1	The application of blochar and byster shell reduced caumium uptake by crops
2	and modified soil biochemical properties in contaminated soil
3	Bin Wu ^{a*} , Jia Li ^a , Mingping Sheng ^b , He Peng ^b , Dinghua Peng ^b , Heng Xu ^{b*1}
4	^a State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of
5	Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
6	^b Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of
7	Life Sciences, Sichuan University, Chengdu, 610065, PR China
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	

 $^{^{1}\} Corresponding\ author:\ E-mail\ address:\ \underline{wub@cdut.edu.cn}\ (Bin\ Wu);\ xuheng 64@sina.com\ (Heng\ Xu)$

27 Abstract

28	Soil pollution with cadmium (Cd) has been threatening the human health. In this
29	study, we investigated the possibility of applying biochar and oyster shell to reduce
30	Cd uptake by crops and modify soil biochemical properties. A filed study based on the
31	rice-oilseed rape rotation was done and the treatments were comprised of without
32	amendments (PA0), 15000 kg/ha biochar (PA1), 15000 kg/ha oyster shell (PA2), and
33	7500 kg/ha biochar and 7500 kg/ha oyster shell (PA3). Results revealed that both
34	oyster shell and biochar reduced the HOAc-extractable Cd in soil. Compared to PAO,
35	the HOAc-extractable Cd in the PA1, PA2 and PA3 treatments was reduced by 4.76 -
36	20.79%, 17.86 - 38.61% and 5.95 - 10.89%, respectively. The cooperative application
37	of biochar and oyster shell reduced the Cd accumulation in brown rice and oilseed by
38	29.67% and 19.74%, respectively, compared to control, and thus decreased the Hazard
39	Quotient (HQ) by the consumption of brown rice and oilseed. The addition of biochar
40	slightly increased soil organic matter. In addition, the available P in the PA2 and PA3
41	treatments was significantly (p < 0.05) increased by 200.96 - 295.92% and 187.46 -
42	280.04% compared to control. Moreover, the cooperative application of biochar and
43	oyster shell enhanced the activities of urease, catalase, and β -galactosidase by 139.44
44	- 147.56%, 10.71 - 34.31% and 82.08 - 244.38%, respectively. These results
45	demonstrated that the utilization of biochar and oyster shell might be an effective
46	pathway to reduce Cd uptake by crops and improve soil biochemical properties.
47	Keywords: Biochar; Oyster shell; Rice-oilseed rape rotation; In-situ remediation;
48	Enzyme activities; Cadmium

1. Introduction

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

Cadmium (Cd) contamination of agricultural soils is a worldwide environmental problem, which has been seriously threatening to human health (Yang et al., 2021). The excessive intake of Cd by food chain can cause serious damages to bones, thyroid, and kidneys (Ma et al., 2021b). According to the latest national survey on the status of soil environmental quality in China, Cd has been ranked as the highest contaminants (7%) among all heavy metals (Mou et al., 2020). In southwest China, the intensive industrialization is the resource of the farmlands being contaminated with Cd (Chen et al., 2018). Soil acidification also aggravated the bioavailability and solubility of Cd, thus enhancing Cd uptake by crops (Feng et al., 2020). Therefore, the development of cost-effective and eco-friendly remediation technologies is crucial for food safety and soil quality. In recent years, the in-situ immobilization technology through the application of soil amendments has raised wide attentions in the remediation of Cd contaminated farmlands, which could reduce the Cd uptake by plants without delaying agricultural production (Palansooriya et al., 2020). Biochar derived from bio-wastes has been widely recommended as a soil amendment (Zong et al., 2021). Amounts of nutrients (such as C, N, P, K, and Mg) in biochar can improve soil fertility and promote plant growth (Lu et al., 2015). Moreover, biochar has a large surface area and plenty of functional groups (such as -COOH, C-O and C=O), which are reactive to immobilize heavy metals, including Cd, lead (Pb), and nickel (Ni) (Wang et al., 2021). However, the high price of biochar limits its large application. In addition, the application of

biochar can not effectively change soil pH in acidic fields, thus it can not effectively reduce the bioavailability of Cd in soil (Liu et al., 2018). Oyster shell is a low-cost and largely available bio-waste product from oyster farming (Li et al., 2020). Oyster shell is a promising slow-release alkaloid, which has the outstanding effects on pH adjustment and Cd immobilization in soil (Lee et al., 2008). In this sense, we think that the joint use of biochar and oyster shell might be a low-cost and effective pathway to decrease Cd uptake by crops and improve soil biochemical quality in acidic fields.

Rice and oilseed rape are the main food and economic crops in southwest China, and the rice-oilseed rape rotation is the dominant production model (Liu et al., 2014). Previous studies mainly focused on the effects of amendments on reducing the Cd uptake by rice (Tang et al., 2020; Yin et al., 2022), while the remediation efficiency of amendments under the rice-oilseed rape rotation is little known. Based on the above opinions, a field experiment under the rice-oilseed rape rotation was designed: (1) to investigate the effects of biochar and oyster shell on Cd immobilization; (2) to evaluate the effects of biochar and oyster shell on decreasing human health risk of consuming contaminated crops; (3) to reveal the effects of biochar and oyster shell on soil biochemical properties including pH, cation exchange capacity (CEC), total organic carbon (TOC), organic matter (OM), available phosphate, available potassium, available nitrogen, and the activities of soil enzyme, so as to estimate the correlation of main parameters in the moderately polluted farmland.

2. Material and methods

2.1. Experimental site and soil properties

A field trial was conducted during 2019-2020 in a rice-oilseed rape rotation cultivated site where the soil was moderately contaminated with Cd. The field site was located in a dominant agricultural cultivation region round industrial parks in Chengdu plain, Sichuan province, China (104°18′N, 31°81′E). This region belongs to a subtropical monsoon humid climate with an average temperature of 16.1 °C and annual rainfall of about 1000 mm. The main properties of the topsoil (0 - 20 cm) collected from the site in 2019 and 2020 were shown in Table S1.

2.2. Characteristics of experimental materials

Biochar was purchased from Zhenjiang Zedi agricultural and biological Co., Ltd., which was produced from rice straw in a reactor with N₂ and 500 °C for about 4 h. Oyster shell was purchased from Fujian Mata Co., Ltd (< 0.3 mm mesh). The main properties of biochar and oyster shell were presented in Table S1. The main composition of oyster shell was shown in Table S2. The surface structures of biochar and oyster shell were analyzed by Scanning Electron Microscope (SEM, JSM-7500F). The functional groups of biochar and oyster shell were measured by Fourier Transform Infrared Spectra (Nicolet 6700). The seeds of rice "Yixiang 2115" and seeds of oilseed rape "Yiyou 15" were obtained from Rice Research Institute, Sichuan Academy of Agricultural Science.

