

1 Migration behavior of benzobicyclon hydrolysate and associated influencing

2 factors in different agricultural soils

- 3 Lang Liu¹, Lei Rao², Wenwen Zhou³, Limei Tang², Baotong Li^{1,*}
- 4 ¹ College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang

- 6 ² College of Agricultural Sciences, Jiangxi Agricultural University, Nanchang 330045, China
- ⁷ ³ College of Food Sciences, Jiangxi Agricultural University, Nanchang 330045, China
- 8
- 9 * Corresponding author. College of Land Resources and Environment, Jiangxi Agricultural
- 10 University, 1225 Zhimin Road, Nanchang 330045, China.
- 11 *E-mail address*: libt666@163.com (B. Li)
- 12
- 13 *Abbreviations:* BH, benzobicyclon hydrolysate; BZB, benzobicyclon
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22

^{5 330045,} China

23 Abstract

24	Benzobicyclon is a triketone pro-herbicide that needs to be hydrolyzed to form an active
25	compound benzobicyclon hydrolysate (BH). This study aimed to investigate the migration
26	behavior of BH in different types of agricultural soil and the associated influencing factors.
27	Soil thin-layer chromatography and column leaching tests were used to study the migration
28	behavior of BH in these soils. Based on the mobility retention factor ($R_f = 0.34-0.90$), the
29	mobility of BH in thin soil layers was ranked in the order Lixisols > Anthrosols > Ferralsols >
30	Phaeozems. The R_f value of BH was linearly positively correlated with soil sand content and
31	pH, and negatively correlated with other physical and chemical properties of soil. BH was
32	difficult to leach in Phaeozems, less difficult to leach in Ferralsols, and easy to leach in
33	Anthrosols and Lixisols. Increasing the BH dosage and rainfall amount or adding humic acid
34	and anionic (dodecyl benzene sulfonic acid) or nonionic (Tween-80) surfactant blocked BH
35	migration in soil columns. In contrast, increasing the leaching solution pH and adding cationic
36	surfactant (cetyl trimethyl ammonium bromide) promoted BH migration in soil columns.BH
37	application has a low risk of groundwater pollution in Phaeozems and Ferralsols, but poses a
38	potential threat to groundwater in Anthrosols and Lixisols.

Keywords: Benzobicyclon hydrolysate; Herbicide; Leaching; Migration; Soil thin-layer
chromatography

41

42

43

44

45 1. Introduction

46 In rice production, the presence of weeds is a serious problem for rice crop growth and high food yields, because weeds and rice plants coexist in paddy fields and compete for 47 resources such as nutrients, light, and growth space (Fartyal et al. 2018). Methods for 48 49 controlling weeds in paddy fields mainly include manual and mechanical weeding, cropping systems, cultivation measures, and herbicides. In particular, the application of herbicides is 50 51 effective, economical, time-saving, and labor-saving, and has become the most important 52 control method in the integrated weed management system of paddy fields (Powles &Yu 2010). 53 Although the widespread application of herbicides has increased crop yields, the spread of herbicide residues in the environment also leads to environmental pollution and threatens 54 human health (Carvalho 2017). The environmental behavior of the herbicide in soil includes 55 migration, adsorption, desorption, degradation, and crop absorption, which are the key 56 processes influencing the final fate of the herbicide in the environment (Liu et al. 2020). 57 Because the amount of herbicides directly acting on crop targets is limited, most of them will 58 enter the paddy soil, herbicide residues migrate and diffuse into the water environment of paddy 59 60 fields, infiltrating the soil and possibly polluting groundwater (Morrissey et al. 2015). Therefore, studying the migration behavior of herbicide residues in the soil is of great 61 significance for the safety evaluation of herbicides, prevention and control of environmental 62 pollution, and protection of human health. 63

64 Herbicide leaching in soil (movement performance) refers to the movement of herbicides 65 vertically downwards along with the soil profile with infiltration water. As leaching is an 66 important process influencing the migration and final fate of herbicides in the soil–water

