level within 216 

each of the five “broad” and five “narrow” functions, we calculated Bray-Curtis 217 

similarity following log transformation of the compositional functional data by 218 

constructing pairwise Bray-Curtis similarity matrix between each pair of two samples for 219 

each functional categories at Subsystems database at Level 1, which were further 220 

transformed to lists of pairwise Bray-Curtis similarities ordered by sample pair names in 221 

PRIMER 7. To examine the relationship between functional and taxonomic diversities, 222 

Pearson’s correlations were constructed between the transformed lists of pairwise Bray-223 

Curtis similarity of soil metagenomes annotated using Subsystems database at Level 3 224 

(Function) and the RefSeq database at genus level (Taxonomy). The approaches for 225 

processing the relative abundance of compositional data follow the requirements (Gloor 226 

et al., 2017). To analyze the taxonomic composition structures of soil metagenomes 227 

annotated using the RefSeq database at genus level (Taxonomy) of the five “broad” and 228 

five “narrow” functions, PCoA (principal coordinates analysis) and PERMANOVA 229 
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(Permutational multivariate analysis of variance) were conducted using the pairwise 230 

Bray-Curtis similarity matrix in PRIMER 7.  231 

To compare microbial taxonomic compositions among the five “broad” and the five 232 

“narrow” functions, one-factor PERMANOVA was conducted using the main test and 233 

pair-wise test in PRIMER 7 with P values and Sq. root reported. Pearson’s correlations 234 

were constructed to assess the relationships between functional and taxonomic diversities 235 

in the “broad” and “narrow” functions with adjusted P-Square reported. A RELATE 236 

analysis was also performed to evaluate the relatedness among “broad” and “narrow” 237 

functions by calculating a Spearman’s Rho correlation coefficient in PRIMER 7. To 238 

examine the relative abundance of dominant microbial at phylum and class level (mean > 239 

1%) among the five “broad” and five “narrow” functions, heatmaps were constructed 240 

using HeatMapper (Babicki et al., 2016). One-way analysis of variance (ANOVA) with P 241 

values adjusted by Bonferroni-correction for multiple comparisons was conducted using 242 

SPSS 22.0 software (Chicago, IL, USA) to evaluate the differences in the relative 243 

abundance of dominant taxonomic compositions (mean > 1%) among climate zones after 244 

the normality of residues and homogeneity of variance were checked using Shapiro-Wilk 245 

and Levene test, respectively. The significance level was set at α=0.05 unless otherwise 246 

stated. To calculate the statistical difference between the relative abundance of dominant 247 

microbial taxonomic groups (mean > 1%) in the “broad” and “narrow” functions, LEfSe 248 

(linear discriminant analysis effect size) method was used 249 

(http://huttenhower.sph.harvard.edu/lefse/) (Segata et al., 2011). Venn’s diagrams were 250 

constructed to visualize the amount of dominant microbial taxonomic groups at genus 251 
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levels or network nodes shared between the five “broad” and the five “narrow” functions 252 

using InteractiVenn (Heberle et al., 2015).  253 

To find out potential interactions of microbial taxonomic compositions between 254 

“broad” and “narrow” functions across the globe, co-occurrence network analysis was 255 

performed using the Molecular Ecological Network Analyses Pipeline 256 

(http://ieg4.rccc.ou.edu/MENA/) (Zhou et al., 2011;Deng et al., 2012). To make the 257 

minimum observed value close to but no less than 1 as required by the pipeline, the data 258 

of relative abundance were multiplied by 106, which would not change the correlation 259 

coefficients. The data matrix of transformed data matrix was uploaded to construct the 260 

network with default settings, including (1) keeping only the species present in more than 261 

a half of all samples; (2) only filling with 0.01 in blanks with paired valid values; (3) 262 

taking logarithm with recommended similarity matrix of Pearson’s correlation 263 

coefficient; and (4) calculation ordered to decrease the cutoff from top using regress 264 

poisson distribution only. A default cutoff value (similarity threshold, St) for the 265 

similarity matrix was used to assign a link between the pair of species. After that, the 266 

global network properties, the individual nodes' centrality, and the module separation and 267 

modularity were analyzed based on default settings using greedy modularity 268 

optimization. Network files were exported and visualized using Cytoscape software 269 