2.3. Experimental setup

The field experiment was conducted during 2019 - 2020. The treatments were PA0 (Control), PA1 (15000 kg/ha biochar), PA2 (15000 kg/ha oyster shell) and PA4

(7500 kg/ha biochar and 7500 kg/ha oyster shell). The concentrations of biochar and oyster shell used in this study were referred to the previous report (Ameloot et al., 2014). Each experimental plot was 56 m² (7 x 8 m) and arranged in a randomized design with three replicates. Before rice planting, the amendments were sufficiently mixed with topsoil. After the harvest of rice, the oilseed rape was planted following the conventional tillage pattern without extra amendments.

2.4. Plant analysis

The rice grain and oilseed samples were dried and ground to powder. Then, 0.2 g samples were digested with HNO₃:HClO₄:HF in a mixture of 5:4:3 (v/v) and the mixture was then diluted into 10 mL with 1% HNO₃ (Wu et al., 2019b). The Cd concentrations in the mixture were determined by atomic absorption spectroscopy (AAS; VARIAN, SpecterAA-220Fs).

2.5. Soil analysis

Soil pH was determined by a pH meter (METTLER-S220) with a soil/water ratio of 5 g/25 mL. The bioavailable Cd of soil was measured by the TCLP method (Xu et al., 2020). Briefly, 2 g of soil sample was mixed with 40 mL of 0.11 M acetic acid (HOAc) and shaken for 16 h at 25 °C, 150 rpm. The mixture was centrifuged for 5 min at 8000 rpm and then the supernatant was collected to determine Cd content by AAS. Available P, available K, available N were measured according to the method described by Wu et al. (2018). Soil TOC and OM were determined by the method described by Walz et al. (2017).

In addition, activities of soil enzyme were analyzed to reflect the biological

quality in this study. Dehydrogenase activity was evaluated by the production of triphenylfornazan (TPF) at OD_{492nm} and expressed as μg TPF/g soil/24 h (Benefield et al., 1977). Acid phosphate activity was assayed by the *p*-nitrophenol (pNP) release at OD_{400nm} and expressed as μg pNP/g soil/24 h (Van Aarle and Plassard, 2010). Urease activity was determined by the NH₄-complex at OD_{578nm} and expressed as μg NH₄-N/g soil/24 h (Yan et al., 2013). Catalase activity was measured by back titration of H₂O₂ added to soil with 0.1 M KMnO₄ and expressed as mL 0.1 M KMnO₄/g soil/h (Zhang et al., 2011). Invertase activity was assayed by the amount of glucose production at OD_{508nm} and expressed as μg glucose/g soil/24 h (Wu et al., 2019b). β-galactosidase activity was measured by the released 4-methylumbelliferone (MUF) and expressed as μg MUF μmol/g soil/h (Martínez-Iñigo et al., 2009).

2.6. Human health risk assessment of consuming crops

The human health risks of consuming crops were assessed by the Hazard Quotient (HQ) according to the method introduced by Environmental Protection Agency (EPA) in the US (Wei et al., 2020). When HQ is lower than 1, it demonstrates no risk for human health (Mehdizadeh et al., 2021). Hazard Quotient values were calculated using the following equation:

- $HQ = (EF \times ED \times C \times IR)/(BW \times AT \times RfD)$
- *EF* (Exposure Frequency): 365 days/year.
- 156 ED (Exposure Duration): 70 years for adult, 7 years for children.
- 157 C: Cd concentrations in the rice grain and oilseed (mg/kg).
- Where IR (Ingestion Rate): For rice grain, 0.3892 kg/day for adult and 0.1984

- kg/day for children, respectively. For rape oil, 0.025 kg/day for adult and 0.0125
- 160 kg/days for children, respectively.
- 161 BW (Body Weight): 62.71 kg for adult male, 55.1 kg for adult female and 25.6 kg
- 162 for children.

165

170

- 163 AT (Averaging Time): 25550 days for adult and 2555 days for children.
- 164 RfD (Reference of Dose): 0.001 mg/kg for Cd.

2.7. Statistical analysis

- In this study, statistical significance was analyzed using SPSS 18.0 package, and
- means values were considered to be different when P < 0.05 using least significant
- difference (LSD). Figures were performed using Origin 8.0 (USA).

169 **3. Results**

3.1. Characteristics of soil and amendments

- The main characteristics of soil, biochar and oyster shell were shown in Table S1.
- 172 The soil was acidic soil with pH values of 5.27 5.51. The biochar and oyster shell
- used in the field study were alkaline materials and their pH values were 8.22 and 8.52,
- 174 respectively. The OM of biochar (54.15%) was significantly higher than that of soil
- 175 (3.93%) and oyster shell (1.26%). The carbon percentage of biochar was 92.50%.
- The surface of oyster shell (Figure 1a) was a filamentous layer with some
- disordered deposition, which might be calcium compounds. The structure of biochar
- 178 (Figure 1b) was lamellar and polyporous, which might be in favor of Cd absorption.
- In addition, FTIR was operated to detect functional groups of oyster shell and biochar
- 180 (Figure 1c). The characteristic peaks of calcium carbonate in oyster shell were

observed at 1427 cm⁻¹ and 879 cm⁻¹ (Lu et al., 2021). Biochar showed obvious peaks at 1089 cm⁻¹ and 790 cm⁻¹, which were related to C-O, and C-H bending vibration, respectively (Wu et al., 2019a). In addition, an obvious feature at 3436 cm⁻¹ corresponding to -OH was loaded on oyster shell and biochar (Lian et al., 2021).

3.2. Analysis of soil Cd bioavailability

To evaluate the effect of different amendments on Cd bioavailability, the concentrations of HOAc-extractable Cd in soils were determined by TCLP method (Halim, 2003). Figure 2 showed the variations of HOAc-extractable Cd with different amendments in the rice-oilseed rape rotation. Both biochar and oyster shell resulted in the reduction of HOAc-extractable Cd in soils. In the rice planting, the HOAc-extractable Cd in the PA1, PA2 and PA3 treatments was significantly decreased by 20.79%, 40.59% and 10.89%, respectively, compared to control. In the oilseed rape planting, the HOAc-extractable Cd in the PA1, PA2 and PA3 treatments was also reduced by 5.76%, 17.85% and 5.95% respectively, compared to control. The Cd immobilization efficiency in the PA3 treatment was higher than that in the PA1 treatment, which demonstrated that the addition of oyster shell could strength the Cd immobilization capacity of biochar.

3.3. Analysis of Cd contents in brown rice and oilseed

As shown in Figure 3, the application of biochar and oyster shell reduced the Cd contents in brown rice and oilseed. In the PA0 treatment, the Cd content in brown rice was 0.91 mg/kg. Compared to control (PA0), the Cd content in brown rice was decreased by 20.88% and 30.77%, respectively, in the PA1 and PA2 treatments. The

Cd content in oilseed was reduced in the PA1 and PA3, about 27.63% and 19.74% lower than that in PA0, respectively. Moreover, the cooperative application of biochar and oyster shell contributed to higher reduction of Cd in brown rice (29.67%) than that in signal biochar (20.88%).

