

1 **Soil nutrient stoichiometry varied with tea plantation age and soil depth at an aggregate**
2 **scale in the southern Guangxi of China**

3 Ling Mao, Shaoming Ye, Shengqiang Wang*

4 Forestry College, Guangxi University, Nanning, 530004, China

5 *Corresponding author.

6 E-mail address: shengqiang@gxu.edu.cn

7

8 **ABSTRACT**

9 Soil ecological stoichiometry offers a tool to explore the distribution, cycling, limitation, and
10 balance of chemical elements in tea plantation ecosystems. This study was aimed to explore how
11 soil organic C (OC) and nutrient contents (total N (TN), total P (TP), Ca^{2+} , Mg^{2+} , Fe^{2+} , and Mn^{2+})
12 as well as their stoichiometric ratios (C/N, C/P, N/P, Ca/Mg, and Fe/Mn) vary with tea plantation
13 age (8, 17, 25, and 43 years) and soil depth (0-10, 10-20, 20-40, and 40-60 cm) within aggregates
14 in the southern Guangxi of China. Our results showed that tea plantation age and soil depth
15 significantly influenced soil nutrient stoichiometry in different sizes of aggregates. Among
16 different ages of tea plantations, soil OC, TN, and TP contents as well as C/N, C/P, and N/P
17 ratios significantly decreased as the soil depth increased. In addition, soil Ca^{2+} and Mg^{2+} contents
18 were significantly lower in the surface soil layer than the deeper soil layer, whereas soil Fe^{2+} and
19 Mn^{2+} contents showed totally opposite trends, and no significant differences were detected
20 among different soil depths in Ca/Mg and Fe/Mn ratios. Tea plantation age could influence the
21 variation in soil nutrient stoichiometry, but such effect was more obvious at the 0-40 cm soil
22 depth in contrast to the 40-60 cm soil depth. At the 0-40 cm soil depth, continuous planting of
23 tea was beneficial for the significant increases in soil OC, TN, Fe^{2+} , and Mn^{2+} contents, whereas
24 soil Ca^{2+} and Mg^{2+} contents significantly decreased over time. During the process of tea growth,
25 the losses of soil Ca^{2+} and Mg^{2+} , especially the Ca^{2+} (as indicated by the decrease in soil Ca/Mg
26 ratio), could lead to the soil acidification. Meanwhile, soil acidification could reduce Fe^{2+}

27 absorption and enhance Mn^{2+} uptake by tea plants (as indicated by the increase in soil Fe/Mn
28 ratio). Overall, this study improved the understanding of soil OC and nutrient dynamics in tea
29 plantation ecosystems.

30 **KEYWORDS**

31 Tea plantation age; Soil depth; Soil aggregate; Ecological stoichiometry

32

33 **1. Introduction**

34 In the past century, under the remarkable increase in population pressure, continuous tillage
35 and overmuch deforestation resulted in the dramatic decrease in soil fertility level in the southern
36 Guangxi of China (Jiang et al., 2018). For the purpose of tackling these challenges, the Chinese
37 government has rolled out the Grain for Green program in the hope of alleviating land
38 deterioration via converting farmlands to forest lands or grass lands (Zeng et al., 2020). Since the
39 initiation of such program, the south part of Guangxi has initiated the mode of transforming
40 farmlands into tea (*Camellia sinensis* L.) plantations as per the local geography and natural
41 resources (Zhang et al., 2017). Tea, as a pivotal cash crop, is commonly cultivated in the
42 developing nations, particularly in China, India, Kenya, and Sri Lanka. China is the first nation
43 to plant tea across the globe, with the tea-planting area reaching 3.17 million hectares in 2020
44 and presenting an elevating trend in the future (Chinese Tea Committee, 2020). Guangxi has the
45 subtropic monsoon climate and marks the key tea-planting region in China. According to the
46 statistics from Chinese Tea Committee (2020), more than 80% tea plantations of Guangxi are
47 situated at impoverished counties, and tea-planting industry turns to be the staple industry on
48 which poor counties depend to throw off poverty.

49 Ecological stoichiometry offers a tool to explore the distribution, cycling, restriction, and
50 balance of nutrients in terrestrial ecosystems (Yu et al., 2019), and plays a critical role in
51 recognizing the influence factors and drive mechanisms in ecological processes (Su et al., 2019).
52 On the one hand, carbon (C) is the most commonly seen element in plants (Prescott et al., 2020),

53 and nitrogen (N) and phosphorus (P) are critical control factors for the growth of plants (Krouk
54 and Kiba, 2020). The relationships amongst the three different elements are coupled (Elser et al.,
55 2003). Soil C/N, C/P, and N/P ratios represent not only the equilibrium features of soil C, N, and
56 P, but also the dynamics of fertility characteristics during the process of soil genesis (Bai et al.,
57 2020). On the other hand, calcium (Ca), magnesium (Mg), iron (Fe), and manganese (Mn) are
58 pivotal metallic nutritive elements for the development of plants (Liu et al., 2021a). Soil total Ca,
59 Mg, Fe, and Mn may exceed the demand of a single plant by more than a thousand-fold and
60 cannot sensitively reflect the needs of plants (Miner et al., 2018), but the available fractions of
61 these nutrients may be insufficient or redundant, resulting in the deficiencies or abundances of
62 plant nutrients (Otero et al., 2013). Thus, soil exchangeable Ca and Mg as well as available Fe
63 and Mn generate significant effects on the development of plants.

64 Over the past decade, soil nutrient stoichiometry (mainly C-N-P, rather than Ca-Mg or
65 Fe-Mn) has been broadly studied across the world (Tian et al., 2010; Yang et al., 2013; Zhang et
66 al., 2016; Yue et al., 2017; Yu et al., 2018; Qiao et al., 2020). A wide agreement exists amongst
67 these studies that soil depth is vital for the regulation of soil nutrient stoichiometry. Substantial
68 studies have identified the decreasing trend of soil organic C (OC), total N (TN), and total P (TP)
69 contents as the soil depth increased (Yue et al., 2017; Yu et al., 2018; Qiao et al., 2020), whereas
70 conflicting vertical patterns were discovered for soil C/N, C/P, and N/P ratios. For instance,
71 decreasing trend of the C/P and N/P ratios was observed as the soil depth increased in the data of
72 the 2nd soil investigation in China (Tian et al., 2010). Nevertheless, larger C/N ratio in the deeper
73 soil layer, not the surface soil layer, was identified in a mollisol plain in the northeast China
74 (Zhang et al., 2016). Moreover, the C/N ratio displayed no remarkable change throughout
75 different soil depths in an investigation of alpine grassland on the Qingzang Plateau (Yang et al.,
76 2013). As shown above, inconsistent vertical patterns have been reported for the C-N-P
77 stoichiometric ratios in different soil ecosystems. Meanwhile, these studies were mainly focused
78 on the regional or global scales, rather than on the aggregate scales.

79 As the basic unites of soil structure, soil aggregates are complex ensembles composed of
80 primary particles as well as organic matter (OM) (Tisdall and Oades, 1982). According to the
81 differences of binding agents, soil aggregates can be classified into microaggregates (< 0.25 mm)
82 and macroaggregates (> 0.25 mm) (Tisdall and Oades, 1982). In general, persistent binding
83 agents (like humified OM and polyvalent metal cation complexes) contribute to the binding of
84 primary particles into microaggregates (Six et al., 2004). Differently, temporary binding agents
85 (like fungal hyphae, plant roots, and polysaccharides) aggregating with microaggregates
86 conduces to the formation of macroaggregates (Six et al., 2004). As shown above, soil
87 aggregates with various sizes exert different abilities in the supply and reserve of soil OC and
88 nutrients. Thus, to improve the comprehension about the structure and function of soil
89 ecosystems, more efforts should be made to observe the soil nutrient stoichiometry within
90 aggregates (Xu et al., 2019; Cui et al., 2021). In recent period, lots of studies have reported the
91 OC, TN, and TP distribution in different sizes of aggregates, but these studies are ended with
92 different results. To be specific, some studies revealed the significant increases in the OC, TN,
93 and TP contents as the aggregate size decreased (Sarker et al., 2018; Piazza et al., 2020).
94 Nevertheless, some other studies drew the totally opposite trends (Lu et al., 2019; Liu et al.,
95 2021b). These show that the changes of soil OC, TN, and TP within aggregates have received
96 great attention, whereas soil exchangeable alkali cations (i.e., Ca^{2+} and Mg^{2+}) and available
97 micronutrients (i.e., Fe^{2+} and Mn^{2+}) are rarely investigated.

98 Our past studies indicated that the landuse shift from farmlands to tea plantations could
99 ameliorate soil fertility level (Zheng et al., 2011). Nevertheless, during the process of tea growth,
100 the variation in soil nutrient stoichiometry is still unclear. Meanwhile, since tea serves as a deep
101 root plant, it is vital to reveal how nutrient stoichiometry changes with increasing soil depth in
102 tea plantation ecosystems. Thus, the present study was carried out to investigate how soil OC and
103 nutrient contents as well as their stoichiometric ratios vary with tea plantation age (8, 17, 25, and
104 43 years) and soil depth (0-10, 10-20, 20-40, and 40-60 cm) within aggregates (< 0.25, 0.25-1,

105 1-2, and > 2 mm). In addition, we hypothesized that the responses of soil OC and nutrient
106 contents and their stoichiometric ratios to tea plantation age would be different amongst different
107 soil depths.

108 **2. Materials and methods**

109 **2.1. Experiment site**

110 In January 2019, the present study was completed at the Hengxian Agriculture Experiment
111 Center of Guangxi University (altitude of 557-563 m and slope degree of 13-15 °) (Figure 1).
112 Subtropic monsoon climate is predominant. Yearly average rainfall and temperature register
113 1304 mm and 21.6 °C, separately. Exposed soil horizon occurs early in the Mesozoic, which
114 gradually formed the Ultisols agrotype (IUSS Working Group, 2014). As early as in 1960s, due
115 to the high economic value of tea, massive hectares of farmlands were developed to tea
116 plantations in such region.

117 The “*Baimao* tea” refers to a major cultivar in such area, and the ages of these tea
118 plantations are distinct. Tea plantations were both experimental trials (Guangxi University) and
119 commercial plantings, and were managed by different owners. In the tea-planting course, tillage
120 method is no tillage and tea-planting density is almost 6×10^4 plants ha^{-1} . Herbicides were not
121 applied and yellow sticky boards were used to prohibit pests, because the color may attract pests
122 and get them stuck on the boards. In addition, all tea plants were subjected to slight pruning in
123 September each year.

124 An annual fertilizer regime in tea plantations is shown below. Both 0.65 Mg ha^{-1} complex
125 fertilizer (granule, N-P₂O₅-K₂O: 18%-6%-6%) and 12 Mg ha^{-1} swine manure (slurry,
126 N-P₂O₅-K₂O: 0.54%-0.48%-0.36%) were applied yearly in mid-November as the basal fertilizer
127 at the surrounding region vertically below tree crown. Subsequently, the top-dressing, applied to
128 the site treated with replenished basal fertilizer, was replenished 3 times per year. Both 1.2 Mg
129 ha^{-1} complex fertilizer and 0.5 Mg ha^{-1} urea were applied onto soil surface in mid-March, while

130 0.65 Mg ha⁻¹ complex fertilizer and 0.3 Mg ha⁻¹ urea were applied in late-June and in
131 early-September.

132 2.2. Experiment design

133 In general, examining the same location persistently has been considered a quite effective
134 approach in the monitoring of the variations in soil with time (Sparling et al., 2003).
135 Nevertheless, the challenges in long-period soil monitoring have made it urgent to develop
136 substitutional approaches to research the changes of soil over time, amongst which the most
137 common approach is the ‘space-for-time’ alternative (Zanella et al., 2018).

138 In this study, such approach was used to explore the variation in soil nutrient stoichiometry
139 in a chronological sequence of tea plantations. In general, certain underlying mixture effects
140 exist in the spatial variations of soil, hence the present study manages to mitigate such effects via
141 choosing tea plantations, which were cultured with the same tea variety (“*Baimao* tea”) with
142 different planting ages (8, 17, 25, and 43 years), and were located at the same unit associated
143 with geomorphological status.

144 Each of the 4 tea plantation age groups was replicated in 5 locations for a total of 20
145 experimental units. Separation amongst these units was completed with distances of > 800 m
146 between each other, hence decreasing the spatial autocorrelation and avoiding the
147 pseudo-replication. For every unit ($S \approx 1 \times 10^4$ m²), a plot ($S = 20$ m \times 20 m) was randomly
148 established with distance of > 50 m away from the unit margin.

149 2.3. Litter and soil sampling

150 For every plot, the 5 surface litter (a stock) specimens had been acquired from the surface of
151 soil in the 5 randomly chosen subplots ($S = 1$ m \times 1 m), and afterwards were integrated into a
152 composite litter specimen. An overall the 20 (4 tea plantation ages \times 5 replicates) composite
153 litter specimens were desiccated at the 80 °C until steady weight. Then, the weights of these
154 desiccated litter specimens were measured, and the litter C (Nelson and Sommers, 1996) and N
155 (Bremner, 1996) contents were detected. The amount of litter was 821, 974, 786, and 648 g m⁻²

156 in the 8, 17, 25, and 43 years of tea plantations, respectively, and the C/N ratio of litter was
157 14.23, 12.68, 17.32, and 21.37, respectively.

