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Abstract. Mining can cause severe disturbances to the soil, which underpins the viability of terrestrial ecosystems. Post-mining

rehabilitation relies on measuring soil properties that are critical indicators of soil health. Soil visible–near-infrared (vis–

NIR) spectroscopy is rapid, accurate and cost-effective for estimating a range of soil properties. Recent advances in infrared

detectors and microelectromechanical systems (MEMS) have produced miniaturised, relatively inexpensive spectrometers.

Here, we evaluate the spectra from four miniaturised visible and NIR spectrometers, some combinations and a full-range5

vis–NIR spectrometer for modelling 29 soil physical, chemical and biological properties used to assess soil health at mine

sites. We collected topsoil samples from reference, undisturbed native vegetation and stockpiles from seven mines in Western

Australia. We evaluated the spectrometers’ repeatability and the accuracy of spectroscopic models built with seven statistical

and machine learning algorithms. The spectra from the visible spectrometer could estimate sand, silt, and clay with similar or

better accuracy than the NIR spectrometers. However, the spectra from the NIR spectrometers produced better estimates of soil10

chemical and biological properties. By combining the miniaturised visible and NIR spectrometers, we improved the accuracy

of their soil property estimates, which were similar to those from the full-range spectrometer. The miniaturised spectrometers

and combinations predicted 24 of the 29 soil properties with moderate or greater accuracy (Lin’s concordance correlation, ρc ≥
0.65). The repeatability of the NIR spectrometers was similar to that of the full-range, portable spectrometer. The miniaturised

NIR spectrometers produced comparably accurate soil property estimates to the order of magnitude more expensive full-range15

portable system, particularly when combined with the visible range sensor. Thus, the miniaturised spectrometers could form

the basis for a rapid, cost-effective soil diagnostic capacity to support mine site rehabilitation and deliver significant positive

economic and environmental outcomes.
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1 Introduction

Soil health underpins the viability of terrestrial ecosystems, whether natural or human-altered (e.g., agricultural, post-mining)20

and provides a variety of functions essential for life on Earth (Jeffrey, 2017; Timmis and Ramos, 2021). Healthy soil supports

above- and below-ground biodiversity, plant growth, agricultural productivity, and a suite of ecological functions and ecosys-

tem services (Timmis and Ramos, 2021). Consequently, returning functional soils to a site following disturbance is critical

to achieving sustainable and resilient rehabilitation (e.g., reinstating a level of ecosystem productivity or functioning) or eco-

logical restoration (e.g., assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed; (Gann et al.,25

2019)). Some of the most severe disturbances to soil result from surface mining (Cooke and Johnson, 2002; Cross et al., 2017).

Rehabilitation or ecological restoration is often a regulatory requirement for mining companies to undertake during mine clo-

sure (Manero et al., 2021). There is an increasing expectation that mining companies return functional, resilient and biodiverse

native ecosystems to lands where mining has occurred. However, rehabilitation or ecological restoration can be challenging

on mined lands because the substrates generated by mining, such as tailings (fine particulate materials), waste rock, and sal-30

vaged topsoil (e.g. Stock et al. 2020), can be different from undisturbed homologues (Munoz-Rojas et al., 2016; Cross and

Lambers, 2021; Cross et al., 2018). Different approaches to rehabilitation and ecological restoration practices such as landform

design and contouring, topsoil return, seeding and planting can significantly influence soil characteristics and other ecosys-

tem attributes. Ensuring mined lands are placed on favourable ecological trajectories requires a fundamental understanding of

the edaphic conditions of the pre-disturbance landscape and mined materials and how these conditions might influence soil35

properties and the capacity of soil to support ecological functioning (Cross et al., 2021).

Soil health, which we define as the capacity of soil to sustain biodiversity, productivity, ecological functioning and provide

ecosystem services, represents an intricate series of interactions between important soil physical, chemical and biological

properties (Lehmann et al., 2020). Soil physical properties are essential for providing air, water, gaseous exchanges, and habitat;

chemical properties for moderating soil reactions and nutrient transformations and availability; and biological properties for40

nutrient cycling (Lal, 2004). Soil health is fundamental to plant productivity and landscape stability (Turner et al., 2018).

It is also essential to soil functioning (e.g., a medium for plant growth, habitat for soil organisms, carbon storage), which

underpins most post-mining land uses, such as conservation and the reinstatement of native ecosystems to alternative uses

such as agriculture. Assessing soil health by examining key physical, chemical, and biological indicators can help to guide,

monitor and evaluate ecological trajectory following restoration or rehabilitation (Cross et al., 2021; Rinot et al., 2019). Failure45

to understand and effectively manage soil health will likely result in undesirable trajectories with adverse and often cascading,

long-term harmful impacts on biodiversity, ecosystem productivity and resilience.

Assessment of soil health in post-mining rehabilitation and ecological restoration, when undertaken, remains typically an

analysis of key indicators (e.g., soil nutrient concentrations, pH, electrical conductivity, cation exchange capacity) on com-

posite samples collected from representative locations around a site. Assessment is generally undertaken periodically from the50

beginning of rehabilitation or ecological restoration activities to monitor changes in indicators over time, with collected soil

samples analysed in a laboratory to provide average values of the soil properties. However, conventional assessment is time-
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consuming and expensive because laboratory analyses require elaborate methods and specialised equipment and procedures

and can be prone to errors resulting from inappropriate sampling, transportation, preparation, or analysis (Viscarra Rossel and

Bouma, 2016). These constraints often result in the collection of only a few samples, limiting spatial and temporal represen-55

tation and the ability of sampling to characterise soil variability at a site adequately. Additionally, practitioners must wait for

laboratory results to be returned following sample submission, limiting their ability to adapt management and intervention ac-

tivities rapidly. Therefore, there is a need for a scientifically robust diagnostic capacity to rapidly, accurately and inexpensively

measure key soil properties that are indicators of soil health in the field.

Many soil properties that are considered key indicators of soil health, such as organic carbon, texture, water content, cation60

exchange capacity, pH, microbial biomass and diversity, can be modelled with visible–near-infrared spectra (vis–NIR; 400–

2500 nm) (e.g. Viscarra Rossel et al., 2006; Stenberg et al., 2010; Guerrero et al., 2010; Soriano-Disla et al., 2014; Yang

et al., 2019). The modelling is possible because soil properties can be multivariately related to the wavelengths in the spectra,

which contain information on the inherent composition of the soil, which comprises minerals, organic compounds and water

(Viscarra Rossel and Behrens, 2010). Thus, these spectra can describe soil qualitatively and quantitatively (Nocita et al., 2015).65

Broad, weak absorptions at wavelengths smaller than 1000 nm can result from chromophores and iron oxides; narrow, well-

defined absorptions at wavelengths between 1400–1900 nm are due to hydroxyl bonds and water; absorptions at wavelengths

around 2200 nm occur from clay minerals; and organic matter absorbs in different regions throughout the visible and NIR

range. vis–NIR spectroscopy also provides information on soil particle size, and thus information on the soil matrix (Stenberg

et al., 2010). Hence, in addition to soil properties, soil type and soil horizons can also be determined using vis–NIR spectra70

(Viscarra Rossel and Webster, 2011).