3.4. Health risk assessment of consuming crops

Hazard Quotient values of consuming crops in different treatments were analyzed. The HQ order of consuming rice and oilseed was children > adult female > adult male, which indicated that children had more health risk than adults for the intake of contaminated crops (Figure 4). Without the application of amendments, the HQ values of consuming brown rice for adult male, adult female and children were 5.66, 6.44 and 7.07, respectively. For children, HQ values for brown rice intake in PA1, PA2 and PA3 were decreased by 20.87%, 31.11% and 29.76%, respectively, compared to control. In addition, it was also observed that the application of amendments decreased the HQ values of consuming oilseed by 17.27 - 28.14% compared to control.

3.5. Analysis of soil biochemical properties

3.5.1. Analysis of soil pH and CEC

It was observed that soil pH was weakly increased by biochar, but significantly increased by oyster shell (Figure 5a). After the oyster shell application, the soil pH increased from acidity (5.2 - 5.5) to neutral (6.9 - 7.3). Meanwhile, the cooperative application of biochar and oyster shell also increased soil pH to 7.10 - 7.24. The application of oyster shell slightly increased the CEC of soil in the rice planting, while

both oyster shell and biochar had no significant effects on the CEC of soil in the oilseed rape planting (Figure 5b).

3.5.2. Analysis of soil nutrients

To analyze the effects of amendments on soil bioavailable nutrients, the contents of TOC, OM, available P, available K, and available N were determined during the rice-oilseed rape rotation (Table S3). Biochar application slightly increased TOC and OM in the rice-oilseed rape rotation. In the rice planting, soil TOC and OM in the PA3 treatment were increased by 10.09% and 9.92%, respectively, compared to control. In the oilseed rape planting, soil TOC and OM in the PA1 treatment were enhanced by 11.06% and 11.32%, respectively, compared to control. More obviously, available P was significantly increased by the addition of oyster shell. Compared to control, the available P significantly were increased by 200.96 - 295.92% and 184.73 - 187.46%, respectively, in the PA2 and PA3 treatments.

3.5.3. Analysis of soil enzyme activities

As shown in Figure 6, adding amendments variously changed the activities of soil enzyme. In the rice-oilseed rape rotation, the application of biochar (PA1) increased the dehydrogenase activity, about 20.12 - 25.49% higher than that of control (PA0). Urease activity was markedly enhanced by the oyster shell treatment. Compared to the control, urease activity was significantly increased by 205.56 - 268.88% and 139.44 - 147.56%, respectively, in the PA2 and PA3 treatments. However, biochar had no obvious effect on the activities of acid phosphate and invertase, but oyster shell significantly reduced the acid phosphate activity by 43.30%

in the rice planting. In addition, the cooperative application of biochar and oyster shell enhanced the activities of catalase and β -galactosidase activity by 10.71 - 34.31% and 82.08 - 244.38%, respectively, compared to control.

3.6. Analysis of correlation coefficient

The Pearson correlation analysis was used to analyze the relationship among different parameters. As shown in Figure 7a, the Cd content in brown rice was positively correlated to Cd bioavailability (r = 0.90) but negatively correlated to soil pH (r = -0.83). Meanwhile, the activities of soil enzyme except acid phosphate were positively connected to available N, available P, available K, and TOC. The Figure 7b showed a weak correlation between Cd uptake by oilseed rape and Cd bioavailability. Soil pH was positively correlated to available P and β -galactosidase activity (r > 0.95), which further demonstrated that alkaline substances could increase available P and β -galactosidase activity by adjusting soil pH in acidic fields.

3.7. Cost approach for amendments

Considering the remediation of large areas of the contaminated agricultural soil, the cost of amendments is a key parameter in the practical application. The market price of biochar (> 1200 RMB/t) was much higher than that of oyster shell (500 RMB/t) (see Supplementary Materials). In this study, the dosage of amendments was 15000 kg/ha. The cost for biochar amendment was at least 1800 RMB/ha, while the joint use of biochar and oyster shell decreased the cost of amendments by 29.17%. Based on these results, the collaborative application of biochar and oyster shell might be an economical pathway to immobilize Cd and improve soil properties.

4. Discussion

269

Rice and oilseed rape are the most important crops over the globe. 270 271 Simultaneously, the rice-oilseed rape rotation was the main cultivated model in China (Huang et al., 2020). However, the Cd contamination in agricultural lands, especially 272 273 in acidic soils, has severely threatened food safety production and human health (Shi et al., 2022). Cd accumulation in the crops poses a great human health risk due to the 274 Cd uptake by crops may result in kidney damage and adverse effects on lung, 275 cardiovascular, musculoskeletal systems (Wei et al., 2020). 276 277 In-situ immobilization was an effective pathway to decrease the Cd uptake by crops by the application of amendments (Kumpiene et al., 2008). In this study, two 278 bio-wastes namely biochar and oyster shell were used to decrease the Cd uptake by 279 280 crops and modify the soil biochemical properties. The application of biochar and oyster shell both reduced the HOAc-extractable Cd in soil (Figure 2). The 281 HOAc-extractable Cd has widely used to evaluate the bioavailability of Cd in soils 282 (Liu et al., 2021). Previous studies have revealed that biochar had a great potential on 283 the Cd immobilization by surface absorption and co-precipitation (He et al., 2019; Liu 284 et al., 2018). However, the reduction of the HOAc-extractable Cd in the oyster shell 285 treatments was significantly higher than that in the biochar treatments, which might 286 result from the enhancement of soil pH in the oyster shell treatments (Lee et al., 2008). 287 Soil pH is one of the main factors influencing the bioavailability of Cd in soils 288 (Huang et al., 2020). It has been widely verified that soil pH determines the 289 solid-solution equilibria of heavy metals in soils (Zhao and Masaihiko, 2007). Oyster 290

shell has been regarding as a low-release alkaloid in soils due to it primarily consisted of CaCO₃ (Ok et al., 2010). The dissolution of CaCO₃ from oyster shell can produce hydroxyl ion (OH⁻) (Ok et al., 2010). The increase of soil pH can result to the increase of the negative soil surface charge, which easily causes an increased capacity of cationic metal adsorption (Ok et al., 2010). The precipitants of metal oxy/hydroxides could be formed due to increased hydroxyl ions (Bolan et al., 2014). The Cd uptake by crops was positively related to the Cd bioavailability in soil (Huang et al., 2020). Similar to other reports (Jing et al., 2020; Mehdizadeh et al., 2021), the Cd content in brown rice and oilseed was decreased after the application of biochar and oyster shell. Furthermore, the health risk related to the special polluted crops consumption with Cd has been estimated by HQ, and the decreased HQ values demonstrated that the human health risk of consuming crops was decreased by the application of amendments (Ma et al., 2021a). Soil nutrients play an important role on soil biochemical quality and plant growth. Phosphorus fractions are mainly dependent on soil pH, soil mineralogy and the application of phosphate fertilizer (Lee et al., 2008). The Fe-P and Al-P are the predominant forms in acidic soils, while calcium bound-P is the predominant form in alkaline soils (Dean, 1949). In acidic soils, the loosely bound phosphates are converted into Fe-P and Al-P fractions gradually owing to the re-precipitation process. Previous studies found that the content of available P reached the maximum at neutral pH soils (Lee et al., 2008). Our results showed that the addition of oyster shell markedly increased the content of available P in soils, which might be resulted from