158 Soil sampling was completed in the same sites of the litter sampling. For every plot, the 5
159 soil specimens had been acquired by a spade from every soil layer (i.e., 0-10, 10-20, 20-40, and
160 40-60 cm) in the 5 subplots ($S = 1 \text{ m} \times 1 \text{ m}$), and afterwards were integrated into a composite
161 soil specimen. An overall the 80 (4 tea plantation ages \times 4 soil layers \times 5 replicates) composite
162 soil specimens were gently separated into naturally formed aggregates, which were sieved by a 5
163 mm sifter to realize the removals of small stones, coarse roots, and macrofauna. After that, soil
164 specimens were used for the aggregate separation. For every plot, moreover, extra 5 soil
165 specimens were randomly chosen via cutting rings (volume = 100 cm^3 , diameter = 50.46 mm,
166 and depth = 50 mm) from every soil layer to assess the bulk density, clay ($< 0.002 \text{ mm}$), pH, OC,
167 and nutrients of bulk soil (Table 1).

168 2.4. Soil aggregate separation

169 As per the process of wet screening, 250 g of every composite soil specimen was sieved via
170 the 2, 1, and 0.25 mm sieves in a successive way (Kemper and Chepil, 1965). To be specific, the
171 composite soil specimens were soaked by the aqua destillata for 15 min, and afterwards were
172 oscillated in the vertical direction for 15 min at the 1 s^{-1} oscillating rate and 5 cm amplitude.
173 Consequently, we obtained 4 different sizes of aggregates, covering microaggregates (< 0.25
174 mm), fine (0.25-1 mm), medium (1-2 mm), and coarse ($> 2 \text{ mm}$) macroaggregates. All of the
175 aggregates were desiccated and weighted, and then aggregate-related OC and nutrients were
176 detected.

177 2.5. Soil property analyses

178 Prior to the analyses of soil physical-chemical properties, soil specimens were subjected to
179 atmospheric drying under indoor temperature condition. According to the cutting ring method
180 (Lu, 2000), soil specimens were oven-dried at 105°C to the stable weight in order to measure the
181 bulk density. Soil clay was detected by the hydrometer (TM-85, Veichi, China) (Lu, 2000). Soil

pH was detected by the glassy electrode (MT-5000, Ehsy, China), with the ratio of soil : water (mass : volume) as 1 : 2.5 (Lu, 2000). Soil OC and TN were identified via the acid dichromate wet oxidation method (Nelson and Sommers, 1996) and the micro-Kjeldahl method (Bremner, 1996), separately. Soil TP was identified via the molybdate blue colorimetry method (Bray and Kurtz, 1945). Soil exchangeable alkali cations (i.e., Ca^{2+} and Mg^{2+}) were determined by the ammonium acetate ($\text{CH}_3\text{COONH}_4$) (Thomas, 1982). In short, 2.5 g of every aggregate fraction was weighted into Erlenmeyer flask to blend with 50 mL 1 M $\text{CH}_3\text{COONH}_4$ (pH = 7.0). The extract liquid was agitated for 30 min under 150 rpm, and afterwards sieved via Whatman No. 2 V filtration paper (quantitative and ashfree). Soil available micronutrients (i.e., Fe^{2+} and Mn^{2+}) were determined by the diethylenetriamine pentaacetic acid (DTPA) (Lindsay and Norvell, 1978). In short, 10 g of every aggregate fraction was weighted into Erlenmeyer flask to blend with 20 mL 0.005 M DTPA + 0.01 M CaCl_2 + 0.1 M TEA (triethanolamine) (pH = 7.0). The extract liquid was agitated for 2 h under 180 rpm, and afterwards sieved. Entire extractable metallic cations were detected by the atomic absorption spectrometer (AAS, Shimadzu, Japan). In this study, 5 standard specimens (GBW-07401), 5 blank specimens, and 80 parallel specimens (accounted for 20% of the total soil specimens) were used to control quality, and the error between parallel specimen and experimental specimen was controlled in 5%.

2.6. Calculations and statistics

The mean weight diameter (MWD, mm) was utilized to indicate the stability of soil aggregates. To be specific, if the MWD value is higher, the aggregate stability is stronger (Kemper and Chepil, 1965):

$$203 \quad \text{MWD} = \sum_{i=1}^4 (X_i \times M_i),$$

in the formula, X_i indicates the i^{th} size aggregates' mean diameter (mm) and M_i indicates the i^{th} size aggregates' proportion (% in weight).

SPSS 22.0 was used for statistic analysis (Table 2). Means were tested by the Tukey's HSD and significance was used at $P < 0.05$. Two-way analysis of variance (ANOVA) was taken for

208 exploring the effects of soil depth, tea plantation age, and their interactions on the
209 physico-chemical properties of bulk soil. Three-way ANOVA was taken for exploring the effects
210 of soil depth, tea plantation age, aggregate size, and their interactions on the physico-chemical
211 properties of soil aggregates. Besides that, Pearson correlation analysis was utilized to test the
212 relationships between pH and stoichiometric ratios (i.e., Ca/Mg and Fe/Mn ratios) in bulk soil
213 during the process of tea growth.

214 **3. Results**

215 **3.1. Composition and stability of soil aggregates**

216 At the 0-10 and 10-20 cm soil depths, continuous planting of tea resulted in significant
217 variations in the proportions of different sizes of aggregates, apart from the medium and fine
218 macroaggregates (Table 3). To be specific, the proportions of coarse macroaggregates
219 significantly rose within the first 17 years and afterwards significantly dropped, whereas the
220 proportions of microaggregates displayed an opposite trend over time. Meanwhile, the greatest
221 value of soil MWD was identified in the tea plantations of 17 years (Table 3). Notably, the role
222 of tea plantation age in the aggregate composition and stability is limiting at the 20-40 and 40-60
223 cm soil depths. Across the 4 tea plantation ages, the coarse macroaggregates were dominant at
224 the 0-10 cm soil depth, which accounted for 32.60%-53.18% of bulk soil. However, at the 10-20,
225 20-40, and 40-60 cm soil depths, the microaggregates were dominant, which accounted for
226 33.80%-49.51%, 42.12%-48.24%, and 44.80%-49.45%, respectively. These results showed that
227 the coarse macroaggregate proportions significantly reduced while the microaggregate
228 proportions significantly elevated with increasing soil depth.

229 **3.2. Contents of soil C, N, and P**

230 At the aggregate scales, soil OC (Figure 2) and TN (Figure 3) contents significantly
231 increased with increasing aggregate size, but the distribution of soil TP (Figure 4) was even in
232 different sizes of aggregates. From 8 to 43 years of tea plantations, the OC and TN contents in
233 soil aggregates were significantly elevated by 22%-35% and 14%-24%, 11%-22% and 9%-17%,

234 and 8%-18% and 9%-13% at the 0-10, 10-20, and 20-40 cm soil depths, respectively.
235 Nevertheless, no significant variation existed in the aggregate-related TP content. Furthermore,
236 at the 40-60 cm soil depth, the aggregate-related OC, TN, and TP contents did not show
237 significant variations over time. Regardless of the tea plantation age, significant decreases in the
238 aggregate-related OC, TN, and TP contents were observed as the soil depth increased.

239 3.3. Stoichiometric ratios of soil C, N, and P

240 A three-way ANOVA analysis showed that the lone and interactive effects of soil depth, tea
241 plantation age, and aggregate size on the C/P and N/P ratios were significant, and the effects of
242 soil depth, aggregate size, and their interactions on the C/N ratio were significant (Table 2). In
243 this study, significant increases in aggregate-related C/N (Table S1), C/P (Table S2), and N/P
244 (Table S3) ratios were accompanied by the increasing aggregate size. At the 0-10, 10-20, and
245 20-40 cm soil depths, aggregate-related C/N ratio did not show significant variation while
246 aggregate-related C/P and N/P ratios significantly increased with the increase in tea plantation
247 age. Moreover, there was little role of tea plantation age in the aggregate-related C/N, C/P, and
248 N/P ratios at the 40-60 cm soil depth. Among different ages of tea plantations, aggregate-related
249 C/N, C/P, and N/P ratios significantly dropped as the soil depth increased. For example, at the
250 0-10 cm soil depth, aggregate-related C/N, C/P, and N/P ratios across the 4 tea plantation ages
251 fluctuated in 20.81-23.04, 28.81-37.07, and 1.31-1.67, respectively. Meanwhile, at the 40-60 cm
252 soil depth, aggregate-related C/N, C/P, and N/P ratios fluctuated in 16.41-20.74, 13.44-22.88,
253 and 0.84-1.08, respectively.

254 3.4. Contents of soil alkali cations and micronutrients

255 At the aggregate scales, soil exchangeable alkali cations (i.e., Ca^{2+} and Mg^{2+}) were more
256 concentrated in the microaggregates (Figures 5 and 6). However, soil available micronutrients
257 (i.e., Fe^{2+} and Mn^{2+}) were mainly existed in the coarse macroaggregates (Figures 7 and 8). From
258 8 to 43 years of tea plantations, the Ca^{2+} and Mg^{2+} contents in soil aggregates were significantly
259 reduced by 31%-38% and 10%-24%, 23%-27% and 9%-18%, and 10%-16% and 5%-8% at the

260 0-10, 10-20, and 20-40 cm soil depths, respectively. However, the Fe^{2+} and Mn^{2+} contents in soil
261 aggregates were significantly elevated by 16%-27% and 6%-9%, 11%-15% and 4%-7%, and
262 7%-12% and 3%-5%, respectively. In addition, at the 40-60 cm soil depth, the contents of
263 aggregate-related exchangeable alkali cations and available micronutrients did not show
264 significant variations over time. Irrespective of the tea plantation age, significant increases in the
265 aggregate-related Ca^{2+} and Mg^{2+} contents were observed with increasing soil depth, but the
266 aggregate-related Fe^{2+} and Mn^{2+} contents showed an opposite trend.

267 **3.5. Stoichiometric ratios of soil alkali cations and micronutrients**

268 A three-way ANOVA analysis showed that the effect of tea plantation age on the Ca/Mg
269 and Fe/Mn ratios in soil aggregates was significant (Table 2). In this study, soil Ca/Mg (Table
270 S4) and Fe/Mn (Table S5) ratios did not vary among different sizes of aggregates. At the 0-10,
271 10-20, and 20-40 cm soil depths, aggregate-related Ca/Mg ratio significantly decreased while
272 aggregate-related Fe/Mn ratio significantly increased in the tea-planting course. Moreover, there
273 was little role of tea plantation age in the aggregate-related Ca/Mg and Fe/Mn ratios at the 40-60
274 cm soil depth. In tea plantations, no significant variations were observed amongst different soil
275 depths in aggregate-related Ca/Mg and Fe/Mn ratios. For example, at the 0-10 cm soil depth,
276 aggregate-related Ca/Mg and Fe/Mn ratios across the 4 tea plantation ages ranged from 1.81 to
277 1.96 and 0.76 to 0.85, respectively. Meanwhile, at the 40-60 cm soil depth, aggregate-related
278 Ca/Mg and Fe/Mn ratios ranged from 1.88 to 1.92 and 0.78 to 0.82, respectively.

279 **4. Discussion**

280 **4.1. Composition and stability of soil aggregates**

281 Tea plantation age significantly influenced the aggregate composition and stability at the
282 0-10 and 10-20 cm soil depths, whereas the effect at the 20-40 and 40-60 cm soil depths was
283 quite limited. In the early (8-17 years) period, tea planting was beneficial for the transition from
284 microaggregates to coarse macroaggregates at the 0-10 and 10-20 cm soil depths (Table 3). By
285 comparison, in the middle (17-25 years) and late (25-43 years) periods, tea planting induced

286 coarse macroaggregate destruction and microaggregate release (Table 3). According to the
287 hierarchical concept of soil aggregates (Six et al., 2004), the quality of plant litter returning to the
288 soil determines the distribution of decomposition products of litter in different sizes of
289 aggregates, which ultimately impacts the aggregate composition. In the early period of tea
290 planting, tea litter displayed greater availability (as indicated by the lower litter C/N ratio),
291 revealing that the decomposition products of litter were easily combined into the coarse
292 macroaggregates, hence fostering the formation of coarse macroaggregates (Tisdall and Oades,
293 1982). Reversely, in the middle and late periods of tea planting, tea plants naturally encountered
294 aging processes and litter was progressively subjected to humification, which induced the
295 decomposition of coarse macroaggregates into microaggregates (Six and Paustian, 2014).
296 Moreover, the reduced litter amount and covering area after 17 years of tea planting enhanced
297 the rainfall eluviation and artificial interferences (i.e., pruning of tea plants and application of
298 fertilizers), which also caused the destruction of coarse macroaggregates. In the tea-planting
299 course, variation in aggregate stability was indicated via the change of MWD value (Table 3). At
300 the 0-10 and 10-20 cm soil depths, the MWD value was the greatest in the 17 years of tea
301 planting, which was associated with the highest proportions of coarse macroaggregates in the
302 17-year tea plantations. These findings indicated that the 17-year tea plantations exhibited
303 stronger aggregate stability in contrast to other plantations at the 0-10 and 10-20 cm soil depths.