There are advantages to using the spectroscopic method. First, spectroscopic measurements are highly reproducible (Sten-

berg et al., 2010). Once spectroscopic models of soil properties are derived and validated, one can use them to estimate the

values of those properties where those measurements are lacking and would be too expensive to make using conventional

laboratory methods (Viscarra Rossel et al., 2006; Nocita et al., 2015). Spectroscopic models can be built with multivariate75

regressions, such as partial least squares regression (PLSR) or machine learning methods such as support vector machines

(SVM), regression trees, neural networks (Viscarra Rossel and Behrens, 2010); or more recently, deep learning (e.g. Shen

and Viscarra Rossel, 2021). Second, large databases of soil spectra are being developed to help meet the growing demand

for soil information to evaluate and monitor soil at a range of scales (Viscarra Rossel and Webster, 2012; Orgiazzi et al.,

2018; Viscarra Rossel et al., 2016; Shen et al., 2022). Third, as technologies develop, spectrometers have become cheaper,80

smaller, portable, and more accessible. Emerging infrared detector technologies are being used to produce miniaturised hand-

held instruments that are rugged and affordable, also using microelectromechanical structures (MEMSs) (Christian and Ford,

2021; Johnson, 2015), thin-film filters, light-emitting diodes (LED), fibre optics, and high-performance detector arrays (Coates,

2014). As a result, there is growing interest in using miniaturised spectrometers for characterising soil properties (Tang et al.,

2020; Ng et al., 2020; Sharififar et al., 2019). They provide a unique opportunity to develop a portable and cost-efficient soil85

health diagnostic capacity for mine site rehabilitation. However, these spectrometers have narrower spectral ranges and lower

resolutions than portable or research-grade spectrometers, which are more commonly used to model various soil properties
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(Stenberg et al., 2010; Soriano-Disla et al., 2014). A narrower spectral range and reduced spectral resolution might detriment

a miniaturised spectrometer’s capacity for estimating soil properties and developing a cost-effective soil health diagnostic so-

lution. Therefore, we must thoroughly assess these spectrometers, the repeatability of their measurements and their capacity to90

accurately estimate a wide range of soil physical, chemical, and biological properties deemed to be indicators of soil health.

We have not found any published reports on such assessments in the literature.

Thus the objective of our study was to assess various commercially available miniaturised visible and NIR spectrometers

(both independently and in combination) and one portable research-grade spectrometer for the capacity to estimate a wide range

of soil chemical, physical and biological properties typically used to assess soil health in Australian mine site soil rehabilitation.95

Specifically, the our were to:

– evaluate the repeatability of the spectroscopic measurements with each spectrometer,

– evaluate the modelling of 29 soil physical, chemical, and biological properties using the spectra from each spectrometer

and combinations with seven statistical and machine learning algorithms,

– quantify the accuracy of the model estimates and the effect of repeatability on the estimates, and100

– derive an overall score for each spectrometer and combinations, which accounts for their accuracy and repeatability.

The many soil properties, spectrometers and the assessment of repeatability and accuracy from modelling with various algo-

rithms provide a comprehensive evaluation of spectroscopy for cost-effective mine site soil rehabilitation.

2 Methods

Seven mine sites in Western Australia were selected as study sites, representing a range of climatic conditions, soil types,105

vegetation assemblages, and commodity types (Table 1, Fig. 1).

Table 1. Resource type mined, predominant soil type, dominant vegetation type, and climate type for each of the mine sites included in the

study. Note that ‘Mine F’ has requested non-disclosure of resource mined.

Code Resource Mined Soil Vegetation Type Climate

A Mineral Sands Chromosols Banksia woodland Warm-summer mediterranean

B Iron Ore Tenosols Savanna woodland Hot desert

C Iron Ore Sodosols Savanna woodland Hot desert

D Copper, Cobalt, Nickel Calcarosols Mallee and heath woodland Warm semi-arid

E Nickel Tenosols Open shrubland and grassland Hot desert

F (Undisclosed) Podosols Jarrah Forest Warm-summer mediterranean

G Bauxite Kandosols Jarrah Forest Warm-summer mediterranean
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Sites included a mineral sands mine (Fig. 1A); two iron ore mines (Fig. 1B, C); a copper-cobalt-nickel mine (Fig. 1D); a

nickel mine (Fig. 1E); a bauxite mine (Fig. 1G), and a mine for which the commodity will remain undisclosed (anonymity

requested; Fig. 1F). The soil types are orders from the Australian Soil Classification (Isbell, 2002).

C

G

A

E
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B

F

Figure 1. Location of mine sites within Western Australia from which soil samples were collected for spectroscopic analysis. Soils were

collected from a variety of vegetation types in different climatic regions, including from (A) a mineral sands mine within banksia woodland

in a Warm-summer mediterranean region; (B, C) two iron ore mines within savanna woodland in the Hot desert region; (D) a copper-cobalt-

nickel mine within mallee woodland in the Warm semi-arid region; (E) a nickel mine within open shrubland and grassland in the Hot desert

region; and (F, G) a bauxite mine and another undisclosed commodity mine both within jarrah forest in the Warm-summer mediterranean

region. Inset: location of Western Australia within Australia.

2.1 Sampling design110

We designed the sampling effort to cover a broad range of mining contexts. We sampled top-layer stockpiled and undisturbed

reference soil samples from seven mines with differing soil types, climates, vegetation assemblages and commodity. At each

of the seven mine sites, three plots were established in undisturbed native vegetation (hereafter referred to as ’reference plots’)

and four in topsoil stockpiles (i.e., salvaged natural topsoil stockpiled for later re-spreading) of varying age (ages range from

3 months to 29 years) in summer 2018/2019. Five 5 m × 5 m subplots were established at each reference and stockpile plot,115

with five replicate soil samples collected at random from the top 0–20 cm soil layer in each subplot using a 5 cm diameter soil

5



auger. At the youngest stockpile at each mine, five additional samples were taken from the 50–70 cm depth, which correspond

roughly to the top layer of the original soil before stockpiling. The five soil samples were bulked and homogenised to produce

one composite sample per subplot. Sterile nitrile gloves were worn when collecting soils, sampling equipment was sterilised

with a bleach solution between all samples, and gloves were changed between plots to prevent cross-contamination. Subsamples120

were taken from each composite sample and stored at -20◦C until DNA could be extracted (see below), while the remainder

of the composites were dried in an oven at 40◦C for 48 hours before being sieved (2 mm gauge). Subsamples of the dried,

composite soil were reserved for chemical analysis, assessment of carbon dioxide production, and analyses of soil microbial

community composition. In total 280 soil samples were collected from the seven mine sites (i.e. at each mine there were three

reference plots, four stockpile plots, and one young stockpile plot. Each plot consisted of 5 subplots and one composite sample125

was collected from each subplot).

