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ABSTRACT8

Soil ecological stoichiometry offers a tool to explore the distribution, cycling, limitation, and9

balance of chemical elements in tea plantation ecosystems. This study was aimed to explore how10

soil organic C (OC) and nutrient contents (total N (TN), total P (TP), Ca2+, Mg2+, Fe2+, and Mn2+)11

as well as their stoichiometric ratios (C/N, C/P, N/P, Ca/Mg, and Fe/Mn) vary with tea plantation12

age (8, 17, 25, and 43 years) and soil depth (0-10, 10-20, 20-40, and 40-60 cm) within aggregates13

in the southern Guangxi of China. Our results showed that tea plantation age and soil depth14

significantly influenced soil nutrient stoichiometry in different sizes of aggregates. Among15

different ages of tea plantations, soil OC, TN, and TP contents as well as C/N, C/P, and N/P16

ratios significantly decreased as the soil depth increased. In addition, soil Ca2+ and Mg2+ contents17

were significantly lower in the surface soil layer than the deeper soil layer, whereas soil Fe2+ and18

Mn2+ contents showed totally opposite trends, and no significant differences were detected19

among different soil depths in Ca/Mg and Fe/Mn ratios. Tea plantation age could influence the20

variation in soil nutrient stoichiometry, but such effect was more obvious at the 0-40 cm soil21

depth in contrast to the 40-60 cm soil depth. At the 0-40 cm soil depth, continuous planting of22

tea was beneficial for the significant increases in soil OC, TN, Fe2+, and Mn2+ contents, whereas23

soil Ca2+ and Mg2+ contents significantly decreased over time. During the process of tea growth,24

the losses of soil Ca2+ and Mg2+, especially the Ca2+ (as indicated by the decrease in soil Ca/Mg25

ratio), could lead to the soil acidification. Meanwhile, soil acidification could reduce Fe2+26
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absorption and enhance Mn2+ uptake by tea plants (as indicated by the increase in soil Fe/Mn27

ratio). Overall, this study improved the understanding of soil OC and nutrient dynamics in tea28

plantation ecosystems.29
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1. Introduction33

In the past century, under the remarkable increase in population pressure, continuous tillage34

and overmuch deforestation resulted in the dramatic decrease in soil fertility level in the southern35

Guangxi of China (Jiang et al., 2018). For the purpose of tackling these challenges, the Chinese36

government has rolled out the Grain for Green program in the hope of alleviating land37

deterioration via converting farmlands to forest lands or grass lands (Zeng et al., 2020). Since the38

initiation of such program, the south part of Guangxi has initiated the mode of transforming39

farmlands into tea (Camellia sinensis L.) plantations as per the local geography and natural40

resources (Zhang et al., 2017). Tea, as a pivotal cash crop, is commonly cultivated in the41

developing nations, particularly in China, India, Kenya, and Sri Lanka. China is the first nation42

to plant tea across the globe, with the tea-planting area reaching 3.17 million hectares in 202043

and presenting an elevating trend in the future (Chinese Tea Committee, 2020). Guangxi has the44

subtropic monsoon climate and marks the key tea-planting region in China. According to the45

statistics from Chinese Tea Committee (2020), more than 80% tea plantations of Guangxi are46

situated at impoverished counties, and tea-planting industry turns to be the staple industry on47

which poor counties depend to throw off poverty.48

Ecological stoichiometry offers a tool to explore the distribution, cycling, restriction, and49

balance of nutrients in terrestrial ecosystems (Yu et al., 2019), and plays a critical role in50

recognizing the influence factors and drive mechanisms in ecological processes (Su et al., 2019).51

On the one hand, carbon (C) is the most commonly seen element in plants (Prescott et al., 2020),52
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and nitrogen (N) and phosphorus (P) are critical control factors for the growth of plants (Krouk53

and Kiba, 2020). The relationships amongst the three different elements are coupled (Elser et al.,54

2003). Soil C/N, C/P, and N/P ratios represent not only the equilibrium features of soil C, N, and55

P, but also the dynamics of fertility characteristics during the process of soil genesis (Bai et al.,56

2020). On the other hand, calcium (Ca), magnesium (Mg), iron (Fe), and manganese (Mn) are57

pivotal metallic nutritive elements for the development of plants (Liu et al., 2021a). Soil total Ca,58

Mg, Fe, and Mn may exceed the demand of a single plant by more than a thousand-fold and59

cannot sensitively reflect the needs of plants (Miner et al., 2018), but the available fractions of60

these nutrients may be insufficient or redundant, resulting in the deficiencies or abundances of61

plant nutrients (Otero et al., 2013). Thus, soil exchangeable Ca and Mg as well as available Fe62

and Mn generate significant effects on the development of plants.63

Over the past decade, soil nutrient stoichiometry (mainly C-N-P, rather than Ca-Mg or64

Fe-Mn) has been broadly studied across the world (Tian et al., 2010; Yang et al., 2013; Zhang et65

al., 2016; Yue et al., 2017; Yu et al., 2018; Qiao et al., 2020). A wide agreement exists amongst66

these studies that soil depth is vital for the regulation of soil nutrient stoichiometry. Substantial67

studies have identified the decreasing trend of soil organic C (OC), total N (TN), and total P (TP)68

contents as the soil depth increased (Yue et al., 2017; Yu et al., 2018; Qiao et al., 2020), whereas69

conflicting vertical patterns were discovered for soil C/N, C/P, and N/P ratios. For instance,70

decreasing trend of the C/P and N/P ratios was observed as the soil depth increased in the data of71

the 2nd soil investigation in China (Tian et al., 2010). Nevertheless, larger C/N ratio in the deeper72

soil layer, not the surface soil layer, was identified in a mollisol plain in the northeast China73

(Zhang et al., 2016). Moreover, the C/N ratio displayed no remarkable change throughout74

different soil depths in an investigation of alpine grassland on the Qingzang Plateau (Yang et al.,75

2013). As shown above, inconsistent vertical patterns have been reported for the C-N-P76

stoichiometric ratios in different soil ecosystems. Meanwhile, these studies were mainly focused77

on the regional or global scales, rather than on the aggregate scales.78
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As the basic unites of soil structure, soil aggregates are complex ensembles composed of79

primary particles as well as organic matter (OM) (Tisdall and Oades, 1982). According to the80

differences of binding agents, soil aggregates can be classified into microaggregates (< 0.25 mm)81

and macroaggregates (> 0.25 mm) (Tisdall and Oades, 1982). In general, persistent binding82

agents (like humified OM and polyvalent metal cation complexes) contribute to the binding of83

primary particles into microaggregates (Six et al., 2004). Differently, temporary binding agents84