304 Regardless of the tea plantation age, coarse macroaggregates were dominant in the topsoil
305 (0-10 cm) while microaggregates were dominant in the subsoil (10-60 cm), indicating
306 transformation of aggregate composition from coarse macroaggregate-prevailing to
307 microaggregate-prevailing with the increase in soil depth (Table 3). Also, alike outcomes were
308 corroborated by Li et al. (2015) and Zhu et al. (2017) from studies on tea plantations in the
309 southwest Sichuan of China. In the present study, coarse macroaggregates were the prevailing
310 fractions in the topsoil, not the subsoil, which was attributed to the surface cumulation of soil OC
311 (Figure 2). As an essential cementing agent, soil OC could foster the formation of coarse

312 macroaggregates (Al-Kaisi et al., 2014). Moreover, the reduced proportions of coarse
313 macroaggregates as the soil depth increased were also because of the elevated soil compactness
314 (as indicated by the bulk density) (Table 1). Soil densification could prevent the growth of plant
315 roots, hence causing the activities of soil microorganisms decreased, especially soil fungi (Kurmi
316 et al., 2020). Reduced activities of soil fungi could diminish the production of polysaccharose
317 and glomalin-related soil protein (GRSP) from the fungal hyphae, hence inducing the
318 proportions of soil macroaggregates decreased (Ji et al., 2019). Likewise, as per our past studies
319 (Wang et al., 2017b; Zhu et al., 2019), soil microbial activities and GRSP content served as the
320 vital effects in the formation and stabilisation of soil macroaggregates, and presented the higher
321 levels in the topsoil compared with the subsoil in tea plantation ecosystems. With increasing soil
322 depth, the decrease in MWD value was mainly related to the change of soil aggregate
323 composition (Table 3), especially for the decomposition of coarse macroaggregates into
324 microaggregates, implying that the topsoil exhibited stronger aggregate stability in contrast to the
325 subsoil.

326 4.2. Contents of soil C, N, and P

327 In this study, more contents of soil OC and TN could be detected in coarse macroaggregates
328 (Figures 2 and 3), which conformed to the findings of Six et al. (2004) that macroaggregates
329 were comprised of microaggregates via temporary binding agents; meanwhile, macroaggregates
330 could provide the protection for the OM, hence causing the cumulation of OC and TN in
331 macroaggregates. Unlike soil OC and TN, soil TP was evenly distributed in different sizes of
332 aggregates (Figure 4). Moreover, Bhatnagar and Miller (1985) also detected alike outcomes from
333 soil specimens subjected to fresh poultry manure treatments, and promoted the mechanisms
334 affecting the distribution of TP in soil aggregates. Specifically, (i) introduced P was firstly
335 adsorbed by clay particulates in soil and clay particulates were discrepant in different sizes of
336 aggregates, and (ii) introduced P had selective absorptive properties for the different sizes of

337 aggregates. According to our findings, stochasticity seems to be one probable mechanism that
338 sheds light on the TP distribution in soil aggregates.

339 Tea plantation age could positively affect the cumulation of soil OC and TN, but such
340 positive effects were more obvious at the 0-40 cm soil depth in contrast to the 40-60 cm soil
341 depth. In this study, soil OC and TN contents exhibited a significant growing trend over time
342 (Figures 2 and 3), which was possibly associated with the following mechanisms. First, many
343 long-period tests had demonstrated the proactive roles of manure and chemical fertilizer
344 applications in soil OM cumulation (Tong et al., 2009; Zhou et al., 2013). Similarly, in the
345 tea-planting course, growing soil OC and TN contents were probably caused by the applications
346 of substantial swine manure every year ($12 \text{ Mg ha}^{-1} \text{ year}^{-1}$) in this tea-planting region (Wang and
347 Ye, 2020). Second, plants serve as the prime OM sources in soil via root exudates and litter
348 remains (Franklin et al., 2020). In the tea-planting course, soil OC and TN cumulation probably
349 occurred as a result of the growing root systems and the increasing amounts of aboveground
350 litter attained from trimmed branches and leaves. Third, no tillage could provide physical
351 protection for the OM combined with soil aggregates, and then further improve soil OC and TN
352 sequestration (Wulanningtyas et al., 2021). Notably, although the positive correlations of OC and
353 TN contents with clay content in soil have been reported, the present study revealed that
354 significant increases in the OC and TN contents were accompanied by no significant variation in
355 the clay content during the process of tea growth (Table 1). Similarly, Li et al. (2015) and Wang
356 et al. (2018) discovered as well that the changes of soil OC and TN contents were not influenced
357 by the clay content over time in tea plantation ecosystems, mainly because soil OC and TN
358 contents primarily depend on fertilization, tillage, root exudates, and litter remains, but soil clay
359 content is mainly controlled by its parent material (Rakhsh et al., 2020). Unlike soil OC and TN,
360 regardless of the soil depth, no significant difference existed in soil TP content amongst different
361 aged tea plantations (Figure 4), which implied the resistance of soil TP content to the change of
362 tea plantation age. Also, past studies verified that soil TP content was not related to the tea

363 plantation age (Wu et al., 2018; Yan et al., 2018), as soil P primarily derives from the weathering
364 release of soil minerals, instead of the short-period biology cycle (Cui et al., 2019).

365 In tea plantation ecosystems, the decreasing OC, TN, and TP contents with increasing soil
366 depth (Figures 2, 3, and 4)coincided with some past findings in other ecosystems, such as tropic
367 forests, bushlands, and grasslands (Stone and Plante, 2014; Yu et al., 2018; Qiao et al., 2020). In
368 the present study, the higher contents of OC, TN, and TP in the topsoil were associated with the
369 higher OM input, in which the soil OM content in the topsoil was enriched by the input of
370 surface tea litter, root debris and exudates, and swine manure.

371 4.3. Stoichiometric ratios of soil C, N, and P

372 Soil C/N, C/P, and N/P ratios act as vital indicators of soil health (Liu et al., 2018), which
373 can be employed for exploring C circulation and guiding the equilibrium between N and P in soil
374 ecosystems (Sardans et al., 2012). In this study, soil C/N ratio grew with growing aggregate size
375 (Table S1), which indicated that the OM in macroaggregates was younger and more unstable in
376 contrast to microaggregates (Six et al., 2004). Meanwhile, the OM associated with
377 microaggregates experienced more degradation, resulting in the lower C/N ratio in the
378 microaggregates (Xu et al., 2019). Among different ages of tea plantations, soil OC and TN were
379 predominantly distributed in the coarse macroaggregates, but the TP was evenly distributed in
380 different sizes of aggregates. As a result, the associations of C/P and N/P ratios to aggregate size
381 primarily depended on the relationships of OC and TN contents with aggregate size (Tables S2
382 and S3). As far as we know, the changes of soil C/P and N/P ratios within aggregates are rarely
383 examined, although these kinds of knowledge are imperative because of the biogeochemical
384 cycles of N and P being influenced by the dynamics of soil aggregates (Cui et al., 2021).
385 Consequently, the impact generated by the aggregate size on the C/P and N/P ratios ought to be
386 studied more for the accurate forecast of soil N and P cycling under natural or man-intervened
387 ecosystems.

388 Irrespective of the soil depth, soil C/N ratio showed little significant variation in the

389 tea-planting course (Table S1). Meanwhile, tea plantation age significantly affected soil C/P and
390 N/P ratios at the 0-40 cm soil depth, not the 40-60 cm soil depth (Tables S2 and S3). Soil C/N
391 ratio is generally treated as the critical indicator which affects the formation and degradation of
392 soil OM (Khan et al., 2016). Since response of soil TN content to soil environment change is
393 almost the same as soil OC content (Wang et al., 2018), soil C/N ratio did not show significant
394 difference amongst different aged tea plantations (Table S1). Likewise, Zhou et al. (2018)
395 proved that no close correlation existed between soil C/N ratio and vegetation coverage, because
396 C and N are structure elements and their cumulation and consumption in soil remain relative
397 consistency. Soil C/P ratio is the indicator suggesting P effectiveness, and higher C/P ratio often
398 denotes lower P effectiveness (Khan et al., 2016). In acidic soil (Table 1), available P was
399 adsorbed on the surfaces of Fe/Al oxides and clay minerals in a preferential way, because Fe/Al
400 oxides and clay minerals with greater surface areas could afford enough sites to available P
401 adsorption (Wu et al., 2018). As the tea plantation age increased, therefore, soil acidification led
402 to the decrease in P effectiveness (evidenced by the significant increase in soil C/P ratio) (Table
403 S2). Soil N and P are the prohibiting factors mostly seen during the process of plant growth, and
404 thus, N/P ratio can be utilized as one efficient indicator that shows nutrient restriction (Khan et
405 al., 2016). In this study, soil N/P ratio significantly increased in the tea-planting course (Table
406 S3), mainly because soil TN content experienced significant increase while no such significant
407 change was found in TP content over time.

408 Regardless of the tea plantation age, soil C/N ratio decreased with increasing soil depth
409 (Table S1), which coincided with the majority of studies (Cao et al., 2015; Feng and Bao, 2017,
410 Yu et al., 2019). Batjes (1996) suggested that the decrease in soil C/N ratio as the soil depth
411 increased was triggered by the stratification of humic substance in the soil profile. Moreover, in
412 this study, the lower soil C/P and N/P ratios in the subsoil (Tables S2 and S3) backed the
413 outcomes of past studies in terrestrial ecosystems of China, which were on the foundation of the
414 data from both the 2nd soil investigation in China (Tian et al., 2010) and the Chinese Ecosystem

415 Research Network (CERN) (Chai et al., 2015).

416 Across the 4 tea plantation ages, the mean contents of OC and TN in bulk soil (0-20 cm)
417 were 16.70 and 0.77 g kg⁻¹, separately, which were below the mean contents of OC (21.30 g kg⁻¹)
418 and TN (2.17 g kg⁻¹) in Chinese tea plantations (Sun et al., 2020; Xie et al., 2020). Moreover, in
419 this tea-planting region, the mean content of TP in bulk soil (0-20 cm) was 0.57 g kg⁻¹,
420 corresponding to the moderate level in Chinese tea plantations, where TP content varied in the
421 range of 0.35-1.20 g kg⁻¹ (Wu et al., 2018; Sun et al., 2020). Herein, soil C/N ratio is higher
422 compared with other tea-planting regions in China, whereas soil C/P and N/P ratios are much
423 lower (Sun et al., 2020). These findings are primarily associated with the lower contents of soil
424 OC and TN, especially the TN. In general, N is the most limiting element in the net primary
425 production of tea plantation ecosystems (Miner et al., 2018), and this phenomenon also appeared
426 in the southern Guangxi of China.

427 4.4. Contents of soil alkali cations and micronutrients

428 According to the findings from Adesodun et al. (2007) and Emadi et al. (2009), the higher
429 contents of exchangeable alkali cations (including Ca²⁺ and Mg²⁺) were detected in both 2-4.76
430 and < 0.25 mm aggregates in the non-tillage soil. In the tillage course, however, the contents of
431 these two cations decreased in the 2-4.76 mm aggregates and increased in the < 0.25 mm
432 aggregates, revealing that the tillage practice could cause soil Ca²⁺ and Mg²⁺ to redistribute in
433 different sizes of aggregates. In comparison, the present study exhibited that the distribution of
434 soil Ca²⁺ and Mg²⁺ in aggregates was similar among different ages of tea plantations (Figures 5
435 and 6), implying that the distribution of these two cations in aggregates was seldom influenced
436 by the tea plantation age. To be specific, coarse macroaggregates had the lowest contents of Ca²⁺
437 and Mg²⁺, whereas microaggregates exhibited the highest contents. These findings could be
438 ascribed to the larger specific surface areas of microaggregates (Adesodun et al., 2007), which
439 increased microaggregates' adsorption to Ca²⁺ and Mg²⁺ derived from root exudates, litter
440 remains, and manure (Emadi et al., 2009). Unlike exchangeable alkali cations, the contents of

441 soil available micronutrients (including Fe^{2+} and Mn^{2+}) usually correspond to the content of soil
442 OM (Wang et al., 2017a), which are more abundant in macroaggregates (Six et al., 2004).
443 Similarly, this study also found that the Fe^{2+} and Mn^{2+} had a similar distribution pattern with OC
444 within aggregates (Figures 7 and 8). Since the decomposition products of litter can be easily
445 integrated to the coarse macroaggregates (Six et al., 2004), the nutrient cycling of plant-soil
446 systems might lead to the higher contents of soil Fe^{2+} and Mn^{2+} in the coarse macroaggregates
447 (Wang et al., 2017a).

448 At the 0-40 cm soil depth, the contents of soil Ca^{2+} and Mg^{2+} significantly decreased over
449 time (Figures 5 and 6), which might be due to the applications of urea and $\text{NH}_4^+ \text{-N}$ fertilizer in
450 the tea-planting course for increasing tea leaf outputs. Urea hydrolysis can promote the
451 production of ammonium ions which are readily nitrified into nitrate, and the excessive proton
452 produced by the nitrification can compete for the adsorption sites with Ca^{2+} and Mg^{2+} (Wang et
453 al., 2017a). As a result, these cations were easy to lose from soil in the manner of leaching.
454 Except at the 40-60 cm soil depth, continuous planting of tea led to the significant increases in
455 soil Fe^{2+} and Mn^{2+} contents (Figures 7 and 8), which were elevated by 7%-27% and 3%-9% from
456 8 to 43 years of tea planting, separately. This phenomenon was possibly caused by the soil
457 acidification (Table 1), which stimulates the release of soil Fe^{2+} and Mn^{2+} by mineralization and
458 desorption from soil OM and minerals (Wang et al., 2017a). Tea, as an aluminium (Al)
459 cumulating crop, is able to cumulate Al in leaves (Li et al., 2016). Soil acidification in the
460 tea-planting course was due to the substantial tea litter into the soil annually via trimmed
461 branches and leaves (Li et al., 2016). At the same time, the rhizosphere deposition of massive
462 organic acids (i.e., malate, lemon acid, and oxalate acid) around the tea roots could provoke
463 localized acidification (Xue et al., 2006). In addition, for increasing the output of tea, tea
464 plantations needed to apply N fertilizers (i.e., urea and $\text{NH}_4^+ \text{-N}$), thus leading to soil acidification
465 by the NH_4^+ nitration (Yang et al., 2018).