2.2 Conventional soil analyses

To provide comparison data for the 29 soil chemical, physical and biological soil properties to be assessed using spectroscopic

methods, soil organic carbon content (Walkley and Black, 1934), potassium and phosphorus content (Colwell, 1965), pH (in a

1:5 soil to 0.01M CaCl2 and H2O), electrical conductivity, sulphur, ammonium nitrogen, nitrate nitrogen, boron, trace elements130

(DTPA; copper, zinc, manganese, iron), and exchangeable cations (calcium, magnesium, sodium, potassium, aluminium) were

determined for all composite samples using analytical chemistry methods sensu Rayment and Lyons (2010). Soil particle size

(percentage sand, silt, clay), and bulk density were also assessed for each soil sample (Rai et al., 2017). Microbial activity of

each soil sample was assessed using the Solvita 1-Day CO2 Test (Haney et al. (2008); Munoz-Rojas et al. (2016)). The test

was conducted as per the manufacturer’s instructions (2019 SOP; Woods End Laboratories Inc., 2018-2019); briefly, 30 cm3 of135

dried soil was re-wet with 9 mL of water and placed in a sealed container with a Solvita CO2 probe for 24 hours, after which

a digital colour reader (for use with the CO2 test; Solvita, Woods End Laboratories, USA) was used to measure the volume of

carbon dioxide produced.

Soil microbial community composition was determined by extracting DNA from 250 mg of homogenised soil samples

(DNeasy PowerSoil HTP 96 Kit; Qiagen, Germany). DNA quality and level of inhibition were checked through quantitative140

PCR (qPCR), with negative PCR controls included (Murray et al., 2015). Primer sets used targeted the V4 16S rRNA region for

Bacteria (Turner et al., 1999; Caporaso et al., 2011) and the Internal Transcribed Spacer 2 for fungi (Ihrmark et al., 2012; White

et al., 1990). Single fusion sequencing (see Supplementary Information ‘DNA Sequencing and Bioinformatics Methodology’)

was performed at the Trace and Environmental DNA laboratory, Curtin University (Bentley, WA) on the MiSeq platform

(Illumina, USA) as per (van der Heyde et al., 2021). Sequences were de-multiplexed, quality filtered, error rates estimated,145

and de-replicated to leave Amplicon Sequence Variants. Taxonomy was assigned based on reference databases (SILVA (Quast

et al., 2013) for bacteria and UNITE8.2 (Nilsson et al., 2019) for fungi). Alpha diversity and richness of fungal and bacterial

taxa were calculated from sequence data using the Shannon Index (Wagner et al., 2018).
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The statistical distributions of electrical conductivity, organic C, Total N, K (Colwell), B, S, Cu, Fe, Mn, exchangeable Mg

and Na, Ammonium-N, Nitrate-N, and CO2 exhibited strong positive skews, and were thus transformed using logarithms to150

approximate normal distributions prior to use in spectroscopic modelling.

2.3 Soil spectroscopy

For spectroscopic analysis, the≤ 2 mm-sieved composite subsamples were each mixed and then placed in a petri-dish. Diffuse

reflectance spectra were recorded using five spectrometers with different spectral ranges, resolutions, dimensions and costs

(Table 2). We measured the soils following protocols described in (Viscarra Rossel et al., 2016, Appendix B). The spectrometers155

were switched on an hour before measurements and the control software of each instrument was set up to record (and average)

30 readings per soil sample measurement and 50 readings per calibration measurement. Calibration was performed with a

Halon white reference (Spectralon®) and dark internal reference. The spectrometers were recalibrated every ten measures. We

performed the spectroscopic measurements of the soil samples in two separate rounds (i.e. in replicate), by the same analyst

and under the same laboratory conditions.160

Table 2. Spectral range, resolution, price, weight, and dimensions of miniaturised and portable spectrometers used in this study.

Label Device name Manufacturer (location) Spectral range (nm) Resolution (nm) Price (AUD) Weight (g) Dimensions (mm)

A350–830 STS-VIS Ocean Insight, (Orlando, Florida) 350–830 1.5, 3, 6, 12 4800 60 40 × 42 × 24

B1750–2150 NIRONE Sensor S Spectral Engines, (Steinbach, Germany) 1750–2150 16–22 5,120 15 25 × 25 × 18

C1450–2450 trinamiX trinamiX, (Ludwigshafen, Germany) 1450–2450 15–25 12,300 560 152 × 84 × 52

D1300–2600 NeoSpectra Si-Ware Systems, (El Nozha, Cairo) 1300–2600 16 5,000 17 32 × 32 × 22

E350–2500 SR-3500 Spectral Evolution, (Haverhill, Massachusetts) 350–2500 2.8, 6, 8 70,000 3800 216 × 279 × 89

The reflectance (R) spectra of the soil samples recorded with each instrument were transformed to apparent absorbance

using log10(1/R), and interpolated to 10 nm intervals to attain a consistent wavelength interval. Since some of the miniaturised

spectrometers measured narrow and specific spectral ranges, we combined spectrometers A350–830 with B1750–2150, A350–830

with C1450–2450, and A350–830 with D1300–2600, to cover more of the vis–NIR range.

2.4 Spectroscopic modelling165

Given the large number of soil properties, spectrometers, algorithms, and the assessment of both spectrometer repeatability

and model accuracy, the experiments became extremely complex and computationally intensive. To improve the computational

efficiency of the study, we aggregated the data from the 280 subplots into 56 plots by averaging the spectra and soil properties

(Fig. 2). Subplot samples were similar and we assumed that aggregating them would not seriously affect the variability in the

data and the modelling. Conclusions drawn from the results of the 56 plot data were compared to results from the 280 subplot170

data, but using only the best spectrometers and algorithm (see below, subsection ‘Assessment on data from subplots’).
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Figure 2. Study design for data collection and spectroscopic modelling. Data collection describes the measurement of soil properties and

collection of spectra. Assessment on plots shows the spectroscopic modelling for the assessment of algorithms and spectrometers. Assessment

on subplots validates the modelling with the best algorithm and spectrometers on subplot data.