(Shannon et al., 2003). The scatter plots of within-module connectivity (zi) and among-270 

module connectivity (Pi) were constructed to show the network node distribution of 271 

module-based topological roles of taxonomic compositions for the “broad” and “narrow” 272 

functions. The threshold values of Zi and Pi for categorizing were 2.5 and 0.62 273 

respectively (Guimerà and Nunes Amaral, 2005;Olesen et al., 2006;Guimerà et al., 2007). 274 
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An overview of data acquisition, transformation, and analysis processes in this study was 275 

given in Fig. S1. 276 

 277 

3. Results and Discussion 278 

3.1. Microbial taxonomic compositions 279 

This study included 845 soil metagenomes across seventeen climate zones around the 280 

world extracted from 56 MG-RAST studies published in 51 peer-reviewed papers. They 281 

resulted in 356090 pairwise comparisons of Bray-curtis similarity in functional 282 

(Subsystems L3) and taxonomic (RefSeq genus) diversities for the five “broad” and five 283 

“narrow” functions, which were analyzed to find out whether the correlations of function 284 

and taxonomy were greater in the five “narrow” functions. Overall, for the five “narrow” 285 

functions, the positive correlations of the pairwise similarity of taxonomy and function 286 

between either two samples (r2 = 0.36-0.49) were greater than those for the five “broad” 287 

functions (r2 = 0.23-0.29) (Fig. 1). This suggests that rare phylotypes could be more 288 

associated with narrow ecosystem processes than broad-scale functions, supporting the 289 

notion that the abundance of particular specialists could influence narrow functional 290 

measures (Peter et al., 2011;Rivett and Bell, 2018), leading to a lower degree of 291 

functional redundancy associated with “narrow” functions, such as the nutrient cycling 292 

examined in this study.  293 



14 
 

 294 

Fig. 1. Relations between functional and taxonomic beta-diversities for “broad” and 295 

“narrow” functions. Pearson’s correlations between pairwise Bray-curtis similarity of 296 

microbial taxonomic and functional compositions for “broad” and “narrow” functions 297 

annotated using Subsystems at function level (Function) and RefSeq at genus level 298 

(Taxonomy). Correlation adjursted r-squared and P values are given. “Broad” functions 299 

include AAD (Amino Acids and Derivatives), CHO (Carbohydrates), CBS (Clustering-300 
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based Subsystems), CVPGP (Cofactors, Vitamins, Prosthetic Groups, Pigments), and 301 

Protein (Protein Metabolism). “Narrow” functions include N (Nitrogen Metabolism), P 302 

(Phosphorous Metabolism), K (Potassium Metabolism), S (Sulfur Metabolism), and Fe 303 

(Iron Acquisition and Metabolism). 304 

 305 

Several soil metagenomic studies have reported a linear relationship between 306 

functional and taxonomic diversities (Fierer et al., 2012b;Fierer et al., 2013;Leff et al., 307 

2015), indicating a somewhat dependency of microbial functional profiles on taxonomic 308 

compositions. This dependency, however, does not necessarily imply an absence of 309 

microbial functional redundancy. In fact, those studies all showed lower variation of beta-310 

diversity of metagenomic functions than taxonomy (Fierer et al., 2012b;Fierer et al., 311 

2013;Pan et al., 2014;Souza et al., 2015) or higher similarity in composition of functional 312 

profiles than taxonomic composition (Leff et al., 2015). Those findings support that 313 

microbial functions are relatively more stable than taxonomy responding to ecological 314 

and environmental perturbations. In this study, the five “broad” and the five “narrow” 315 

functions had relative abundance of 5-13% and 0.8-1.4%, respectively. Thus, the five 316 