466 Across the 4 tea plantation ages, the contents of soil Fe^{2+} and Mn^{2+} were higher in the
467 topsoil than the subsoil (Figures 7 and 8), primarily owing to the usage of swine manure and the
468 inputs of tea litter and roots in the topsoil (Miner et al., 2018). Nevertheless, the contents of soil
469 Ca^{2+} and Mg^{2+} showed an opposite trend as the soil depth increased (Figures 5 and 6), because
470 soil Ca^{2+} and Mg^{2+} were easy to move from topsoil to subsoil in the manner of leaching (Hansen
471 et al., 2017).

472 4.5. Stoichiometric ratios of soil alkali cations and micronutrients

473 Tea plantation age exerted a significant influence on the Ca/Mg and Fe/Mn ratios at the
474 0-40 cm soil depth, not the 40-60 cm soil depth (Tables S4 and S5). To be specific, a significant
475 decline in the Ca/Mg ratio was found at the 0-40 cm soil depth over time. From 8 to 43 years of
476 tea planting, the contents of Ca^{2+} and Mg^{2+} at the 0-40 cm soil depth decreased by 10%-38% and
477 5%-24%, separately, which revealed that the role of tea plantation age in the content of soil Ca^{2+}
478 was greater than that of soil Mg^{2+} (Figures 5 and 6). Lu et al. (2014) suggested that the selective
479 losses of soil exchangeable alkali cations ($\text{Ca}^{2+} > \text{Mg}^{2+}$) could lead to the disequilibrium of soil
480 metal ions in forest ecosystems. Similarly, in this study, the preferential loss of soil Ca^{2+} relative
481 to Mg^{2+} was the prime cause of the significant decline in the soil Ca/Mg ratio in the tea-planting
482 course. The depletion of soil exchangeable alkali cations (especially the Ca^{2+}) could lead to the
483 decrease in soil buffering capacity and soil acidification (Hansen et al., 2017). Thus, the Ca/Mg
484 ratio at the 0-40 cm soil depth was positively related ($P < 0.05$) to soil pH across the 4 tea
485 plantation ages (Figure S1). Soil acidification accelerated the mineralization and desorption of
486 soil available micronutrients from soil OM and minerals (Wang et al., 2017a), conducive to the
487 significant increases in Fe^{2+} and Mn^{2+} contents at the 0-40 cm soil depth, especially the Fe^{2+}
488 (Figures 7 and 8). In a chronological sequence of tea plantations, the negative relationship ($P <$
489 0.05) of soil Fe/Mn ratio with soil pH in different soil depths indicated more cumulation of soil
490 Fe^{2+} relative to Mn^{2+} over time (Figure S1). Moreover, the change of soil Fe/Mn ratio was also
491 triggered by the antagonistic relationship between soil Fe^{2+} and Mn^{2+} during the process of tea

492 plant uptake (Wang et al., 2017a). Tian et al. (2016) discovered that soil acidification could
493 reduce Fe^{2+} absorption and enhance Mn^{2+} uptake by various plant species, thereby causing the
494 increase in soil Fe/Mn ratio and threatening plant productivity.

495 **5. Conclusions**

496 Herein, soil OC, TN, and TP contents as well as C/N, C/P, and N/P ratios decreased as the
497 soil depth increased. Moreover, soil Ca^{2+} and Mg^{2+} contents were lower in the topsoil than the
498 subsoil, whereas soil Fe^{2+} and Mn^{2+} contents showed an opposite trend, and no differences were
499 detected amongst different soil depths in soil Ca/Mg and Fe/Mn ratios. Tea plantation age could
500 influence the variations in soil OC and nutrient contents and their stoichiometric ratios, but such
501 effects were more obvious at the 0-40 cm soil depth in contrast to the 40-60 cm soil depth, thus
502 supporting our hypothesis. At the 0-40 cm soil depth, continuous planting of tea was favorable to
503 the increases in soil OC, TN, Fe^{2+} , and Mn^{2+} contents, whereas soil Ca^{2+} and Mg^{2+} contents
504 decreased over time. Compared with other tea-planting regions in China, soil C/N ratio is higher
505 in this tea-planting region, whereas soil C/P and N/P ratios are much lower, indicating that soil
506 OC and TN contents in the present study were lower, especially the TN. Therefore, an
507 appropriate increase in the amount of N fertilizer should be applied in this tea-planting region. In
508 the tea-planting course, the losses of soil Ca^{2+} and Mg^{2+} , especially the Ca^{2+} (as indicated by the
509 decrease in soil Ca/Mg ratio), could lead to the soil acidification. Meanwhile, soil acidification
510 could reduce Fe^{2+} absorption and enhance Mn^{2+} uptake by tea plants (as indicated by the increase
511 in soil Fe/Mn ratio). Overall, the present study improved the understanding of soil OC and
512 nutrient dynamics in tea plantation ecosystems.

513 **Data availability**

514 The data supporting the discovered information here can be presented by the relevant author
515 based on reasonable requests.

516 **Author contribution**

517 S.W. and S.Y. designed the experiments; L.M. carried out the experiments; S.W. and L.M.
518 analyzed the experimental results; L.M., S.W. and S.Y. wrote and edited the manuscript.

519 **Competing interests**

520 The authors declare no conflict of interest.

521 **Acknowledgments**

522 This study was funded by the National Natural Science Foundation of China (No.
523 31460196) and the Innovation Project of Guangxi Graduate Education (No. YCSW2022114).

524 **References**

525 Adesodun JK, Adeyemi EF, Oyegoke CO, 2007. Distribution of nutrient elements within
526 water-stable aggregates of two tropical agro-ecological soils under different land uses. *Soil
527 and Tillage Research*, 92: 190-197.

528 <https://doi.org/10.1016/j.still.2006.03.003>

529 Al-Kaisi MM, Douelle A, Kwaw-Mensah D, et al., 2014. Soil micro-aggregate and
530 macroaggregate decay over time and soil carbon change as influenced by different tillage
531 systems. *Journal of Soil and Water Conservation*, 69: 574-580.

532 <https://doi.org/10.2489/jswc.69.6.574>

533 Bai Y, Chen S, Shi S, et al., 2020. Effects of different management approaches on the
534 stoichiometric characteristics of soil C, N, and P in a mature Chinese fir plantation. *Science
535 of the Total Environment*, 723: 137868.

536 <https://doi.org/10.1016/j.scitotenv.2020.137868>

537 Batjes NH, 1996. Total carbon and nitrogen in the soils of the world. *European Journal of Soil
538 Science*, 47: 151-163.

539 https://doi.org/10.1111/ejss.12114_2

540 Bhatnagar VK, Miller MH, 1985. Sorption of carbon and phosphorus from liquid poultry manure
541 by soil aggregates of differing size. *Canadian Journal of Soil Science*, 65: 467-473.

542 <https://doi.org/10.4141/cjss85-050>

543 Bray RH, Kurtz LT, 1945. Determination of total, organic, and available forms of phosphorus in
544 soils. *Soil Science*, 59: 39-46.

545 <https://doi.org/10.1097/00010694-194501000-00006>

546 Bremner JM, 1996. Nitrogen-total. In: Sparks DL (Ed.). Part 3. American Society of Agronomy.
547 Monograph, pp: 1085-1121.

548 Cao J, Yan W, Xiang W, et al., 2015. Stoichiometry characterization of soil C, N, and P of
549 Chinese fir plantations at three different ages in Huitong, Hunan Province, China. *Scientia
550 Silvae Sinicae*, 51: 1-8.

551 <https://doi.10.11707/j.1001-7488.20150701>

552 Chai H, Yu G, He N, et al., 2015. Vertical distribution of soil carbon, nitrogen, and phosphorus
553 in typical Chinese terrestrial ecosystems. *Chinese Geographical Science*, 25: 549-560.

554 <https://doi.org/10.1007/s11769-015-0756-z>

555 Chinese Tea Committee, 2020. An area planted with tea in various provinces at the end of each
556 year. *Annual Bulletin of Statistics*, 47: 20.

557 Cui H, Ou Y, Wang L, et al., 2019. Distribution and release of phosphorus fractions associated
558 with soil aggregate structure in restored wetlands. *Chemosphere*, 223: 319-329.

559 <https://doi.org/10.1016/j.chemosphere.2019.02.04>

560 Cui H, Ou Y, Wang L, et al., 2021. Dynamic changes in microbial communities and nutrient
561 stoichiometry associated with soil aggregate structure in restored wetlands. *Catena*, 197:
562 104984.

563 <https://doi.org/10.1016/j.catena.2020.104984>

564 Elser JJ, Acharya K, Kyle M, et al., 2003. Growth rate-stoichiometry coupling in diverse biota.
565 *Ecology Letters*, 6: 936-943.

566 <https://doi.10.1046/j.1461-0248.2003.00518.x>

567 Emadi M, Baghernejad M, Memarian HR, 2009. Effect of land-use change on soil fertility
568 characteristics within water-stable aggregates of two cultivated soils in northern Iran. Land
569 Use Policy, 26: 452-457.
570 <https://doi.org/10.1016/j.landusepol.2008.06.001>

571 Feng D, Bao W, 2017. Review of the temporal and spatial patterns of soil C:N:P stoichiometry
572 and its driving factors. Chinese Journal of Applied and Environmental Biology, 23:
573 400-408.
574 <https://doi.org/10.3724/SP.J.1145.2016.04018>

575 Franklin HM, Carroll AR, Chen C, et al., 2020. Plant source and soil interact to determine
576 characteristics of dissolved organic matter leached into waterways from riparian leaf litter.
577 Science of the Total Environment, 703: 134530.
578 <https://doi.org/10.1016/j.scitotenv.2019.134530>

579 Hansen M, Bang-Andreasen T, Sørensen H, et al., 2017. Micro vertical changes in soil pH and
580 base cations over time after application of wood ash on forest soil. Forest Ecology and
581 Management, 406: 274-280.
582 <https://doi.org/10.1016/j.foreco.2017.09.069>

583 IUSS Working Group, 2014. World reference base for soil resources 2014. International soil
584 classification system for naming soils and creating legends for soil maps. In: World Soil
585 Resources Reports No. 106. FAO, Rome.

586 Ji L, Tan W, Chen X, 2019. Arbuscular mycorrhizal mycelial networks and glomalin-related soil
587 protein increase soil aggregation in Calcaric Regosol under well-watered and drought stress
588 conditions. Soil and Tillage Research, 185: 1-8.
589 <https://doi.org/10.1016/j.still.2018.08.010>

590 Jiang J, Jiang W, Jiang W, 2018. The present situation and countermeasures of the development
591 of tea industry in Guangxi. Popular Science and Technology, 20: 72-73.
592 <https://doi.org/10.1002/s11756-024-0732-z>

593 Kemper WD, Chepil WS, 1965. Size distribution of aggregation. In: Black CA, et al. (Eds.). Part
594 1. American Society of Agronomy. Monograph, pp: 499-510.

595 Khan KS, Mack R, Castillo X, et al., 2016. Microbial biomass, fungal and bacterial residues, and
596 their relationships to the soil organic matter C/N/P/S ratios. *Geoderma*, 271: 115-123.
597 <https://doi.org/10.1016/j.geoderma.2016.02.019>

598 Krouk G, Kiba T, 2020. Nitrogen and phosphorus interactions in plants: From agronomic to
599 physiological and molecular insights. *Current Opinion in Plant Biology*, 57: 104-109.
600 <https://doi.org/10.1016/j.pbi.2020.07.002>

601 Kurmi B, Nath AJ, Lal R, et al., 2020. Water stable aggregates and the associated active and
602 recalcitrant carbon in soil under rubber plantation. *Science of the Total Environment*, 703:
603 135498.
604 <https://doi.org/10.1016/j.scitotenv.2019.135498>

605 Li S, Li H, Yang C, et al., 2016. Rates of soil acidification in tea plantations and possible causes.
606 *Agriculture, Ecosystems and Environment*, 233: 60-66.
607 <https://doi.org/10.1016/j.agee.2016.08.036>

608 Li W, Zheng Z, Li T, et al., 2015. Effect of tea plantation age on the distribution of soil organic
609 carbon fractions within water-stable aggregates in the hilly region of Western Sichuan,
610 China. *Catena*, 133: 198-205.
611 <https://doi.org/10.1016/j.catena.2015.05.017>

612 Lindsay WL, Norvell WA, 1978. Development of a DTPA soil test for zinc, iron, manganese,
613 and copper. *Soil Science Society of America Journal*, 42: 421-428.
614 <https://doi.org/10.2136/sssaj1978.03615995004200>

615 Liu D, Ju W, Jin X, et al., 2021b. Associated soil aggregate nutrients and controlling factors on
616 aggregate stability in semiarid grassland under different grazing prohibition timeframes.
617 *Science of the Total Environment*, 777: 146104.
618 <https://doi.org/10.1016/j.scitotenv.2021.146104>

619 Liu H, Wang R, Lü X, et al., 2021a. Effects of nitrogen addition on plant-soil micronutrients
620 vary with nitrogen form and mowing management in a meadow steppe. *Environmental
621 Pollution*, 289: 117969.
622 <https://doi.org/10.1016/j.envpol.2021.117969>

623 Liu X, Li L, Wang Q, et al., 2018. Land-use change affects stocks and stoichiometric ratios of
624 soil carbon, nitrogen, and phosphorus in a typical agro-pastoral region of northwest China.
625 *Journal of Soils and Sediments*, 18: 3167-3176.
626 <https://doi.org/10.1007/s11368-018-1984-5>

627 Lu M, Yang M, Yang Y, et al., 2019. Soil carbon and nutrient sequestration linking to soil
628 aggregate in a temperate fen in Northeast China. *Ecological Indicators*, 98: 869-878.
629 <https://doi.org/10.1016/j.ecolind.2018.11.054>

630 Lu R, 2000. Analysis of soil agrochemistry. Chinese Agricultural Science and Technology Press,
631 Beijing.

632 Lu X, Mao Q, Gilliam FS, et al., 2014. Nitrogen deposition contributes to soil acidification in
633 tropical ecosystems. *Global Change Biology*, 20: 3790-3801.
634 <https://doi.org/10.1111/gcb.12665>

635 Miner GL, Delgado JA, Ippolito JA, et al., 2018. Influence of long-term nitrogen fertilization on
636 crop and soil micronutrients in a no-till maize cropping system. *Field Crops Research*, 228:
637 170-182.
638 <https://doi.org/10.1016/j.fcr.2018.08.017>

639 Nelson DW, Sommers LE, 1996. Total carbon, organic carbon and organic matter. In: Sparks DL
640 (Ed.). Part 3. American Society of Agronomy. Monograph, pp: 961-1010.

