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Abstract 22 

Recycling of agricultural wastes to reduce mineral fertilizer input, in particular phosphorous (P), plays crucial 23 

role in sustainable agriculture production. Understanding the transformation of phosphorous (P) fractions and their 24 

bioavailability following soil application of different renewable P-contained fertilizers is very important for 25 

improving P use efficiency and reducing environmental risks. In this study, the effects of mineral P-fertilizer 26 

superphosphate and recycled P-fertilizers, i.e., poultry manure, cattle manure, maize straw and cattle bone meal, 27 

on their distribution to different soil P fractions, their transformation and the availability of soil P were determined 28 

by soil P sequential fractionation and 31P solution nuclear magnetic resonance (NMR). The results showed that 29 

addition of mineral P fertilizer, poultry manure and cattle manure increased P fixation in a red soil more than that 30 

in a fluvo-aquic soil. In both fluvo-aquic and red soils, cattle manure out-performed all other recycled P sources 31 

used in improving soil P availability. The concentration of Olsen-P in fluvo-aquic and red soils supplemented with 32 

cattle manure were increased by 41 %-380 % and 16 %-70 % than the other recycled P sources. A structural 33 

equation model (SEM) explained 95 % and 91 % of Olsen-P variation in fluvo-aquic and red soils, 34 

respectively. Labile P fractions had positive effects on Olsen-P of fluvo-aquic and red soils. 31P-NMR study 35 
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showed that amount of orthophosphate was the main factor affecting the availability of P from different P sources. 36 

In summary, cattle manure was found to be a superior renewable source of P in improving bioavailable P in soil, 37 

and its use thus has considerable practical significance in P recycling. 38 

Keywords: phosphorus source; soil pH; P sequential fractionation; 31P-NMR 39 

 40 

Introduction 41 

Sufficient supply of plant available phosphorus (P) in soil is critical for optimal growth and high yields of 42 

crops (Haslam et al., 2019; Zhang et al., 2019). Application of P fertilizer is an important measure to supplement 43 

soil P in most agricultural regions. However, excessive application of P fertilizer is common (Withers, 2019; 44 

Campbell et al., 2017; Kalkhajeh et al., 2021) and it causes accumulation of P in soil and the attendant 45 

environmental and crop quality issues (Cui et al., 2021; Liu et al., 2016; Lucas et al., 2021). Recovering and 46 

recycling P in agricultural wastes such as manure, straw, animal bone meal, etc. could reduce P inputs globally 47 

(Qaswar et al., 2020; Guan et al., 2020; Ylivainio et al., 2008; Kaikake et al., 2009; Mortola et al., 2019). To this 48 

end, understanding the transformation of soil P fractions and its bioavailability following agricultural waste 49 

recycling is particularly important for improving crop P utilization, P fertilizer management and reducing 50 

environmental risks.  51 

A series of physico-chemical transformations (dissolution, precipitation, adsorption and desorption) occurs 52 

when P-containing recycled fertilizers are applied to the soil, which are regulated by soil pH, organic matter content 53 

and soil biology (Yuan et al., 2021; Lemming et al., 2020). The addition of mineral P (superphosphate, SSP) leads 54 

to an initial spike in P availability, followed by P adsorption and precipitation occurring over time, and culminating 55 

in decreased P availability in soil (Tiessen and Moir, 1993). Compared with mineral P, organic inputs are beneficial 56 

to the conversion of moderately labile inorganic P to available P (Chen et al., 2021). Organic fertilizers contain a 57 

variety of P compounds, including a large proportion of orthophosphate (Lin et al., 2015; Liang et al., 2017). It 58 

also affect soil P dynamics by changing its P adsorption capacity (Gatiboni et al., 2019; Barnett, 1994). The 59 

concentrations of labile and moderately labile P fractions in soil were significantly increased after applying organic 60 

fertilizer for four consecutive years (Negassa and Leinweber, 2009). Compared with mineral P, cattle manure 61 

application increases the content of moderately labile P, microbial biomass and microbial activity of soil, which 62 

facilitate the provision of plant available P for a longer period (Braos et al., 2020; Neufeld et al., 2017; Zhang et 63 

al., 2018). Also, soil application of organic fertilizer was found to increase the proportion of labile organic 64 

phosphate (Po) and inositol hexaphosphate (IHP), and decrease stable Ca-P content (Yan et al., 2018). Due to the 65 
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compositional variation in animal feed and the characteristics of digestive system, different livestock manures are 66 

likely to have different effects on P distribution in soil (Garcia-Albacete et al., 2012; Freiberg et al., 2020). For 67 

instance, 87 % of P in cattle manure was water-soluble, while it was just 69% in poultry manure (Li et al., 2014; 68 