(like fungal hyphae, plant roots, and polysaccharides) aggregating with microaggregates85

conduces to the formation of macroaggregates (Six et al., 2004). As shown above, soil86

aggregates with various sizes exert different abilities in the supply and reserve of soil OC and87

nutrients. Thus, to improve the comprehension about the structure and function of soil88

ecosystems, more efforts should be made to observe the soil nutrient stoichiometry within89

aggregates (Xu et al., 2019; Cui et al., 2021). In recent period, lots of studies have reported the90

OC, TN, and TP distribution in different sizes of aggregates, but these studies are ended with91

different results. To be specific, some studies revealed the significant increases in the OC, TN,92

and TP contents as the aggregate size decreased (Sarker et al., 2018; Piazza et al., 2020).93

Nevertheless, some other studies drew the totally opposite trends (Lu et al., 2019; Liu et al.,94

2021b). These show that the changes of soil OC, TN, and TP within aggregates have received95

great attention, whereas soil exchangeable alkali cations (i.e., Ca2+ and Mg2+) and available96

micronutrients (i.e., Fe2+ and Mn2+) are rarely investigated.97

Our past studies indicated that the landuse shift from farmlands to tea plantations could98

ameliorate soil fertility level (Zheng et al., 2011). Nevertheless, during the process of tea growth,99

the variation in soil nutrient stoichiometry is still unclear. Meanwhile, since tea serves as a deep100

root plant, it is vital to reveal how nutrient stoichiometry changes with increasing soil depth in101

tea plantation ecosystems. Thus, the present study was carried out to investigate how soil OC and102

nutrient contents as well as their stoichiometric ratios vary with tea plantation age (8, 17, 25, and103

43 years) and soil depth (0-10, 10-20, 20-40, and 40-60 cm) within aggregates (< 0.25, 0.25-1,104
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1-2, and > 2 mm). In addition, we hypothesized that the responses of soil OC and nutrient105

contents and their stoichiometric ratios to tea plantation age would be different amongst different106

soil depths.107

2. Materials and methods108

2.1. Experiment site109

In January 2019, the present study was completed at the Hengxian Agriculture Experiment110

Center of Guangxi University (altitude of 557-563 m and slope degree of 13-15 °) (Figure 1).111

Subtropic monsoon climate is predominant. Yearly average rainfall and temperature register112

1304 mm and 21.6 °C, separately. Exposed soil horizon occurs early in the Mesozoic, which113

gradually formed the Ultisols agrotype (IUSS Working Group, 2014). As early as in 1960s, due114

to the high economic value of tea, massive hectares of farmlands were developed to tea115

plantations in such region.116

The “Baimao tea” refers to a major cultivar in such area, and the ages of these tea117

plantations are distinct. Tea plantations were both experimental trials (Guangxi University) and118

commercial plantings, and were managed by different owners. In the tea-planting course, tillage119

method is no tillage and tea-planting density is almost 6 × 104 plants ha-1. Herbicides were not120

applied and yellow sticky boards were used to prohibit pests, because the color may attract pests121

and get them stuck on the boards. In addition, all tea plants were subjected to slight pruning in122

September each year.123

An annual fertilizer regime in tea plantations is shown below. Both 0.65 Mg ha-1 complex124

fertilizer (granule, N-P2O5-K2O: 18%-6%-6%) and 12 Mg ha-1 swine manure (slurry,125

N-P2O5-K2O: 0.54%-0.48%-0.36%) were applied yearly in mid-November as the basal fertilizer126

at the surrounding region vertically below tree crown. Subsequently, the top-dressing, applied to127

the site treated with replenished basal fertilizer, was replenished 3 times per year. Both 1.2 Mg128

ha-1 complex fertilizer and 0.5 Mg ha-1 urea were applied onto soil surface in mid-March, while129
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0.65 Mg ha-1 complex fertilizer and 0.3 Mg ha-1 urea were applied in late-June and in130

early-September.131

2.2. Experiment design132

In general, examining the same location persistently has been considered a quite effective133

approach in the monitoring of the variations in soil with time (Sparling et al., 2003).134

Nevertheless, the challenges in long-period soil monitoring have made it urgent to develop135

substitutional approaches to research the changes of soil over time, amongst which the most136

common approach is the ‘space-for-time’ alternative (Zanella et al., 2018).137

In this study, such approach was used to explore the variation in soil nutrient stoichiometry138

in a chronological sequence of tea plantations. In general, certain underlying mixture effects139

exist in the spatial variations of soil, hence the present study manages to mitigate such effects via140

choosing tea plantations, which were cultured with the same tea variety (“Baimao tea”) with141

different planting ages (8, 17, 25, and 43 years), and were located at the same unit associated142

with geomorphological status.143

Each of the 4 tea plantation age groups was replicated in 5 locations for a total of 20144

experimental units. Separation amongst these units was completed with distances of > 800 m145

between each other, hence decreasing the spatial autocorrelation and avoiding the146

pseudo-replication. For every unit (S ≈ 1 × 104 m2), a plot (S = 20 m × 20 m) was randomly147

established with distance of > 50 m away from the unit margin.148

2.3. Litter and soil sampling149

For every plot, the 5 surface litter (a stock) specimens had been acquired from the surface of150

soil in the 5 randomly chosen subplots (S = 1 m × 1 m), and afterwards were integrated into a151

composite litter specimen. An overall the 20 (4 tea plantation ages × 5 replicates) composite152

litter specimens were desiccated at the 80 °C until steady weight. Then, the weights of these153

desiccated litter specimens were measured, and the litter C (Nelson and Sommers, 1996) and N154

(Bremner, 1996) contents were detected. The amount of litter was 821, 974, 786, and 648 g m-2155



7

in the 8, 17, 25, and 43 years of tea plantations, respectively, and the C/N ratio of litter was156

14.23, 12.68, 17.32, and 21.37, respectively.157

Soil sampling was completed in the same sites of the litter sampling. For every plot, the 5158

soil specimens had been acquired by a spade from every soil layer (i.e., 0-10, 10-20, 20-40, and159

40-60 cm) in the 5 subplots (S = 1 m × 1 m), and afterwards were integrated into a composite160

soil specimen. An overall the 80 (4 tea plantation ages × 4 soil layers × 5 replicates) composite161

soil specimens were gently separated into naturally formed aggregates, which were sieved by a 5162

mm sifter to realize the removals of small stones, coarse roots, and macrofauna. After that, soil163

specimens were used for the aggregate separation. For every plot, moreover, extra 5 soil164

specimens were randomly chosen via cutting rings (volume = 100 cm-3, diameter = 50.46 mm,165

and depth = 50 mm) from every soil layer to assess the bulk density, clay (< 0.002 mm), pH, OC,166

and nutrients of bulk soil (Table 1).167

2.4. Soil aggregate separation168

As per the process of wet screening, 250 g of every composite soil specimen was sieved via169

the 2, 1, and 0.25 mm sieves in a successive way (Kemper and Chepil, 1965). To be specific, the170

composite soil specimens were soaked by the aqua destillata for 15 min, and afterwards were171

oscillated in the vertical direction for 15 min at the 1 s-1 oscillating rate and 5 cm amplitude.172