2.4.1 Assessment of algorithms with data from plots

Multivariate modelling is fundamental for assessing the spectrometers. This type of modelling, and particularly machine learn-

ing, is largely dependent on the data set used and there is not a single ‘best’ method for all applications. Using a single algo-

rithm could lead to inaccurate conclusions. To prevent both over- or understating the capability of these spectrometers, we used175

seven statistical and machine learning algorithms that have been reported for soil spectroscopic modelling (Viscarra Rossel
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and Behrens, 2010; Liu et al., 2016; Yang et al., 2022; Song et al., 2021). These were partial least square regression (PLSR)

(Wold et al., 2001), random forest (RF) (Breiman, 2001), support vector machines (SVM) (Vapnik, 1999), Cubist (Quinlan

et al., 1992), extreme gradient boosting (XGBoost) (Chen et al., 2015), and Gaussian process regression with linear (GPRL)

and polynomial (GPRP) kernels (Rasmussen, 2003). They account for linear responses (PLSR) to more complex, non-linear180

responses (e.g. SVM), and the bases of the algorithms are fundamentally different: statistical (PLSR), tree-based (Cubist, RF,

XGBoost), Gaussian process-based (GPRL and GPRR), and support vector methods (SVM). Viscarra Rossel and Behrens

(2010) described these algorithms and their implementation in soil spectroscopic modelling.

The average spectra of the replicates from the 56 plot data were used for modelling (Fig. 2). The models were developed

using 10-fold cross-validation and their hyperparameters were optimised by minimising the root mean squared error (RMSE)185

with either grid search or using the Differential Evolution optimisation (Price et al., 2006), implemented in the R library

DEOPTIM (Mullen et al., 2011). The optimal number of factors to use in the PLSR was determined using a grid search,

implemented in the R library PLS (Wehrens and Mevik, 2007). We implemented the SVM using a Gaussian radial basis

function in the R library KERNLAB (Karatzoglou et al., 2004). Its hyperparameters C, which describes the cost or penalty

on training accuracy and behaves as a regularization parameter in the SVM, and γ, which defines the influence of training190

samples, were optimized using DEOPTIM. RF was implemented using the R library RANDOMFOREST (Liaw et al., 2002) and

the hyperparameter mtry, which is the number of predictors randomly sampled as candidates at each decision tree split, was

optimised with DEOPTIM. We implemented GPR using the R library KERNLAB and tested both linear and polynomial kernels.

The linear method did not need optimising; however, for the polynomial kernel, we used DEOPTIM to optimise the degree

of the polynomial and scale hyperparameter. The optimisation of hyperparameters in XGBoost, implemented using the R195

library XGBOOST was also performed using DEOPTIM. The hyperparameters optimised were number of iterations (nrounds),

the learning rate (eta), maximum tree depth (max_depth), the regularisation parameter, which controls overfitting (γ), the

number of predictors supplied to each tree (colsample_bytree), the minimum number of instances required in a child node

(min_child_weight), and the number of samples (observations) supplied to a tree (subsample). Viscarra Rossel and Webster

(2012) described the implementation of Cubist in spectroscopic modelling. Its hyperparameters, the number of committees (c)200

and neighbours (N), were optimised with DEOPTIM.

For each soil property, we calculated the mean, maximum, and minimum concordance correlation coefficient (Lin, 1989),

ρc, of each algorithm and selected only the most accurate and consistent ones to compare the performance of the spectrometers

and their combinations. The ρc is a unit invariant coefficient that measures the difference between the measured and estimated

values and their deviation from a 45-degree line of perfect agreement, evaluating both precision and bias. It ranges from -1 to205

1, with 1 denoting perfect agreement. The ρc was used as the main metric for the assessments because it allows the comparison

across soil properties with different units possible. We used ρc < 0.65 to denote poor agreement between the measured values

of the properties and the estimates, 0.65≤ ρc < 0.8 to denote moderate agreement, 0.8≤ ρc < 0.9 for substantial agreement,

and 0.9≤ ρc ≤ 1.0 for near-perfect agreement. We removed algorithms with an average ρc below 0.65 as they performed

poorly with most spectrometers and soil properties. Their removal improved the modelling and interpretability of our results210

and reduced redundancy in the experiments.
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2.4.2 Assessment of spectrometers with data from plots

Accuracy. To compare the performance of the different spectrometers, we modelled the 29 soil properties using the five

spectrometers and the three spectrometer combinations. We first selected the algorithms yielding the most consistent estimates

(see above) for the soil properties and then calculated the average, minimum and maximum ρc across the best algorithms to215

assess the spectrometers’ and the combinations’ accuracy for each property (Fig. 2).

To more explicitly quantify the estimation error with the spectrometer or spectrometer combinations that produced the best

predictions (i.e. the largest ρc), we measured the RMSE, the mean error (ME) and the standard deviation of the error (SDE),

which represent the inaccuracy, bias and imprecision of the estimates, respectively. We note that the inaccuracy (RMSE)

embraces both the bias (ME) and the imprecision (SDE) of the analysis so that RMSE2 = ME2 + SDE2. Because RMSE, ME,220

and SDE are unit variant, they are not suitable for comparing errors across soil properties with differing units. They were used

to quantify the overall inaccuracy (RMSE), the bias (ME), and the imprecision (SDE) of the estimates for each soil property.

Repeatability. We assessed the repeatability of the spectroscopic measurements by calculating the ratio of the difference

between the replicates to the mean of the replicates (Fig. 2), defined as:

%Difference =
|Repa−Repb|

(Repa + Repb)/2
× 100 (1)225

where Repa and Repb represent the two spectroscopic replicate measurements. Repeatability values (% Difference) closer to

zero are considered to represent more repeatable spectroscopic measurements.

To assess the impact of a spectrometer’s repeatability on the spectroscopic modelling, we also modelled soil properties with

each replicate (Repa and Repb) and calculated the absolute difference in ρc, ∆ρc, of the estimates (Fig. 2). We performed the

spectroscopic modelling using the best algorithms (see above) and reported the mean, maximum, and minimum ∆ρc for each230

spectrometer and combination.

2.4.3 Overall assessment of the spectrometers

To assess the overall performance of each spectrometer and combination as a function of their accuracy and repeatability, we

derived the index e:

e=

∑N
i=1 ρ

i
c

N
+

∑N
i=1(1− (maxρic−min ρic))

N
+

∑N
i=1(1−∆ρic)

N
+

∑N
i=1(1− (max∆ρic−min ∆ρic))

N
(2)235

where, e is the overall performance index, N is the number of soil properties, ρic, maxρic and minρic are the mean, maximum

and minimum ρc for the ith property from the best alogrithms, ∆ρic, max∆ρic and min∆ρic are the mean, maximum and

minimum difference in ρc from the modelling with replicate measurements for the ith property with the best algorithms. The

first two terms in Equation (2) assess the overall accuracy and stability of of the accuracy when the calibrations are performed

using different algorithms. The third and fourth terms assess the effect of the spectrometers repeatability on the spectroscopic240

modelling and its stability. All terms range from 0 to 1, and a higher value means better performance.
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2.4.4 Assessment on data from subplots

To further verify results and conclusions from the 56 aggregated plot data, we also evaluated the performance of the spec-

trometers using data from the 280 subplots. When modelling the 280 subplot data (Fig. 2), we used only the algorithm that

performed best in modelling the data from the plots. As the subplots originated from within the reference and stockpiles plots,245

we performed the modelling and assessment using 10-fold-plot-out cross-validation to prevent the risk of overfitting because

soil properties and spectra from a reference or stockpile plot can be correlated.