Pagliari and Laboski, 2013). The fractions of P from different P-containing fertilizers, and their effects on soil P 69 

availability are very complex. Thus, it is necessary to identify and quantify P fractions from different P sources 70 

and their distribution in soil P fraction to determine the potential bioavailability and the environmental impact of 71 

P from various sources.  72 

The relative contents of inorganic and organic P in soil is greatly influenced by soil type, land use and the 73 

type of organic amendment applied (Zhang et al., 2020; Borno et al., 2018; Pizzeghello et al., 2011). A comparative 74 

study of P fractions in a typical red soil (low pH) and a fluvo-aquic soil (slightly alkaline pH) will help reveal their 75 

transformation mechanism and relationship with edaphic condition. The improved Hedley fractionation divides 76 

soil P fractions into labile P, moderately labile P, sparingly labile P and non-labile P fractions (Negassa and 77 

Leinweber, 2009; Tiessen et al., 1984). This approach is widely used to study transformation of P fractions (Zhang 78 

et al., 2021). However, information on soil P transformation following organic fertilizer application remains 79 

limited. A previous study reported no change in soil organic P fractions following application of organic fertilizers 80 

for 62 consecutive years, while another study found an opposite trend of increased contents of soil organic and 81 

inorganic P fractions with long-term application of organic fertilizers (Annaheim et al., 2015; Lu et al., 2020).  82 

Although soil P sequential fractionation defines soil P fractions according to the solubility of P component in 83 

the extract, it provides only limited information on the biogeochemical processes and plant availability of P. Hence 84 

31P solution nuclear magnetic resonance (NMR) has been widely used to study soil P transformation, which affords 85 

more opportunities for a better understanding of organic P species. For example, Wang et al. (2019) used 31P-NMR 86 

to characterize the transformation of organic P compounds during the formation of organic soils in an alpine forest 87 

in Bavaria over 1500 years (Wang et al., 2019). And, it was also used to explore the source, translocation and 88 

transformation of P reservoir in agricultural soil, and to further understand the accumulation of residual P in soil 89 

(Joshi et al., 2018). The combination of the classical P sequential fractionation methodology and the advanced P 90 

speciation analysis methodology allows a more powerful approach to study P turnover in soil and related 91 

substances. 92 

Recycling P, nitrogen and other elements from organic waste is an important and necessary step for a green 93 

and sustainable agriculture and clean environment (Liu et al., 2020b; Almeida et al., 2019; Powers et al., 2019; 94 

Withers, 2019; Zaccheo et al., 1997). Fluvo-aquic and red soils are found extensively in agricultural lands of China. 95 
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Compared with fluvo-aquic soil, red soil readily adsorbs P and reduces its bioavailability, necessitating high P 96 

fertilizer use in agriculture. However, little is known about soil P dynamics in red soils from a fertilizer 97 

management perspective, especially in relation to organic fertilizer use. The research reported here is part of our 98 

effort to reduce mineral P fertilizer consumption by replacing it with manure, and to facilitate maximum recycling 99 

of P for food production and environmental sustainability. In this study we (1) evaluated the impact of applying 100 

different P fertilizers, including organic fertilizers, on soil P composition in fluvo-aquic and red soils, and (2) 101 

studied the relationship between various soil P fractions and available P concentration, and how it is affected by 102 

various types (mineral and organic) of P fertilizers. 103 

2 Materials and methods 104 

2.1 Experimental material and characteristics 105 

The experiment was carried out in a plant growth chamber located in the Department of Plant Nutrition, 106 

College of Resources and Environment, Southwest University, Chongqing, China. Soil samples were collected 107 

from calcareous fluvo-aquic soil in Quzhou, Hebei Province and red soil in Shilin County, Yunnan Province in 108 

June 2020. The fluvo-aquic soil properties were: 8.8 mg·kg-1 Olsen-P, 914.7 mg·kg-1 total P, pH 7.9 (water: soil 109 

ratio 2.5: 1), 13.2 g·kg-1 organic matter, 1.9 mg·kg-1 NH4
+-N, 24.3 mg·kg-1 NO3

--N, and 26.1 mg·kg-1 exchangeable 110 

potassium. The properties of red soil were: 28.2 mg·kg-1 Olsen-P, 1083.7 mg·kg-1 total P, pH 5.7 (water: soil ratio 111 

2.5: 1), 34.9 g·kg-1 organic matter, 2.4 mg·kg-1 NH4
+-N, 42.7 mg·kg-1 NO3

--N, and 78.2 mg·kg-1 exchangeable 112 

potassium. Before the experiment, both soils were dried and sieved (2 mm), then re-moistened, and pre-incubated 113 

in the dark at 25 °C for 7 d, with 30% WHC. 114 

Five P sources including single superphosphate, poultry manure, cattle manure, maize straw and cattle bone 115 

powder were used in the experiment. The total N-P-K contents of poultry manure, cattle manure, maize straw and 116 

cattle bone powder were 16-20-32 g·kg-1, 7-5-12 g·kg-1, 7-5-8 g·kg-1, 37-93-1 g·kg-1, respectively. 117 