Consequently, we obtained 4 different sizes of aggregates, covering microaggregates (< 0.25173

mm), fine (0.25-1 mm), medium (1-2 mm), and coarse (> 2 mm) macroaggregates. All of the174

aggregates were desiccated and weighted, and then aggregate-related OC and nutrients were175

detected.176

2.5. Soil property analyses177

Prior to the analyses of soil physical-chemical properties, soil specimens were subjected to178

atmospheric drying under indoor temperature condition. According to the cutting ring method179

(Lu, 2000), soil specimens were oven-dried at 105 °C to the stable weight in order to measure the180

bulk density. Soil clay was detected by the hydrometer (TM-85, Veichi, China) (Lu, 2000). Soil181
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pH was detected by the glassy electrode (MT-5000, Ehsy, China), with the ratio of soil : water182

(mass : volume) as l : 2.5 (Lu, 2000). Soil OC and TN were identified via the acid dichromate183

wet oxidation method (Nelson and Sommers, 1996) and the micro-Kjeldahl method (Bremner,184

1996), separately. Soil TP was identified via the molybdate blue colorimetry method (Bray and185

Kurtz, 1945). Soil exchangeable alkali cations (i.e., Ca2+ and Mg2+) were determined by the186

ammonium acetate (CH3COONH4) (Thomas, 1982). In short, 2.5 g of every aggregate fraction187

was weighted into Erlenmeyer flask to blend with 50 mL 1 M CH3COONH4 (pH = 7.0). The188

extract liquid was agitated for 30 min under 150 rpm, and afterwards sieved via Whatman No. 2189

V filtration paper (quantitative and ashfree). Soil available micronutrients (i.e., Fe2+ and Mn2+)190

were determined by the diethylenetriamine pentaacetic acid (DTPA) (Lindsay and Norvell,191

1978). In short, 10 g of every aggregate fraction was weighted into Erlenmeyer flask to blend192

with 20 mL 0.005 M DTPA + 0.01 M CaCl2 + 0.1 M TEA (triethanolamine) (pH = 7.0). The193

extract liquid was agitated for 2 h under 180 rpm, and afterwards sieved. Entire extractable194

metallic cations were detected by the atomic absorption spectrometer (AAS, Shimadzu, Japan).195

In this study, 5 standard specimens (GBW-07401), 5 blank specimens, and 80 parallel specimens196

(accounted for 20% of the total soil specimens) were used to control quality, and the error197

between parallel specimen and experimental specimen was controlled in 5%.198

2.6. Calculations and statistics199

The mean weight diameter (MWD, mm) was utilized to indicate the stability of soil200

aggregates. To be specific, if the MWD value is higher, the aggregate stability is stronger201

(Kemper and Chepil, 1965):202

,203

in the formula, Xi indicates the ith size aggregates’ mean diameter (mm) and Mi indicates the204

ith size aggregates’ proportion (% in weight).205

SPSS 22.0 was used for statistic analysis (Table 2). Means were tested by the Tukey’s HSD206

and significance was used at P < 0.05. Two-way analysis of variance (ANOVA) was taken for207

)M(XMWD
4

1
i

i
i 





9

exploring the effects of soil depth, tea plantation age, and their interactions on the208

physico-chemical properties of bulk soil. Three-way ANOVA was taken for exploring the effects209

of soil depth, tea plantation age, aggregate size, and their interactions on the physico-chemical210

properties of soil aggregates. Besides that, Pearson correlation analysis was utilized to test the211

relationships between pH and stoichiometric ratios (i.e., Ca/Mg and Fe/Mn ratios) in bulk soil212

during the process of tea growth.213

3. Results214

3.1. Composition and stability of soil aggregates215

At the 0-10 and 10-20 cm soil depths, continuous planting of tea resulted in significant216

variations in the proportions of different sizes of aggregates, apart from the medium and fine217

macroaggregates (Table 3). To be specific, the proportions of coarse macroaggregates218

significantly rose within the first 17 years and afterwards significantly dropped, whereas the219

proportions of microaggregates displayed an opposite trend over time. Meanwhile, the greatest220

value of soil MWD was identified in the tea plantations of 17 years (Table 3). Notably, the role221

of tea plantation age in the aggregate composition and stability is limiting at the 20-40 and 40-60222

cm soil depths. Across the 4 tea plantation ages, the coarse macroaggregates were dominant at223

the 0-10 cm soil depth, which accounted for 32.60%-53.18% of bulk soil. However, at the 10-20,224

20-40, and 40-60 cm soil depths, the microaggregates were dominant, which accounted for225

33.80%-49.51%, 42.12%-48.24%, and 44.80%-49.45%, respectively. These results showed that226

the coarse macroaggregate proportions significantly reduced while the microaggregate227

proportions significantly elevated with increasing soil depth.228

3.2. Contents of soil C, N, and P229

At the aggregate scales, soil OC (Figure 2) and TN (Figure 3) contents significantly230

increased with increasing aggregate size, but the distribution of soil TP (Figure 4) was even in231

different sizes of aggregates. From 8 to 43 years of tea plantations, the OC and TN contents in232

soil aggregates were significantly elevated by 22%-35% and 14%-24%, 11%-22% and 9%-17%,233
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and 8%-18% and 9%-13% at the 0-10, 10-20, and 20-40 cm soil depths, respectively.234

Nevertheless, no significant variation existed in the aggregate-related TP content. Furthermore,235

at the 40-60 cm soil depth, the aggregate-related OC, TN, and TP contents did not show236

significant variations over time. Regardless of the tea plantation age, significant decreases in the237

aggregate-related OC, TN, and TP contents were observed as the soil depth increased.238

3.3. Stoichiometric ratios of soil C, N, and P239

A three-way ANOVA analysis showed that the lone and interactive effects of soil depth, tea240

plantation age, and aggregate size on the C/P and N/P rations were significant, and the effects of241

soil depth, aggregate size, and their interactions on the C/N ratio were significant (Table 2). In242

this study, significant increases in aggregate-related C/N (Table S1), C/P (Table S2), and N/P243

(Table S3) ratios were accompanied by the increasing aggregate size. At the 0-10, 10-20, and244