641 Otero XL, Fernández S, de Pablo Hernandez MA, et al., 2013. Plant communities as a key factor
642 in biogeochemical processes involving micronutrients (Fe, Mn, Co, and Cu) in Antarctic
643 soils (Byers Peninsula, maritime Antarctica). *Geoderma*, 195: 145-154.
644 <https://doi.org/10.1016/j.geoderma.2012.11.018>

645 Piazza G, Pellegrino E, Moscatelli MC, et al., 2020. Long-term conservation tillage and nitrogen
646 fertilization effects on soil aggregate distribution, nutrient stocks and enzymatic activities in
647 bulk soil and occluded microaggregates. *Soil and Tillage Research*, 196: 104482.
648 <https://doi.org/10.1016/j.still.2019.104482>

649 Prescott CE, Grayston SJ, Helmisaari HS, et al., 2020. Surplus carbon drives allocation and
650 plant-soil interactions. *Trends in Ecology and Evolution*, 35: 1110-1118.
651 <https://doi.org/10.1016/j.tree.2020.08.007>

652 Qiao Y, Wang J, Liu H, et al., 2020. Depth-dependent soil C-N-P stoichiometry in a mature
653 subtropical broadleaf forest. *Geoderma*, 370: 114357.
654 <https://doi.org/10.1016/j.geoderma.2020.114357>

655 Rakhsh F, Golchin A, Agha AB, et al., 2020. Mineralization of organic carbon and formation of
656 microbial biomass in soil: Effects of clay content and composition and the mechanisms
657 involved. *Soil Biology and Biochemistry*, 151: 108036.
658 <https://doi.org/10.1016/j.soilbio.2020.108036>

659 Sardans J, Rivas-Ubach A, Peñuelas J, et al., 2012. The C:N:P stoichiometry of organisms and
660 ecosystems in a changing world: A review and perspectives. *Perspectives in Plant Ecology,
661 Evolution and Systematics*, 14: 33-47.
662 <https://doi.org/10.1016/j.ppees.2011.08.002>

663 Sarker JR, Singh BP, Cowie AL, et al., 2018. Agricultural management practices impacted
664 carbon and nutrient concentrations in soil aggregates, with minimal influence on aggregate
665 stability and total carbon and nutrient stocks in contrasting soils. *Soil and Tillage Research*,
666 178: 209-223.
667 <https://doi.org/10.1016/j.still.2017.12.019>

668 Six J, Bossuyt H, Degryze S, et al., 2004. A history of research on the link between (micro)
669 aggregates, soil biota, and soil organic matter dynamics. *Soil and Tillage Research*, 79:
670 7-31.

671 <https://doi.org/10.1016/j.still.2004.03.008>

672 Six J, Paustian K, 2014. Aggregate-associated soil organic matter as an ecosystem property and a
673 measurement tool. *Soil Biology and Biochemistry*, 68: 4-9.

674 <https://doi.org/10.1016/j.soilbio.2013.06.014>

675 Sparling G, Ross D, Trustrum N, et al., 2003. Recovery of topsoil characteristics after landslip
676 erosion in dry hill country of New Zealand, and a test of the space-for-time hypothesis. *Soil*
677 *Biology and Biochemistry*, 35: 1575-1586.

678 <https://doi.org/10.1016/j.soilbio.2003.08.002>

679 Stone MM, Plante AF, 2014. Changes in phosphatase kinetics with soil depth across a variable
680 tropical landscape. *Soil Biology and Biochemistry*, 71: 61-67.

681 <https://doi.org/10.1016/j.soilbio.2014.01.006>

682 Su L, Du H, Zeng F, et al., 2019. Soil and fine roots ecological stoichiometry in different
683 vegetation restoration stages in a karst area, southwest China. *Journal of Environmental*
684 *Management*, 252: 109694.

685 <https://doi.org/10.1016/j.jenvman.2019.109694>

686 Sun D, Zong M, Li S, et al., 2020. The effects of the soil environment on soil organic carbon in
687 tea plantations. *Agriculture, Ecosystems and Environment*, 297: 106951.

688 <https://doi.org/10.1016/j.agee.2020.106951>

689 Thomas GW, 1982. Exchangeable cations. In: Page AL, et al. (Eds.). Part 2. American Society of
690 Agronomy. Monograph, pp: 159-165.

691 Tian H, Chen G, Zhang C, et al., 2010. Pattern and variation of C:N:P ratios in China's soils: A
692 synthesis of observational data. *Biogeochemistry*, 98: 139-151.

693 <https://doi.org/10.1007/s10533-009-9382-0>

694 Tian Q, Liu N, Bai W, et al., 2016. A novel soil manganese mechanism drives plant species loss
695 with increased nitrogen deposition in a temperate steppe. *Ecology*, 97: 65-74.

696 <https://doi.org/10.1890/15-0917.1>

697 Tisdall JM, Oades JM, 1982. Organic matter and water-stable aggregates in soils. European
698 Journal of Soil Science, 33: 141-163.

699 <https://doi.org/10.1111/j.1365-2389.1982.tb01755>

700 Tong C, Xiao H, Tang G, et al., 2009. Long-term fertilizer effects on organic carbon and total
701 nitrogen and coupling relationships of C and N in paddy soils in subtropical China. Soil and
702 Tillage Research, 106: 8-14.
703 <https://doi.org/10.1016/j.still.2009.09.003>

704 Wang R, Dungait JA, Buss HL, et al., 2017a. Base cations and micronutrients in soil aggregates
705 as affected by enhanced nitrogen and water inputs in a semi-arid steppe grassland. Science
706 of the Total Environment, 575: 564-572.
707 <https://doi.org/10.1016/j.scitotenv.2016.09.018>

708 Wang S, Li T, Zheng Z, 2017b. Distribution of microbial biomass and activity within soil
709 aggregates as affected by tea plantation age. Catena, 153: 1-8.
710 <https://doi.org/10.1016/j.catena.2017.01.029>

711 Wang S, Li T, Zheng Z, 2018. Tea plantation age effects on soil aggregate-associated carbon and
712 nitrogen in the hilly region of western Sichuan, China. Soil and Tillage Research, 180:
713 91-98.
714 <https://doi.org/10.1016/j.still.2018.02.016>

715 Wang S, Ye S, 2020. Dynamics of bacterial function characteristics in soil aggregates during the
716 tea-planting process. Geoderma, 377: 114609.
717 <https://doi.org/10.1016/j.geoderma.2020.114609>

718 Wu W, Zheng Z, Li T, et al., 2018. Distribution of inorganic phosphorus fractions in water-stable
719 aggregates of soil from tea plantations converted from farmland in the hilly region of
720 western Sichuan, China. Journal of Soils and Sediments, 18: 906-916.
721 <https://doi.org/10.1007/s11368-017-1834-x>

722 Wulanningtyas HS, Gong Y, Li P, et al., 2021. A cover crop and no-tillage system for enhancing
723 soil health by increasing soil organic matter in soybean cultivation. *Soil and Tillage
724 Research*, 205: 104749.

725 <https://doi.org/10.1016/j.still.2020.104749>

726 Xie S, Yang F, Feng H, et al., 2020. Organic fertilizer reduced carbon and nitrogen in runoff and
727 buffered soil acidification in tea plantations: Evidence in nutrient contents and isotope
728 fractionations. *Science of the Total Environment*, 762: 143059.
729 <https://doi.org/10.1016/j.scitotenv.2020.143059>

730 Xu C, Pu L, Li J, et al., 2019. Effect of reclamation on C, N, and P stoichiometry in soil and soil
731 aggregates of a coastal wetland in eastern China. *Journal of Soils and Sediments*, 19:
732 1215-1225.
733 <https://doi.org/10.1007/s11368-018-2131-z>

734 Xue D, Yao H, Huang C, 2006. Microbial biomass, N mineralization and nitrification, enzyme
735 activities, and microbial community diversity in tea orchard soils. *Plant and Soil*, 288:
736 319-331.
737 <https://doi.org/10.1007/s11104-006-9123-2>

738 Yan P, Shen C, Fan L, et al., 2018. Tea planting affects soil acidification and nitrogen and
739 phosphorus distribution in soil. *Agriculture, Ecosystems and Environment*, 254: 20-25.
740 <https://doi.org/10.1016/j.agee.2017.11.015>

741 Yang X, Ni K, Shi Y, et al., 2018. Effects of long-term nitrogen application on soil acidification
742 and solution chemistry of a tea plantation in China. *Agriculture, Ecosystems and
743 Environment*, 252: 74-82.
744 <https://doi.org/10.1016/j.agee.2017.10.004>

745 Yang Y, Fang J, Guo D, et al., 2013. Vertical patterns of soil carbon, nitrogen and carbon:
746 nitrogen stoichiometry in Tibetan grasslands. *Biogeosciences Discussion*, 7: 1-24.
747 <https://doi.org/10.5194/bgd-7-1-2013>

748 Yu P, Liu S, Xu Q, et al., 2019. Response of soil nutrients and stoichiometric ratios to short-term
749 land use conversions in a salt-affected region, northeastern China. *Ecological Engineering*,
750 129: 22-28.
751 <https://doi.org/10.1016/j.ecoleng.2019.01.005>

752 Yu Z, Wang M, Huang Z, et al., 2018. Temporal changes in soil C-N-P stoichiometry over the
753 past 60 years across subtropical China. *Global Change Biology*, 24: 1308–1320.
754 <https://doi.org/10.1111/gcb.13939>

755 Yue K, Fornara DA, Yang W, et al., 2017. Effects of three global change drivers on terrestrial
756 C:N:P stoichiometry: A global synthesis. *Global Change Biology*, 23: 2450-2463.
757 <https://doi.org/10.1111/gcb.13569>

758 Zanella A, Ponge JF, Briones MJ, 2018. Terrestrial humus systems and forms: Biological
759 activity and soil aggregates, space-time dynamics. *Applied Soil Ecology*, 122: 103-137.
760 <https://doi.org/10.1016/j.apsoil.2017.07.020>

761 Zeng L, Li J, Zhou Z, et al., 2020. Optimizing land use patterns for the grain for Green Project
762 based on the efficiency of ecosystem services under different objectives. *Ecological
763 Indicators*, 114: 106347.
764 <https://doi.org/10.1016/j.ecolind.2020.106347>

765 Zhang Q, Gao W, Su S, et al., 2017. Biophysical and socioeconomic determinants of tea
766 expansion: Apportioning their relative importance for sustainable land use policy. *Land Use
767 Policy*, 68: 438-447.
768 <https://doi.org/10.1016/j.landusepol.2017.08.008>

769 Zhang S, Yan L, Huang J, et al., 2016. Spatial heterogeneity of soil C:N ratio in a mollisol
770 watershed of northeast China. *Land Degradation and Development*, 27: 295-304.
771 <https://doi.org/10.1002/ldr.2427>

772 Zheng Z, Wang Y, Li T, et al., 2011. Effect of abandoned cropland on stability and distribution
773 of organic carbon in soil aggregates. *Journal of Natural Resources*, 26: 119-127.

774 <https://doi.org/10.11849/zrzyxb.2011.01.012>

775 Zhou Y, Boutton TW, Wu X, 2018. Soil C:N:P stoichiometry responds to vegetation change
776 from grassland to woodland. *Biogeochemistry*, 140: 341-357.

777 <https://doi.org/10.1007/s10533-018-0495-1>

778 Zhou Z, Gan Z, Shangguan Z, et al., 2013. Effects of long-term repeated mineral and organic
779 fertilizer applications on soil organic carbon and total nitrogen in a semi-arid cropland.
780 *European Journal of Agronomy*, 45: 20-26.

781 <https://doi.org/10.1016/j.eja.2012.11.002>

782 Zhu R, Zheng Z, Li T, et al., 2017. Dynamics of soil organic carbon mineralization in tea
783 plantations converted from farmland at Western Sichuan, China. *PLoS ONE*, 12: e0185271.
784 <https://doi.org/10.1371/journal.pone.0185271>

785 Zhu R, Zheng Z, Li T, et al., 2019. Effect of tea plantation age on the distribution of
786 glomalin-related soil protein in soil water-stable aggregates in southwestern China.
787 *Environmental Science and Pollution Research*, 26: 1973-1982.
788 <https://doi.org/10.1007/s11356-018-3782-4>

789

Table 1 Effects of soil depth and tea plantation age on the bulk density, clay, and pH in bulk soil.