2.2 Experiment design 118 

The experiment was set up with fluvo-aquic and red soils, each with five different P sources and a control. 119 

The treatments were mineral P (single superphosphate, SSP), poultry manure (PM), cattle manure (CM), maize 120 

straw (MS), cattle bone meal (CB) and without P (CK). The air-dried soil and different recycled organic fertilizers 121 

were sieved with 2 mm stainless steel sieve, and the soil was mixed with fertilizers to supply 120 mg total P per 122 

kg soil. The total amount of N (Ca(NO3)2·4H2O) and K (KCl), 200 and 325 mg·kg-1 of soil, respectively, was 123 

normalized for all treatments. The specific amount of fertilizer for each treatment is shown in Table 1. In all 124 

treatments, an experimental unit (a replicate) constitutes 100 g of soil enriched with an inorganic or organic 125 
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fertilizer, or with no P fertilizer for control, sampled into a 200 ml plastic bottle. All replicates were kept at 25℃ 126 

in an incubator for 70 days.  The soil moisture content (MC) was maintained at 30% throughout the experiment 127 

by weighing. A total of 432 experimental units (2 soil types×6 treatments×36 repetitions) were used in this 128 

experiment. Large number of replicates allowed destructive sampling on each sampling date. Soil samples were 129 

taken for Olsen-P analysis at 0, 3, 7, 14, 21, 28, 35, 42 and 70 days after adding the fertilizer. We analyzed the P 130 

fractions of day 70 soil samples. 131 

2.3 Sample analysis 132 

Olsen-P was determined by phosphomolybdate method using soil extract prepared with 0.5 mol·L-1 NaHCO3, 133 

pH 8.5 (180 RPM, 25°C) and 1:20 soil (W/V) (Olsen, 1954). After acid digestion with ammonium paramolybdate-134 

vanadate reagent, total phosphorus was determined by colorimetry (Olsen and Sommers, 1982, Koenig and 135 

Johnson, 1942). Soil total organic carbon content was determined following a wet oxidation method with K2Cr2O7 136 

and concentrated H2SO4 (Schumacher, 2002). The sequential extraction procedure proposed by Tiessen and Moir 137 

(1993) was used to obtain different soil P fractions: Resin-P, NaHCO3-P, NaOH-P, HCl-P and Residual P. Organic 138 

P (Po) in different extracts (NaHCO3-P, NaOH-P, conc.HCl-P) was determined by ammonium persulfate digestion 139 

method (Tiessen and Moir, 1993). Phosphorous content of extracts was quantified colorimetrically (Shen et al., 140 

2011). The concentration of Po was calculated as the difference between total P and inorganic P. Fig. S1 shows the 141 

detailed analysis process. 142 

Quantitation of soil P species variation by 31P-NMR assay 143 

Po analysis was also performed by NaOH-EDTA extraction followed by 31P-NMR analysis (Xu et al., 2012; 144 

Li et al., 2015). For the 31P-NMR analysis, soil samples at the end of 70-day incubation were ground into powder 145 

and sieved through a 100-μm mesh. They were then extracted with a solution of 0.25 mol∙L−1 NaOH and 0.05 146 

mol∙L−1 EDTA for 16 h at room temperature at a sediment and extract ratio of 1:10 (Shafqat et al., 2009; Li et al., 147 

2017). Adjust the solution pH to 9.0±1.0, stable for 30 minutes, centrifuged at 12000 g (20 ℃) for 30 minutes. The 148 

NaOH-EDTA solution was frozen and lyophilized for 31P-NMR analysis. This extract was then re-dissolved in 2 149 

mL of 1 mol∙L−1 NaOH solution for 2 h by vortex shaking, and the suspension centrifuged at 12,000 g (20 °C) for 150 

30 min (Ding et al., 2010). An aliquot (940 μL) of the supernatant was transferred into 5-mm NMR tube, and added 151 

with a deuterated aqueous solution of methylenebisphosphonic acid-P, P′-disodium salt (MDP, Epsilon Chimie, 152 

Brest) as internal standard (δ = 16.62 ppm), to reach a final 2.65 mM concentration. Three replicate pots for each 153 

treatment were prepared for NMR analyses (Li et al., 2017). 154 

Solution 31P-NMR spectra were obtained using a Bruker 600-MHz spectrometer (Bruker, AVANCE III, 155 
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Switzerland) operated at 242.93 MHz at a temperature of 25 °C. A power-gated decoupling pulse, a relaxation 156 

delay of 2s, an acquisition time of 0.67 s and 4000 scans was applied in the measurement. Chemical shifts were 157 

recorded relative to an 85 % H3PO4 standard (δ = 0 ppm). All 31P spectra were baseline corrected and processed by 158 