3 Results

The soil samples varied markedly in their physical, chemical, and biological properties, providing a wide range of values

for spectroscopic modelling. The soil samples were highly variable with wide ranges in their physicochemical and biological250

properties. They represented soils that were in good, healthy condition (reference sites), to soils that were degraded (stockpiles).

For example, clay content ranged from 4–66%, organic C from 0.19–4.3%, pH 5.12 to 9.1 and microbial activity (CO2 flux)

from 5–140 mg L−1 (Table 3).
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Table 3. Summary of the physical (n=5), chemical (n=19), and biological (n=5) properties (mean, s.d., minimum, maximum, median, and 1st

and 3rd quartiles) of reference soil and stockpiled topsoil sampled from seven mine sites in Western Australia, as determined by conventional

analytical methods.

Soil property Unit Mean s.d. Min. 1st Quart. Median 3rd Quart. Max.

Physical properties

Sand % 51.44 26.38 18.00 32.00 32.80 90.00 90.00

Silt % 24.10 12.22 6.00 6.00 30.60 34.00 37.60

Clay % 24.46 17.12 4.00 4.00 32.60 34.00 66.00

Bulk density g cm−3 1.36 0.15 0.81 1.30 1.360 1.47 1.58

Electrical conductivity dS m−1 0.19 0.49 0.0128 0.027 0.044 0.15 2.87

Biological properties

CO2 production mg L−1 30.41 29.22 5.20 11.60 21.16 38.36 140.06

Fungal richness - 52.26 39.87 8.00 26.94 45.10 63.19 176.00

Fungal diversity - 2.82 0.65 1.46 2.33 2.81 3.42 4.13

Bacterial richness - 656.64 249.81 171.75 464.62 641.50 798.73 1439.00

Bacterial diversity - 5.58 0.60 3.98 5.31 5.65 6.00 6.46

Chemical properties

pHCa (0.01M CaCl2) - 5.74 1.20 3.88 4.92 5.45 6.21 8.16

pHW - 6.68 1.06 5.12 5.90 6.36 7.11 9.10

Organic C % 1.21 1.07 0.19 0.43 0.86 1.83 4.30

Total N mg kg−1 14.52 23.50 2.00 4.71 7.280 13.30 155.6

P (Colwell) mg kg−1 4.53 2.62 1.00 3.15 4.20 5.60 13.2

K (Colwell) mg kg−1 191.71 145.15 15.00 41.75 194.60 297.90 471.40

B mg kg−1 0.73 1.04 0.10 0.24 0.36 0.58 4.47

S mg kg−1 60.13 225.00 0.70 2.98 5.95 19.44 1467

Cu mg kg−1 0.84 0.72 0.09 0.19 0.79 1.36 2.96

Fe mg kg−1 18.24 16.89 2.96 6.82 11.02 28.21 79.20

Mn mg kg−1 13.94 15.64 0.62 4.49 10.14 17.62 88.88

Zn mg kg−1 0.56 0.35 0.07 0.29 0.40 0.72 1.47

Exchangeable Ca meq 100 g−1 6.09 5.67 0.64 2.12 3.57 8.29 20.17

Exchangeable Mg meq 100 g−1 1.91 1.81 0.15 0.74 1.15 2.55 6.38

Exchangeable Na meq 100 g−1 0.65 1.53 0.024 0.060 0.097 0.43 8.30

Exchangeable K mg 100 kg−1 0.38 0.31 0.01 0.089 0.33 0.56 1.02

Exchangeable Al meq 100 g−1 0.12 0.14 0.018 0.035 0.060 0.12 0.57

Ammonium-N mg kg−1 3.39 3.27 1.00 1.40 2.30 4.00 19.8

Nitrate-N mg kg−1 11.13 21.66 1.00 1.20 4.60 10.95 143.8
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The reflectance spectra from the different spectrometers and their combinations show features that are characteristic of soil

spectra. For example, the feature near 1900 nm (Fig. 3) is due to combination and overtone vibrations of molecular water255

contained within soil minerals (Viscarra Rossel and Behrens, 2010).
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Figure 3. Mean and difference spectra of the spectral replicates of the data from the 56 sampling plots. (a) average reflectance spectra of

the two replicates (Fig. 2). (b) difference between the two replicates calculated using Equation (1). (c) combined average reflectance spectra

from (a).

Spectrometer E350–2500 was more repeatable in the range between 600–2500 nm with less than 18.7% difference between the

replicates. At wavelengths smaller than 600 nm, however, the difference between the replicates was large (Fig. 3). The repeata-
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bility of spectrometers B1750–2150 (< 24.3%), C1450–2450 (< 20.6%) and D1300–2600 (< 30.9%) was similar, with B1750–2150

and C1450–2450 being slightly more repeatable than D1300–2600. In contrast, replicate spectra from A350–830 were more imprecise260

in the 350–500 nm region (Fig. 3).

3.1 Assessment of the algorithms on data from plots

PLSR, GPRP, Cubist and GPRL consistently produced more accurate estimates (mean ρc of 0.74, 0.74, 0.71, and 0.69 re-

spectively) of the soil physical, chemical and biological properties, and with less variability (narrower minimum, maximum

intervals) between spectrometers than SVM, RF and XGBoost (mean ρc of 0.51, 0.54, and 0.58 respectively) (Fig. 4).265

Figure 4. Assessment of the accuracy from different algorithms. The mean ρc (points) and range (lines) extend the minimum and maximum

values of ρc from the five spectrometers and three combinations. The three shaded grey bands indicate the accuracy level, which we classified

as poor (ρc < 0.65), moderate (0.65 ≤ ρc < 0.8), substantial (0.8 ≤ ρc < 0.9), and near perfect (0.9 ≤ ρc ≤ 1.0).
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Of the soil physical properties, bulk density was most poorly estimated (ρc < 0.65) (Fig. 4). All of the algorithms performed

well for the rest of the physical properties (ρc ≥ 0.65). The accuracy of the estimates of the biological properties varied. CO2

flux with PLSR, Cubist, GPRL, and GPRP produced ρc values between 0.65–0.8 (Fig. 4). Estimates of fungal diversity and

richness with these algorithms varied, and only PLSR and GPRP produced mean values of ρc in the range between 0.65–0.8. All

algorithms poorly estimated bacterial richness and diversity (ρc < 0.65), although the Cubist estimates were markedly better270

(Fig. 4). The algorithms inaccurately estimated the chemical properties P, Zn, and Ammonium-N (ρc < 0.65). The chemical

properties, pHCa, pHW , organic C, K, B, Cu, Fe, exchangeable Ca, Mg, and K, were predicted with substantial accuracy

(ρc ≥ 0.8) by PLSR, Cubist, GPRP and GPRL. The variability in the estimates of the exchangeable Ca, Mg and Al, was large

compared to other chemical properties, arising from the performance of the different spectrometers (Fig. 4).