20-40 cm soil depths, aggregate-related C/N ratio did not show significant variation while245

aggregate-related C/P and N/P ratios significantly increased with the increase in tea plantation246

age. Moreover, there was little role of tea plantation age in the aggregate-related C/N, C/P, and247

N/P ratios at the 40-60 cm soil depth. Among different ages of tea plantations, aggregate-related248

C/N, C/P, and N/P ratios significantly dropped as the soil depth increased. For example, at the249

0-10 cm soil depth, aggregate-related C/N, C/P, and N/P ratios across the 4 tea plantation ages250

fluctuated in 20.81-23.04, 28.81-37.07, and 1.31-1.67, respectively. Meanwhile, at the 40-60 cm251

soil depth, aggregate-related C/N, C/P, and N/P ratios fluctuated in 16.41-20.74, 13.44-22.88,252

and 0.84-1.08, respectively.253

3.4. Contents of soil alkali cations and micronutrients254

At the aggregate scales, soil exchangeable alkali cations (i.e., Ca2+ and Mg2+) were more255

concentrated in the microaggregates (Figures 5 and 6). However, soil available micronutrients256

(i.e., Fe2+ and Mn2+) were mainly existed in the coarse macroaggregates (Figures 7 and 8). From257

8 to 43 years of tea plantations, the Ca2+ and Mg2+ contents in soil aggregates were significantly258

reduced by 31%-38% and 10%-24%, 23%-27% and 9%-18%, and 10%-16% and 5%-8% at the259
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0-10, 10-20, and 20-40 cm soil depths, respectively. However, the Fe2+ and Mn2+ contents in soil260

aggregates were significantly elevated by 16%-27% and 6%-9%, 11%-15% and 4%-7%, and261

7%-12% and 3%-5%, respectively. In addition, at the 40-60 cm soil depth, the contents of262

aggregate-related exchangeable alkali cations and available micronutrients did not show263

significant variations over time. Irrespective of the tea plantation age, significant increases in the264

aggregate-related Ca2+ and Mg2+ contents were observed with increasing soil depth, but the265

aggregate-related Fe2+ and Mn2+ contents showed an opposite trend.266

3.5. Stoichiometric ratios of soil alkali cations and micronutrients267

A three-way ANOVA analysis showed that the effect of tea plantation age on the Ca/Mg268

and Fe/Mn ratios in soil aggregates was significant (Table 2). In this study, soil Ca/Mg (Table269

S4) and Fe/Mn (Table S5) ratios did not vary among different sizes of aggregates. At the 0-10,270

10-20, and 20-40 cm soil depths, aggregate-related Ca/Mg ratio significantly decreased while271

aggregate-related Fe/Mn ratio significantly increased in the tea-planting course. Moreover, there272

was little role of tea plantation age in the aggregate-related Ca/Mg and Fe/Mn ratios at the 40-60273

cm soil depth. In tea plantations, no significant variations were observed amongst different soil274

depths in aggregate-related Ca/Mg and Fe/Mn ratios. For example, at the 0-10 cm soil depth,275

aggregate-related Ca/Mg and Fe/Mn ratios across the 4 tea plantation ages ranged from 1.81 to276

1.96 and 0.76 to 0.85, respectively. Meanwhile, at the 40-60 cm soil depth, aggregate-related277

Ca/Mg and Fe/Mn ratios ranged from 1.88 to 1.92 and 0.78 to 0.82, respectively.278

4. Discussion279

4.1. Composition and stability of soil aggregates280

Tea plantation age significantly influenced the aggregate composition and stability at the281

0-10 and 10-20 cm soil depths, whereas the effect at the 20-40 and 40-60 cm soil depths was282

quite limited. In the early (8-17 years) period, tea planting was beneficial for the transition from283

microaggregates to coarse macroaggregates at the 0-10 and 10-20 cm soil depths (Table 3). By284

comparison, in the middle (17-25 years) and late (25-43 years) periods, tea planting induced285
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coarse macroaggregate destruction and microaggregate release (Table 3). According to the286

hierarchical concept of soil aggregates (Six et al., 2004), the quality of plant litter returning to the287

soil determines the distribution of decomposition products of litter in different sizes of288

aggregates, which ultimately impacts the aggregate composition. In the early period of tea289

planting, tea litter displayed greater availability (as indicated by the lower litter C/N ratio),290

revealing that the decomposition products of litter were easily combined into the coarse291

macroaggregates, hence fostering the formation of coarse macroaggregates (Tisdall and Oades,292

1982). Reversely, in the middle and late periods of tea planting, tea plants naturally encountered293

aging processes and litter was progressively subjected to humification, which induced the294

decomposition of coarse macroaggregates into microaggregates (Six and Paustian, 2014).295

Moreover, the reduced litter amount and covering area after 17 years of tea planting enhanced296

the rainfall eluviation and artificial interferences (i.e., pruning of tea plants and application of297

fertilizers), which also caused the destruction of coarse macroaggregates. In the tea-planting298

course, variation in aggregate stability was indicated via the change of MWD value (Table 3). At299

the 0-10 and 10-20 cm soil depths, the MWD value was the greatest in the 17 years of tea300

planting, which was associated with the highest proportions of coarse macroaggregates in the301

17-year tea plantations. These findings indicated that the 17-year tea plantations exhibited302

stronger aggregate stability in contrast to other plantations at the 0-10 and 10-20 cm soil depths.303

Regardless of the tea plantation age, coarse macroaggregates were dominant in the topsoil304

(0-10 cm) while microaggregates were dominant in the subsoil (10-60 cm), indicating305

transformation of aggregate composition from coarse macroaggregate-prevailing to306

microaggregate-prevailing with the increase in soil depth (Table 3). Also, alike outcomes were307

corroborated by Li et al. (2015) and Zhu et al. (2017) from studies on tea plantations in the308

southwest Sichuan of China. In the present study, coarse macroaggregates were the prevailing309

fractions in the topsoil, not the subsoil, which was attributed to the surface cumulation of soil OC310

(Figure 2). As an essential cementing agent, soil OC could foster the formation of coarse311
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macroaggregates (Al-Kaisi et al., 2014). Moreover, the reduced proportions of coarse312

macroaggregates as the soil depth increased were also because of the elevated soil compactness313

(as indicated by the bulk density) (Table 1). Soil densification could prevent the growth of plant314

roots, hence causing the activities of soil microorganisms decreased, especially soil fungi (Kurmi315

et al., 2020). Reduced activities of soil fungi could diminish the production of polysaccharose316

and glomalin-related soil protein (GRSP) from the fungal hyphae, hence inducing the317

proportions of soil macroaggregates decreased (Ji et al., 2019). Likewise, as per our past studies318