MestReC software (v. 4.9.9.9). Signal areas were calculated by integrating the individual peaks resulting from a 159 

deconvolution process. The MDP internal standard was contained in the solution used to dissolve samples for 160 

NMR analyses and served also to calibrate the frequency axis, standardize data and perform a quantitative 161 

assessment of P forms. Signals were assigned to P compounds based on data in the literature (Cade-Menun, 2005; 162 

Turner, 2008; Cade-Menun and Liu, 2014; Mclaren et al., 2020; Hill and Cade-Menun, 2009). The solution 31P 163 

NMR spectra of NaOH-EDTA extracts reflected the different P sources in Fig. S2. 164 

2.4 Statistical analysis 165 

NMR data were processed using the MestReNova package (V8.1.4 Mestrelab Research, Spain). All 166 

experimental data were analyzed by one-way analysis of variance (ANOVAs) with SPSS 13.0 (SPSS Inc., Chicago, 167 

IL, USA) software. When ANOVAs were significant, treatment means for independent variables were compared 168 

using Fisher’s LSD Tests. All significance levels were set to P <0.05. The structural equation model (SEM) was 169 

used to identify the potential driving factors of transformation of different P fractions following different fertilizer 170 

application in the two experimental soils using IBM SPSS AMOS 22.0 (IBM Corporation 2013). Root-mean 171 

square-error of approximation (RMSEA) (<0.08), chi-square (χ2) (χ2/df < 2), and the P value of χ2 (P > 0.05) were 172 

used to evaluate the model fitting. 173 

3 Results 174 

3.1 Cattle manure was far superior than other common organic sources to increase soil Olsen-P 175 

In both soils, the Olsen-P fluctuated with incubation time (Fig. 1). Based on the effect size, treatments could 176 

be grouped into (1) those that strongly improved Olsen-P and (2) those slightly or not improved Olsen-P, following 177 

soil enrichment with different P sources. The highest concentration of Olsen-P was found in SSP treatment (Fig. 178 

1). During 0-70 days of incubation, the Olsen-P concentration of SSP, PM and CM enriched fluvo-aquic soil has 179 

increased by 538 %, 236 % and 374 % compared with CK in average, respectively. In SSP, PM, and CM enriched 180 

red soil, the Olsen-P concentration was increased by 80 %, 41 % and 63 % compared with CK in average during 181 

0-70 days of incubation, respectively. Among the organic P sources used, cattle manure outperformed other sources 182 

in improving soil Olsen-P. In both fluvo-aquic and red soil, the Olsen-P content of soil supplemented with cattle 183 

manure was increased respectively by 41 % to 380 % (p<0.05) and 16 % to 70 % (p<0.05) compared with all other 184 

recycled P sources used in this study in average. In the fluvo-aquic soil, the concentration of Olsen-P in MS and 185 
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CB was not significantly different from CK. However, in red soil, Olsen-P concentration in CB significantly 186 

increased by 11.67 % (p<0.05) compared with CK during the 70-day incubation. In the fluvo-aquic soil, Olsen P 187 

decreased significantly between day 28 and day 70 after application of superphosphate, while Olsen-P in soils 188 

amended with the recycled fertilizers remained stable.  189 

3.2 All recycled P sources increased moderately labile and sparingly labile soil P fractionations  190 

Amendment of fluvo-aquic and red soils with different P sources significantly altered different soil P fractions 191 

and increased the total soil P content (Table 2, Fig. 2). In both soil types moderately labile and sparingly labile P 192 

fractions accounted for bulk of the P content; however, their relative contribution varied greatly (Fig. 2). In fluvo-193 

aquic soil, moderately labile P was the dominant fraction accounting for 61-67 % of the total P, and the proportion 194 

of labile-P, sparingly labile-P and non-labile P was 7 % to 16 %, 15 % to 24 % and 7 % to 8 % of total P, respectively 195 

(Fig. 2a). In contrast, in red soil, moderately labile P and sparingly labile P were present in more or less equal 196 

proportion, accounting for 32-39 % and 35-45 % of the total soil P, respectively and the labile-P and non-labile P 197 

accounted for 16-22 % and 6-7 % of total P, respectively (Fig. 2b).  198 

In fluvo-aquic soil enriched with SSP, PM, CM and CB, the labile P fraction (Resin-P, NaHCO3-Pi and 199 

