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Abstract. Biological soil crusts (biocrusts) composed of cyanobacteria, bacteria, algae, fungi, lichens, and 

bryophytes stabilize the soil surface. This effect has mainly been studied in arid climates, where biocrusts 

constitute the main biological agent to stabilize and connect soil aggregates. Besides, biocrusts are an integral part 20 

of the soil surface under mediterranean and humid climate conditions, mainly covering open spaces in forests and 

on denudated lands. They often develop after vegetation disturbances, when their ability to compete with vascular 

plants increases, acting as pioneer communities and affecting the stability of soil aggregates. To better understand 

how biocrusts mediate changes in soil aggregate stability under different climate conditions, we analyzed soil 

aggregate samples taken under biocrust communities from four national parks in Chile along a large climatic 25 

gradient ranging from (north to south) arid (Pan de Azúcar), semi-arid (Santa Gracia), mediterranean (La 

Campana) to humid (Nahuelbuta). Biocrust communities showed a stabilizing effect on the soil aggregates in dry 

fractions for the three northern and the wet aggregates for the southernmost sites. Here, permanent vascular plants 

and higher contents of organic carbon and nitrogen in the soil control aggregate stability more than biocrusts, 

which are in intense competition to higher plant communities. Moreover, we found an increase in stability for 30 

edge aggregate size classes (<2.0 mm and 9.5 – 30.0 mm). The geometric mean diameter of the soil aggregates 

showed a clear effect due to the climatic gradient, indicating that the aggregate stability presents a log-normal 

instead of a normal distribution, with a trend of low change between aggregate size fractions. Based on our results, 

we assume that biocrusts affect the soil structure in all climates. Their role for aggregate stability is masked under 

humid conditions by higher vegetation and organic matter contents in the topsoil.  35 
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1. Introduction 

Soil aggregation is determined and driven by a multitude of both biotic and abiotic factors (Six et al., 2004; 

Totsche et al., 2018). An increase in stability directly infers with the content 

of organic matter (Tisdall and Oades, 1982; Bartoli et al., 1992), 

clays (Scholten, 1997), calcium carbonates, gypsum, Fe- and Al-oxides, hydroxides, and oxyhydroxides (Dalal 40 

and Bridge, 2020; Oades and Waters, 1991). The electrolytes present in the soil solution have a variable effect on 

aggregation stability, mainly depending on ion valence and ion specificity, expressed in characteristics such as 

electrical conductivity, type of cations, sodium adsorption ratio, pH, etc. (Liu et al., 2020). Also climatic 

processes can modify the stability of aggregates, for example 

cycles of wetting and drying in semi-arid and sub-humid regions, or freezing and thawing in temperate 45 

regions (Six et al., 2004). Nevertheless, limited detailed and quantitative information is available on the 

association between the composition of the humic substances and aggregate distribution for soils spanning a broad 

range of climatic gradients (i.e., temperature and precipitation).  

Few studies address the stability of soil aggregates along a climatic gradient directly. For example, Jing et al. 

(2021) studied the stability of aggregates along a precipitation gradient (semi-arid: 390 mm y-1 to semi-humid: 50 

526 mm y-1) along the Loess Plateau in China, where the semi-humid condition showed an increase in the stability 

of aggregates. Wei et al. (2020) investigated aggregation along a climatic gradient (temperate: MAT 13.7°C, 

MAP: 650 mm y-1; tropical: MAT 24.2°C, MAP: 1722 mm y-1) with heavy texture soils (silty clay loam, silty 

clay, and clay) under constant land use in central-southern China and found an increase in macroagregates from 

the temperate region (MAT: 13.7°C, MAP 650 mm y-1) and the subtropical (MAT:16.8°C, MAP: 1577 mm y-1) 55 

and then a steady decrease until the tropical region (MAT°C: 24.2°C, MAP: 1722 mm y -1). The connection 

between aggregate stability, biota, and organic matter dynamics mostly depends on climate (Amézketa, 1999; Six 

et al., 2004). In the long term, climate affects the structural stability of the soil via the composition and dynamics 

of vegetation (Amézketa, 1999). Moreover, pedogenesis and the age of the soil have a cumulative effect on soil 

structuring given by processes like accumulation of organic matter, clay migration, and acidification (Lin, 2011). 60 

Finally, land use and soil management determine the structure and stability of the soil surface by magnitude, 

frequency, and duration of external disturbances, for example, plowing (Bronick and Lal, 2005). 

In recent years, biological soil crusts (biocrusts) have gained special interest as a stabiliser of soil 

aggregates. Such biocrusts are highly variable communities of microscopic 

(cyanobacteria, algae, fungi, and bacteria) and macroscopic (lichens, bryophytes) organisms found on the surface 65 

and in the upper centimeters of the soil (Gao et al., 2017). They stabilize the soil surface (Garcia-Pichel et al., 

2016), especially in arid climates, where biocrusts are the main biological agents for consolidating and connecting 

soil aggregates (Belnap and Büdel, 2016). However, biocrusts are also present in more mesic regions (e.g., pine 

barrens, serpentine soils, temperate steppe) (Belnap et al., 2016), but due to their limited ability to compete for 

light, they are mainly relegated to open spaces or interspaces between vascular plants where sunlight reaches the 70 

soil surface (Malam Issa et al., 1999). 

Because of their simple structure, biocrusts are present in a wide variety of climatic conditions. Biocrust 

organisms lack specialized desiccation control structures, such as stomata or impermeable cuticles, so their water 
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content depends on the humidity in the surrounding environment (Thielen et al., 2021). However, low water 

demand, high drought tolerance (Chen et al., 2020), the ability to grow actively only when water is available, and 75 

to recover without physiological damage even after complete drying out for an extended period (Oliver et al., 

2005) compensate the lack of dedicated structures. For this reason, biocrusts form an almost continuous layer in 

arid regions where water availability limits vascular plant cover (Colesie et al., 2014; Grote et al., 2010). By 

slightly increasing the water availability, areas covered by plants and biocrusts increase in self-organized patterns 

where both coexist. However, when water demand is not restrained anymore, vascular plants have an advantage 80 

in the use of light due to their canopy development, which leads to a decline of biocrusts (Chen et al., 

2018). 