(Wang et al., 2017b; Zhu et al., 2019), soil microbial activities and GRSP content served as the319

vital effects in the formation and stabilisation of soil macroaggregates, and presented the higher320

levels in the topsoil compared with the subsoil in tea plantation ecosystems. With increasing soil321

depth, the decrease in MWD value was mainly related to the change of soil aggregate322

composition (Table 3), especially for the decomposition of coarse macroaggregates into323

microaggregates, implying that the topsoil exhibited stronger aggregate stability in contrast to the324

subsoil.325

4.2. Contents of soil C, N, and P326

In this study, more contents of soil OC and TN could be detected in coarse macroaggregates327

(Figures 2 and 3), which conformed to the findings of Six et al. (2004) that macroaggregates328

were comprised of microaggregates via temporary binding agents; meanwhile, macroaggregates329

could provide the protection for the OM, hence causing the cumulation of OC and TN in330

macroaggregates. Unlike soil OC and TN, soil TP was evenly distributed in different sizes of331

aggregates (Figure 4). Moreover, Bhatnagar and Miller (1985) also detected alike outcomes from332

soil specimens subjected to fresh poultry manure treatments, and promoted the mechanisms333

affecting the distribution of TP in soil aggregates. Specifically, (i) introduced P was firstly334

adsorbed by clay particulates in soil and clay particulates were discrepant in different sizes of335

aggregates, and (ii) introduced P had selective absorptive properties for the different sizes of336
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aggregates. According to our findings, stochasticity seems to be one probable mechanism that337

sheds light on the TP distribution in soil aggregates.338

Tea plantation age could positively affect the cumulation of soil OC and TN, but such339

positive effects were more obvious at the 0-40 cm soil depth in contrast to the 40-60 cm soil340

depth. In this study, soil OC and TN contents exhibited a significant growing trend over time341

(Figures 2 and 3), which was possibly associated with the following mechanisms. First, many342

long-period tests had demonstrated the proactive roles of manure and chemical fertilizer343

applications in soil OM cumulation (Tong et al., 2009; Zhou et al., 2013). Similarly, in the344

tea-planting course, growing soil OC and TN contents were probably caused by the applications345

of substantial swine manure every year (12 Mg ha-1 year-1) in this tea-planting region (Wang and346

Ye, 2020). Second, plants serve as the prime OM sources in soil via root exudates and litter347

remains (Franklin et al., 2020). In the tea-planting course, soil OC and TN cumulation probably348

occurred as a result of the growing root systems and the increasing amounts of aboveground349

litter attained from trimmed branches and leaves. Third, no tillage could provide physical350

protection for the OM combined with soil aggregates, and then further improve soil OC and TN351

sequestration (Wulanningtyas et al., 2021). Notably, although the positive correlations of OC and352

TN contents with clay content in soil have been reported, the present study revealed that353

significant increases in the OC and TN contents were accompanied by no significant variation in354

the clay content during the process of tea growth (Table 1). Similarly, Li et al. (2015) and Wang355

et al. (2018) discovered as well that the changes of soil OC and TN contents were not influenced356

by the clay content over time in tea plantation ecosystems, mainly because soil OC and TN357

contents primarily depend on fertilization, tillage, root exudates, and litter remains, but soil clay358

content is mainly controlled by its parent material (Rakhsh et al., 2020). Unlike soil OC and TN,359

regardless of the soil depth, no significant difference existed in soil TP content amongst different360

aged tea plantations (Figure 4), which implied the resistance of soil TP content to the change of361

tea plantation age. Also, past studies verified that soil TP content was not related to the tea362
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plantation age (Wu et al., 2018; Yan et al., 2018), as soil P primarily derives from the weathering363

release of soil minerals, instead of the short-period biology cycle (Cui et al., 2019).364

In tea plantation ecosystems, the decreasing OC, TN, and TP contents with increasing soil365

depth (Figures 2, 3, and 4)coincided with some past findings in other ecosystems, such as tropic366

forests, bushlands, and grasslands (Stone and Plante, 2014; Yu et al., 2018; Qiao et al., 2020). In367

the present study, the higher contents of OC, TN, and TP in the topsoil were associated with the368

higher OM input, in which the soil OM content in the topsoil was enriched by the input of369

surface tea litter, root debris and exudates, and swine manure.370

4.3. Stoichiometric ratios of soil C, N, and P371

Soil C/N, C/P, and N/P ratios act as vital indicators of soil health (Liu et al., 2018), which372

can be employed for exploring C circulation and guiding the equilibrium between N and P in soil373

ecosystems (Sardans et al., 2012). In this study, soil C/N ratio grew with growing aggregate size374

(Table S1), which indicated that the OM in macroaggregates was younger and more unstable in375

contrast to microaggregates (Six et al., 2004). Meanwhile, the OM associated with376

microaggregates experienced more degradation, resulting in the lower C/N ratio in the377

microaggregates (Xu et al., 2019). Among different ages of tea plantations, soil OC and TN were378

predominantly distributed in the coarse macroaggregates, but the TP was evenly distributed in379

different sizes of aggregates. As a result, the associations of C/P and N/P ratios to aggregate size380

primarily depended on the relationships of OC and TN contents with aggregate size (Tables S2381

and S3). As far as we know, the changes of soil C/P and N/P ratios within aggregates are rarely382

examined, although these kinds of knowledge are imperative because of the biogeochemical383

cycles of N and P being influenced by the dynamics of soil aggregates (Cui et al., 2021).384

Consequently, the impact generated by the aggregate size on the C/P and N/P ratios ought to be385

studied more for the accurate forecast of soil N and P cycling under natural or man-intervened386

ecosystems.387

Irrespective of the soil depth, soil C/N ratio showed little significant variation in the388
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tea-planting course (Table S1). Meanwhile, tea plantation age significantly affected soil C/P and389

N/P ratios at the 0-40 cm soil depth, not the 40-60 cm soil depth (Tables S2 and S3). Soil C/N390

ratio is generally treated as the critical indicator which affects the formation and degradation of391

soil OM (Khan et al., 2016). Since response of soil TN content to soil environment change is392

almost the same as soil OC content (Wang et al., 2018), soil C/N ratio did not show significant393

difference amongst different aged tea plantations (Table S1). Likewise, Zhou et al. (2018)394

proved that no close correlation existed between soil C/N ratio and vegetation coverage, because395

C and N are structure elements and their cumulation and consumption in soil remain relative396

consistency. Soil C/P ratio is the indicator suggesting P effectiveness, and higher C/P ratio often397

denotes lower P effectiveness (Khan et al., 2016). In acidic soil (Table 1), available P was398

adsorbed on the surfaces of Fe/Al oxides and clay minerals in a preferential way, because Fe/Al399

oxides and clay minerals with greater surface areas could afford enough sites to available P400

adsorption (Wu et al., 2018). As the tea plantation age increased, therefore, soil acidification led401

to the decrease in P effectiveness (evidenced by the significant increase in soil C/P ratio) (Table402