NaHCO3-Po), was increased by 146.07 %, 94.26 %, 141.24 % and 27.79 % compared with CK, respectively (Table 200 

1). Similarly, in red soil, SSP, PM and CM addition increased labile P by 50.66 %, 38.08 %, 57.93 % and 17.48 % 201 

compared with CK, respectively. These results also indicate that among different organic amendments only cattle 202 

manure could increase labile soil P fraction similar to that observed with mineral P fertilizer application. Adding 203 

different P sources has increased the moderately labile P content in the soil, including NaOH-Pi, NaOH-Po and 204 

dil.HCl-P. In fluvo-aquic soils, the moderately labile P fractions of SSP, PM, CM, MS and CB supplemented soils 205 

were significantly increased by 2.3 %, 5.5 %, 6.8 %, 1.3 % and 3.5 % compared with CK, respectively. The addition 206 

of SSP, PM and MS, but not other sources, in the red soil had a significantly improvement in moderately labile P 207 

fraction, by about 7.6 %, 10.5 % and 13.3 % compared with CK, respectively, after 70-day incubation. In fluvo-208 

aquic soil, both MS and CB significantly increased the concentration of soil sparingly labile fraction (conc.HCl-209 

Pi + conc.HCl-Po). The content of sparingly labile P in MS and CB enriched soil was 24.5 % and 44.5 % higher 210 

than that in CK, respectively. In red soil supplemented with CM, MS and CB, the concentrations of soil sparingly 211 

labile P in treatments were significantly increased by 7.7 %, 8.4 % and 26.5 % compared with CK, respectively.  212 

In both soils supplemented with SSP, PM and CM, the labile P and the moderately labile P fractions mostly 213 

accounted for the increase in Pt content (Fig. 3). In contrast, the increase in Pt in soils enriched with MS and CB 214 

mainly came from the moderately stable P and the inert P fractions. In the two soils, adding SSP, PM and CM 215 
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significantly increased soil Resin-P and NaHCO3-Pi concentrations. 216 

3.3 Changes in soil organic P species in response to different recycled P sources  217 

The 31P-NMR spectra recorded peaks in the Po and Pi regions, including monoester P, inorganic 218 

orthophosphate, inositol hexakisphosphate, glucose-1-phosphate, DNA P, diester P and Polyphosphates (Fig. 4a, 219 

b). In both soils, inorganic orthophosphate was the dominant P species in NaOH-EDTA extracts. In fluvo-aquic 220 

soil, the concentration of inorganic orthophosphate ranged from 38 mg·kg-1 to 110 mg·kg-1 and the peak value of 221 

SSP was the highest, followed by CM. In red soil, the concentration of inorganic orthophosphate ranged from 133 222 

mg·kg-1 to 367 mg·kg-1 and the peak value of CM was the highest, followed by SSP, which was consistent with 223 

the soil Olsen-P content and soil active P concentration (Fig. 1 and Table 2). Although the detected signal was 224 

weak, compared with SSP, more monoester P and inositol hexakisphosphate signal were detected in PM and CM 225 

supplemented both soils (Fig. 4a, b). And more inositol hexakisphosphate was detected of PM supplemented both 226 

soils. Compared with fluvo-aquic soil, more inorganic and organic P forms were detected in red soil.  227 

3.4 Structural equation modeling (SEM) revealed contrasting effects of soil pH and total organic carbon 228 

(TOC) on P fraction transformation in fluvo-aquic and red soils enriched with different P sources 229 

The relationship of different attributes of P sources on its transformation to various P fractions in fluvo-aquic 230 

(Fig. 5a) and red soils (Fig. 5b) were further studied by SEM. SEM explained 95 % and 91 % of Olsen-P variation 231 

in fluvo-aquic soil and red soil, respectively. In general, the labile P fractions and the moderately labile P fractions 232 

had positive effects on soil Olsen-P of the fluvo-aquic soil and the red soil, while a negative effect was evident 233 

with non-labile P fraction.  234 

TOC and pH had different effects on various P fractions in both fluvo-aquic and red soils (Fig. 5). The soil pH 235 

turned out to be a major driver of P transformation. For instance, in the fluvo-aquic soil, pH had a positive effect 236 

on labile P fraction and moderately labile P fractions, negative effect on sparingly labile P fraction and non-labile 237 