Soil depth	Tea plantation age	Bulk density (g cm ⁻³)	Clay (%)	pH
0-10 cm	8 years	1.28 ± 0.02 b	34.69 ± 3.21 a	4.57 ± 0.02 a
	17 years	1.20 ± 0.02 c	35.91 ± 2.77 a	4.49 ± 0.01 ab
	25 years	1.26 ± 0.01 bc	33.12 ± 2.46 a	4.31 ± 0.03 b
	43 years	1.31 ± 0.04 b	35.08 ± 2.41 a	4.15 ± 0.02 c
10-20 cm	8 years	1.30 ± 0.03 b	34.88 ± 2.08 a	4.55 ± 0.03 a
	17 years	1.22 ± 0.03 c	32.59 ± 3.02 a	4.50 ± 0.01 a
	25 years	1.30 ± 0.03 b	34.92 ± 3.67 a	4.33 ± 0.02 b
	43 years	1.29 ± 0.02 b	32.35 ± 2.68 a	4.17 ± 0.02 c
20-40 cm	8 years	1.32 ± 0.04 ab	35.26 ± 1.45 a	4.60 ± 0.04 a
	17 years	1.31 ± 0.01 b	34.57 ± 4.12 a	4.53 ± 0.02 a
	25 years	1.34 ± 0.01 ab	34.51 ± 3.21 a	4.34 ± 0.04 b
	43 years	1.33 ± 0.04 ab	34.29 ± 3.54 a	4.19 ± 0.03 c
40-60 cm	8 years	1.36 ± 0.01 a	34.78 ± 3.66 a	4.58 ± 0.02 a
	17 years	1.37 ± 0.02 a	36.89 ± 2.98 a	4.54 ± 0.03 a
	25 years	1.39 ± 0.02 a	33.68 ± 1.91 a	4.32 ± 0.01 b
	43 years	1.38 ± 0.03 a	35.81 ± 3.69 a	4.21 ± 0.01 bc

Data represent the mean of 5 replicates ± standard deviations. Means in the same column with the same lower case letter are not significantly different ($P > 0.05$) among different soil depths and tea plantation ages.

Table 2 Three-way ANOVA regarding the effects of soil depth, tea plantation age, aggregate size, and their interactions on the physico-chemical properties of soil aggregates, and Two-way ANOVA regarding the effects of soil depth, tea plantation age, and their interactions on the physico-chemical properties of bulk soil.

Soil properties	Three-way ANOVA							Two-way ANOVA		
	S	T	A	S × T	S × A	T × A	S × T × A	S	T	S × T
Bulk density								√	√	√
Clay								×	×	×
pH								×	√	×
MWD								√	√	√
Aggregate proportion	√	√	√/√	√	√	√	√			
Organic C	√/√	√/√	√/√	√/√	√/√	√/√	√/√	√/√	√/√	√/√
Total N	√/√	√/√	√/√	√/√	√/√	√/√	√/√	√/√	√/√	√/√
Total P	√	×	×	×	×	×	×	√	×	×
Exchangeable Ca ²⁺	√	√/√	√	√	√	√	√	√	√/√	√
Exchangeable Mg ²⁺	√	√	√	√	√	√	√	√	√	√
Available Fe ²⁺	√	√/√	√	√	√	√	√	√	√/√	√
Available Mn ²⁺	√	√	√	√	√	√	√	√	√	√
C/N ratio	√	×	√	×	√	×	×	√	×	×
C/P ratio	√	√	√	√	√	√	√	√	√	√
N/P ratio	√	√	√	√	√	√	√	√	√	√
Ca/Mg ratio	×	√	×	×	×	×	×	×	√	×
Fe/Mn ratio	×	√	×	×	×	×	×	×	√	×

S: soil depth; T: tea plantation age; A: aggregate size. √/√, √, and × indicate significant differences at $P < 0.01$, $P < 0.05$, and $P > 0.05$, respectively.

Table 3 Effects of soil depth and tea plantation age on the aggregate stability and composition.

Soil depth	Tea plantation age	MWD (mm)	Aggregate composition (%)			
			> 2 mm	1-2 mm	0.25-1 mm	< 0.25 mm
0-10 cm	8 years	1.88 ± 0.03 b	44.26 ± 3.24 bA	16.23 ± 2.45 abC	8.46 ± 1.37 abD	31.05 ± 5.78 bcB
	17 years	2.20 ± 0.04 a	53.18 ± 2.78 aA	18.02 ± 1.63 aB	6.69 ± 0.98 bC	22.11 ± 4.01 cB
	25 years	1.78 ± 0.01 b	40.29 ± 4.01 bA	17.97 ± 2.03 aC	8.81 ± 0.88 abD	32.93 ± 3.58 bcB
	43 years	1.53 ± 0.03 c	32.60 ± 3.61 cB	19.61 ± 2.04 aC	7.64 ± 1.57 bD	40.15 ± 4.27 abA
10-20 cm	8 years	1.62 ± 0.02 c	37.31 ± 2.47 cA	13.58 ± 1.56 bB	9.24 ± 2.04 abC	39.87 ± 2.69 abA
	17 years	1.82 ± 0.04 b	43.02 ± 2.69 bA	14.31 ± 1.38 abC	8.87 ± 1.14 abD	33.80 ± 4.58 bB
	25 years	1.56 ± 0.03 c	34.87 ± 1.45 cB	15.03 ± 2.47 abC	9.36 ± 1.09 abD	40.74 ± 3.94 abA
	43 years	1.34 ± 0.02 d	29.24 ± 3.28 dB	13.97 ± 1.65 bC	7.28 ± 0.82 bD	49.51 ± 2.56 aA
20-40 cm	8 years	1.43 ± 0.01 cd	31.25 ± 1.68 cdB	15.47 ± 2.49 abC	7.62 ± 0.47 bD	45.66 ± 4.77 aA
	17 years	1.48 ± 0.03 cd	32.08 ± 3.60 cdB	16.89 ± 2.51 abC	8.91 ± 2.14 abD	42.12 ± 2.05 abA
	25 years	1.39 ± 0.02 d	30.72 ± 3.25 dB	14.23 ± 0.58 abC	6.81 ± 1.36 bD	48.24 ± 3.59 aA
	43 years	1.48 ± 0.03 cd	32.49 ± 2.98 cdB	15.40 ± 2.11 abC	9.05 ± 0.91 abD	43.06 ± 4.32 aA
40-60 cm	8 years	1.30 ± 0.01 d	28.48 ± 2.57 dB	12.02 ± 3.08 bC	10.05 ± 0.58 aC	49.45 ± 3.68 aA
	17 years	1.36 ± 0.02 d	29.68 ± 2.61 dB	13.78 ± 1.14 bC	9.47 ± 1.03 abC	47.07 ± 3.47 aA
	25 years	1.36 ± 0.01 d	30.09 ± 1.47 dB	11.98 ± 0.98 bC	10.64 ± 0.45 aC	47.29 ± 4.01 aA
	43 years	1.34 ± 0.03 d	28.42 ± 3.02 dB	14.33 ± 1.57 abC	12.45 ± 2.13 aC	44.80 ± 2.99 aA

Data represent the mean of 5 replicates ± standard deviations. Means in the same column with the same lower case letter are not significantly different ($P > 0.05$) among different soil depths and tea plantation ages. Means in the same row with the same capital letter are not significantly different ($P > 0.05$) among different sized aggregates.

Figure 1 Location of the experiment site.

Figure 2 Effects of soil depth and tea plantation age on the organic C content in bulk soil and different sized aggregates. Data represent the mean of 5 replicates and error bars represent the standard deviations. Means with the same lower case letter are not significantly different ($P > 0.05$) among different soil depths and tea plantation ages. Means with the same capital letter are not significantly different ($P > 0.05$) among different sized aggregates.

Figure 3 Effects of soil depth and tea plantation age on the total N content in bulk soil and different sized aggregates. Data represent the mean of 5 replicates and error bars represent the standard deviations. Means with the same lower case letter are not significantly different ($P > 0.05$) among different soil depths and tea plantation ages. Means with the same capital letter are not significantly different ($P > 0.05$) among different sized aggregates.

Figure 4 Effects of soil depth and tea plantation age on the total P content in bulk soil and different sized aggregates. Data represent the mean of 5 replicates and error bars represent the standard deviations. Means with the same lower case letter are not significantly different ($P > 0.05$) among different soil depths and tea plantation ages. Means with the same capital letter are not significantly different ($P > 0.05$) among different sized aggregates.

Figure 5 Effects of soil depth and tea plantation age on the exchangeable Ca^{2+} content in bulk soil and different sized aggregates. Data represent the mean of 5 replicates and error bars represent the standard deviations. Means with the same lower case letter are not significantly different ($P > 0.05$) among different soil depths and tea plantation ages. Means with the same capital letter are not significantly different ($P > 0.05$) among different sized aggregates.

Figure 6 Effects of soil depth and tea plantation age on the exchangeable Mg^{2+} content in bulk soil and different sized aggregates. Data represent the mean of 5 replicates and error bars represent the standard deviations. Means with the same lower case letter are not significantly different ($P > 0.05$) among different soil depths and tea plantation ages. Means with the same capital letter are not significantly different ($P > 0.05$) among different sized aggregates.

Figure 7 Effects of soil depth and tea plantation age on the available Fe^{2+} content in bulk soil and different sized aggregates. Data represent the mean of 5 replicates and error bars represent the standard deviations. Means with the same lower case letter are not significantly different ($P > 0.05$) among different soil depths and tea plantation ages. Means with the same capital letter are not significantly different ($P > 0.05$) among different sized aggregates.

Figure 8 Effects of soil depth and tea plantation age on the available Mn^{2+} content in bulk soil and different sized aggregates. Data represent the mean of 5 replicates and error bars represent the standard deviations. Means with the same lower case letter are not significantly different ($P > 0.05$) among different soil depths and tea plantation ages. Means with the same capital letter are not significantly different ($P > 0.05$) among different sized aggregates.