S2). Soil N and P are the prohibiting factors mostly seen during the process of plant growth, and403

thus, N/P ratio can be utilized as one efficient indicator that shows nutrient restriction (Khan et404

al., 2016). In this study, soil N/P ratio significantly increased in the tea-planting course (Table405

S3), mainly because soil TN content experienced significant increase while no such significant406

change was found in TP content over time.407

Regardless of the tea plantation age, soil C/N ratio decreased with increasing soil depth408

(Table S1), which coincided with the majority of studies (Cao et al., 2015; Feng and Bao, 2017,409

Yu et al., 2019). Batjes (1996) suggested that the decrease in soil C/N ratio as the soil depth410

increased was triggered by the stratification of humic substance in the soil profile. Moreover, in411

this study, the lower soil C/P and N/P ratios in the subsoil (Tables S2 and S3) backed the412

outcomes of past studies in terrestrial ecosystems of China, which were on the foundation of the413

data from both the 2nd soil investigation in China (Tian et al., 2010) and the Chinese Ecosystem414
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Research Network (CERN) (Chai et al., 2015).415

Across the 4 tea plantation ages, the mean contents of OC and TN in bulk soil (0-20 cm)416

were 16.70 and 0.77 g kg-1, separately, which were below the mean contents of OC (21.30 g kg-1)417

and TN (2.17 g kg-1) in Chinese tea plantations (Sun et al., 2020; Xie et al., 2020). Moreover, in418

this tea-planting region, the mean content of TP in bulk soil (0-20 cm) was 0.57 g kg-1,419

corresponding to the moderate level in Chinese tea plantations, where TP content varied in the420

range of 0.35-1.20 g kg-1 (Wu et al., 2018; Sun et al., 2020). Herein, soil C/N ratio is higher421

compared with other tea-planting regions in China, whereas soil C/P and N/P ratios are much422

lower (Sun et al., 2020). These findings are primarily associated with the lower contents of soil423

OC and TN, especially the TN. In general, N is the most limiting element in the net primary424

production of tea plantation ecosystems (Miner et al., 2018), and this phenomenon also appeared425

in the southern Guangxi of China.426

4.4. Contents of soil alkali cations and micronutrients427

According to the findings from Adesodun et al. (2007) and Emadi et al. (2009), the higher428

contents of exchangeable alkali cations (including Ca2+ and Mg2+) were detected in both 2-4.76429

and < 0.25 mm aggregates in the non-tillage soil. In the tillage course, however, the contents of430

these two cations decreased in the 2-4.76 mm aggregates and increased in the < 0.25 mm431

aggregates, revealing that the tillage practice could cause soil Ca2+ and Mg2+ to redistribute in432

different sizes of aggregates. In comparison, the present study exhibited that the distribution of433

soil Ca2+ and Mg2+ in aggregates was similar among different ages of tea plantations (Figures 5434

and 6), implying that the distribution of these two cations in aggregates was seldom influenced435

by the tea plantation age. To be specific, coarse macroaggregates had the lowest contents of Ca2+436

and Mg2+, whereas microaggregates exhibited the highest contents. These findings could be437

ascribed to the larger specific surface areas of microaggregates (Adesodun et al., 2007), which438

increased microaggregates’ adsorption to Ca2+ and Mg2+ derived from root exudates, litter439

remains, and manure (Emadi et al., 2009). Unlike exchangeable alkali cations, the contents of440
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soil available micronutrients (including Fe2+ and Mn2+) usually correspond to the content of soil441

OM (Wang et al., 2017a), which are more abundant in macroaggregates (Six et al., 2004).442

Similarly, this study also found that the Fe2+ and Mn2+ had a similar distribution pattern with OC443

within aggregates (Figures 7 and 8). Since the decomposition products of litter can be easily444

integrated to the coarse macroaggregates (Six et al., 2004), the nutrient cycling of plant-soil445

systems might lead to the higher contents of soil Fe2+ and Mn2+ in the coarse macroaggregates446

(Wang et al., 2017a).447

At the 0-40 cm soil depth, the contents of soil Ca2+ and Mg2+ significantly decreased over448

time (Figures 5 and 6), which might be due to the applications of urea and NH4+-N fertilizer in449

the tea-planting course for increasing tea leaf outputs. Urea hydrolysis can promote the450

production of ammonium ions which are readily nitrified into nitrate, and the excessive proton451

produced by the nitrification can compete for the adsorption sites with Ca2+ and Mg2+ (Wang et452

al., 2017a). As a result, these cations were easy to lose from soil in the manner of leaching.453

Except at the 40-60 cm soil depth, continuous planting of tea led to the significant increases in454

soil Fe2+ and Mn2+ contents (Figures 7 and 8), which were elevated by 7%-27% and 3%-9% from455

8 to 43 years of tea planting, separately. This phenomenon was possibly caused by the soil456

acidification (Table 1), which stimulates the release of soil Fe2+ and Mn2+ by mineralization and457

desorption from soil OM and minerals (Wang et al., 2017a). Tea, as an aluminium (Al)458

cumulating crop, is able to cumulate Al in leaves (Li et al., 2016). Soil acidification in the459

tea-planting course was due to the substantial tea litter into the soil annually via trimmed460

branches and leaves (Li et al., 2016). At the same time, the rhizosphere deposition of massive461

organic acids (i.e., malate, lemon acid, and oxalate acid) around the tea roots could provoke462

localized acidification (Xue et al., 2006). In addition, for increasing the output of tea, tea463

plantations needed to apply N fertilizers (i.e., urea and NH4+-N), thus leading to soil acidification464

by the NH4+ nitration (Yang et al., 2018).465



19

Across the 4 tea plantation ages, the contents of soil Fe2+ and Mn2+ were higher in the466

topsoil than the subsoil (Figures 7 and 8), primarily owing to the usage of swine manure and the467

inputs of tea litter and roots in the topsoil (Miner et al., 2018). Nevertheless, the contents of soil468

Ca2+ and Mg2+ showed an opposite trend as the soil depth increased (Figures 5 and 6), because469

soil Ca2+ and Mg2+ were easy to move from topsoil to subsoil in the manner of leaching (Hansen470

et al., 2017).471

4.5. Stoichiometric ratios of soil alkali cations and micronutrients472

Tea plantation age exerted a significant influence on the Ca/Mg and Fe/Mn ratios at the473

0-40 cm soil depth, not the 40-60 cm soil depth (Tables S4 and S5). To be specific, a significant474

decline in the Ca/Mg ratio was found at the 0-40 cm soil depth over time. From 8 to 43 years of475

tea planting, the contents of Ca2+ and Mg2+ at the 0-40 cm soil depth decreased by 10%-38% and476