P fraction. In the red soil, however, pH positively influenced both the labile and non-labile P fraction, while it 238 

impacted the moderately labile and sparingly labile P fractions negatively.  239 

In the fluvo-aquic soil, TOC had a negative effect on the labile P fraction and moderate labile P fraction, but 240 

positively influenced the sparingly labile P and non-labile P fractions. In the red soil, TOC had a negative effect 241 

on labile P and non-labile P fractions, while it positively affected moderately labile P and sparingly labile P 242 

fractions. 243 

Discussion 244 

Large variability for soil P availability in fluvo-aquic and red soil supplemented with different P sources 245 
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In this study, we selected Olsen P as well as the labile and moderately labile fractions of the sequential soil 246 

extraction as indicators of bio-available P level in soil. The effects of different P sources on soil P availability 247 

decreased in the following order: SSP>CM>PM>CB≥MS (Fig. 1). Mineral P, used here as superphosphate, can be 248 

readily dissolved in the soil solution and immediately transformed with less labile soil P fractions or get absorbed 249 

by plant roots. In contrast, Po present in manure needs to be mineralized first before entering into the soil solution 250 

gradually. It then transforms into less labile P fractions and utilized by crop plants. Therefore, the P availability of 251 

both soils amended with superphosphate was higher than that of soil with the recycled fertilizers (Braos et al., 252 

2020).  253 

The results demonstrate that cattle manure had innate advantages over other commonly used renewable P 254 

sources in increasing soil P availability. In fluvo-aquic soil, the P availability of soil with mineral P-fertilizer 255 

decreased significantly at the end of 70 days’ incubation, while the available P in the soil with recycled P sources 256 

remained flat (Fig. 1). Previous studies have shown that the level of soil available P remains stable following cattle 257 

manure application (Mkhonza et al., 2020), but was found decreased when mineral P fertiliser was used (Braos et 258 

al., 2020). Some studies suggest that long-term straw retention in the soil improves the content of soil available P 259 

(Li et al., 2019; Cao et al., 2021). However, in our study, incorporation of maize straw in the soil did not improve 260 

soil P availability in both soils. In long term field studies, the addition of organic matter rather than straw influenced 261 

the soil P availability (Huang et al., 2021; Sales et al., 2017). The type of straw and its processing before 262 

incorporating into soil may affect its soil enrichment capacity. Thus, future research should consider the 263 

management method of straw returning to the field to promote its in situ decomposition and nutrient release to 264 

improve soil available P.  265 

The extent of soil P fraction variation following the application of organic amendments depends to a great 266 

extent on the soil type and soil texture (Braos et al., 2020). Compared with fluvo-aquic soil, the P fixation has 267 

increased in the red soil with superphosphate, poultry manure and cattle manure amendments (Fig. 1). A 268 

comparison of humic acid-treated soils showed higher Olsen-P concentration in the brown and drab soil than that 269 

in red soil (Yang. et al., 2013). This is similar to what we observed in our study, indicating an important role for 270 

humic acid on P availability. Further, adding bone meal in the red soil improved soil P availability, but not in the 271 

fluvo-aquic soil. This is because P mainly exists in the form of apatite in bone meal, and the release of P from 272 

apatite requires H+ (Ylivainio et al., 2008; Jeng and Vagstad, 2009). This suggests that the application of bone meal 273 

in red soil will be more valuable. Bone meal is a very important source of available P for crops (Alotaibi et al., 274 

2013; Jeng and Vagstad, 2009), and thus developing methods to recycle P from bone meal will have a remarkable 275 
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impact on alleviating P shortage in the future. 276 

Characterization of soil P fractions of fluvo-aquic and red soils indicated that cattle manure is a superior 277 

soil amendment than other common P sources 278 

Soil P fraction analysis found rapid integration of most of the mineral P into the labile P fraction (Resin-P, 279 

NaHCO3-Pi and NaHCO3-Po) (Table 2). Only a small amount of P was converted into moderately labile P fractions 280 

(NaOH-Pi, NaOH-Po and dil. HCl-P). In the short term, there was no significant effect on the sparingly labile P 281 

(conc. HCl-Pi and conc. HCl-Po) and the residual P fraction (Residual P). However, the concentrations of 282 

moderately labile P and sparingly labile P increased in soil with the recycled fertilizers. Correlation analysis 283 

showed that there was a significant positive correlation between soil P availability and soil labile P fraction (Fig. 284 

S4), and this was further corroborated by the Structural Equation Model analysis (Fig. 5). Soil Resin-P and 285 