system, evaluating whether herbicides will enter the groundwater and cause environmental 67 68 pollution is critical (Younes & Galalgorchev 2000). Studying the migration behavior of herbicides in soil from an environmental safety perspective can provide insight into their 69 potential impact on groundwater quality, which has implications regarding the application of 70 71 necessary restrictions on the scope and intensity of herbicide application (Sabale et al. 2015). Many factors influence the migration behavior of herbicides in the soil, including the properties 72 73 of the herbicide and soil, the herbicide application methods and dosages, and environmental 74 factors (Kumari et al. 2020). Generally, herbicides with higher water solubility are much easier 75 to migrate in soil (Konstantinou et al. 2001). The soils with distinctly different properties also affect herbicide migration. For example, the migration capacity of herbicides is proportional to 76 the soil organic matter content (Muhammad Ashraf et al. 2012). Furthermore, the application 77 78 dosage of herbicides influences their leaching and migration behavior in soil. Additionally, 79 after herbicides are applied to agricultural soil, they can easily migrate to groundwater through rainfall or irrigation water (Laabs et al. 2000). Surfactants are also important parts of herbicide 80 preparation (Wang et al. 2017) and can be divided into cationic, anionic, and nonionic 81 82 surfactants according to whether they dissociate in water to generate ions (Alwadani &Fatehi 2018). As groundwater is a major source of drinking water and irrigation water, understanding 83 the migration behavior of herbicides in soil under the influence of various factors is important. 84 Benzobicyclon (BZB) is a bicyclooctane triketone herbicide developed by SDS Biotech 85 86 KK (Japan) in 1992. This herbicide inhibits the activity of *p*-hydroxyphenylpyruvate dioxidase and affects the synthesis of plastoquinone, thereby influencing the biosynthesis of carotenoids 87 and causing leaves chlorosis (Van Almsick 2009). Owing to its broad spectrum and high activity, 88

BZB has been widely used to control annual weeds, sedges, gramineous weeds, and broadleaf 89 90 weeds in paddy fields globally (Brabham et al. 2019, McKnight et al. 2018). As a pro-herbicide, BZB itself is inactive, but is rapidly hydrolyzed in flooded paddy fields to become its active 91 form with herbicidal activity, benzobicyclon hydrolysate (BH) (Williams & Tjeerdema 2016). 92 93 Previous studies have shown that BH has high hydrolytic stability and solubility in water, with a half-life greater than 1 year (25 °C), while the solubility of BH increases with increasing 94 95 solution pH (Williams et al. 2017). Furthermore, different agricultural soils have different BH adsorption values (Willett et al. 2020). These physical properties might lead to the BH leaching 96 97 into groundwater or other water bodies, posing a huge environmental risk. The adsorption and desorption behavior of BH in soil has been reported (Willett et al. 2020). However, its leaching 98 and migration in soil and associated influencing factors have not been explored. 99

100 Therefore, this study investigated the migration behavior of BH and associated 101 influencing factors in different agricultural soils using thin-layer chromatography and column leaching tests. This study aimed to analyze the migration characteristics of BH in four different 102 types of soil, quantify the relationship between BH migration and the soil physicochemical 103 104 properties (soil texture, cation exchange capacity, pH, and organic matter content), and evaluate the influence of environmental factors (rainfall amount, solution pH, and BH solubility), humic 105 acid, and surfactants on BH migration in these soils. The results will provide useful data for 106 the rational application, safety evaluation, and risk assessment of herbicides in the rice 107 108 production system.

109 2. Materials and methods

110 2.1 Soil sampling

111	In June 2020, agricultural soil samples from the surface layer (0-20 cm depth) were
112	collected in four major rice-producing regions throughout China, namely, Nanchang, Jiangxi
113	Province (S1), Harbin, Heilongjiang Province (S2), Ningbo, Zhejiang Province (S3), and
114	Yichang, Hubei Province (S ₄). For each agricultural soil, herbicide use and cultivation history
115	were surveyed before sampling. Based on the survey results, soil without BZB application was
116	collected. After collection, all soil samples were air-dried, and stones, roots, and other plant
117	residues were removed manually. The dry samples were ground and passed through a 2.0 mm
118	sieve before use. The basic physicochemical properties of each soil sample were determined
119	using standard soil test methods (Jackson 1958, Piper 1950, Walkley &Black 1934). The four
120	agricultural soils were Ferralsols (S1), Phaeozems (S2), Anthrosols (S3), and Lixisols (S4)
121	according to the soil classification system of the Food and Agriculture Organization of the
122	United Nations (FAO 1988, Nations 1998). Details of the agricultural soils are summarized in
123	Table 1.