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

the enhancement of soil pH (Table S3). Correlation analysis (Figure 7) further 313 demonstrated that available P was highly correlated to the changes of soil pH (r > 314 0.99). The contents of available K and available N also slightly increased with the 315 application of biochar and oyster shell, indicating an improvement of soil fertility. 316 317 Activities of soil enzyme have been widely used to reflect soil biological quality (Lin et al., 2021). In this study, the activities of dehydrogenase, urease, catalase and 318 β-galactosidase were increased in the treatments of biochar and oyster shell (Figure 6). 319 Dehydrogenase usually reflects the microbial degradation capacity for organic matter 320 321 (Campos et al., 2019). Urease is often used as a biochemical indicator to reflect soil fertility, which played a crucial role on soil nitrogen mineralization (Lebrun et al., 322 2012). The addition of oyster shell increased the soil pH, which usually results in the 323 324 enhancement of dehydrogenase and urease activities (Wen et al., 2021). Abd El-Azeem et al. (2013) reported that dehydrogenase activity was positively correlated 325 to soil pH. Oyster shell can raise the urease activity, thus catalyzing the hydrolysis of 326 urea to CO₂ and NH₃ with an optimum pH around 7.4 (Lee et al., 2008). Soil 327 β-galactosidase plays an important role in the microbial glycometabolism, and the 328 significant increase of β-galactosidase by the application of biochar indicates a shift in 329 the use of soil organic carbon from plant-derived sugars towards more recalcitrant C 330 compounds (Giagnoni et al., 2019). In addition, the porous structure and rich nutrients 331 of biochar can contribute to the growth of soil microorganisms, and thus might 332 increase the activities of soil enzyme (Liao et al., 2016). Moreover, the enhancement 333 of enzyme activities in biochar and oyster shell treatments might also be related to the 334

decrease of Cd biotoxicity in soil (Zhang et al., 2021). In conclusion, the enhancement of the activities of soil enzyme indicated that the cooperative application of biochar and oyster shell could improve the soil biological properties.

5. Conclusions

The current study revealed the impacts of the application of oyster shell and biochar on Cd bioavailability, Cd uptake by crops, and human health risk of consuming crops as well as soil biochemical properties during the rice-oilseed rape rotation. The application of oyster shell significantly (p < 0.05) increased soil pH and thus decreased the bioavailability of Cd in soil. The cooperative application of biochar and oyster shell significantly reduced the Cd contents and human health risk of consuming brown rice and oilseed. In addition, the application of biochar increased OM and TOC, while the addition of oyster shell was suitable to improve available P. Moreover, the activities of soil enzyme were markedly enhanced by the cooperative application of oyster shell and biochar. These results suggested that the joint application of biochar and oyster shell is a low-cost pathway to effectively reduce the Cd uptake by crops and improve soil biochemical properties.

Acknowledgements

This study was financially supported by Key Technologies Research and Development Program (CN) (2018YFC1802605), the Science and Technology Project of Sichuan Province (2022YFN0066), Chengdu Science and Technology Project (2021-YF05-00195-SN), State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2021Z030), and

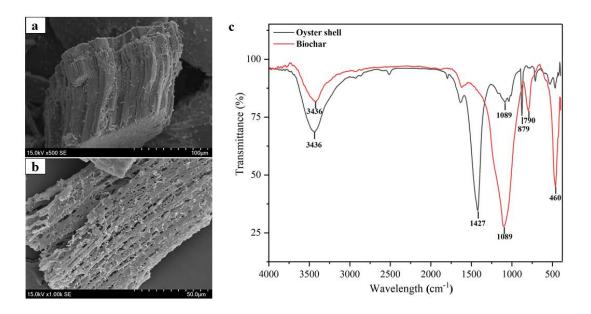
- 357 State Environmental Protection Key Laboratory of Synergetic Control and Joint
- Remediation for Soil & Water Pollution (GHBK-2020-012). The authors also wish to
- 359 thank Professor Guanglei Cheng and Hui Wang from Sichuan University for the
- 360 technical assistance.

References:

- 362 Abd El-Azeem, S. A. M., Ahmad, M., Usman, A. R. A., Kim, K.-R., Oh, S.-E., Lee, S. S., and Ok,
- 363 Y. S.: Changes of biochemical properties and heavy metal bioavailability in soil treated with
- 364 natural liming materials, Environ. Earth. Sci., 70, 3411-3420,
- 365 https://doi.org/10.1007/s12665-013-2410-3, 2013.
- 366 Ameloot, N., Sleutel, S., Case, S., Alberti, G., Mcnamara, N. P., Zavalloni, C., Vervisch, B.,
- 367 Vedove, G. D., and Neve, S. D.: C mineralization and microbial activity in four biochar field
- 368 experiments several years after incorporation, Soil Biol. Biochem., 78, 195-203
- 369 <u>https://doi.org/10.1016/j.soilbio.2014.08.004</u>, 2014.
- Benefield, C. B., Howard, P. J. A., and Howard, D. M.: The estimation of dehydrogenase activity
- in soil, Soil Biol. Biochem., 9, 67-70, https://doi.org/10.1016/0038-0717(77)90063-3, 1977.
- Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M.
- B., and Scheckel, K.: Remediation of heavy metal(loid)s contaminated soils To mobilize or to
- 374 immobilize?, J. Hazard. Mater., 266, 141-166, https://doi.org/10.1016/j.jhazmat.2013.12.018,
- 375 2014.
- 376 Campos, J. A., Peco, J. D., and García-Noguero, E.: Antigerminative comparison between
- 377 naturally occurring naphthoquinones and commercial pesticides. Soil dehydrogenase activity used
- 378 as bioindicator to test soil toxicity, Sci. Total. Environ., 694, 133672,
- 379 https://doi.org/10.1016/j.scitotenv.2019.133672, 2019.
- 380 Chen, H., Yang, X., Wang, P., Wang, Z., Li, M., and Zhao, F.-J.: Dietary cadmium intake from rice
- and vegetables and potential health risk: A case study in Xiangtan, southern China, Sci. Total.
- 382 Environ., 639, 271-277, https://doi.org/10.1016/j.scitotenv.2018.05.050, 2018.
- Dean, L. A.: Fixation of Soil Phosphorus, in: Advances in Agronomy, edited by: Norman, A. G.,
- 384 Acad. Pre., 391-411, https://doi.org/10.1016/S0065-2113(08)60754-3, 1949.