“broad” functions are more abundant than the five “narrow” functions. In addition, the 317 

numbers of genes within the categories of the five “broad” functions were also greater 318 

than those of the “narrow” functions. As the diversities of the microbes conducting the 319 

five “broad” functions were also greater than those conducting the “narrow” functions, 320 

we calculated the relationship between the diversities of taxonomy and of function, and 321 

compared these relationships between the five “broad” and the five “narrow” functions. 322 

Our study further evidenced a lower extent of functional redundancy in the five “narrow” 323 

functions compared to the five “broad” functions despite the linear correlations found in 324 

our study.  325 
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 To compare similarity ranges of these two compositions related to the five “broad” 326 

functions versus the five “narrow” functions, the boxplots were constructed based on the 327 

pairwise similarity of function and taxonomy. For the functional compositions at specific 328 

function gene levels, the average similarity of the five “broad” functional diversity (58%) 329 

was comparable to that of the five “narrow” functions (56%) (Fig. 2a). However, the 330 

pairwise similarity of the five “narrow” functions had larger variation, in which Fe 331 

function had the lowest similarity of 36% and N function had the highest similarity of 332 

69%. On the contrary, the taxonomic similarity of the five “broad” functions were 333 

consistently greater (63-69%) than those of the five “narrow” functions (50-59%). The 334 

PERMANOVA pairwise test was conducted to find out the difference between 335 

taxonomic similarity of microbes conducting the five “broad” and the five “narrow” 336 

functions based on the relative abundance. Our results indicated that the microbial 337 

taxonomic compositions of the five “broad” functions were more phylogenetically 338 

different from those of the five “narrow” functions (13-22%) than from each other (8-339 

13%) (Table S2). The RELATE test was also conducted to evaluate the relationship of 340 

the taxonomic compositions of microbes conducting the five “broad” and the five 341 

“narrow” functions. Our results confirmed that the microbial taxonomic compositions of 342 

the five “broad” functions were more correlated with each other (0.97-0.99) than those of 343 

the five “narrow” functions (0.77-0.94) (Table S3). When the microbial taxonomic 344 

compositions of the ten functional categories were combined in PCoA analysis, the 345 

resulting scatter plot showed that the five “broad” functions were grouped closely 346 

together and separated from the five “narrow” functions (Fig. 2b). Grouping of the ten 347 

functions generally explain up to 18.0% of the community difference, in which the five 348 
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“narrow” functions were more distinct from each other. These evidences together suggest 349 

that the taxonomic composition of soil microbes conducting the five “broad” functions 350 

were more conserved in taxonomy than those conducting the five “narrow” functions. 351 

However, it should be noted that the current analysis had some limitations as the 352 

metagenomics datasets consisted of sequencing data that are phylogenetically classified 353 

and assigned based on certain taxonomic and functional databases. Thus, our results may 354 

to some extent depend on the databases chosen, of which the classification and 355 

assignment may contain potential bias. Future studies should continue to test this 356 

hypothesis using regional samples and individual datasets. 357 

 358 

Fig. 2. Functional and taxonomic diversities for “broad” versus “narrow” functions. 359 

a, Box plots and mean values of pairwise Bray-curtis similarity of microbial functional 360 
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and taxonomic diversities for “broad” versus “narrow” functions. b, PCoA (Principal 361 

coordinates analysis) showing beta-diveristy of microbial taxonomic diversity for 362 

“broad” and “narrow” functions annotated using RefSeq at genus level (Taxonomy). The 363 

error bars represent the standard deviation of data ranges. Variations (by percentage) 364 

explained by the two principal coordinate dimensions aare given in parentheses. P values 365 

and sq. root of PERMANOVA are also given. c, Heatmaps showing relative abundance 366 

of dominant microbial taxonomic composition (mean > 0.5%) for “broad” and “narrow” 367 

functions annotated using RefSeq at phylum/class levels (Taxonomy). “Broad” functions 368 

include AAD (Amino Acids and Derivatives), CHO (Carbohydrates), CBS (Clustering-369 

based Subsystems), CVPGP (Cofactors, Vitamins, Prosthetic Groups, Pigments), and 370 