2.2 Standard solution preparation 124

A sample of the BH standard (0.1250 g, accurate to 0.0001 g, 80.2% purity) was accurately 125 weighed into a 100-mL volumetric flask using an ATX 224 million analytical balance 126 127 (Shimadzu Corp., Kyoto, Japan). An appropriate amount of chromatographically pure methanol was then added to dissolve the standard sample. The solution was kept in an 128 ultrasonic water bath using a KQ2200E Ultrasonic Cleaner (Kunshan Ultrasonic Instrument, 129 Kunshan, China) until clear and transparent without solids. The solution was then cooled to 130 room temperature and diluted with chromatographically pure methanol to prepare a 1000 mg/L 131 stock standard solution. Before the test, the stock standard solution was diluted with 132

chromatographically pure methanol to obtain a series of working standard solutions at
concentrations of 0.01, 0.05, 0.1, 0.5, 1.0, 2.5, 5.0, and 10 mg/L. Furthermore, the soil samples
were extracted with chromatographically pure acetonitrile to obtain blank soil matrix solutions.
After purification, the blank soil matrix solutions were used to dilute the BH standard solution
and give matrix standard solutions at concentrations of 0.01, 0.05, 0.1, 0.5, 1.0, 2.5, 5.0, and
10.0 mg/L. The prepared standard working solutions and matrix standard solutions were stored
in a refrigerator at 4 °C under dark conditions for later use.

140 2.3.Sample preparation

141 The soil sample (5.0 g) was accurately weighed into a 50-mL centrifuge tube and moistened with ultrapure water (5.0 mL). The mixture was allowed to stand for 15 min before 142 adding acetonitrile (5.0 mL). After vortexing at 3000 rpm for 2 min, anhydrous MgSO4 (2.0 g) 143 144 and NaCl (1.0 g) were added to the centrifuge tube. The mixture was then vortexed for 2 min 145 and centrifuged at 6000 rpm for 5 min. The supernatant (1.5 mL) was transferred into a 2-mL centrifuge tube and MgSO₄ (150 mg) and ethylenediamine-N-propylsilane (PSA; 50 mg) were 146 added. The mixture was vortexed for 30 s and then centrifuged at 5000 rpm for 5min. Finally, 147 148 the supernatant was passed through a 0.22-µm organic filter membrane for high-performance liquid chromatography (HPLC) analysis. 149

150 2.4. HPLC conditions

Quantification of BH was performed using an Agilent 1260 high-performance liquid
chromatograph equipped with a G1329B sampler, a G1311C quaternary pump, and a G1315D
ultraviolet visible detector (Agilent Technologies, Santa Clara, CA, USA). Chromatographic
separation was achieved on a Zorbax Eclipse XDB-C₁₈ column (4.6 mm×150 mm, 5 µm;

- Agilent Technologies). The chromatographic conditions were as follows: Mobile phase, methanol–0.2% phosphoric acid water (55:45, ν/ν); flow rate, 1 mL/min; detection wavelength, 286 nm; column temperature, 40 °C; injection volume, 10 μ L; and the retention time of Glyamifop was approximately 5.45 min. Example chromatograms acquired at a spiking level of 0.5 mg/L are shown in Fig. 1.
- 160 2.5. Method validation

161 The mass concentrations of BH in the standard working solutions and matrix standard 162 solutions were measured by HPLC analysis under the indicated conditions. A standard curve 163 was drawn with the mass concentration of BH as the abscissa and the chromatographic peak area as the ordinate to obtain the linear regression equation and coefficient of determination 164 (R^2) . The limit of detection (LOD) and limit of quantification (LOQ) of the method for BH 165 166 were determined with signal-to-noise ratios (S/N) for blank matrix extracts of 3 and 10, respectively (Porel et al. 2014, Sengül 2016). The matrix effect (ME) was calculated by 167 dividing the slope of the matrix standard curve by the slope of the solvent standard curve (slope 168 ratio). ME > 1.1 indicates a matrix enhancement effect, ME < 0.9 indicates a matrix weakening 169 170 effect, and $0.9 \le ME \le 1$ indicates a negligible matrix effect (Li et al. 2020). The accuracy and precision of the BH detection method were evaluated using additive recovery and relative 171 standard deviation (RSD) (Ashour &Kattan 2013). 172

173 2.6. Herbicide mobility test in thin soil layers

The mobility of BH in different types of agricultural soil was determined using thin-layer chromatography (Jamet &Thoisydur 1988). The soil sample (10.0 g), which had been passed through a 0.25-mm sieve, was accurately weighed into a 250-mL beaker and distilled water (7