- 385 Feng, L., Yan, H., Dai, C., Xu, W., Gu, F., Zhang, F., Li, T., Xian, J., He, X., Yu, Y., Ma, M., Wang,
- 386 F., and He, Z.: The systematic exploration of cadmium-accumulation characteristics of maize
- kernel in acidic soil with different pollution levels in China, Sci. Total. Environ., 729, 138972,
- 388 https://doi.org/10.1016/j.scitotenv.2020.138972, 2020.
- 389 Giagnoni, L., Maienza, A., Baronti, S., Vaccari, F. P., Genesio, L., Taiti, C., Martellini, T.,
- 390 Scodellini, R., Cincinelli, A., Costa, C., Mancuso, S., and Renella, G.: Long-term soil biological
- 391 fertility, volatile organic compounds and chemical properties in a vineyard soil after biochar
- 392 amendment, Geoderma, 344, 127-136, https://doi.org/10.1016/j.geoderma.2019.03.011, 2019.
- Halim, C. E., Amal, R., Beydoun, D., Scott, J. A., & Low, G: Evaluating the applicability of a
- 394 modified toxicity characteristic leaching procedure (TCLP) for the classification of cementitious
- 395 wastes containing lead and cadmium, J. Hazard. Mater., 103, 125-140,
- 396 https://doi.org/10.1016/S0304-3894(03)00245-0, 2003.
- 397 He, L., Zhong, H., Liu, G., Dai, Z., Brookes, P. C., and Xu, J.: Remediation of heavy metal
- 398 contaminated soils by biochar: Mechanisms, potential risks and applications in China, Environ.
- 399 Pollut., 252, 846-855, https://doi.org/10.1016/j.envpol.2019.05.151, 2019.
- 400 Huang, S., Rao, G., Ashraf, U., He, L., Zhang, Z., Zhang, H., Mo, Z., Pan, S., and Tang, X.:
- 401 Application of inorganic passivators reduced Cd contents in brown rice in oilseed rape-rice
- 402 rotation under Cd contaminated soil, Chemosphere, 259, 127404,
- 403 <u>https://doi.org/10.1016/j.chemosphere.2020.127404.127404, 2020.</u>
- 404 Jing, F., Chen, C., Chen, X., Liu, W., Wen, X., Hu, S., Yang, Z., Guo, B., Xu, Y., and Yu, Q.:
- 405 Effects of wheat straw derived biochar on cadmium availability in a paddy soil and its
- 406 accumulation in rice, Environ. Pollut., 257, 113592, https://doi.org/10.1016/j.envpol.2019.113592.,
- 407 2020.
- 408 Kumpiene, J., Lagerkvist, A., and Maurice, C.: Stabilization of As, Cr, Cu, Pb and Zn in soil using
- 409 amendments A review, Waste Manag., 28, 215-225,
- 410 <u>https://doi.org/10.1016/j.wasman.2006.12.012</u>, 2008.
- 411 Lebrun, J. D., Trinsoutrot-Gattin, I., Vinceslas-Akpa, M., Bailleul, C., Brault, A., Mougin, C., and
- 412 Laval, K.: Assessing impacts of copper on soil enzyme activities in regard to their natural
- 413 spatiotemporal variation under long-term different land uses, Soil Biol. Biochem., 49, 150-156,

- 414 https://doi.org/10.1016/j.soilbio.2012.02.027, 2012.
- Lee, C. H., Lee, D. K., Ali, M. A., and Kim, P. J.: Effects of oyster shell on soil chemical and
- biological properties and cabbage productivity as a liming materials, Waste Manag, 28, 2702-2708,
- 417 https://doi.org/10.1016/j.wasman.2007.12.005, 2008.
- 418 Li, Y., Huang, P., Guo, S., and Nie, M.: A promising and green strategy for recycling waste oyster
- shell powder as bio-filler in polypropylene via mycelium-enlightened interfacial interlocking, J.
- 420 Clean. Prod., 272, 122694, https://doi.org/10.1016/j.jclepro.2020.122694, 2020.
- Lian, W., Li, H., Yang, J., Joseph, S., Bian, R., Liu, X., Zheng, J., Drosos, M., Zhang, X., Li, L.,
- Shan, S., and Pan, G.: Influence of pyrolysis temperature on the cadmium and lead removal
- behavior of biochar derived from oyster shell waste, Bioresource Technology Reports, 15, 100709,
- 424 <u>https://doi.org/10.1016/j.biteb.2021.100709</u>, 2021.
- Liao, N., Li, Q., Zhang, W., Zhou, G. W., Ma, L. J., Min, W., Ye, J., and Hou, Z. N.: Effects of
- 426 biochar on soil microbial community composition and activity in drip-irrigated desert soil, Eur. J.
- 427 Soil Biol., 72, 27-34, https://doi.org/10.1016/j.ejsobi.2015.12.008, 2016.
- 428 Lin, H., Liu, C., Li, B., and Dong, Y.: Trifolium repens L. regulated phytoremediation of heavy
- 429 metal contaminated soil by promoting soil enzyme activities and beneficial rhizosphere associated
- 430 microorganisms, J. Hazard. Mater., 402, 123829, https://doi.org/10.1016/j.jhazmat.2020.123829,
- 431 2021.
- Liu, C., Lin, H., Li, B., Dong, Y., Yin, T., and Chen, X.: Endophyte inoculation redistributed
- 433 bioavailable Cd and nutrient in soil aggregates and enhanced Cd accumulation in Phytolacca
- 434 acinosa, J. Hazard. Mater., 416, 125952, https://doi.org/10.1016/j.jhazmat.2021.125952, 2021.
- Liu, H.-B., Gou, Y., Wang, H.-Y., Li, H.-M., and Wu, W.: Temporal changes in climatic variables
- and their impact on crop yields in southwestern China, Int. J. Biometeorol., 58, 1021-1030,
- 437 https://doi.org/10.1007/s00484-013-0686-3, 2014.
- Liu, H., Xu, F., Xie, Y., Wang, C., Zhang, A., Li, L., and Xu, H.: Effect of modified coconut shell
- 439 biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy
- 440 metals contaminated soil, Sci. Total. Environ., 645, 702-709,
- 441 <u>https://doi.org/10.1016/j.scitotenv.2018.07.115</u>, 2018.
- Lu, H., Li, Z., Fu, S., Méndez, A., Gascó, G., and Paz-Ferreiro, J.: Combining phytoextraction and