Their cover and composition strongly depend on water availability (Bowker et al., 2016). Under dry 

conditions, with high potential evapotranspiration, biocrusts are dominated by cyanobacteria, bacteria, and 

micro-fungi, with few bryophytes or lichens present. However, the occurrence of lichens is not restricted to more 85 

humid locations but lichens were also found in arid regions like Pan de Azucar in northern Chile (Jung et al., 

2020b; Jung et al., 2020a)

. 

It implies that the external morphology of the biocrusts 

ranges from smooth to rugose (Chamizo et al., 2016). In terms of soil conditions, the water-holding capacity 90 

determines how much water can be stored in the soil. Typical sources of soil water are precipitation in general, 

and, more specifically at valley bottoms with close connection to the groundwater table, also groundwater. Further, 

available water for lichen growth can be provided by fog and dew (Jung et al., 2019). 

Pore space and pore size and 

following water-holding capacity of a soil largely depends on the parent material and its degree of weathering. 95 

Thus, soil formation indirectly controls the distribution and composition of biocrusts at ecoregional and local 

scales (Bowker et al., 2016). For instance, Steven et al. (2013) showed that the composition of biocrust 

communities differed at vertical scales of a few centimeters in soils with different parent material origins, while 

Bowker et al. (2016) conclude that heterogeneous distributions in parent materials result in abrupt transitions in 

biocrust distribution and cover. 100 

Biocrusts can be understood as an organic-sedimentary system within the topsoil where the inorganic and the 

organic part play dynamic roles in determining the architecture, evolution, and properties of the system, including 

structure and aggregate stability. On a small spatial scale, biocrusts interact with the soil system in nitrogen and 

carbon cycling (Barger et al., 2016). Globally, Elbert et al. (2012) pointed out that cryptogamic covers take up 3.9 

Pg C per year. The main processes of nitrogen enrichment are biological fixation and dust capture, while nitrogen 105 

losses typically appear via dissolution, volatilization, and erosional loss (Barger et al., 2016). Photosynthesis is 

the most crucial carbon fixation process (Elbert et al., 2012; Porada et al., 2014), and soil erosion and biological 

decomposition are the primary loss source of carbon and other nutrients (Li et al., 2008). 

Biocrusts affect soil erosion acting as a physical barrier that shields the soil from the direct exposition to water 

and wind (Seitz et al., 2016), providing protection to the effect of raindrops and thus splash erosion (Seitz et al., 110 

2017; Goebes et al., 2015) and modulating the abrasive effect of wind and surface runoff (Belnap and Büdel, 

2016). At the same time, biocrusts control water flow across the landscape and through the soil matrix (Thielen 
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et al., 2021; Eldridge et al., 2020). Eldridge et al. (2000) described a decrease in surface runoff and an increase in 

water infiltration in the presence of biocrusts under semi-arid conditions, related to a reduction in sediment 

discharge. The influence of biocrusts on the composition of the soil porosity is variable and depends on its stage 115 

of development and composition. In some cases, this structuration generates discontinuities that hinder the flow 

of water in the soil, while in others, it generates a decrease in the tortuosity that is reflected in a rapid infiltration 

(Fischer et al., 2013). Water infiltration usually is inversely related to surface runoff (Lichner et al., 2012). The 

successional stage of biocrusts affects water repellency compared to bare soil (Drahorad et al., 2013). It has been 

observed that with the development of biocrusts, the water repellency increased, and the sorptivity and 120 

conductivity decreased (Fischer et al., 2012; Lichner et al., 2012). Therefore, biocrusts affect soil erosion and 

hydrology through a wide variety of processes (Belnap and Büdel, 2016). 

In regards to the stability of the soil surface, biocrusts further have a binding effect on aggregates and can form 

coherent structures (Belnap and Büdel, 2016). Typically, the organic carbon in the form of exo-polysaccharides 

or structural filaments of the different organisms present within biocrust communities causes soil stabilization 125 

(Garcia-Pichel et al., 2016). Other structure-forming processes due to biocrusts, although to a lesser 

extent, are the compressive and drying action on the soil matrix and the pH-dependent dissolution of cementing 

salts (Bowker et al., 2016). The biocrusts-induced soil aggradation results in the formation of a defined layer, 

increasing the soil resistance and resilience to wind and water (Rosentreter et al., 2016). 

Biocrusts stabilize individual aggregate units through different mechanisms depending on their species 130 

composition (Garcia-Pichel et al., 2016). For instance, bacteria, cyanobacteria and also green-algae play a 

crucial role in forming and stabilizing aggregates by extracellular polymeric substances that glue soil particles 

together  (Six et al., 2004; Lewin, 1956) . Vegetal debris serves as aggregation cores where the soil 

microorganisms use it as an energy source, but rapid decomposition is limited by the interaction with the inorganic 

matrix (Oades and Waters, 1991). On the other hand, fungi are important in forming 135 

soil aggregates due to their hyphal structure, which physically enmeshes microaggregates and soil particles 

(Totsche et al., 2018). In summary, soil aggregate stabilization processes are dynamic and 

occur at different tempral and spatial scales, where an aggregate of soil particles is 

built up of structural units of various sizes held together by various binding agents

. 140 

In this study, we investigate how and to what extent biocrusts under different climatic conditions stabilize the soil 

surface. Therefore, we compare the stability of macroaggregates and varying soil properties in topsoil with or 

without biocrust cover along a climatic gradient from arid to humid climate conditions along the Chilean Coastal 

Range. We test the following hypotheses: 

(i) if biocrusts cover the soil surface, soil aggregates show a higher stability because the biocrusts protect 145 

the soil surface physically, shelter soil organic matter within aggregates, modify the structure of 

microbial communities, and change water flow into the soil, 

(ii) if the climate is arid, the effect of biocrusts on the soil surface is most pronounced because other sources 

of organic matter are at minimum and biocrusts represent the main soil cover, and 
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(iii)  if the humidity of the climate increases, the stabilizing effects of biocrust are reduced, although without 150 

disappearing entirely, because water availability increases and higher vegetation hinder the growth of 

biocrusts.  



6 
 

2. Materials and methods 

2.1. Study sites and experimental settings 

In order to assess the climatic effect on soil and its interactions with biocrusts, four study sites distributed between 155 

latitudes from 26°06′S to 37°48′S and over 1300 km were established in the Chilean Coastal Range: Pan de Azúcar 

National Park (PA), Santa Gracia Natural Reserve (SG), La Campana National Park (LC) and Nahuelbuta National 

Park (NA), corresponding to arid, semi-arid, mediterranean and humid climates, respectively (Bernhard et al., 

2018). 