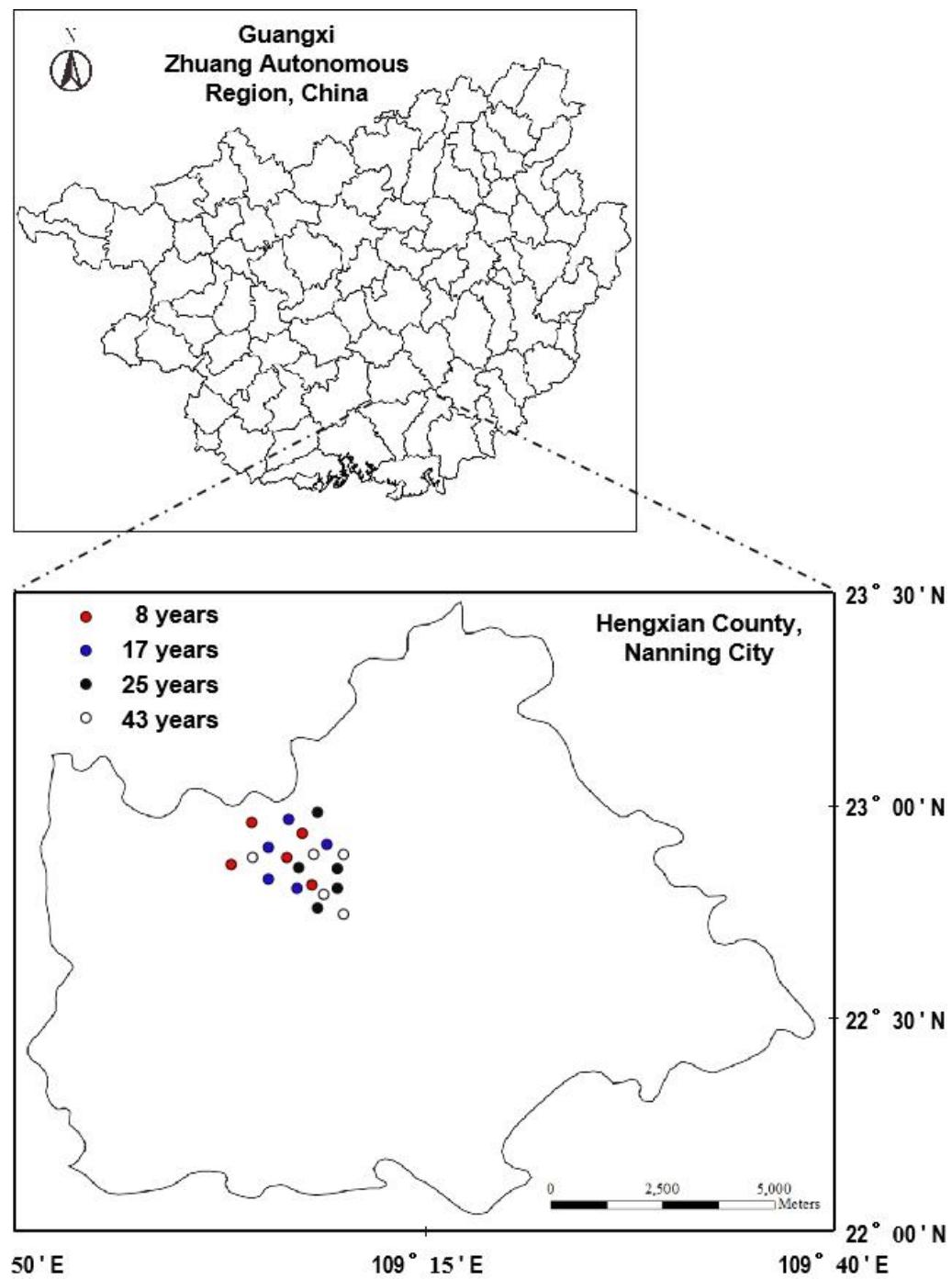


Figure 1

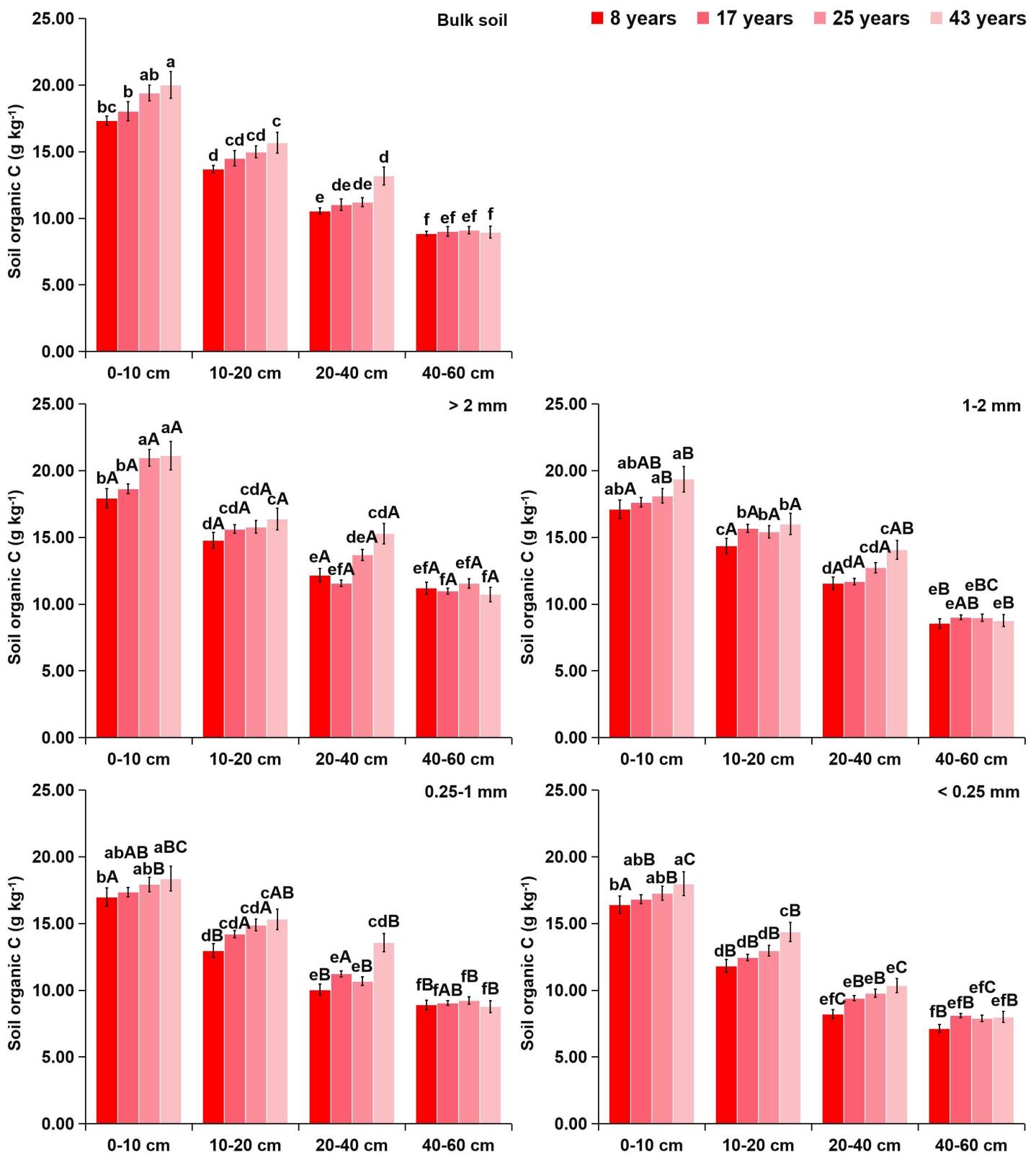


Figure 2

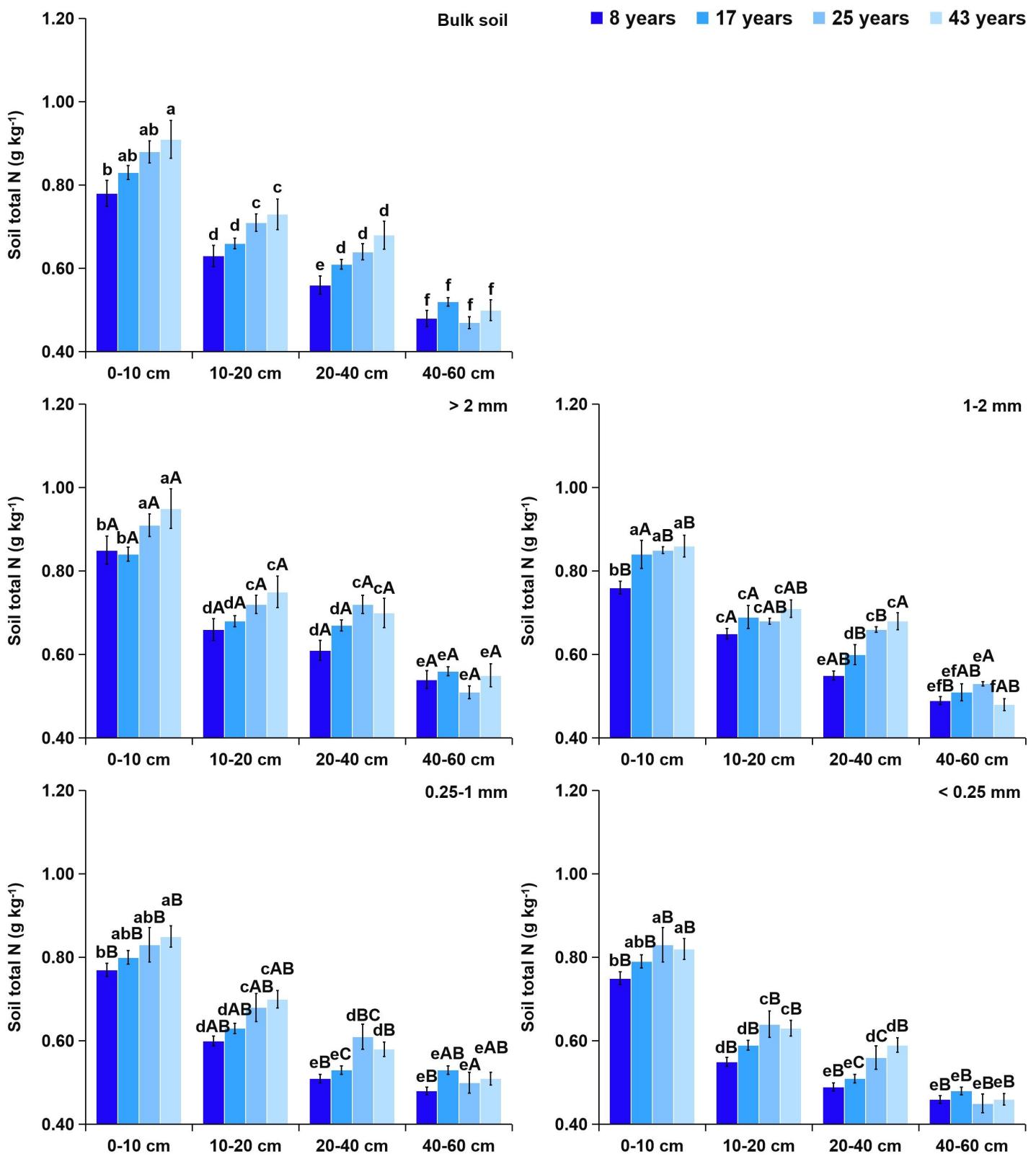


Figure 3

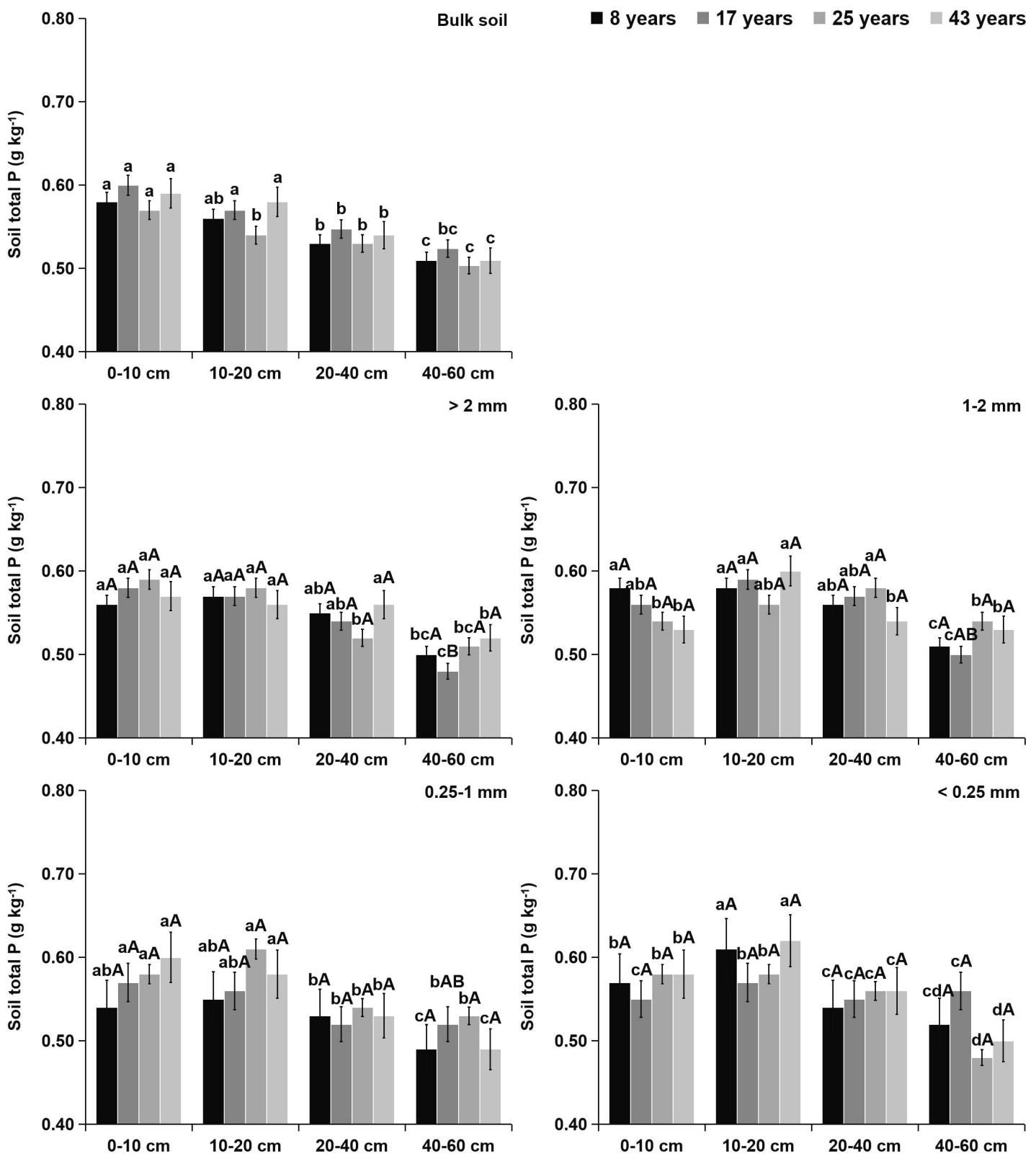


Figure 4