Protein (Protein Metabolism); “Narrow” functions include N (Nitrogen Metabolism), P 371 

(Phosphorous Metabolism), K (Potassium Metabolism), S (Sulfur Metabolism), and Fe 372 

(Iron Acquisition and Metabolism). 373 

 374 

To investigate how microbial taxonomic diversities differ globally, the taxonomic 375 

compositions of soil microbes conducting the five “broad” and the five “narrow” 376 

functions were analyzed among the seventeen climate zones based on the PCoA analysis. 377 

Across climate zones, microbial taxonomic compositions of the five “narrow” functions 378 

(sq. root = 15.2-18.8) were more distinct than the five “broad” functions (sq. root = 13.4-379 

15.1) based on the PERMANOVA anaysis (Fig. S2). This suggests that microorganisms 380 

relating to “broad” functions were similar to each other in taxonomy, because “broad” 381 

functions are more broadly distributed across most taxa, but soil microbes performing 382 

“narrow” functions were more phylogenetically diverse due to the specialty of “narrow” 383 

functions. Thus, though microbial metabolic functions can be strongly coupled to 384 

elemental cycles and certain environmental factors, the decoupling of microbial 385 

taxonomic and functional profiles is still inevitable when a low-dimensional functional 386 

space is projected to a high-dimensional taxonomic space (Louca et al., 2018), especially 387 
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for “broad” functions. Moreover, certain environmental factors may have significant 388 

effects on the coupling of taxonomy and function due to their already existent selective 389 

pressure, such as the extreme environment of ice cap, and thus future research can focus 390 

on comparison of relationship between function and taxonomy among terrestrial 391 

ecosystems of different selective pressure levels. 392 

 393 

Fig. 3. Difference of taxonomic compositions between “broad” and “narrow 394 

functions”. LEfSe (linear discriminant analysis effect size) results showing the 395 

significant differences in the relative abundance of dominant microbial taxonomic groups 396 

(mean > 0.5%) between “broad” (red) versus “narrow” (green) functions annotated using 397 

RefSeq (Taxonomy). From the center outward, each circle represents the level of domain, 398 

phylum, class, order, family, and genus, respectively. The taxonomic groups with 399 

significant differences are labeled by colors. 400 

 401 
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The taxonomic compositions of microbes conducting the five “broad” functions were 402 

more abundant in most major phyla, such as Acidobacteria, Actinobacteria, 403 

Bacteroidetes, and Firmicutes, while the relative abundance of the taxonomic 404 

composition of microbes conducting the five “narrow” functions were greater in 405 

Proteobacteria, especially Alphaproteobacteria and Betaproteobacteria (Fig. 2c). Other 406 

studies also found that some bacteria conducting N cycling, such as ammonia-oxidizers 407 

and rhizobia for N fixation, mainly belong to Alphaproteobacteria or Betaproteobacteria 408 

(Stephen et al., 1996;Moulin et al., 2001).  409 

To find out the dominant microbial groups that were statistically different between 410 

the five “broad” and the five “narrow” functions, LEfSe analysis was conducted based on 411 

the relative abundances at the taxonomic levels of domain, phylum, class, order, family, 412 

and genus. In particular, among the Proteobacteria conducting the five “narrow” 413 

functions, Bacillaceae from Bacilli, Clostridium, Peptococcaceae, and 414 

Thermoanaerobacteraceae from Clostridia, Methylocella, Bradyrhizobium, 415 

Bradyrhizobiaceae, and Rhizobiaceae from Rhodospirillaceae, and Cupriavidus from 416 

Comamonadaceae had higher relative abundance than the others (Fig. 3). The Venn’s 417 

diagrams indicated that the taxonomic compositions of soil microbes performing the 418 

“broad” functions shared 68% dominant genera among the five functional categories, 419 

while the proportion was reduced to only 41% for the five “narrow” functions (Fig. 4). 420 