The study sites are comparable in geology, geomorphology, land use, and glacial and volcanic influence (Bernhard 160 

et al., 2018). The parent material in all the study sites is granitoid, keeping this factor of soil formation nearly 

constant along the studied gradient (Oeser et al., 2018). The dominant topography is generally fluvial valleys, and 

the sites had no glacial influence during the last glaciation (Hulton et al., 2002). The sites are located within nature 

protection areas, with limited anthropogenic influence compared to the surrounding areas. Despite this, the 

occasional entry of cows to LC (Rundel and Weisser, 1975) and goats to SG (Armesto et al., 2007) has been 165 

reported. These conditions allow us to focus on the environmental effect on two other soil-forming factors, i.e., 

climate and vegetation. 

The mean annual temperature (MAT) decreases from north to south (PA: 16.8 °C, SG: 13.7 °C, LC: 14.1 °C, NA: 

6.6 °C). The mean annual precipitation (MAP) in the study sites increases from north to south (PA: 12 mm yr-1, 

SG: 66 mm yr-1, LC: 367 mm yr-1, NA: 1469 mm yr-1) with similar rainfalls distribution mostly 170 

concentrated in winter months (May to August) (Bernhard et al., 2018). The elevation of the sites increases from 

north to south (PA: 329 – 351 m a.s.l., SG: 642 – 720 m a.s.l., LC: 708 – 732 m a.s.l., NA: 1200 – 1270 m a.s.l.). 

Paleoclimate modeling studies (Mutz et al., 2018) indicate that these climate patterns have been persistent since 

the late Pliocene; thus, the study sites represent the long-term impact of climate on the soil (Ewing et al., 2006). 

Bernhard et al. (2018) classified soils in the study sites as Regosols in PA, Cambisols for SG and LC, and 175 

Umbrisols in NA. In general, pedogenic processes such as soil depth, clay contents, organic matter accumulation, 

porosity, and activity ratio are correlated with the humidity of the site. 

For each of the 4 study sites, 5 plots of 1 x 1 m were established as replicates. Each plot was located in the top-

slope position with south-facing exposition, considering the presence of site-typical biological soil crust 

communities, similar slope and aspect, lack of anthropogenic disturbance, and a maximum distance of 30 m 180 

between each plot. Each plot included patches with at least the size of the samples with 100% biocrust cover 

(BSC+), and additionally, a nearby point without biocrust cover (BSC-) was defined as control. 

2.2. Biocrust sampling and classification 

Biocrust patches of approximately 100 cm2 were identified according to Lange and Belnap (2016) and collected 

in the field by carefully detaching the biocrust layer, removing the loose soil 185 

and storing it in paper envelopes after air-drying for every research 

plot. Samolov et al. (2020) describes the a biocrusts dominance in PA with cover up to 40%. With the other study 

sites dominated with higher vegetation that limits the cover of biocrust up to 15% in SG and 5% in LC and NA. 

Sampled communities showed all typical biocrust classes from cyanobacteria, algae, fungi, lichens, liverworts, 
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and mosses. The species composition further showed a graduating change from lichen-dominating biocrusts in 190 

the northernmost site to bryophyte-dominating biocrusts in the southernmost site. Biocrusts in NA were 

specifically found in zones of forest soil disturbance. Bryophytes were sampled with rhizoids down to 5 mm 

depth; all other species down to a depth of 2 mm. Dominant macroscopic biocrust species were determined for 

each of the four sites to the genus level by morphological characteristics using a stereomicroscope (Leitz TS, 

Wetzlar, Germany), a transmitted-light microscope (Leitz Laborlux S, Wetzlar, Germany), and ultraviolet light. 195 

Species groups were separated into bryophytes (Lightowlers, 1985; He, 1998; Ochyra and Matteri, 2001; 

Cuvertino et al., 2012; Fariña and Ardiles, 2014) and lichens (Galloway and Quilhot, 2009) and assigned to the 

different regions (Table 1). Baumann et al. (2018) based in morphological identification of enrichment cultures 

reported that the biocrusts of all studied areas was composed of 18 to 15 species of algae and cyanobacteria; where 

the richness of green algae increased, while the richness of cyanobacteria decreased with increasing humidity and 200 

decreasing mean annual temperature. While Samolov et al. (2020) based in morphological and molecular traits 

reported 18 species in PA, 26 species in SG, 40 species in LC and 27 species in NA. A more detailed survey and 

classification of individual species, including algae and cyanobacteria, will be sought for further studies. 

  

  

Figure 1. Biological soil crust sampled for PA (a), SG (b), LC (c) and NA (d). 

Table 1. Taxonomical composition of mosses and lichens in the biological soil crust for the study sites along the 205 

climatic gradient. 

Site / Division Family Genus Number of 

species 

PA    

(b) 

(c) (d) 

(a) 
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Lichens Cladoniaceae Cladonia sp. 2 

 Verrucariaceae Placidium sp. 2 

 Lecanoraceae Lecidella sp. 1 

 Rhizocarpaceae Rhizocarpon sp. 1 

SG    

Mosses Pottiaceae Syntrichia sp. 2 

 Pottiaceae Tortella sp. 2 

Lichen genera unidentified  2 

LC    

Mosses Bartramiaceae Philonotis sp.  1 

 Bryaceae Bryum sp. 1 

 Pottiaceae Syntrichia sp. 2 

 Pottiaceae Tortella sp.  2 

Moss and lichen genera unidentified 2 + 1 

NA    

Mosses Amblystegiaceae Acrocladium sp. 1 

 Amblystegiaceae Amblystegium sp. 1 

 Bartramiaceae Bartramia sp. 1 

 Bryaceae Bryum sp. 1 

 Dicranaceae Campylopus sp. 2 

 Pterigynandraceae Myurella sp. 1 

Liverwort, lichen and fungi genera unidentified 2 + 2 + 1 

2.3. Soil sampling and analyses 

For soil characterization, Bbulk topsoil samples (0 – 5 cm) were taken with metal-core sample augers directly 

under biocrust patches and in comparative zones without biocrust cover and sieved to 2 mm after air drying.  