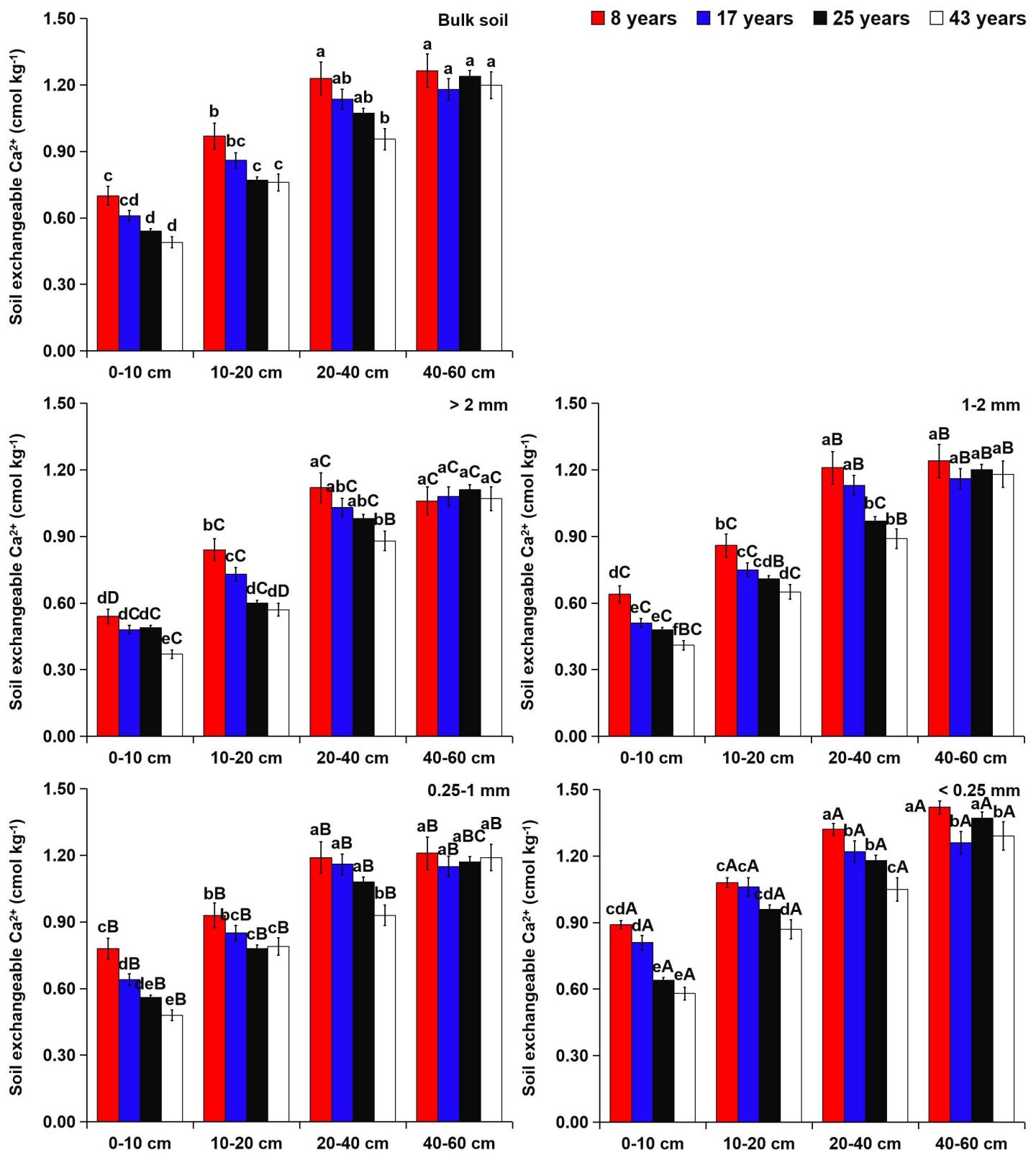


Figure 5

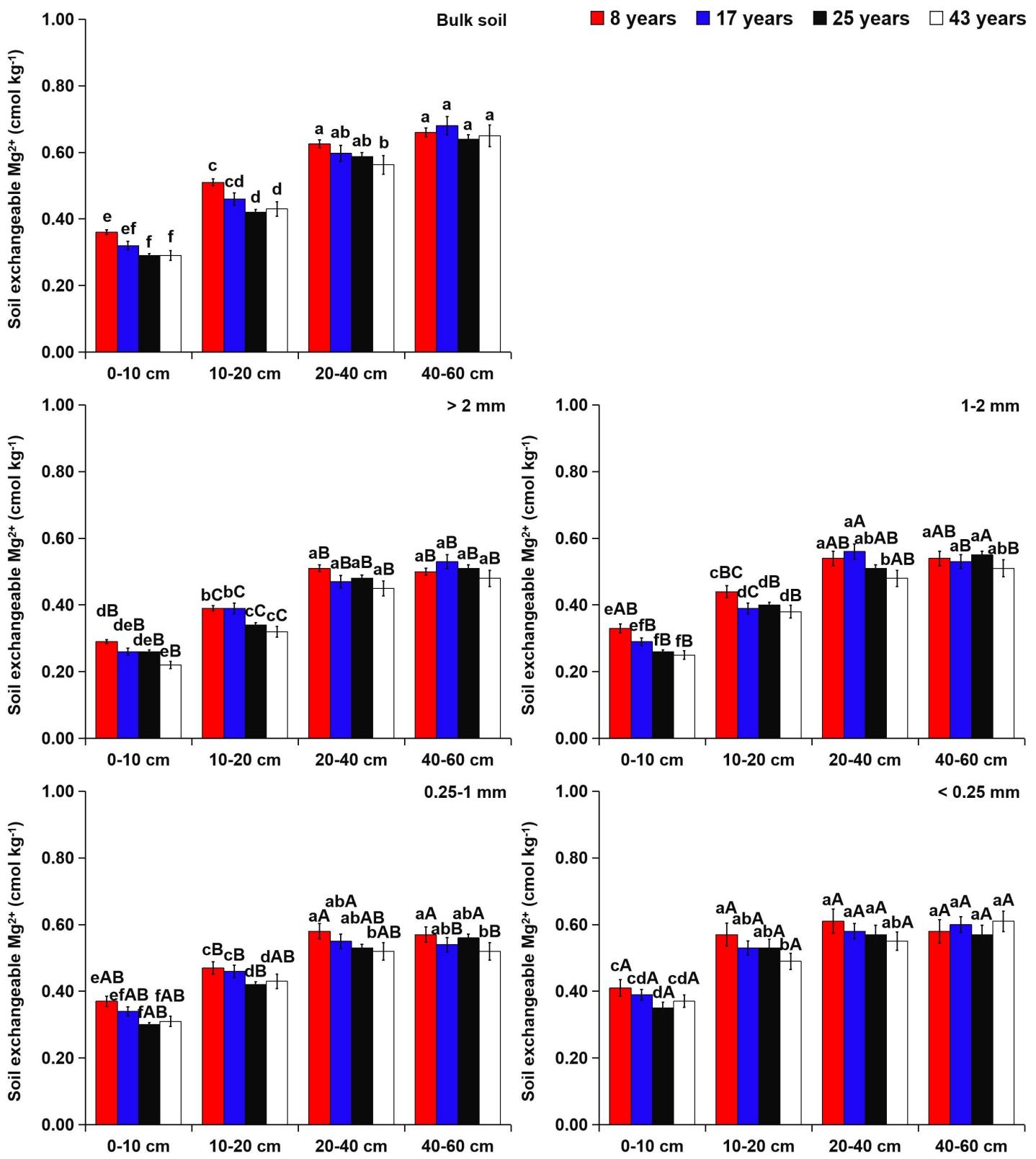


Figure 6

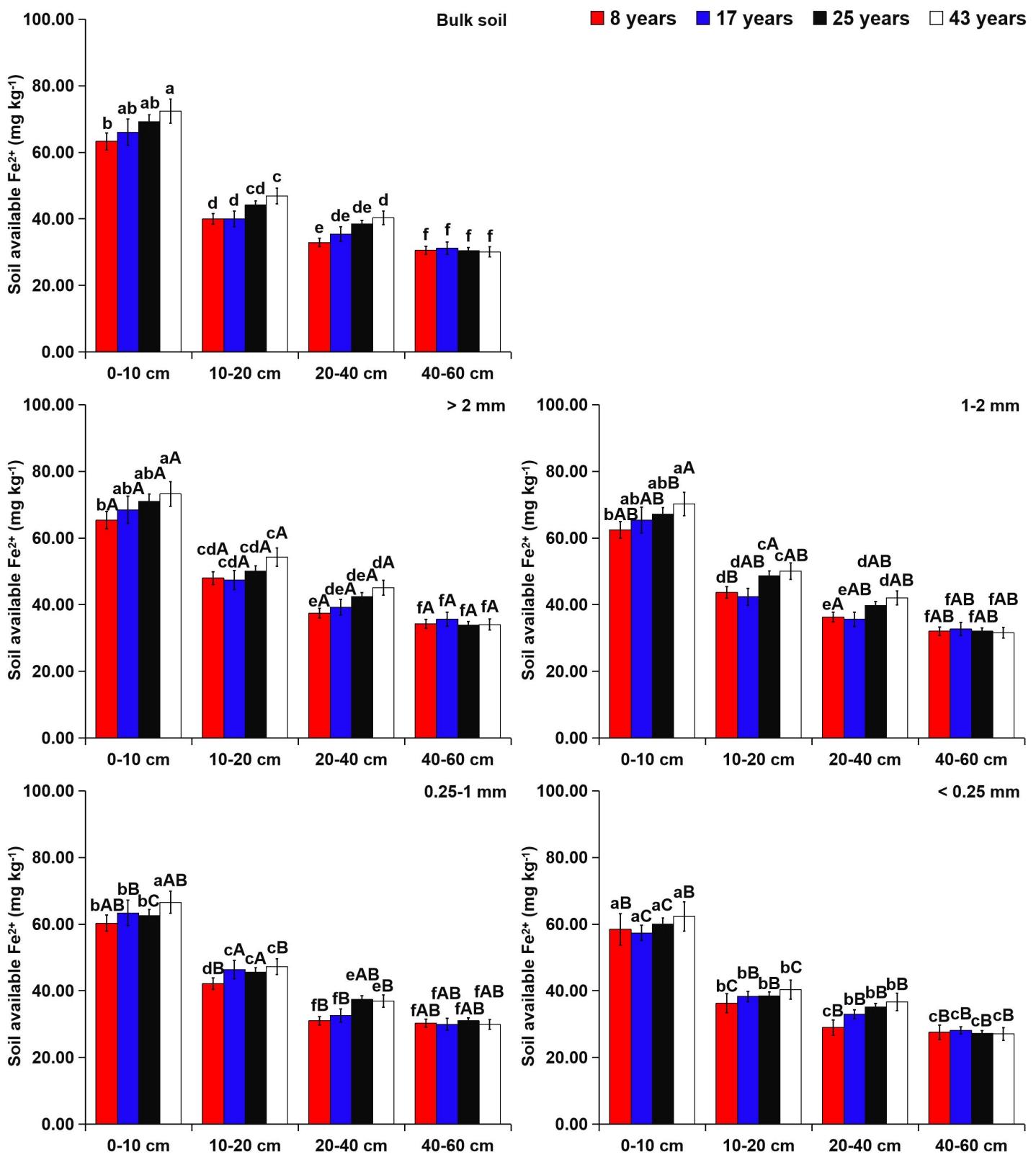


Figure 7

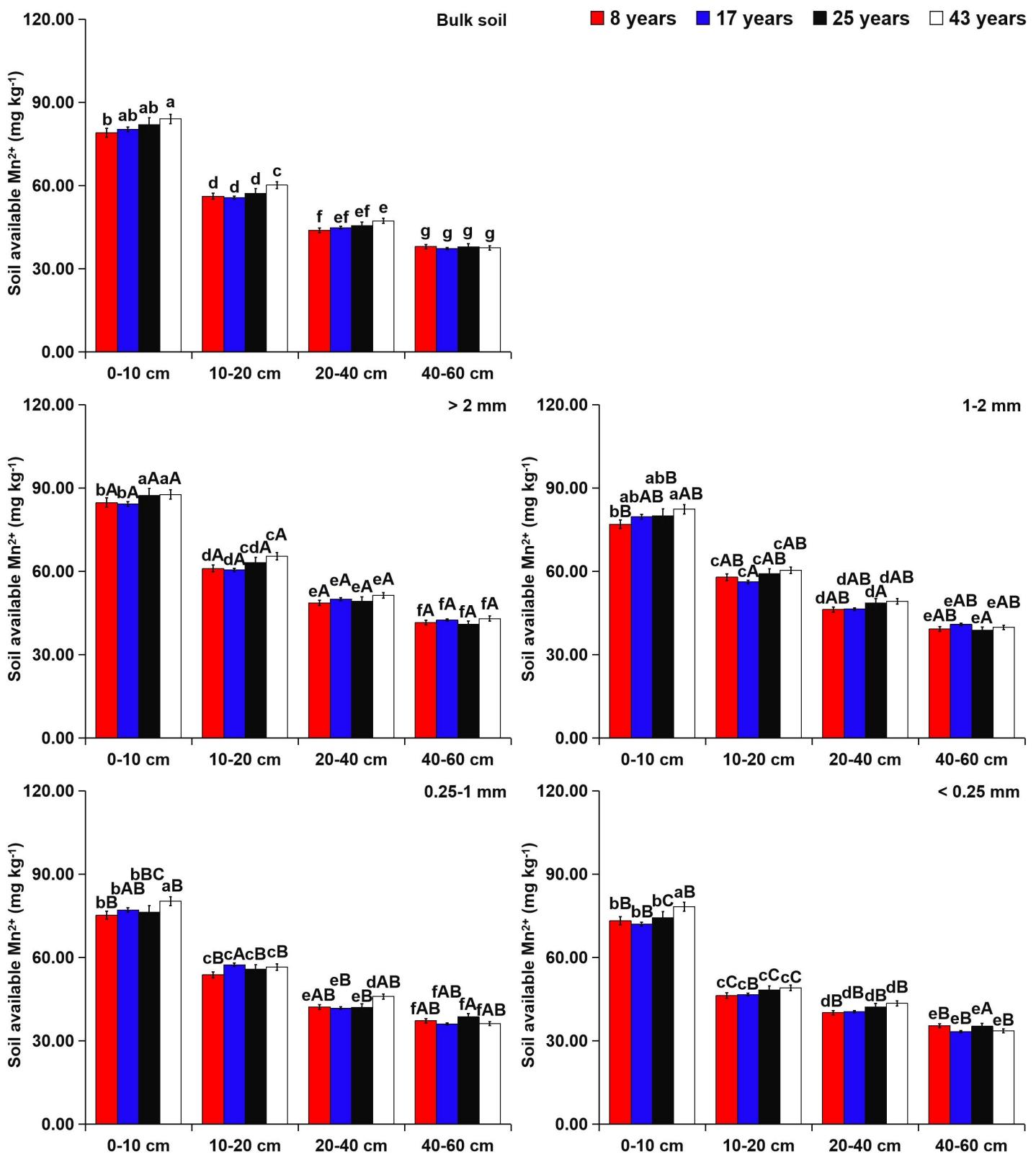


Figure 8