5%-24%, separately, which revealed that the role of tea plantation age in the content of soil Ca2+477

was greater than that of soil Mg2+ (Figures 5 and 6). Lu et al. (2014) suggested that the selective478

losses of soil exchangeable alkali cations (Ca2+ > Mg2+) could lead to the disequilibrium of soil479

metal ions in forest ecosystems. Similarly, in this study, the preferential loss of soil Ca2+ relative480

to Mg2+ was the prime cause of the significant decline in the soil Ca/Mg ratio in the tea-planting481

course. The depletion of soil exchangeable alkali cations (especially the Ca2+) could lead to the482

decrease in soil buffering capacity and soil acidification (Hansen et al., 2017). Thus, the Ca/Mg483

ratio at the 0-40 cm soil depth was positively related (P < 0.05) to soil pH across the 4 tea484

plantation ages (Figure S1). Soil acidification accelerated the mineralization and desorption of485

soil available micronutrients from soil OM and minerals (Wang et al., 2017a), conducive to the486

significant increases in Fe2+ and Mn2+ contents at the 0-40 cm soil depth, especially the Fe2+487

(Figures 7 and 8). In a chronological sequence of tea plantations, the negative relationship (P <488

0.05) of soil Fe/Mn ratio with soil pH in different soil depths indicated more cumulation of soil489

Fe2+ relative to Mn2+ over time (Figure S1). Moreover, the change of soil Fe/Mn ratio was also490

triggered by the antagonistic relationship between soil Fe2+ and Mn2+ during the process of tea491
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plant uptake (Wang et al., 2017a). Tian et al. (2016) discovered that soil acidification could492

reduce Fe2+ absorption and enhance Mn2+ uptake by various plant species, thereby causing the493

increase in soil Fe/Mn ratio and threatening plant productivity.494

5. Conclusions495

Herein, soil OC, TN, and TP contents as well as C/N, C/P, and N/P ratios decreased as the496

soil depth increased. Moreover, soil Ca2+ and Mg2+ contents were lower in the topsoil than the497

subsoil, whereas soil Fe2+ and Mn2+ contents showed an opposite trend, and no differences were498

detected amongst different soil depths in soil Ca/Mg and Fe/Mn ratios. Tea plantation age could499

influence the variations in soil OC and nutrient contents and their stoichiometric ratios, but such500

effects were more obvious at the 0-40 cm soil depth in contrast to the 40-60 cm soil depth, thus501

supporting our hypothesis. At the 0-40 cm soil depth, continuous planting of tea was favorable to502

the increases in soil OC, TN, Fe2+, and Mn2+ contents, whereas soil Ca2+ and Mg2+ contents503

decreased over time. Compared with other tea-planting regions in China, soil C/N ratio is higher504

in this tea-planting region, whereas soil C/P and N/P ratios are much lower, indicating that soil505

OC and TN contents in the present study were lower, especially the TN. Therefore, an506

appropriate increase in the amount of N fertilizer should be applied in this tea-planting region. In507

the tea-planting course, the losses of soil Ca2+ and Mg2+, especially the Ca2+ (as indicated by the508

decrease in soil Ca/Mg ratio), could lead to the soil acidification. Meanwhile, soil acidification509

could reduce Fe2+ absorption and enhance Mn2+ uptake by tea plants (as indicated by the increase510

in soil Fe/Mn ratio). Overall, the present study improved the understanding of soil OC and511

nutrient dynamics in tea plantation ecosystems.512
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Table 1 Effects of soil depth and tea plantation age on the bulk density, clay, and pH in bulk soil.

Soil depth Tea plantation age Bulk density (g cm-3) Clay (%) pH

0-10 cm 8 years 1.28 ± 0.02 b 34.69 ± 3.21 a 4.57 ± 0.02 a

17 years 1.20 ± 0.02 c 35.91 ± 2.77 a 4.49 ± 0.01 ab

25 years 1.26 ± 0.01 bc 33.12 ± 2.46 a 4.31 ± 0.03 b

43 years 1.31 ± 0.04 b 35.08 ± 2.41 a 4.15 ± 0.02 c

10-20 cm 8 years 1.30 ± 0.03 b 34.88 ± 2.08 a 4.55 ± 0.03 a

17 years 1.22 ± 0.03 c 32.59 ± 3.02 a 4.50 ± 0.01 a

25 years 1.30 ± 0.03 b 34.92 ± 3.67 a 4.33 ± 0.02 b

43 years 1.29 ± 0.02 b 32.35 ± 2.68 a 4.17 ± 0.02 c

20-40 cm 8 years 1.32 ± 0.04 ab 35.26 ± 1.45 a 4.60 ± 0.04 a

17 years 1.31 ± 0.01 b 34.57 ± 4.12 a 4.53 ± 0.02 a

25 years 1.34 ± 0.01 ab 34.51 ± 3.21 a 4.34 ± 0.04 b

43 years 1.33 ± 0.04 ab 34.29 ± 3.54 a 4.19 ± 0.03 c

40-60 cm 8 years 1.36 ± 0.01 a 34.78 ± 3.66 a 4.58 ± 0.02 a

17 years 1.37 ± 0.02 a 36.89 ± 2.98 a 4.54 ± 0.03 a

25 years 1.39 ± 0.02 a 33.68 ± 1.91 a 4.32 ± 0.01 b

43 years 1.38 ± 0.03 a 35.81 ± 3.69 a 4.21 ± 0.01 bc

Data represent the mean of 5 replicates ± standard deviations. Means in the same column with the same lower case

letter are not significantly different (P > 0.05) among different soil depths and tea plantation ages.
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Table 2 Three-way ANOVA regarding the effects of soil depth, tea plantation age, aggregate size, and their

interactions on the physico-chemical properties of soil aggregates, and Two-way ANOVA regarding the effects of

soil depth, tea plantation age, and their interactions on the physico-chemical properties of bulk soil.

Soil properties Three-way ANOVA Two-way ANOVA

S T A S × T S × A T × A S × T × A S T S × T

Bulk density √ √ √

Clay × × ×

pH × √ ×

MWD √ √ √

Aggregate proportion √ √ √√ √ √ √ √

Organic C √√ √√ √√ √√ √√ √√ √√ √√ √√ √√

Total N √√ √√ √√ √√ √√ √√ √√ √√ √√ √√

Total P √ × × × × × × √ × ×

Exchangeable Ca2+ √ √√ √ √ √ √ √ √ √√ √

Exchangeable Mg2+ √ √ √ √ √ √ √ √ √ √

Available Fe2+ √ √√ √ √ √ √ √ √ √√ √

Available Mn2+ √ √ √ √ √ √ √ √ √ √

C/N ratio √ × √ × √ × × √ × ×

C/P ratio √ √ √ √ √ √ √ √ √ √

N/P ratio √ √ √ √ √ √ √ √ √ √

Ca/Mg ratio × √ × × × × × × √ ×

Fe/Mn ratio × √ × × × × × × √ ×

S: soil depth; T: tea plantation age; A: aggregate size. √√, √, and × indicate significant differences at P < 0.01, P <

0.05, and P > 0.05, respectively.
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Table 3 Effects of soil depth and tea plantation age on the aggregate stability and composition.