Bulk density (BD) and soil water content were determined gravimetrically. The particle size distribution was 210 

determined for seven fractions according to Köhn (1929) combining sieving of fractions >20 μm and pipetting of 

fractions <20 μm. Soil texture was interpreted according to the WRB soil classification system (Jahn et al., 2006). 

Soil pH was determined in water by a WTW pH 340 (WTW GmbH, Weilheim, Germany) using a Sentix 81 

electrode, and electrical conductivity was measured with a conductivity meter (LE703, Mettler Toledo, USA). 

Total carbon (Ct) and nitrogen (Nt) of the bulk topsoil samples (0 – 5 cm) were analyzed using oxidative heat 215 

combustion at 1150 °C in a Vario EL III elemental analyzer (Elementar Analysensysteme GmbH, Hanau, 

Germany). Total organic carbon (TOC) was corrected by the carbonates content of samples with pH >6.7. The 

carbonate content was determined from the volumetric titration of the reaction with 10% HCl using a calcimeter 

(Eijkelkamp, Giesbeek, Netherlands). 

The physical stability of soil aggregates was measured to quantify the destructive effect of water and mechanical 220 

forces through two-stage sieving: dry and wet (Hartge and Horn, 2009). The wWater-stable aggregates were 

measured by sieving 200 g of undisturbed, air-dried soil samples, homogeneized to 30.0 mm, through a pile stack 
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of sieves of decreasing mesh size (19.0, 14.7, 9.8, 6.8, 4.8, 3.3, 2.0 mm, plus that collected the remainder below 

2.0 mm) and then repeating the same process underwater (Six et al., 2000). Finally, coarse fragments (stones) 

were removed and the values for each size were calculated relative to weight of the initial sample. With this 225 

aggregate stability data, accumulated frequency curves were calculated, and a set of stability indexes were 

estimated: difference in mean weight diameter of the aggregates (ΔMWD) (Hartge and Horn, 2009; Van Bavel, 

1950; Loaiza Puerta et al., 2018), difference in geometric mean diameter (ΔGMD) (Mazurak, 1950; Kemper and 

Rosenau, 1986), water stability aggregate ratio (WSAR) (Liu et al., 2014) and the proportion of soil 

macroaggregates of a diameter less than 2 mm (R<2 mm) (Liang et al., 2015) as described below. ΔMWD and 230 

ΔGMD indicate how much the average diameter of soil aggregates changes between dry and wet conditions. The 

main difference between ΔMWD and ΔGMD is that the first considers a linear behavior between the different 

aggregate size classes, while the ΔGMD considers a logarithmic fitting. 

Difference in mean weight diameter (ΔMWD): 

         (1) 235 

where Wi is the corrected mass proportion of stable aggregate fraction i in the total 2–30 mm aggregate fractions 

and Xi is the mean diameter of stable aggregate fraction i. 

Difference in geometric mean diameter (ΔGMD): 

        (2) 

where Xi is the sieve opening size (mm); Wi is the proportion of the total sample mass occurring in the i-size 240 

fraction; n is the number of particle fractions. 

Water stability aggregate ratio (WSAR): 

𝑊𝑆𝐴𝑅(%) = 𝑊𝑆𝐴 𝐴⁄ ∗ 100          (3) 

where WSA is the >2 mm water-stable aggregate content and A is the >2 mm dry aggregate content. 

Proportion of soil macroaggregate of a diameter less than 2 mm (R<2 mm) 245 

       (4) 

where Wr<2 is the weight of macroaggregates with a diameter less than 2 mm, WT is the total sample weight, 

Wr<2 is the weight of microaggregates with a diameter less than 2 mm. 

Δ𝑀𝑊𝐷 =  ∑ 𝑋𝑖

𝑛

𝑖=1

∗ 𝑊𝑖 ∑ 𝑊𝑖

𝑛

𝑖=1

⁄  

Δ𝐺𝑀𝐷 = exp [(∑ 𝑊𝑖

𝑛

𝑖=1

lg 𝑋𝑖) (∑ 𝑊𝑖

𝑛

𝑖=1

)⁄ ] 

 

𝑅<2 𝑚𝑚 =  
𝑀𝑊𝑟>2

𝑊𝑀𝑇

∗ 100 =  (1 −
𝑀𝑊𝑟<2

𝑊𝑀𝑇
) 
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2.4. Statistical analyses 

The influence of the climatic gradient (study site) and biocrust presence on physicochemical soil parameters and 250 

aggregate stability in 40 plots (4 study sites, 2 biocrust treatment, 5 replicates) were assessed by factorial 

generalized linear models (GLM) because of the lack of normal distribution for most of the variables according 

to the Shapiro-Wilk test. The link functions used for each model were selected based on the lowest Akaike 

information criterion (AIC) selection and characteristics of the data (skewness, counts, continuous variables, 

proportions) between Gaussian, Gamma, inverse Gaussian, and Tweedie distributions. Differences in treatments 255 

were tested using Tukey post-hoc-test with p <0.05 as significance criteria. The analyses where 

conducted in R 4.2.0 (Team, 2018) and the GLM distributions were extended from the base R core with the 

Tweedie 2.3.3 package (Dunn, 2017). All visualizations were made with the package ggplot2 3.3.3 (Wickham, 

2016).  
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3. Results 260 

3.1. Soil properties 

Soil pH was significantly affected by the climatic gradient, with mean values of 7.7 in PA, 6.2 in SG, 5.9 in LC, 

and 4.4 in NA, with acidification levels of 6.2 in BSC- to 5.9 in BSC+. In terms of electrical conductivity (EC), a 

remarkably higher value of 2646.1 µS cm-1 in PA is outstanding in comparison with the low and homogeneous 

values of 109.3 µS cm-1 for SG, 153.8 µS cm-1 for LC, and 102.3 µS cm-1 for NA. EC did not differ for the biocrust 265 

treatment. Nevertheless, when looking to the site and biocrust in combination, the BSC+ results in a reduction of 

the EC in PA, meanwhile in SG, LC and NA there was not noticeable change.  

Bulk density (BD) showed a significant difference between the study sites, with higher values in the two 

dryer sites, with 1.5 g cm-3 in PA, and 1.6 g cm-3 in SG, and a decrease in the more humid sites, with 1.2 g cm-3 

in LC and 0.6 g cm-3 in NA. Biocrust showed no changes for BD in SG and NA, but in PA BSC+ results in a 270 

reduction of the BD of 18.2%, while in LC BSC+ showed an increase in BD of 21.9% (Figure 2). 