177	mL) was added. After stirring using a glass rod, the slurry was applied onto a glass plate (10
178	cm \times 20 cm) and dried at 25 °C (±2 °C), with the thickness of the soil controlled between 0.5
179	and 1.0 mm. Subsequently, BH stock solution (10 μ L, dissolved in methanol, 1000 mg/L) was
180	spotted at 2.5-cm intervals from the bottom of the glass plate at 25 °C (\pm 2 °C) under light-proof
181	conditions. Three parallel solutions were prepared for each treatment. After the solvent had
182	evaporated, the thin plate was placed into a chromatography tank (20 cm \times 30 cm \times 30 cm)
183	with distilled water as the developing agent. The thin plate was unfolded to 15.0 cm and then
184	taken out from the tank. After drying, the soil on the thin plate was divided into six equal
185	segments (2.5 cm each). The BH content in the soil from each segment was measured using
186	HPLC analysis and its distribution on the thin plate was analyzed.

187 2.7. Herbicide leaching test in soil columns

188 2.7.1. Test with different types of soil

To explore the downward movement of BH in different types of agricultural soil, soil 189 column leaching tests were conducted following the OECD-312 standard method issued by the 190 191 World Economic Cooperation Organization (OECD 2004). The soil column was prepared using a PVC pipe (inner diameter, 4 cm, length, 40 cm). A piece of filter paper was spread at the 192 bottom of the soil column, which was overlaid with a nylon mesh (180 µm). Next, a 1-cm-thick 193 quartz sand layer was added to the column, followed by the sieved soil sample (600-700 g) to 194 form a 30-cm deep soil column. A 0.01 mol/L CaCl₂ aqueous solution was added to the soil 195 column from the bottom to saturate the soil and remove the air through reverse osmosis. The 196 soil column was then hung to remove the water under gravity. The test was conducted at 25 °C 197 (±2 °C) and protected from light. 198

The BH stock solution was added to the top of the soil column. The dosage of BH added to the soil column was determined according to the maximum recommended dosage of BZB in the field and calculated using equation (1) (OECD 2004):

202
$$D = \frac{M \cdot 10^9 \cdot d^2 \cdot \pi}{4 \cdot 10^8}$$
(1)

203 where D is the dosage of BH added to each soil column (μ g), M is the maximum recommended dosage of BZB (kg/hm²), d is the soil column diameter (cm), and π is 3.14. According to the 204 205 herbicide registration announcement, the maximum recommended dosage of BZB in rice-206 growing areas is 450 g/hm². Therefore, the dosage of BH for the leaching test was calculated to be 56 μ g, and 56 μ L of BH stock solution was added dropwise on the surface of each column. 207 After application of BH, the soil surface was covered with a 1-cm-thick quartz sand layer, 208 followed by a piece of filter paper and then a small amount of coarse sand. The soil column 209 210 was leached with a 0.01 mol/L CaCl₂ solution to simulate artificial rainfall (250 mL for 48 h) 211 and the leachate was collected. After leaching was complete, the soil column was evenly cut into three sections. The BH content in the leachate and each section of the soil was measured. 212

213 2.7.2. Test with different herbicide dosages applied

To analyze the influence of BH application dosage on BH leaching in the soils, three different dosages of BH (56, 84, and 112 μ g) were added to the soil columns, corresponding to 1.0, 1.5, and 2.0 times the maximum recommended dosage of BZB in rice-growing area. Briefly, BH stock solution (56, 84, or 112 μ L) was added dropwise to the surface of the soil columns. The test procedure and sample handling were the same as described in *Section 2.7.1*. Each treatment was repeated three times.

220 2.7.3. Test with different rainfall amounts

To investigate the depth of BH leaching in the soils after rainfall and assess the risk of BH residues to groundwater and drinking water, the test was performed using three different rainfall amounts (250, 500, and 1000 mL) for 48 h. The test procedure and sample handling were the same as described in *Section 2.7.1*. Each treatment was repeated three times.

225 2.7.4. Test with different leaching solution pH levels

To investigate the influence of different pH values on BH leaching in the soils, the test 226 227 was performed at different pH levels. Owing to acid rain caused by industrial pollution in some 228 areas throughout the year, rain can reach a pH as low as ~3.5. During crop production, it is 229 critical to improve soil fertility and increase crop yield. To increase income, fertilizers are often 230 applied to soil, some of which are alkaline and, therefore, increase the pH of the local soil. In this study, pH values of 3.0, 5.0, 7.0, and 9.0 were selected as the initial leaching solution pH. 231 232 Before the test, the pH of 0.01 mol/L CaCl₂ solution was adjusted to 3.0 ± 0.2 , 5.0 ± 0.2 , 7 ± 0.2 , and 9±0.2 with 0.01 mol/L HCl or NaOH. The test procedure and sample handling were the 233 same as described in Section 2.7.1. Each treatment was repeated three times. 234

235 2.7.5. Test with different types of surfactant

To determine the influence of different surfactants on BH leaching in the soils, the test was performed with leaching solutions containing critical micelle concentrations of cationic surfactant (cetyl trimethyl ammonium bromide, CTAB), anionic surfactant (dodecyl benzene sulfonic acid, SDBS), and nonionic surfactant (Tween-80). The soil column leached with a surfactant-free solution was used as a control. The test procedure and sample treatment were the same as described in *Section 2.7.1*. Each treatment was repeated three times.