However, it should be stated that all the analyses performed in our study were based on 421 

relative abundance data that is compositional, so it is difficult to directly compare 422 

taxonomic diversities among samples and/or datasets. Despite the differences in the 423 

identification protocol and quantification of soil metagenomes, we deem the effects of 424 
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these differences to be trivial for our analyses as we intended to understand the general 425 

patterns of microbial taxonomic and functional linkages, rather than simply compare soil 426 

community structures across samples. By uncovering universal patterns of these 427 

relationships within the microbial community, we can then further establish a potential 428 

linkage framework to account for the microbial contributions to major biogeochemical 429 

cycles. 430 

 431 

Fig. 4. Taxonomic compositions shared among “broad” and “narrow” functions. 432 

Venn’s diagrams showing dominant microbial taxonomic groups (mean > 0.1%) 433 

annotated using RefSeq at genus levels (Taxonomy) shared among “broad” and “narrow” 434 

functions. 435 

 436 

Because of functional redundancy of soil microbes, understanding what types of 437 

functions that have more significant association with microbial taxonomy can be critical 438 

for accurate prediction of microbial metabolic activity and flexibility across space and 439 

time. As microbial taxonomic composition and diversity plays critical role in maintaining 440 

ecosystem function (Allison and Martiny, 2008), our results suggest that taxonomic 441 

information alone provides limited utility in predicting basic metabolic capabilities, but 442 

may be capable of forecasting biogeochemical transformations or changes in the rate of 443 

biogeochemical process at ecosystem level (Hall et al., 2018). Investigating functional 444 

redundancy with respect to functions associated with elemental cycles provides useful 445 
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information for guiding the development of explicit microbial biogeochemical prediction, 446 

and further delving into major pathways of C and N cycles will be a fruitful approach for 447 

scrutinizing microbes’ functional potentials.  448 

Table 1. Summary of key properties of co-occurrence networks for the five “broad” 449 

and the five “narrow” functions.  450 

Network 

Indexes 

Total 

nodes 

Total links 

(positive%) 

Average 

connectivity 

Average 

clustering 

coefficient 

Average 

geodesic 

distance 

Modularity 

(modules 

numbers) 

AAD 225 

1472 

(100%) 13.084 0.663 2.873 0.695 (11) 

CHO 207 1155 (99%) 11.159 0.615 3.805 0.672 (10) 

CBS 246 1622 (99%) 13.187 0.663 2.859 0.671 (11) 

CVPGP 201 1293 (99%) 12.866 0.65 3.303 0.697 (9) 

Protein 285 1651 (99%) 11.586 0.638 2.992 0.749 (14) 

N 101 519 (12%) 10.277 0.349 1.903 0.184 (5) 

P 160 449 (4%) 5.612 0.299 3.298 0.615 (10) 

K 143 364 (67%) 5.091 0.08 2.676 0.429 (6) 

S 132 264 (15%) 4 0.09 2.563 0.486 (12) 

Fe 95 215 (11%) 4.526 0.071 2.601 0.435 (6) 

 451 

3.2. Microbial taxonomic co-occurrence networks 452 

To identify potential interaction patterns of microbial groups that conduct the five 453 

“broad” and the five “narrow” functions, the co-occurrence networks of taxonomic 454 

compositions were generated based on the taxonomic composition at the genus level 455 

across the globe. Network graphs with submodule structures indicated distinct topology 456 

of taxonomic networks between the “broad” and “narrow” functions (Table 1, Fig. S3 457 

and Fig. S4). Compared to the “narrow” functions, the “broad” functions harbored larger 458 

and more complex networks with more nodes (201-285 vs. 95-160) and links (1293-1651 459 

vs. 215-519), with higher average connectivity (11.2-13.2 vs. 4.0-10.3) and average 460 

clustering coefficient (0.64-0.66 vs. 0.07-0.35). The “broad” function network had 99-461 