Total carbon (Ct) content was directly proportional to the humidity along the climatic gradient, with values of 

1.1% in PA, 0.8% in SG, 5.0% in LC and 12.5% in NA, but with a significant decrease when the BSC+ is present, 

from 5.6% to 4.2% in average. Soil inorganic carbon (SIC) was significantly higher in PA with 0.8% of the mass 

of the soil, while SG, LC and NA on average were not found. When looking at the SIC along the different sites 275 

and under biocrust in combination, the BSC+ results in a reduction of 70.1% in the SIC for PA, while in SG, LC 

and NA was no change. Soil organic carbon (SOC) showed a similar pattern as Ct, with a reduction in PA to 0.3% 

and the same 0.8% in SG, 5.0% in LC and 12.5%. Total nitrogen (Nt) content was directly proportional to the 

humidity along the climatic gradient, with values of 0.04% for PA, 0.07% for SG, 0.28% for LC and 0.51% for 

NA. BSC+ showed a reduction of 30.3% in LC and 22.3% in NA, while the Nt content remained stable in PA and 280 

SG under the influence of BSC. The relation between Ct and Nt, expressed as C/N, showed significantly different 

values of 33.9 in PA, 12.3 in SG, 16.7 in LC, and 24.5 in NA on average; and with a significant decrease from 

27.0 in BSC- to 16.7 in BSC+ (Figure 2). It is important to note that although PA and NA present the highest 

values, the condition changes diametrically when observed together with the BSC+ treatment, with a large 

dispersion in PA and stable values in NA. 285 

The distribution of the soil particle size classes did not show clear patterns along the climatic gradient, with PA 

deviating from it in all cases. Despite this, the observed values were significant, with clay values of 9.6% for PA, 

7.3% in SG, 10.4% in LC and 24.6% in NA, while when looking at the interaction between site and biocrust, there 

is an increase of 143.4% in clay content for the BSC+ condition, while for SG, LC and NA was no difference; silt 

with 28.9% in PA, 18.7% in SG, 20.0% in LC and 21.9% in NA; and sand with 61.5% in PA, 73.9% in SG, 69.6% 290 

in LC and 53.5% in NA. When biocrusts were present, a significant decrease from 13.6% to 12.6% in clays and 

an increase from 21.2% to 23.6% in silt was observed with higher dispersion for the arid site (PA) (Figure 2). 
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Table 2. Soil properties without biocrust cover (BSC-) and with (BSC+) for Pan de Azúcar (PA), Santa Gracia (SG), La Campana (LC) and Nahuelbuta (NA) (EC = 

electrical conductivity, BD = bulk density, Nt = total nitrogen, Ct = total carbon, C/N = (carbon to nitrogen ratio). 

295 
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Figure 2. Mean and standard error of soil properties for Pan de Azúcar (PA), Santa Gracia (SG), La Campana (LC) and Nahuelbuta (NA), without (BSC-) and with biocrust 

cover (BSC+), and the interaction of both factors. (EC = electrical conductivity, BD = bulk density, Ct = total carbon, SOC = soil organic carbon, SIC = soil inorganic carbon, 300 

Nt = total nitrogen, CN = (carbon to nitrogen ratio). Significant factors include Tukey's Post-hoc-Test indicated by letters on the top of the bars. Different letters represent 

significant differences at p <0.05. 
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3.2. Soil aggregate stability 305 

To determine the stability of the soil macroaggregates along the climatic gradient together with the biocrust 

influence, dryDry sieving showed a significant difference between study sites, but not for the biocrust treatment 

(Table 3). Dry aggregates in the 19.0 – 30.0 mm range showed significantly different values of 4.4% in PA, 1.2% 

in SG, 5.5% in LC, and 36.2% in NA. The fraction 9.5 – 19.0 mm revealed differences in the interaction between 

study sites and biocrusts, increasing the proportion of aggregates from 13.2% in PA to 19.3% SG and 29.3% in 310 

LC, not in NA with only 2.9% in the presence of biocrusts. The aggregates between 6.7 – 9.5 mm showed a 

significant decrease from 13.3% in PA, 5.2% in SG, 6.5% in LC, and 4.1% in NA. In interaction with biocrusts, 

it showed a significant increase in the proportion when it was present. The fraction from 4.7 – 6.7mm showed 

significantly different values of 13.6% in PA, 3.4 % in SG, 5.0% in LC, and 5.6% in NA, while the interaction 

with biocrusts showed a significant increase when is present (BSC+). Aggregates from 3.4 – 4.7 mm size showed 315 

significance among study sites, with 9.8% in PA, 3.6% in SG, 4.4% in LC, and 7.9% in NA. Aggregates between 

2.0 – 3.4 mm showed a slightly similar amount of 9.9% in PA, 5.9% in LC, and 14.3% in NA, but with a minor 

proportion of 4.9% in LC, while when biocrust is present in LC, it showed a slight decrease. Finally, for the dry 

sieved aggregates under 2 mm, there was a significant reduction for the study sites, with values of 69.1% in SG 

and 47.3% in LC relative to 30.1% in PA, but not in NA with 28.9%; while the biocrust effect in interaction with 320 

the site is significant with 60.6% in SG and 40.8% in LC, indicating the same proportion of aggregates in this site 

for SG with 30.0% and NA with 39.8%. 