- 443 biochar addition improves soil biochemical properties in a soil contaminated with Cd,
- 444 Chemosphere, 119, 209-216, https://doi.org/10.1016/j.chemosphere.2014.06.024, 2015.
- Lu, M., Shi, X., Feng, Q., Li, X., Lian, S., Zhang, M., and Guo, R.: Effects of humic acid modified
- 446 oyster shell addition on lignocellulose degradation and nitrogen transformation during digestate
- 447 composting, Bioresource Technol., 329, 124834, https://doi.org/10.1016/j.biortech.2021.124834,
- 448 2021.
- Ma, L., Liu, Y., Wu, Y., Wang, Q., Sahito, Z. A., Zhou, Q., Huang, L., Li, T., and Feng, Y.: The
- 450 effects and health risk assessment of cauliflower co-cropping with Sedum alfredii in cadmium
- 451 contaminated vegetable field, Environ. Pollut., 268, 115869,
- 452 https://doi.org/10.1016/j.envpol.2020.115869, 2021a.
- Ma, Y., Ran, D., Shi, X., Zhao, H., and Liu, Z.: Cadmium toxicity: A role in bone cell function and
- 454 teeth development, Sci. Total. Environ., 769, 144646,
- 455 <u>https://doi.org/10.1016/j.scitotenv.2020.144646</u>, 2021b.
- 456 Martínez-Iñigo, M. J., Pérez-Sanz, A., Ortiz, I., Alonso, J., Alarcón, R., García, P., and Lobo, M.
- 457 C.: Bulk soil and rhizosphere bacterial community PCR-DGGE profiles and β-galactosidase
- 458 activity as indicators of biological quality in soils contaminated by heavy metals and cultivated
- 459 with Silene vulgaris (Moench) Garcke, Chemosphere, 75, 1376-1381,
- 460 https://doi.org/10.1016/j.chemosphere.2009.03.014, 2009.
- 461 Mehdizadeh, L., Farsaraei, S., and Moghaddam, M.: Biochar application modified growth and
- 462 physiological parameters of Ocimum ciliatum L. and reduced human risk assessment under
- 463 cadmium stress, J. Hazard. Mater., 409, 124954,
- 464 https://doi.org/10.1016/j.jhazmat.2020.124954.124954, 2021.
- 465 Mou, H., Chen, W., Xue, Z., Li, Y., Ao, T., and Sun, H.: Effect of irrigation water system's
- 466 distribution on rice cadmium accumulation in large mild cadmium contaminated paddy field areas
- 467 of Southwest China, Sci. Total. Environ., 746, 141248,
- 468 <u>https://doi.org/10.1016/j.scitotenv.2020.141248</u>, 2020.
- 469 Ok, Y. S., Oh, S.-E., Ahmad, M., Hyun, S., Kim, K.-R., Moon, D. H., Lee, S. S., Lim, K. J., Jeon,
- 470 W.-T., and Yang, J. E.: Effects of natural and calcined oyster shells on Cd and Pb immobilization
- 471 in contaminated soils, Environ. Earth. Sci., 61, 1301-1308,

- 472 https://doi.org/10.1007/s12665-010-0674-4, 2010.
- 473 Palansooriya, K. N., Shaheen, S. M., Chen, S. S., Tsang, D. C. W., Hashimoto, Y., Hou, D. Y.,
- Bolan, N. S., Rinklebe, J., and Ok, Y. S.: Soil amendments for immobilization of potentially toxic
- 475 elements in contaminated soils: A critical review, Environ Int, 134,
- 476 https://doi.org/10.1016/j.envint.2019.105046, 2020.
- Shi, J., Du, P., Luo, H., Wu, H., Zhang, Y., Chen, J., Wu, M., Xu, G., and Gao, H.: Soil
- 478 contamination with cadmium and potential risk around various mines in China during 2000–2020,
- 479 J. Environ. Manage., 310, 114509, https://doi.org/10.1016/j.jenvman.2022.114509, 2022.
- Tang, X., Shen, H., Chen, M., Yang, X., Yang, D., Wang, F., Chen, Z., Liu, X., Wang, H., and Xu,
- 481 J.: Achieving the safe use of Cd- and As-contaminated agricultural land with an Fe-based biochar:
- 482 A field study, Sci. Total Environ., 706, 135898, https://doi.org/10.1016/j.scitotenv.2019.135898,
- 483 2020.
- 484 van Aarle, I. M. and Plassard, C.: Spatial distribution of phosphatase activity associated with
- ectomycorrhizal plants is related to soil type, Soil Biol. Biochem., 42, 324-330,
- 486 https://doi.org/10.1016/j.soilbio.2009.11.011, 2010.
- 487 Walz, J., Knoblauch, C., Boehme, L., and Pfeiffer, E.-M.: Regulation of soil organic matter
- 488 decomposition in permafrost-affected Siberian tundra soils Impact of oxygen availability,
- freezing and thawing, temperature, and labile organic matter, Soil Biol. Biochem., 110, 34-43,
- 490 <u>https://doi.org/10.1016/j.soilbio.2017.03.001</u>, 2017.
- 491 Wang, J., Shi, L., Zhai, L., Zhang, H., Wang, S., Zou, J., Shen, Z., Lian, C., and Chen, Y.: Analysis
- 492 of the long-term effectiveness of biochar immobilization remediation on heavy metal
- 493 contaminated soil and the potential environmental factors weakening the remediation effect: A
- 494 review, Ecotox. Eviron. Safe., 207, 111261, https://doi.org/10.1016/j.ecoenv.2020.111261, 2021.
- Wei, R., Wang, X., Tang, W., Yang, Y., Gao, Y., Zhong, H., and Yang, L.: Bioaccumulations and
- 496 potential human health risks assessment of heavy metals in ppk-expressing transgenic rice, Sci.
- 497 Total Environ., 710, 136496, https://doi.org/10.1016/j.scitotenv.2020.136496, 2020.
- Wen, E., Yang, X., Chen, H., Shaheen, S. M., Sarkar, B., Xu, S., Song, H., Liang, Y., Rinklebe, J.,
- 499 Hou, D., Li, Y., Wu, F., Pohořelý, M., Wong, J. W. C., and Wang, H.: Iron-modified biochar and
- 500 water management regime-induced changes in plant growth, enzyme activities, and