Soil

depth

Tea plantation

age

MWD

(mm)

Aggregate composition (%)

> 2 mm 1-2 mm 0.25-1 mm < 0.25 mm

0-10 cm 8 years 1.88 ± 0.03 b 44.26 ± 3.24 bA 16.23 ± 2.45 abC 8.46 ± 1.37 abD 31.05 ± 5.78 bcB

17 years 2.20 ± 0.04 a 53.18 ± 2.78 aA 18.02 ± 1.63 aB 6.69 ± 0.98 bC 22.11 ± 4.01 cB

25 years 1.78 ± 0.01 b 40.29 ± 4.01 bA 17.97 ± 2.03 aC 8.81 ± 0.88 abD 32.93 ± 3.58 bcB

43 years 1.53 ± 0.03 c 32.60 ± 3.61 cB 19.61 ± 2.04 aC 7.64 ± 1.57 bD 40.15 ± 4.27 abA

10-20 cm 8 years 1.62 ± 0.02 c 37.31 ± 2.47 cA 13.58 ± 1.56 bB 9.24 ± 2.04 abC 39.87 ± 2.69 abA

17 years 1.82 ± 0.04 b 43.02 ± 2.69 bA 14.31 ± 1.38 abC 8.87 ± 1.14 abD 33.80 ± 4.58 bB

25 years 1.56 ± 0.03 c 34.87 ± 1.45 cB 15.03 ± 2.47 abC 9.36 ± 1.09 abD 40.74 ± 3.94 abA

43 years 1.34 ± 0.02 d 29.24 ± 3.28 dB 13.97 ± 1.65 bC 7.28 ± 0.82 bD 49.51 ± 2.56 aA

20-40 cm 8 years 1.43 ± 0.01 cd 31.25 ± 1.68 cdB 15.47 ± 2.49 abC 7.62 ± 0.47 bD 45.66 ± 4.77 aA

17 years 1.48 ± 0.03 cd 32.08 ± 3.60 cdB 16.89 ± 2.51 abC 8.91 ± 2.14 abD 42.12 ± 2.05 abA

25 years 1.39 ± 0.02 d 30.72 ± 3.25 dB 14.23 ± 0.58 abC 6.81 ± 1.36 bD 48.24 ± 3.59 aA

43 years 1.48 ± 0.03 cd 32.49 ± 2.98 cdB 15.40 ± 2.11 abC 9.05 ± 0.91 abD 43.06 ± 4.32 aA

40-60 cm 8 years 1.30 ± 0.01 d 28.48 ± 2.57 dB 12.02 ± 3.08 bC 10.05 ± 0.58 aC 49.45 ± 3.68 aA

17 years 1.36 ± 0.02 d 29.68 ± 2.61 dB 13.78 ± 1.14 bC 9.47 ± 1.03 abC 47.07 ± 3.47 aA

25 years 1.36 ± 0.01 d 30.09 ± 1.47 dB 11.98 ± 0.98 bC 10.64 ± 0.45 aC 47.29 ± 4.01 aA

43 years 1.34 ± 0.03 d 28.42 ± 3.02 dB 14.33 ± 1.57 abC 12.45 ± 2.13 aC 44.80 ± 2.99 aA

Data represent the mean of 5 replicates ± standard deviations. Means in the same column with the same lower case

letter are not significantly different (P > 0.05) among different soil depths and tea plantation ages. Means in the

same row with the same capital letter are not significantly different (P > 0.05) among different sized aggregates.
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Figure 1 Location of the experiment site.

Figure 2 Effects of soil depth and tea plantation age on the organic C content in bulk soil and different sized

aggregates. Data represent the mean of 5 replicates and error bars represent the standard deviations. Means with the

same lower case letter are not significantly different (P > 0.05) among different soil depths and tea plantation ages.

Means with the same capital letter are not significantly different (P > 0.05) among different sized aggregates.

Figure 3 Effects of soil depth and tea plantation age on the total N content in bulk soil and different sized

aggregates. Data represent the mean of 5 replicates and error bars represent the standard deviations. Means with the

same lower case letter are not significantly different (P > 0.05) among different soil depths and tea plantation ages.

Means with the same capital letter are not significantly different (P > 0.05) among different sized aggregates.

Figure 4 Effects of soil depth and tea plantation age on the total P content in bulk soil and different sized aggregates.

Data represent the mean of 5 replicates and error bars represent the standard deviations. Means with the same lower

case letter are not significantly different (P > 0.05) among different soil depths and tea plantation ages. Means with

the same capital letter are not significantly different (P > 0.05) among different sized aggregates.

Figure 5 Effects of soil depth and tea plantation age on the exchangeable Ca2+ content in bulk soil and different

sized aggregates. Data represent the mean of 5 replicates and error bars represent the standard deviations. Means

with the same lower case letter are not significantly different (P > 0.05) among different soil depths and tea

plantation ages. Means with the same capital letter are not significantly different (P > 0.05) among different sized

aggregates.

Figure 6 Effects of soil depth and tea plantation age on the exchangeable Mg2+ content in bulk soil and different

sized aggregates. Data represent the mean of 5 replicates and error bars represent the standard deviations. Means

with the same lower case letter are not significantly different (P > 0.05) among different soil depths and tea

plantation ages. Means with the same capital letter are not significantly different (P > 0.05) among different sized

aggregates.

Figure 7 Effects of soil depth and tea plantation age on the available Fe2+ content in bulk soil and different sized

aggregates. Data represent the mean of 5 replicates and error bars represent the standard deviations. Means with the

same lower case letter are not significantly different (P > 0.05) among different soil depths and tea plantation ages.

Means with the same capital letter are not significantly different (P > 0.05) among different sized aggregates.

Figure 8 Effects of soil depth and tea plantation age on the available Mn2+ content in bulk soil and different sized

aggregates. Data represent the mean of 5 replicates and error bars represent the standard deviations. Means with the

same lower case letter are not significantly different (P > 0.05) among different soil depths and tea plantation ages.

Means with the same capital letter are not significantly different (P > 0.05) among different sized aggregates.
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