In a second stage, aggregate stability under wet conditions was characterized, with a clear difference between 

sites, while biocrusts had a significant effect only on the edge aggregate size classes <2.0 mm and 9.5 – 30.0 mm 

(Figure 3Table 3). At the same time, the fraction 19.0 – 30.0 mm showed an increasing significant pattern in the 325 

amount of aggregates, with 2.8% in NA, 0.8% in SG, 8.9% in LC and 29.9% in NA, while biocrusts significantly 

increased the proportion of aggregates by 35.6%, from 9.0% for BSC- to 12.2% for BSC+. For the fraction 9.5 – 

19.0 mm, there were significant differences between the study sites, the biocrust effect, and its interactions, with 

an notable increase from 5.4% to 11.7% on average when biocrusts were present. The wet sieved aggregates in 

the range of 6.7 – 9.5 mm showed significant differences only between the study sites, with 10.6% in PA, 2.5% 330 

in SG, 4.2% in LC and 4.3% in NA. Wet aggregates in the range of 4.7 – 6.7 mm showed significant differences 

between the study sites with 10.6% in PA, 2.3% in SG, 3.7% in LC and 5.8 in NA. The fraction between 3.4 – 4.7 

mm showed only significant differences between the study sites, with 6.9% in PA, 2.2% in SG, 3.0% in LC, and 

6.1% in NA. Aggregates ranging from 2.0 – 3.4 mm showed differences between the study sites, with 5.8% in PA, 

3.2% in SG, 4.2% in LC, and 6.8% in NA. The fractions under 2.0 mm were significantly different for the study 335 

sites with 58.3% in PA, 79.6% in SG, 62.4% in LC, and 41.3% in NA; and for biocrusts from 63.9% for BSC+ 

treatment to 56.9% for BSC- treatment. 
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Table 3. Aggregate proportion for dry and wet sieved fractions for Pan de Azúcar (PA), Santa Gracia (SG), La Campana (LC) and Nahuelbuta (NA) for biocrust (BSC+) and 

non-biocrust (BSC-) treatments.

340 
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Figure 3. Mean value and standard error of aggregate proportion for dry and wet sieved fractions for Pan de Azúcar (PA), Santa Gracia (SG), La Campana (LC) and Nahuelbuta 

(NA) for biocrust (BSC+) and non-biocrust (BSC-) treatments. Significant factors and corresponding models for response variables are included in the appendix A.
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When comparing the changes of the aggregate distributions between wet and dry conditions (Figure 4. Mean and 345 

standard desviation Figure 1), an irregular pattern was observed, with a general decrease in most of the analyzed 

fractions, except for an increase in the amount of aggregates of 19.0 mm for NA. This was even higher than for 

the BSC+ treatment. It is important to mention that NA also showed a slight increase in the proportion of 9.5 and 

6.7 mm aggregates. 
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 350 

 

Figure 4. Mean and standard desviation Figure 1. Aof aggregate size distribution changes between dry and wet sieving for the sites Pan de Azúcar (PA), Santa Gracia (SG), 

La Campana (LC), and Nahuelbuta (NA) for biocrust (BSC+) and non-biocrust (BSC-) treatments. Error bars were, in some cases, truncated for better visualization. 
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Soil aggregate stability was evaluated through different indexes, to integrate the different sizes and sieving 

conditions in a summary value. The difference in mean weight diameter of the aggregates (ΔMWD) showed no 355 

significance in any of the conditions (Figure 5)(Table 4). However, there was a significant difference in the 

variation difference of the geometric mean diameter of the aggregates (ΔGMD) for the study sites, with values of 

1.86 mm for PA, 1.2 mm for SG, 1.4 mm for LC, in comparison with the more stable condition of 0.83 mm for 

NA. The water-stable aggregates ratio was significant for the study sites, showing differences between NA with 

81.1% and the other study sites (57.7% PA, 66.2% SG, and 73.4% LC). The ratio of soil macroaggregates of a 360 

diameter less than 2.0 mm (R<2 mm) presents differences in the study sites and for biocrust treatments. SG showed 

a value of R<2 mm of 79.6% and NA of 41.9%, which was different from PA and LC with 58.6% and 62.4%, 

respectively. For biocrust treatments, R<2 mm changed from 63.7% to 57.5% with biocrusts, indicating a biocrust-

induced decrease in the proportion for this fraction. Finally, according to the analyzed indexes, NA showed the 

most stable conditions, and alternating PA and SG showed the most unstable conditions. 365 
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Table 4. Aggregate stability indexes for Pan de Azúcar (PA), Santa Gracia (SG), La Campana (LC) and Nahuelbuta (NA) for biocrust (BSC+) and non-biocrust (BSC-) 

treatments. ΔMWD = mean weight diameter, ΔGMD = geometric mean diameter, WS R = water-stable aggregate ratio, R<2 mm = ratio of aggregates less than 2mm.

 

Figure 5. Mean and standard error of aGGREGATE stability indexes for Pan de Azúcar (PA), Santa Gracia (SG), La Campana (LC) and Nahuelbuta (NA) for biocrust (BSC+) 

and non-biocrust (BSC-) treatments. ΔMWD = difference in mean weight diameter, ΔGMD = difference in geometric mean diameter, WSAR = water-stable aggregate ratio, 370 

R<2 mm = ratio of aggregates less than 2mm. Significant factors and corresponding models for response variables are included in the appendix A. 
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PA BSC- 4.9 ± 1.6 2.4 ± 0.5 41.6 ± 24.5 59.4 ± 7.5 

BSC+ 1.1 ± 1.6 1.3 ± 0.6 73.8 ± 17.0 57.2 ± 6.0 

SG BSC- 0.6 ± 0.7 1.2 ± 0.2 61.6 ± 27.0 86.5 ± 6.8 

BSC+ 1.0 ± 1.1 1.3 ± 0.2 70.8 ± 13.1 72.8 ± 3.8 

LC BSC- 1.7 ± 2.2 1.6 ± 0.7 71.3 ± 20.1 69.8 ± 17.6 

BSC+ 0.6 ± 0.9 1.2 ± 0.2 75.4 ± 7.0 55.1 ± 20.4 

NA BSC- 1.4 ± 1.6 0.8 ± 0.1 83.2 ± 5.8 39.0 ± 5.7 

BSC+ 1.6 ± 2.2 0.8 ± 0.1 79.0 ± 9.8 44.9 ± 13.3 
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As shown abovein Figure 2, the climatic gradient (site) had significant effects for clay, silt, sand, pH, electrical 

conductivity (EC), bulk density (BD), total carbon (Ct), soil organic carbon (SOC), soil inorganic carbon (SIC) 375 

and, total nitrogen (Nt), C/N ratio, clay, silt, sand, dry and wet aggregates under 30 mm, ΔGMD, WS R, R<2 mm. 