- 501 phytoavailability of arsenic, cadmium and lead in a paddy soil, J. Hazard. Mater., 407, 124344,
- 502 https://doi.org/10.1016/j.jhazmat.2020.124344, 2021.
- 503 Wu, B., Hou, S., Peng, D., Wang, Y., Wang, C., Xu, F., and Xu, H.: Response of soil
- 504 micro-ecology to different levels of cadmium in alkaline soil, Ecotoxicol Environ Saf, 166,
- 505 116-122, https://doi.org/10.1016/j.ecoenv.2018.09.076, 2018.
- 506 Wu, B., Wang, Z., Zhao, Y., Gu, Y., Wang, Y., Yu, J., and Xu, H.: The performance of
- 507 biochar-microbe multiple biochemical material on bioremediation and soil micro-ecology in the
- 508 cadmium aged soil, Sci. Total Environ., 686, 719-728,
- 509 https://doi.org/10.1016/j.scitotenv.2019.06.041, 2019a.
- 510 Wu, B., Wang, Z., Zhao, Y., Gu, Y., Wang, Y., Yu, J., and Xu, H.: The performance of
- 511 biochar-microbe multiple biochemical material on bioremediation and soil micro-ecology in the
- 512 cadmium aged soil, Sci. Total Environ., 686, 719-728,
- 513 https://doi.org/10.1016/j.scitotenv.2019.06.041, 2019b.
- 514 Xu, M., Zhao, Z., Song, Y., Li, J., You, Y., and Li, J.: Evaluation of ferrihydrite-humic acid
- 515 coprecipitate as amendment to remediate a Cd- and Pb-contaminated soil, Geoderma, 361, 114131,
- 516 https://doi.org/10.1016/j.geoderma.2019.114131, 2020.
- Yan, J., Quan, G., and Ding, C.: Effects of the Combined Pollution of Lead and Cadmium on Soil
- 518 Urease Activity and Nitrification, Procedia Environ. Sci., 18, 78-83,
- 519 <u>https://doi.org/10.1016/j.proenv.2013.04.011</u>, 2013.
- 520 Yang, Y., Li, Y., Dai, Y., Wang, M., Chen, W., and Wang, T.: Historical and future trends of
- 521 cadmium in rice soils deduced from long-term regional investigation and probabilistic modeling, J.
- 522 Hazard. Mater., 415, 125746, https://doi.org/10.1016/j.jhazmat.2021.125746, 2021.
- 523 Yin, Z., Sheng, H., Xiao, H., Xue, Y., Man, Z., Huang, D., and Zhou, Q.: Inter-annual reduction in
- 524 rice Cd and its eco-environmental controls in 6-year biannual mineral amendment in subtropical
- 525 double-rice cropping ecosystems, Environ. Pollut., 293, 118566,
- 526 https://doi.org/10.1016/j.envpol.2021.118566, 2022.
- 527 Zhang, C., Liu, G., Xue, S., and Song, Z.: Rhizosphere soil microbial activity under different
- 528 vegetation types on the Loess Plateau, China, Geoderma, 161, 115-125,
- 529 https://doi.org/10.1016/j.geoderma.2010.12.003, 2011.

Zhang, M., Zhang, L., Riaz, M., Xia, H., and Jiang, C.: Biochar amendment improved fruit quality and soil properties and microbial communities at different depths in citrus production, J. Clean. Prod., 292, 126062, https://doi.org/10.1016/j.jclepro.2021.126062, 2021. Zhao, X.-L. and Masaihiko, S.: Amelioration of Cadmium Polluted Paddy Soils by Porous Hydrated Calcium Silicate, Water, Soil Poll., 183, 309-315, Air, https://doi.org/10.1007/s11270-007-9379-z, 2007. Zong, Y., Xiao, Q., and Lu, S.: Biochar derived from cadmium-contaminated rice straw at various pyrolysis temperatures: Cadmium immobilization mechanisms and environmental implication, Bioresource Techno., 321, 124459, https://doi.org/10.1016/j.biortech.2020.124459, 2021.

- 559 Figure captions:
- Figure 1 SEM images of oyster shell (a) and biochar (b) and FTIR spectra (c) of
- oyster shell and biochar.
- Figure 2 The effects of amendments on Cd bioavailability in soil. Dots represent the
- value of each sample. Bars followed with different lowercase letters (a c) and capital
- letters (A, B) indicated significant ($p \le 0.05$) difference among different treatments in
- 565 rice planting and oilseed rape planting according to the LSD test. Values represent
- 566 means \pm standard deviation.
- Figure 3 The effects of amendments on Cd contents in brown rice (a) and oilseed (b).
- Dots represent the value of each sample. Bars with different lowercase letters
- indicated significant (p < 0.05) difference among different treatments according to the
- LSD test. Values represent means \pm standard deviation.
- Figure 4 The effects of different amendments on the HQ of grown rice and oilseed.
- Mean with different lowercase letter indicated significant (p < 0.05) difference from
- each other according to the LSD test. Values represent means \pm standard deviation.
- Figure 5 The effects of different amendments on soil pH (a) and CEC (b). Dots
- 575 represent the value of each sample. Bars followed with different lowercase letters (a -
- 576 c) and capital letters (A, B) indicated significant ($p \le 0.05$) difference among different
- 577 treatments in rice planting and oilseed rape planting according to the LSD test. Values
- represent means \pm standard deviation.
- Figure 6 The effects of different amendments on the activities of soil enzyme. Dots
- represent the value of each sample. Bars followed with different lowercase letters (a -
- c) and capital letters (A-C) indicated significant ($p \le 0.05$) difference among different
- treatments in rice planting and oilseed rape planting according to the LSD test. Values
- represent means \pm standard deviation.
- Figure 7 The correlation of investigated parameters in rice planting (a) and
- rice-oilseed planting (b)

Figure 1 SEM images of oyster shell (a) and biochar (b) and FTIR spectra (c) of oyster shell and biochar.

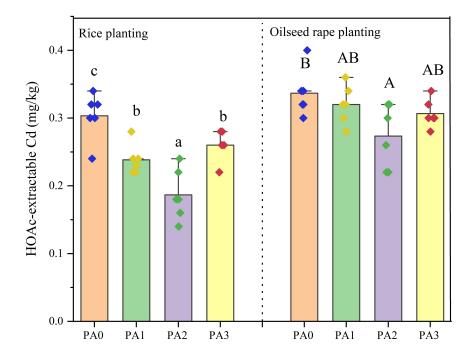


Figure 2 The effects of amendments on Cd bioavailability in soil. Dots represent the value of each sample. Bars followed with different lowercase letters (a - c) and capital letters (A, B) indicated significant ($p \le 0.05$) difference among different treatments in rice planting and oilseed rape planting according to the LSD test. Values represent means \pm standard deviation.

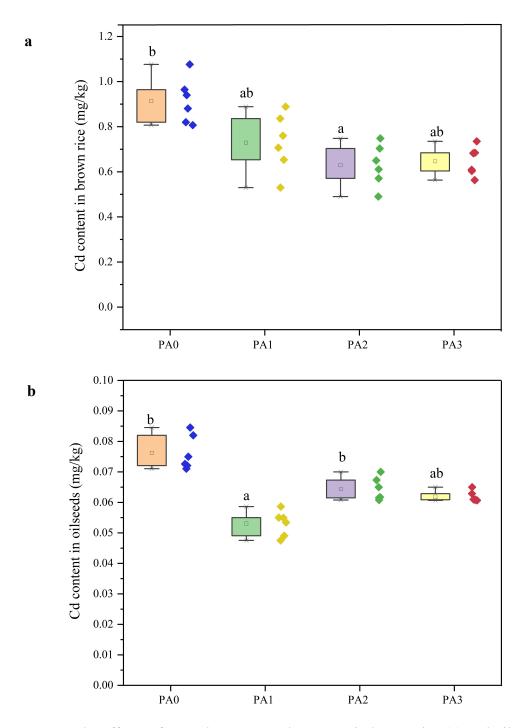
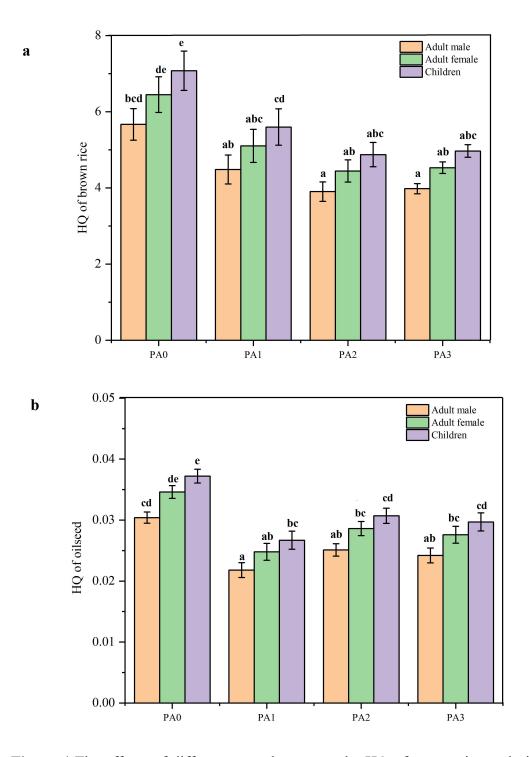