3.2 Assessment of spectrometers’ accuracy on data from plots275

In this section, we assess the different spectrometers and combinations, considering only the best algorithms: PLSR, Cubist,

GPRL, and GPRP (see above and Fig. 4). Generally, combining visible and NIR spectrometers produced more accurate es-

timates of the soil’s physical, biological and chemical properties than only visible or NIR spectrometers (Fig. 5).The visible

range spectrometer, A350–830, accurately estimated soil texture (sand, silt, and clay), but it was the least accurate for estimat-

ing chemical properties. The NIR spectrometers estimated most of the soil physical, chemical, and biological properties with280

moderate or greater accuracy (ρc ≥ 0.65). The B1750–2150 spectrometer, with the narrowest spectral range, produced the least

accurate estimates of the soil physical and biological properties (Fig. 5).

The A350–830 spectrometer produced the best estimates of silt content, and its estimates of sand and clay were comparably

accurate to those made using instruments that cover the NIR and vis–NIR ranges (Fig. 5). Estimates of sand and silt content

using only the NIR range, with the B1750–2150, C1450–2450 and D1300–2600 spectrometers were the least accurate. Estimates of285

soil electrical conductivity with the NIR and vis–NIR ranges were similar (0.8 ≤ ρc < 0.9, Fig. 5) and remarkably better than

the visible range. The spectrometers that combine the visible and NIR ranges estimated the soil biological properties better. For

instance, the combined A350–830 + C1450–2450 and A350–830 + D1300–2600 spectrometers produced the most accurate estimate of

CO2; A350–830 + B1750–2150 and the portable E350–2500 spectrometer produced better estimates of fungal richness and diversity,

respectively (Fig. 5). Of the soil chemical properties that were estimated with at least moderate accuracy (ρc ≥ 0.65), the NIR290

and vis–NIR range spectrometers, C1450–2450, D1300–2600, A350–830 + B1750–2150, A350–830 + C1450–2450, A350–830 + D1300–2600

and E350–2500, produced estimates with similar accuracy (Fig. 5), whereas the visible range spectrometer, A350–830, produced

inaccurate results.
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Figure 5. Accuracy of the spectrometers and combinations. The discs show the mean ρc and the range lines are the minimum and maximum

values of ρc from the best four algorithms (PLSR, Cubist, GPRL, and GPRP). The grey bands indicate the level of accuracy (moderate,

substantial, and near perfect—see caption of Fig. 4).

3.3 Assessment of the spectrometers’ repeatability on data from plots

For all of the soil physical, chemical and biological properties, the E350–2500 full range vis–NIR portable spectrometer produced295

estimates that were generally the most repeatable (lowest mean ∆ρc, Fig. 6). The miniaturised NIR spectrometers, (B1750–2150,

C1450–2450, and D1300–2600) and combined vis–NIR (A350–830 + B1750–2150, A350830 + C1450–2450 and A350–830 + D1300–2600),

produced similar and repeatable estimates of the soil properties.

Due to the poor repeatability of the A350–830 measurements (see Fig. 3), the estimates of the soil properties with the spectra

from this instrument were the most uncertain, particularly the chemical properties (Fig. 6). For a number of properties that were300

not precisely estimated with the A350–830 instrument (e.g. bulk density, S, and Exchangeable Na and Al), combining it with a

NIR spectrometer reduced the precision of the estimates from the spectrometer combinations (larger mean ∆ρc). For the soil

properties that could not be well estimated with any spectrometer (e.g. bacterial richness and diversity, P, Zn and Ammonium-N

with ρc < 0.65), the precision of the estimates was also poor.
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Figure 6. Effect of the repeatability of the spectrometers on the spectroscopic modelling. ∆ρc represents the difference in ρc between the

algorithms (with PSLR, Cubist, GPRL, and GPRP) of the replicates. The discs show the mean difference and the lines represent the minimum

and maximum of the difference. A small ∆ρc indicates good repeatability.

3.4 Overall assessment of the spectrometers305

Spectrometers that cover the visible and NIR ranges were the most accurate and stable as shown by the higher accuracy and

accuracy range scores, respectively (Table 4). The A350–830 + C1750–2450 and A350–830 + D1300–2600 spectrometers were as

accuracy as the full-range portable E350–2500 spectrometer. Spectrometers C1450–2450 and E350–2500 were the most repeatable,

while A350–830 was the least repeatable (Table 4). The precision of the vis–NIR combinations A350–830 + B1750–2150, A350–830 +

C1450–2450 and A350–830 + D1300–2600 was affected by the poor repeatability of A350–830. Overall, the full-range vis–NIR spec-310

trometer (E350–2500) had the highest e score (Table 4), followed by NIR spectrometers with wider spectral ranges (C1450–2450,

D1300–2600) and vis-NIR combinations (A350–830 + C1450–2450, and A350–830 + D1300–2600).
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Table 4. Overall assessment of the spectrometers and combinations. Columns show the accuracy and its stability (represented by the range

of the accuracy) of the spectrometers when modelling with the different algorithms (PSLR, Cubist, GPRL, and GPRP) as well as the effect

of the spectrometers’ repeatability on the modelling and its stability. They corresponds to the first, second, third and forth term in Equation

2., respectively

.

Spectrometer Accuracy Accuracy range Repeatability Repeatability range e

A350–830 0.62 0.85 0.89 0.82 3.18

B1750–2150 0.68 0.79 0.96 0.94 3.37

C1450–2450 0.72 0.91 0.97 0.95 3.55

D1300–2600 0.72 0.90 0.96 0.93 3.51

A350–830 + B1750–2150 0.72 0.89 0.92 0.89 3.42

A350–830 + C1450–2450 0.75 0.91 0.94 0.90 3.50

A350–830 + D1300–2600 0.75 0.91 0.94 0.91 3.51

E350–2500 0.75 0.91 0.97 0.95 3.58

For each soil property, we derived the performance score, e, for all the spectrometers and combinations. The evaluation

statistics of the spectrometer or combination with the largest e are shown in Table 5. The miniaturised spectrometers and

combinations estimated 24 of the 29 soil properties with moderate or better accuracy (ρc ≥ 0.65), except for P, Zn, Ammonium-315

N, and bacterial properties. The inaccuracy of the soil property estimates, quantified with the RMSE, was largely due to

imprecision (SDE) and not bias (ME).