Biocrust treatments were significant for clay, silt, pH, EC, total carbon (Ct, SOC. SIC, ) and nitrogen (Nt), C/N 

ratio, and wet aggregates from 9.5 to 30.0 mm and >2 mm, and R<2 mm. Finally, the interaction of the site and 

biocrusts was significant for clay, bulk density (BD), total nitrogen (Nt), dry aggregates from 4.7 to 19.0 mm and 

0 to 3.4 mm, wet aggregates from 9.5 to 30.0 mm, and ΔMWD.  380 
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4. Discussion 

4.1. Aggregate stability and soil properties along the climatic gradient 

The climatic gradient has a significant effect on the stability of soil aggregates. Using the geometric mean diameter 

(ΔGMD), an index that replaces the linear fitting of ΔMWD with a logarithmic one, significant differences for the 

study sites along the climatic gradient can be observed (p-value: <0.001). Interestingly, if soil aggregate stability 385 

was evaluated with the difference in mean weight diameter (ΔMWD), it did not show significant changes along 

the climatic gradient. WSAR, an index that shows the ratio of aggregates that persist stable after disruption by 

water, showed a similar behavior as ΔMWD. The main difference between ΔMWD and ΔGMD is that ΔGMD 

performs better in non-uniform particulate substances (Hatch and Choate, 1929; Gardner, 1956), which 

corresponds to soils equilibrated in the content of sand, silt, and clay (Mazurak, 1950) and pointing soil texture 390 

indirectly as a critical factor in aggregate stability along the climatic gradient. Further, considering the ΔGMD 

data, an increase in stability was observed as moving along the climatic gradient to higher water availability 

conditions except for SG. The lower value of ΔGMD for SG indicates a comparably higher aggregate 

stability as it would be expected when we assume a steady trend from arid to humid climate

. In PA, in the drier north, the condition 395 

proved to be less stable than NA, despite the high content of inorganic carbon

. SG presented the highest ratio of unstable aggregates under the studied 

range of sizes (highest R<2mm) and NA the lowest, with close to half of it, indicating augmented aggregate stability 

in the complementary range of sizes. 

The effect of the climatic gradient is not only expressed in the stability of soil aggregates, but it is also present 400 

with different intensities in a variety of soil properties. The pH decreases continuously from the northern arid to 

the southern humid study site in accordance with Bernhard et al. (2018). The high pH in PA can be attributed to 

the constant input of atmospheric aerosols, e.g., salts, gypsum, and calcium carbonates (Ewing et al., 2006) in 

combination with the arid climate that allows salts to accumulate in the topsoil (Slessarev et al., 2016). Whereas 

in the southern sites, the forwarding increase of precipitations results in a reduction in the pH due to leaching of 405 

soluble salts (Slessarev et al., 2016) and an increase in soil respiration (Orchard and Cook, 1983). The 

accumulation of soluble salts is well established for the arid site PA, as saline conditions (Allison and Richards, 

1954) are indicated by the high electrical conductivity value. These higher amounts of salts have a strong effect 

in structure degradation dynamics, linked to the destabilizing effect of sodium and stabilizing of carbonates 

(Corwin, 2021). Although Ct and Nt follow the climatic gradient, when comparing the C/N, PA and NA have 410 

higher values. High values of the C/N indicate a nitrogen limitation of plants and other organisms (Brust, 

2019), pointing out that this occurs at the two opposite sites along the climatic gradient. This could be explained 

by the biological activity (Zhang et al., 2013), which may be close to a physiological limitation in the case of NA, 

while for PA, it may indeed be due to low nitrogen availability (Hooper and Johnson, 1999). However, there was 

also a high amount of carbonates in PA, which 415 

makes PA hardly comparable in terms of Ct. Despite the properties following the climatic gradient, SG deviates 

from the other sites in terms of higher bulk density (BD), lower clay, and higher sand content. This can indicate a 

degraded condition for the semi-arid site caused by the current land use, including grazing (Armesto et al., 2007), 

compacting the surface and thus activating erosive processes (Scholten and Seitz, 2019), in favor of the 
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accumulation of sand particles (Govers, 1985). The aggregate distribution stresses this finding, where SG has a 420 

lower proportion of water-stable aggregates >2 mm and a higher water-destabilization of aggregates between 9.5 

to 4.7 mm, indicating the nature of the structuring agent in that zone is water-soluble. 

4.2. Biocrusts altering soil properties along the climatic gradient 

Despite these factors beyond the climatic gradient, biocrusts showed effects on clay, silt, pH, Ct, 

Nt, C/N, and wet aggregates from 9.5 to 30.0 mm and >2 mm. However, as this was an 425 

observational study, it only allows establishing associations between factors and not cause-effect relationships 

(Cox, 1992; Rosenbaum, 2005). It is thus possible that changes in soil characteristics promote the biocrust 

establishment, as well as that biocrust establishment triggers changes in these properties (Belnap and Lange, 2003). 

The biocrust treatments showed a significant decrease in pH (p-value: 0.002404), reflecting the biological activity 

of its constituent organisms, which acidifies the soil due to the carbon dioxide released by cellular respiration 430 

(Bachar et al., 2010). The pH values reported by Bernhard et al. (2018) are in the same range as ours but without 

differentiating between BSC+ and BSC-, as this factor was not part of their study. The content of Ct and Nt were 

significantly different when biocrusts were present, but it did not affect any of the aggregate sizes or stability 

indexes. In this sense, biocrusts play a role in the carbon and nitrogen cycles (Chen et al., 2000), as they are formed 

mainly by photosynthetic and nitrogen-fixing organisms (Maestre et al., 2013), but it has not an immediate impact 435 

on the soil aggregate stability and points out that the main stabilizing agent is of organic origin (Wagner et al., 

2007; Six et al., 2004). 

Considering the stabilizing effect of biocrusts on wet sieved aggregates between 9.5 and 30.0 mm, we could show 

that it occurs prominently at the three northern sites, whereas in NA there was no difference with and without 

biocrusts. This points to a threshold in the biocrust-induced stabilization of the soil aggregates between LC and 440 

NA and partially confirms our initial assumption that biocrusts have the greatest effect in arid conditions. However, 

the effect on aggregate stability for the wet condition varies according to the variable used, being specific for 

limited aggregate sizes in terms of mechanical disturbances (dry sieving), but without a substantial improvement 

concerning water stability (wet sieving). This lack of difference in wet sieved aggregate point to a non-soluble 

nature of the stabilizing agents, which can be attributed to stabilization due to organic structures and exudates 445 

(Rillig, 2004), and stress the idea that NA differs to the other sites in the mechanisms of aggregate stabilization as 

a local adaptation, where due to the higher proportion of precipitation, is conducted by water stable mechanisms.  