NaHCO3-Pi fractions were the most effective forms of P for plant absorption (Negassa and Leinweber, 2010). The 286 

provision of P to soil labile P fraction differs among different P sources studied and that became the main reason 287 

for the variation in soil available P content in both soils studied. And cattle manure has a significant advantage in 288 

improving the availability of soil P over poultry manure, maize straw and cattle bone meal. The percentage of 289 

inositol phosphate to total P is about 8 % in cattle manure (Mcdowell et al., 2008; Barnett, 1994), but it is as high 290 

as 80 % in poultry manure (Leytem et al., 2008; Yan et al., 2018). Inositol phosphate may complex divalent and 291 

trivalent metal elements such as calcium, magnesium, zinc and iron to form extremely insoluble compounds, which 292 

can reduce the availability of P (Menezes-Blackburn et al., 2013). This may be an important factor explaining the 293 

higher availability of P in cattle manure-enriched soil than that with poultry manure. In contrast, the other organic 294 

amendments, the maize straw and cattle bone meal, are difficult to decompose to increase soil nutrients, including 295 

available P, in a short period; hence, the relatively low level of soil labile P fraction in their P fractions. Therefore, 296 

adding maize straw and cattle bone meal to fluvo-aquic soil will have no significant beneficial effect on soil P 297 

availability for some time. 298 

Compared with fluvo-aquic soil, the amount of NaHCO3-Po and NaOH-Pi in red soil supplemented with 299 

superphosphate and poultry manure increased, while that of Resin-P decreased (Fig. 3). P adsorption is mainly 300 

controlled by iron (Fe) and aluminum (Al) hydroxides and clay minerals in acid soils (Gerard and Frederic, 2016; 301 

Jiang et al., 2012; Gérard, 2016). In neutral and fluvo-aquic soils, the influence of CaCO3 and the precipitation of 302 

Ca-phosphates is more important (Pizzeghello et al., 2011). The Fe and Al ions and hydroxides in red soil increase 303 

the sorption and decrease the decomposition of organic P, thereby inhibiting the conversion of moderately labile P 304 

to labile P fraction (Fan et al., 2019). Therefore, P is more easily adsorbed and fixed by amorphous Fe and Al 305 
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hydroxides in red soil. As a consequence, the accumulation of P in moderately labile P fractions in red soil is higher 306 

than that in fluvo-aquic soil, which reduces the availability of P in soil. The change of soil pH caused by 307 

fertilization will affect the adsorption and desorption of P in soil. In acidic soils, the increase of pH value and the 308 

decrease of extractable aluminum compounds will reduce the adsorption capacity of soil for P (Lopez-Hernandez 309 

and Burnham, 1974; Xavier et al., 2009). On the contrary, in fluvo-aquic soil, the precipitation of Ca-phosphates 310 

may increase with increasing pH (Adams and Odom, 1985; Gupta et al., 1990). The structural equation model 311 

showed that the increase of pH had a significant positive effect on the labile P fraction in red soil, while it has no 312 

significant effect on the labile P fraction in fluvo-aquic soil (Fig. 5). In our study, the increment of soil Resin-P 313 

concentration in red soil after addition of superphosphate was significantly lower than that in fluvo-aquic soil, but 314 

there was no significant difference in the increase of soil Resin-P concentration in two soils with cattle manure 315 

(Fig.3). This may be due to the increase in soil pH and the decrease of P adsorption in the red soil following the 316 

addition of cattle manure, and the consequent improvement in soil P availability.  317 

31P-NMR analysis of fluvo-aquic and red soil with different P sources  318 

In this study, a large proportion of orthophosphate was found in soils with large amounts of phosphate mineral 319 

fertilizer, which is consistent with other previous reports (Li and Marschner, 2019; Appelhans et al., 2020; Li et 320 

al., 2020; Liu et al., 2020a). In addition, orthophosphate in SSP-applied soil was significantly higher than in soil 321 

applied with recycled P containing fertilizers (Fig. 4), which was consistent with the soil P availability, indicating 322 

that orthophosphate was the main driving factor affecting the P availability of different P sources. The addition of 323 

poultry manure and cattle manure significantly increased the concentration of monoester P and inositol 324 

hexakisphosphate in both soils. Similarly, the addition of cattle manure and poultry manure increased the content 325 

of soil phosphate monoester significantly, but poultry manure had a larger effect than that of cattle manure (Yan et 326 

al., 2018; Shafqat et al., 2009). However, the mineralization processes of different organic P components in soil 327 

and their mechanism are still unclear. In this regard, studying the microbial processes of P transformation and their 328 

regulation in fluvo-aquic and red soils enriched with different P sources would provide considerable insights on 329 

developing different P management options for these soil types.                                                                                                                                   330 

Environmental pollution and resource constraints are global challenges and they also impact P use efficiency 331 

and to improve P use efficiency (Chowdhury et al., 2017). The low P use efficiency in agricultural production 332 

system damages ecosystems beyond the acceptable limit and threatens the future food security (Withers, 2019). 333 

Optimizing P input, reducing P loss and recovering P from biological resources are effective measures to increase 334 

the utilization efficiency of P fertilizer (Chadwick et al., 2015). The results of this study indicate that animal manure, 335 
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especially cattle manure, will be a superior renewable P source with increased bioavailability and is expected to 336 

play an important role in managing the limitation of P resources in agriculture. 337 