The visible range spectrometer A350–830 had the largest e for sand and silt, with ρc ≥ 0.90 and 0.80≤ ρc ≤ 0.90, respectively

(Table 5). The individual NIR spectrometers performed well on many chemical and some of the biological properties. The

C1450–2450 spectrometer alone predicted one soil physical property, six chemical properties and one biological property with320

moderate or better accuracy (ρc ≥ 0.65). Some soil properties (e.g. clay, electrical conductivity, pHCa, K, Mn, Exchangeable

Na, K, and Al, and fungal diversity) were accurately estimated when the visible spectrometer was combined with a NIR

spectrometer. For instance, the combined A350–830 + D1300–2600 spectrometers.
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Table 5. Statistics from miniaturised spectrometers and combinations with the highest e score for individual soil properties.

Soil property Spectrometer/combination e ρc RMSE ME SDE

Physical properties

Sand A350–830 3.86 0.91 10.64 -0.40 10.63

Silt A350–830 3.75 0.85 6.43 -0.023 6.43

Clay A350–830 + D1300–2600 3.83 0.88 8.09 -0.10 8.09

Bulk density C1450–2450 3.49 0.75 0.093 0.0038 0.093

log10(Electrical conductivity) A350–830 + D1300–2600 3.74 0.85 0.29 0.0093 0.28

Chemical properties

pHCa A350–830 + D1300–2600 3.85 0.91 0.49 -0.0073 0.49

pHW C1450–2450 3.84 0.90 0.45 -0.0085 0.45

log10(OC) C1450–2450 3.85 0.92 0.14 0.0060 0.14

log10(Total N) C1450–2450 3.56 0.66 0.29 0.017 0.29

P C1450–2450 3.24 0.53 2.20 0.051 2.20

log10(K) A350–830 + D1300–2600 3.86 0.94 0.17 -0.0063 0.17

log10(B) C1450–2450 3.78 0.87 0.20 -0.0035 0.20

log10(S) B1750–2150 3.69 0.81 0.41 -0.0038 0.41

log10(Cu) D1300–2600 3.84 0.91 0.18 0.0040 0.18

log10(Fe) C1450–2450 3.73 0.86 0.17 -0.0030 0.17

log10(Mn) A350–830 + D1300–2600 3.60 0.83 0.27 0.0023 0.27

Zn C1450–2450 3.19 0.47 0.30 0.0063 0.30

Exchangeable Ca D1300–2600 3.93 0.95 1.69 0.019 1.69

log10(Exchangeable Mg) D1300–2600 3.85 0.90 0.18 0.0043 0.18

log10(Exchangeable Na) A350–830 + B1750–2150 3.74 0.83 0.36 0.015 0.36

Exchangeable K A350–830 + D1300–2600 3.81 0.88 0.15 -0.0013 0.15

Exchangeable Al A350–830 + D1300–2600 3.13 0.83 0.078 -0.0033 0.078

log10(Ammonium-N) D1300–2600 3.26 0.57 0.25 0.0053 0.25

log10(Nitrate-N) C1450–2450 3.61 0.74 0.36 0.029 0.36

Biological properties

log10(CO2) D1300–2600 3.57 0.70 0.26 0.0065 0.26

Fungal richness C1450–2450 3.49 0.65 27.35 1.14 27.33

Fungal diversity A350–830 + D1300–2600 3.59 0.67 0.44 -0.0088 0.44

Bacterial richness A350–830 + C1450–2450 3.03 0.19 247.13 -1.26 247.13

Bacterial diversity C1450–2450 3.18 0.27 0.56 -0.014 0.56
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3.5 Spectroscopic modelling with PLSR and 10-fold-plot-out cross validation on data from subplots

Compared to the other algorithms tested, PLSR generally produced more accurate estimates of the soil properties tested (see325

Fig. 4), so we used it for modelling the 280 data from the subplots (see Methods section Validation on data from subplots).

Since the A350–830 and B1750–2150 spectrometers generally produced the least accurate estimates (Fig. 5) and had the smallest

e score (Table 4), we did not use them in this modelling. The 10-fold-plot-out cross-validations of the soil properties from

subplots (Fig. 7) were similar or slightly more conservative compared to those of the 10-fold cross-validation of the data from

plots (Fig. 5), suggesting that our evaluation of the spectrometers is reliable.330

Figure 7. Ten-fold-plot-out cross-validation using PLSR with data from subplots.
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The accuracy of the estimates with the combined A350–830 + C1450–2450 and A350–830 + D1300–2600 spectrometers were

similar to the full range portable E350–2500 spectrometer and better than the combined A350–830 + B1750–2150 spectrometer

(Fig. 7). The C1450–2450 and D1300–2600 spectrometers produced estimates with similar accuracy, but their estimates were less

accurate than those from the A350–830 + C1450–2450 and A350–830 + D1300–2600 spectrometers, respectively.

4 Discussion335

4.1 Mine site soil rehabilitation requires cost-effective soil property measurements

Mining is vital to economic development in many countries. In Australia, for example, mining and energy exports are forecast

to be worth around $AU288 billion in 2020/21, and over $184 billion of this from WA alone (Department of Industry, Science,

Energy and Resources, 2021). However, the economic benefits of mining come at an environmental cost, and the collective

footprint of mining in Australia is expected to exceed 4000 km2 by 2050 (EPA, 2014), and globally, it is currently 57000 km2,340

and increasing at an unparalleled rate in the last decade. There is little historical evidence of capacity to effectively restore land

at this scale (EPA, 2013), and regulatory bodies have urged the mining industry to engage in restoration science (EPA, 2014).

To rehabilitate and restore biodiverse, resilient ecosystems post-mining, we must first measure and diagnose, then reinstate

and monitor the health of the soils. However, a lack of rapid, quantitative methods for assessing and monitoring soil properties

that are indicators of soil health may at least partially underpin the continuing failure to deliver effective and cost-efficient345

restoration outcomes following mining. In this context, our results are encouraging because they present an opportunity for es-

tablishing a science-based diagnostic capacity to rapidly and cost-effectively estimate soil properties that are key for diagnosing

soil health.

4.2 Miniaturised visible and NIR spectrometers can estimate key soil health indicators

We used miniaturised spectrometers to estimate 29 soil physical, chemical, and biological soil properties. Amongst these,350

soil organic carbon, K, P, pH, EC, B, Cu, Zn, Mn, Fe, Ca, Mg, Na, Al, sand, silt, clay, soil respiration (CO2 ), available N

(ammonium and nitrate) and BD are tier 1 soil health indicators in routine soil testing programs (Karlen et al., 2019; Bünemann

et al., 2018). Although less commonly included in soil health assessment frameworks, microbial community composition is

an under-utilised yet valuable metric for soil health assessment (Fierer et al., 2021). Changes in soil microbial communities

are associated with processes that are important for soil health, such as changes in P availability (Hermans et al., 2017),355

soil pH (Delgado-Baquerizo et al., 2018), labile organic carbon pools (Ramírez et al., 2020), and soil moisture levels (Isobe

et al., 2020). Our aim was not to derive detailed interpretations of the soil health indicators or an overall soil health index or

score. Instead, we tested 29 soil properties commonly used as key indicators of soil health and used the spectra from a range

of miniaturised and portable spectrometers to model them. The spectroscopic models accurately estimated 24 out of 29 soil

properties (Table 5). Therefore, the spectra from the miniaturised spectrometers can accurately estimate soil properties that360

are key indicators of soil health. These estimates can could then inform the assessment and diagnosis of soil health. These
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findings suggest using miniaturised spectrometers to develop a cost-effective soil health diagnostic capacity for mine site soil

rehabilitation. In a future study, we might investigate the derivation of a soil health index based on the spectra or the estimated

soil properties.