Soil aggregate stability showed clear differences along the climatic gradient. However, when

 considering the effect of biocrusts, differences were limited to the smallest aggregate size class

 (R<2mm) referring to changes in microaggregate size distribution as 450 

described by Totsche et al. (2018)

 Further, difference for wet sieved aggregates with and without biocrusts between 9.5 and 30.0 mm point to 

 Further

, difference for wet sieved aggregates with 

and without biocrusts between 9.5 and 30.0 mm point to biocrust-induced stabilization 455 

of soil aggregates.
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The results indicate that soil aggregate stabilization mechanisms are different in PA than at the other sites. With 

that in mind, it was found that in PA, biocrusts grow in areas with a lower content of clay and higher content of 

silt, which implies increased nutrient availability and water holding capacity (Chen et al., 2000), while the sand 460 

fraction was not related. However, the method used can amplify that difference since the determination of particle 

size distribution does not consider coarse fragments (Köhn, 1929), which were abundant at PA. In addition, the 

soil covered with biocrusts showed a lower value for bulk density (BD) only for PA, while in the other sites, this 

property was not affected. This can be interpreted as a biocrust-induced decrease in soil density due to increased 

intra- and extra-aggregate porosity and organic matter (Whitney et al., 2017) or that biocrusts grow under the least 465 

limiting condition (Bowker et al., 2014). Soils with biocrust cover showed a trend of lower electrical conductivity, 

which can be explained by inhibition of biocrusts by toxicity due to the accumulation of salts in the soil, or to the 

consumption of salts as a source of nutrients by the organisms in the biocrusts (Abed et al., 2019). 

Biocrust plays a role along the climatic gradient affecting different properties, i.e., clay, silt, pH, Ct, 

Nt, C/N, and wet aggregates from 9.5 to 30.0 mm and >2 mm. Nevertheless, the way that 470 

each property change responds to local conditions: In the arid northernmost site, there is a strong influence of the 

salts in terms of stabilization and establishment of biocrusts, while at the southernmost site, there is no stabilization 

of the aggregates, but a contribution to the carbon and nitrogen contents. The most consistent property along the 

climatic gradient was pH, indicator of biological activity. However, at the scale of the climatic gradient it is not 

possible to distinguish the origin of biological activity between plants, micro-organisms, fungi, bacteria, 475 

etc

. Finally, considering the largest size of the persistent wet aggregates match with the characteristics 

attributed to fungi and bryophytes, capable of retaining micro-aggregates and soil particles between their hyphae 

and rhizoids, respectively (Kleber et al., 2007; Six et al., 2004; Totsche et al., 2018) and points to this as the most 

significant mechanism of soil aggregate stabilization of biocrusts.  480 
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5. Conclusions 

This study aimed to investigate how and to what extent biocrusts stabilize soil aggregates along an arid to humid 

climatic gradient in Chile.

 We can confirm that biocrusts play a role in soil aggregate stability along the climatic gradient (i) with the 

The biocrust effect on aggregates stability was less pronounced under humid climate conditions, due 485 

to a stabilization effect by water-stable substances and variable composition of biocrust communities, which can 

differ in the stabilization mechanisms. It indicates a transition in the main biotic agents driving the aggregation 

and its mechanisms on the soil surface, moving from biocrust communities in arid regions to vascular plants in 

humid conditions.

 490 

 

 

 The climatic gradient affected most soil properties studied, such as pH, electrical conductivity (EC), bulk density 

The climatic gradient affected most soil properties studied, such as pH, electrical conductivity (EC), bulk density 495 

The climatic gradient affected most soil properties 

studied, such as pH, electrical conductivity (EC), bulk density (BD), Ct, Nt, C/N, clay, silt, and sand content. 

Nevertheless, when analyzing the biocrusts effect, the differences were limited to a few properties like Ct, Nt, C/N

, clay and sand, which could indicate that the accumulation processes of organic matter occur at a faster rate 

than aggregation processes.500 

 

 

 

 

 505 
Finally, we can conclude the biocrusts in our study area to be a valuable agent in stabilizing the upper topsoil 

layer, but for a narrow spectrum of conditions and mostly under arid conditions. Therefore, the effect could be 

considered a transitory situation in ecological succession towards a stable ecosystem. In this process, biocrusts 

improve conditions for other more demanding species such as vascular plants, initially improving the 

availability of carbon and nitrogen in the soil. 510 
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Appendices 

Appendix A. Significant factors for response variables based on generalized linear models. Models with 

significant interaction also include the predictors as simple parameters based on marginality principle. (p-value = 

0: "***"; p-value = 0.001: "**"; p-value = 0.01: "*"). 515 

Dependent variable Distribution 

(link-function for 

GLM) 

Significance for independent variable 

Site Biocrust Site × Biocrust 

Clay Gaussian *** *  
Silt Inverse Gaussian *** *  
Sand Gaussian ***    
Fine Silt Tweedie ***   * 

Medium silt Tweedie *** *** * 

Coarse silt Tweedie ***     

Very fine sand Gaussian ***     

Fine sand Tweedie ***     

Medium sand Gaussian ***     

Coarse sand Tweedie ***     

pH Gaussian *** **   

EC Tweedie ***     

BD Gaussian ***   ** 

Nt Gamma ***   ** 

Ct Tweedie *** **   

C/N Tweedie *** **   

19.0-30.0 mm Dry Tweedie ***     

9.5-19.0 mm Dry Tweedie ***   ** 

6.7-9.5 mm Dry Tweedie ***   ** 

4.7-6.7 mm Dry Tweedie ***   * 

3.4-4.7 mm Dry Tweedie ***     

2.0-3.4 mm Dry Tweedie ***   * 

> 2.0 mm Dry Tweedie ***   *** 

19.0-30.0 mm Wet Tweedie *** * ** 

9.5-19.0 mm Wet Tweedie * ** * 

6.7-9.5 mm Wet Tweedie ***     

4.7-6.7 mm Wet Tweedie ***     

3.4-4.7 mm Wet Tweedie ***     

2.0-3.4 mm Wet Tweedie ***     

> 2.0 mm Wet Tweedie *** *   

ΔMWD Gaussian       

ΔGMD Tweedie ***     

WSAR Gaussian       

R<2 mm Gaussian *** *   
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