Conclusion 338 

The current study demonstrated that different P sources had different effects on soil P availability. They 339 

distributed P differently among different P fractions. Compared with other recycled phosphate fertilizers, cattle 340 

manure was found to be a superior source for improving soil P availability in fluvo-aquic and red soils. Olsen-P in 341 

soil supplemented with cattle manure was increased by 41.16 %-379.71 % in fluvo-aquic soil and 16.12 %-70.06 % 342 

in red soil compared with those received other recycled P-contained fertilizers. The SEM analysis showed that the 343 

soil Olsen-P content was mainly affected by the labile P fraction. 31P-NMR study showed that amount of 344 

orthophosphate was the main factor affecting the availability of P from different P sources. In addition, soil pH 345 

and organic matter content have contrasting effect on soil P transformation process. Better understanding of P use 346 

efficiency of different recycled P sources and their impact on yield and environmental impact under crop 347 

production conditions should be the next logical step. 348 
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Table 1 The specific amount of fertilizer for different treatments. 590 

Treatments 
Recycled fertilizers 

(g·kg-1) 

Ca(H2PO4)2 

(g·kg-1) 

Ca(NO3)2·4H2O 

(g·kg-1) 

KCl  

(g·kg-1) 

CK 0.00 0.00 1.69 0.62 

SSP 0.00 0.45 1.69 0.62 

PM 5.93 0.00 0.89 0.25 

CM 26.55 0.00 0.18 0.01 

MS 22.06 0.00 0.40 0.30 

CB 0.65 0.00 1.29 0.62 

Note: SSP: Ca(H2PO4)2; PM: Poultry Manure; CM: Cattle Manure; MS: Maize Straw; CB: Cattle  Bone Meal. 591 
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Figure Captions 599 

Figure 1 Changes in Olsen-P concentrations in fluvo-aquic soil (a) and red soil (b) supplemented with different 600 

phosphorus sources during 70-day incubation. Values are means ± SE (n= 4). SSP: Ca(H2PO4)2; PM: Poultry 601 

Manure; CM: Cattle Manure; MS: Maize Straw; CB: Cattle Bone Meal. The same below. 602 

 603 

Figure 2 The proportion of different soil P fractions in fluvo-aquic soil (a) and red soil (b) supplemented with 604 

different phosphorus sources after 70-day incubation. Orange, green, purple, and grey indicate labile P, moderately 605 

labile P, sparingly labile P, and non-labile P, respectively.  606 

 607 

Figure 3 Changes in P fractions in fluvo-aquic soil (a) and red soil (b) supplemented with different phosphorus 608 

sources after 70-day incubation (the values presented are those measured with addition of different phosphorus 609 

sources minus the value of no phosphorus fertilizer control). 610 

 611 

Figure 4 Liquid 31P NMR spectra of NaOH-EDTA extracts of a fluvo-aquic soil (a) and a red soil (b) amended 612 

with different P-containing fertilizers.  In the upper spectrum, the shift positions of the different P compounds are 613 

indicated. A: Monoester P (7.19 to 7.58 ppm); B: Inorganic orthophosphate (6.18 to 6.34 ppm); C: Inositol 614 

hexakisphosphate (4.38 to 4.49 ppm); D: Glucose-1-phosphate (3.13 to 3.43 ppm); E: DNA P (-0.15 to -0.36 ppm); 615 

F: Diester P (-1.73, -2.43 ppm); G: Polyphosphates (-4.63 to -5.83 ppm). Concentrations of P compounds in NaOH-616 

EDTA extracts of fluvo-aquic soil (c) and red soil (d) by 31P-NMR. 617 

 618 

Figure 5 Structural equation model (SEM) analysis for the transformation of different P fractions after the addition 619 

of different P-containing fertilizers in a fluvo-aquic soil (a) and a red soil (b). Optimal model fitting results under 620 

the fluvo-aquic soil (a): χ2 = 0.098, DF = 1, χ2/DF = 0.098, P = 0.754, and RMSEA = 0.000; optimal model fitting 621 

results under the red soil (b): χ2 =0.241, DF =1, χ2/DF = 0.241, P = 0.623, and RMSEA = 0.000. The number on 622 

the arrow represents the standardized path coefficient, the red and blue arrows represent the positive and negative 623 

effects, respectively. *, ** and *** indicate significant at P< 0.05, P< 0.01 and P< 0.001, respectively. The black 624 

number above each variable is R2 values, which represent the proportion of variance explained for each variable. 625 

The arrow width indicates the strength of the paths. Soil pH and total organic carbon (TOC) data are shown in 626 

Supplementary Figure S3 627 
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Figure 1 628 
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Figure 2 630 
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Figure 3 632 
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Figure 4 634 
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Figure 5 636 
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