Some soil properties (bacterial richness and diversity, P, and Zn and ammonium-N) could not be well estimated with any365

of the spectrometers or combinations (Fig. 5). Therefore, it might be necessary to investigate other methods to measure them.

Although we could estimate 24 soil properties with moderate or greater accuracy (ρc ≥ 0.65), the estimates are outcomes from

empirical models that possess error ((Table 5). However, the advantage of the spectroscopic method, compared to the more

accurate conventional analytical measurements, is that spectroscopy is rapid and cost effective (Li et al., 2022), allowing many

more (spatial and temporal) measurements, which on the whole might serve to better assess and monitor soil health. Another370

advantage of spectroscopy is that a single spectrum can be used to estimate many soil properties. These make soil spectroscopy

well suited for large-scale soil rehabilitation where many data are needed but are too expensive and time-consuming to obtain

using conventional soil analysis.

The accuracy of the estimates of electrical conductivity and most of the soil chemical properties from the A350–830 spectrom-

eter was markedly poorer than the NIR spectrometers (Fig. 5), indicating that the 350–830 nm range does not hold sufficient375

chemical information to produce suitable models for estimating those soil properties. The poor repeatability of the A350–830

spectrometer’s measurements in the 350–500 nm range (Fig. 3) also affected the precision of the spectrometer combinations

(reduced repeatability of the combinations in Table 4). With a more repeatable visible spectrometer, the spectrometer perfor-

mance of the combined spectrometers would improve.

4.3 Soil assessment with the miniaturised spectrometers380

Some studies have evaluated miniaturised NIR spectrometers for characterising soil properties (Tang et al., 2020; Ng et al.,

2020; Sharififar et al., 2019) in agricultural and natural environments. However, our study presents a comprehensive assess-

ment. We tested a diverse range of soil properties considered key indicators of soil health; many spectrometers (one visible,

three NIR, three combinations and a portable spectrometer); seven statistical and machine learning algorithms; evaluated the

repeatability of the measurements and their effect on the models’ estimates, and the accuracy of the models. Our study also385

extends the application of miniaturise spectrometers in mine site soil rehabilitation.

How can the miniaturised spectrometers with coarser resolutions and narrower spectral ranges produce nearly as good or

better results as the full-range, higher resolution sensor? For different reasons. First, soil vis–NIR spectra are non-specific and

highly collinear (Stenberg et al., 2010). Although the small spectrometers have restricted wavelength ranges, a well-selected

spectral range can hold information on overtones and combination bands of important organic and mineral constituents that390

enable the development of accurate models. For example, spectrometer B1750–2150, with a very narrow range, could estimate

many soil properties with moderate or greater accuracy (ρc ≥ 0.65, Fig. 5). Table 5 shows the spectrometers with varying

spectral ranges that could adequately estimate each soil property. Second, absorptions due to soil constituents in the vis–NIR

range are broad (Viscarra Rossel and Behrens, 2010) and coarse spectral resolutions, like those of the miniature spectrometers

(Table 2), are unlikely to affect the modelling, compared to the portable vis–NIR spectrometer with a finer spectral resolution.395
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4.4 Miniaturised soil spectroscopy can support soil rehabilitation

The portability and affordability (see Table 2) of the miniaturised spectrometers enables the cost-effective acquisition of soil

information at greater temporal and spatial resolutions than conventional laboratory-based methods. Although spectroscopy

produces less precise measures of soil properties than conventional laboratory analyses, it enables many more rapid and cost-

effective measurements at the appropriate spatial and temporal resolution for rehabilitation and ecological restoration. Practi-400

tioners can then effectively identify the need for early interventions to establish positive soil health trajectories. Spectroscopy

could also facilitate the evaluation of soil degradation, more timely identification and remediation of ecologically hostile con-

ditions, and more effective monitoring of the change in soil properties in response to restoration activities. An additional

significance of the miniaturised visible and NIR spectrometers is that they are, even in combinations, are much cheaper than

the full-range portable instrument (Table 2). Because they are cost-effective, compact, and lightweight they are being used in405

many diverse applications (Giussani et al., 2022; Pu et al., 2021).

Together with other sensors and environmental data, development and further testing of the miniaturised visible and NIR

spectrometers could provide the mining industry and restoration practitioners with a rapid and cost-efficient methodology for

diagnosing, assessing, and monitoring soil health. The information gained would ensure that soil management, whether in

rehabilitation and restoration, is underpinned by quantitative information for evidence-based decision-making. In addition, the410

ability to reliably assess a wide range of soil properties that are key indicators of soil health enables rapid identification of

when intervention is required, which could help deliver significant economic and environmental outcomes.

5 Conclusions

Achieving desired outcomes from rehabilitation and ecological restoration relies on characterising soil properties that affect

soil health. Therefore, developing efficient, reliable, and cost-effective methods for measuring and monitoring soil properties415

that can indicate soil health is essential. We compared four miniaturised spectrometers (one visible and three NIR) and three

vis + NIR combinations to a research-grade (benchmark), full-range vis–NIR instrument, which is an order of magnitude more

expensive. Seven statistical and machine learning algorithms were used for modelling 29 soil physical, chemical, and biological

properties, key indicators of soil health, to assess the spectrometers’ predictive performance as a function of accuracy and

repeatability. Four algorithms, PLSR, Cubist, GPRL, and GPRP, performed consistently well with the different spectrometers.420

The visible spectrometer was remarkably accurate for estimating sand, silt and clay contents, and the NIR spectrometers could

estimate most chemical, physical and biological properties with moderate or greater accuracy (ρc ≥ 0.65). However, none of

the spectrometers could estimate bacterial richness or diversity. The visible sensor was the least repeatable, which affected its

estimates and those with the combined spectrometers. The combined small vis + NIR spectrometers performed similarly to

the benchmark spectrometer and the miniaturised spectrometers and combinations could estimate 24 of the 29 soil properties425

with moderate or greater accuracy. Soil spectroscopy with these tiny sensors is cost-effective. It enables the collection of many

more measurements at the required spatial and temporal resolutions, improving soil health diagnosis and ecologic rehabilitation
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and restoration. Thus, the information gained could inform decision-making to deliver positive environmental and economic

outcomes.
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