100% positive links, while the “narrow” function had 33-96% negative links. These 462 
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significant difference of network properties between “broad” and “narrow” functions 463 

suggests that taxonomic composition of “narrow” functions had both facilitative and 464 

inhibitive interactions, while taxonomic compositions of the “broad” function are all 465 

cooperative (Faust and Raes, 2012). Thus, soil microbes with “broad” functions tended to 466 

respond to the environment in a similar way, indicating functional sharing and 467 

association, while distinct microorganisms to conduct “narrow” functions competitively 468 

interact with each other, reflecting regulatory or suppression relationships (Delgado-469 

Baquerizo et al., 2018). 470 

 471 

Fig. 5. Network information of taxonomic compositions for “broad” and “narrow” 472 

functions. Node distribution of module-based topological roles of taxonomic 473 
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compositions for “broad” and “narrow” functions determined by the scatter plot of 474 

within-module connectivity (zi) and among-module connectivity (Pi). The threshold 475 

values of Zi and Pi for categorizing were 2.5 and 0.62 respectively.  476 

 477 

In addition, network modularity was greater in the “broad” functions, indicating that 478 

significant correlations between taxonomic compositions of microbes that conduct the 479 

five “broad” functions are mainly within similar taxonomic groups. No node could be 480 

classfied as connectors in the five “broad” function networks (Fig. 5), reaffirming that the 481 

“broad” function networks had links mainly within modules of similar species. In the co-482 

occurrence network of taxonomic composition of the “narrow” functions,  13% of the 483 

nodes were identified as connectors linking several modules (high Pi) connectors, while 484 

3% were identified as module hubs that connected other nodes within their own modules 485 

(high Zi), indicated by the Zi-Pi plot (Olesen et al., 2007;Deng et al., 2012). Thus, 486 

significantly less nodes were identified as module hubs in the co-occurrence network of 487 

the taxonomic composition of the “broad” functions, indicting less correlations found 488 

among different modules. This is expected given that module was comprised of genera 489 

that were mainly from the same phylogenetic groups. This difference was consistent with 490 

the Venn’s diagrams showing significantly more nodes (54%) shared among the five 491 

functional categories representing the “broad” functions, while only 5% of the nodes 492 

were overlaid among the five “narrow” function networks (Fig. 6). Environmental 493 

conditions likely determine the microbial taxonomic composition, and microbial 494 

phylotypes sharing similar habitat preferences tend to co-occur (Delgado-Baquerizo et 495 

al., 2018;Ramírez-Flandes et al., 2019). We emphasize that this analysis is a combination 496 

of snapshots of microbial communities compared across space, thus environmental 497 
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conditions (at the same geographic location) may vary, and the levels of functional 498 

redundancy may change depending on the mechanisms selecting specific functions and 499 

the phylogenetic distribution of those functions (Louca et al., 2018). 500 

 501 

Fig. 6. Taxonomic network nodes shared among “broad” and “narrow” functions. 502 

Venn’s diagrams showing the microbial taxonomic network nodes shared among “broad” 503 

and “narrow” functions.  504 

 505 

3.3. Conclusion 506 

By analyzing and generalizing microbial taxonomic and functional profiles, we provide 507 

strong evidence that the degree of soil microbial functional redundancy differs 508 

significantly between “broad” and “narrow” functions across the global. The level of 509 

functional redundancy varies depending on the functions of interest. Here, by contrasting 510 

the five “broad” metabolic functions and the five “narrow” functions that are important 511 

for elemental cycles, we found lower levels of functional redundancy associated with the 512 

five “narrow” functions of biogeochemical cycling, despite the fact that even for the five 513 

“narrow” functions, there is still a high level of functional redundancy in the soil 514 

communities. Although there is a caveat concerning direct comparison of metagenomic 515 

data, the present study demonstrated the use of comparative metagenome and co-516 

occurrence network analysis in generalizing patterns of microbial characteristics 517 
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regulating biogeochemical cycling of major elements. With the increasing advancement 518 

of sequencing techniques and data coverage, future sequencing efforts will likely increase 519 

our confidence in comparative metagenomes and provide time-series information to 520 

further identify to what extent microbial functional redundancy regulates dynamic 521 

ecological fluxes across space and time. 522 
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