Figure 3 The effects of amendments on Cd contents in brown rice (a) and oilseed (b). Dots represent the value of each sample. Bars with different lowercase letters indicated significant (p < 0.05) difference among different treatments according to the LSD test. Values represent means \pm standard deviation.

Figure 4 The effects of different amendments on the HQ of grown rice and oilseed. Mean with different lowercase letter indicated significant (p < 0.05) difference from each other according to the LSD test. Values represent means \pm standard deviation.

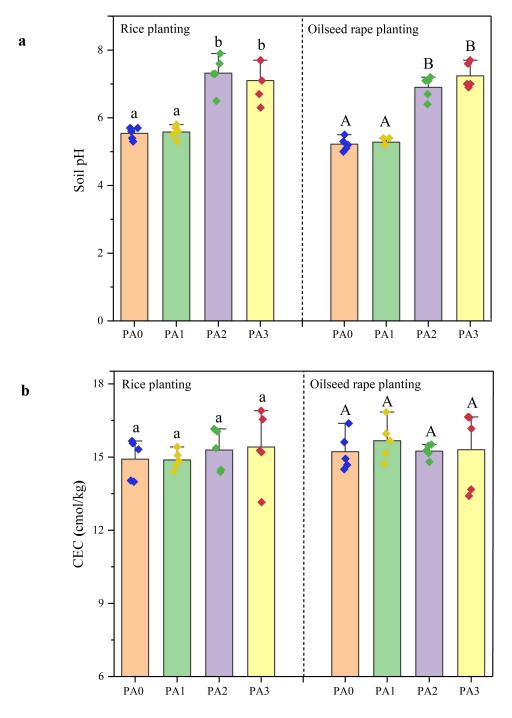


Figure 5 The effects of different amendments on soil pH (a) and CEC (b). Dots represent the value of each sample. Bars followed with different lowercase letters (a - c) and capital letters (A, B) indicated significant ($p \le 0.05$) difference among different treatments in rice planting and oilseed rape planting according to the LSD test. Values represent means \pm standard deviation.

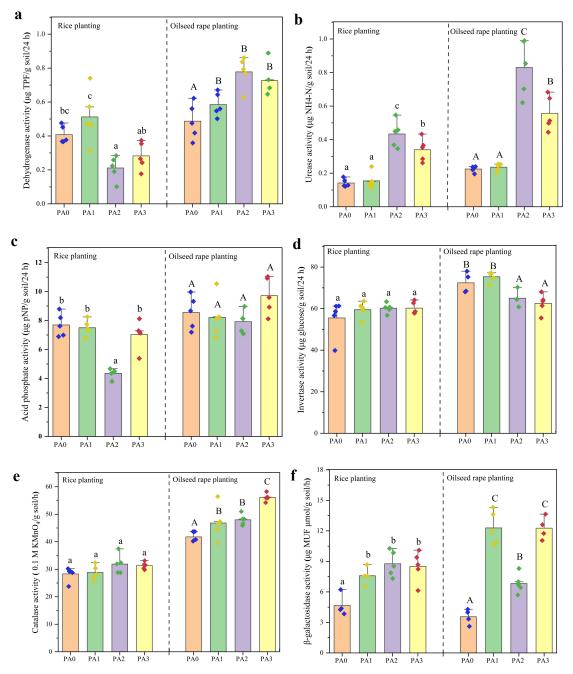
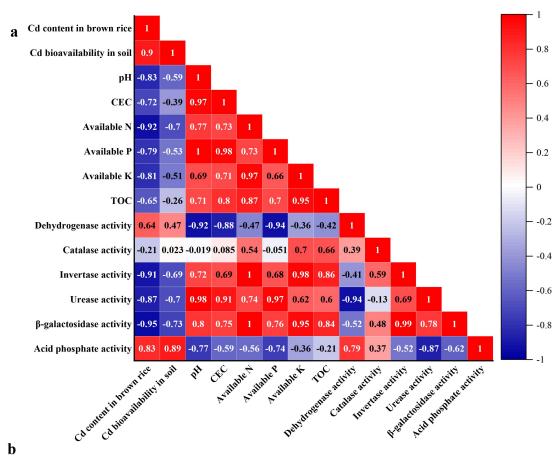



Figure 6 The effects of different amendments on the activities of soil enzyme. Dots represent the value of each sample. Bars followed with different lowercase letters (a - c) and capital letters (A-C) indicated significant ($p \le 0.05$) difference among different treatments in rice planting and oilseed rape planting according to the LSD test. Values represent means \pm standard deviation.

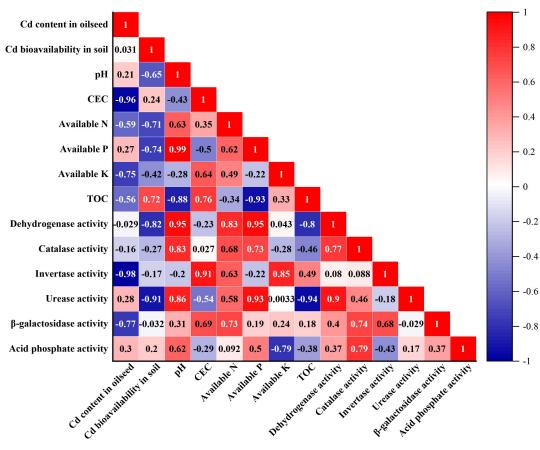


Figure 7 The correlation of investigated parameters in rice planting (a) and

rice-oilseed rape planting (b).

Code/Data availability

Data are available upon request to the authors.

Author contribution

Bin Wu: Investigation, Writing Original Draft, Supervision

Jia Li: Writing - Review & Editing

Mingping Sheng: Investigation

He Peng: Investigation, Visualization

Dinghua Peng: Investigation, Data Curation

Heng Xu: Conceptualization, Resources, Funding acquisition

Declaration of interests

The authors declare that they have no known competing financial interests or

personal relationships that could have appeared to influence the work reported in this

paper.