242 2.7.6. Test with different humic acid concentrations

243	To investigate the influence of humic acid on BH leaching in the soils, the concentration									
244	of humic acid (≥90%, Macklin Biochemical Co., Ltd., Shanghai, China) was set to 0.5%, 1%,									
245	and 2% under the range of organic matter content in the experimental soils (0.23–2.04%; Table									
246	1). The soil column without humic acid added was used as a control. The test procedure and									
247	sample handling were the same as in Section 2.7.1. Each treatment was repeated three times.									
248	2.8. Data analysis									
249	The mobility retention factor (R_f) of BH on the thin plate was calculated using equation (2):									
250	$R_f = \frac{\sum Z_i \times M_i}{Z_w \times \sum M_i} \tag{2}$									
251	where <i>i</i> is the number of segments in which the plate is divided, Z_i is the distance of BH in									
252	segment <i>i</i> from the origin, Z_w is the distance of the solvent from the origin, and M_i is the									
253	soil BH content in segment i (Haskis et al. 2019).									
254	The BH contents in each soil section and the leachate were calculated as the percentage									
255	of BH recovered from the total amount of BH added using equation (3):									
256	$R_i = \frac{m_i}{m_o} \times 100 \tag{3}$									
257	where R_i is the mass fraction of BH in section <i>i</i> of the soil or leachate in the total mass of BH									
258	added; m_i is the mass of BH in each section of soil and leachate (mg); $i = 1, 2, 3$, and 4, which									
259	represents the 0–10 cm, 10–20 cm, and 20–30 cm soil sections, and the leachate, respectively;									
260	m_0 is the total mass of BH added (mg). According to the value of R_i , the mobility of BH in the									
261	soil was divided into four classes: (I) $R_4 > 50\%$, easy to leach; (II) $R_3 + R_4 > 50\%$, moderate									
262	leaching; (III) $R_2+R_3+R_4 > 50\%$, difficult to leach; and (IV) $R_1 > 50\%$, very difficult to leach.									
263	Data processing and statistical analysis were performed in SPSS Statistics 22.0 (IBM SPSS,									
264	Armonk, NY, USA). The adsorption curves of Glyamifop were plotted using OriginPro 8.0									

265 (OriginLab Corp., Northampton, MA, USA).

266 3. Results and discussion

267 3.1. Linearity, sensitivity, matrix effect, accuracy, and precision of the method

- In different matrices (methanol, water, and soils), a good linear relationship was observed
- between the peak area and the mass concentration of BH within the range of 0.01-10 mg/L
- 270 ($R^2 > 0.99$; Table 2). The LOD and LOQ for BH in water and soils were in the ranges of 6.3–

271 16.5 μg/kg and 20.8–55 μg/kg, respectively. The ME of BH in the four different types of

- agricultural soil was greater than 1.1, indicating that the matrix effect can be ignored. The
- average recovery of BH in each soil matrix was between 81.79% and 101.09%, with an RSD
- 274 of 0.56%-7.87%. The accuracy and precision of the established method met the requirements
- of herbicide residue analysis (70% < recovery < 110%, RSD < 20%) (NY 2014).
- 276 3.2. Migration characteristics of BH in thin soil layers

The R_f values of BH in S₁ to S₄ were 0.45, 0.34, 0.75, and 0.90, respectively (Table 3), indicating that the mobility of BH in the four types of agricultural soil was in the order S₄ > S₃ > S₁ > S₂. According to the grading standard in the "Test Guidelines on Environmental Safety Assessment for Chemical Pesticides—Soil Leaching Test" [45], BH is moderately mobile in Ferralsols and less mobile in Phaeozems, while it is mobile in Anthrosols and extremely mobile in Lixisols.

Soil physicochemical properties are important factors influencing the migration behavior of herbicides in soil (Liu et al. 2018). Linear correlation analysis revealed the relationships between the R_f value of BH and the physicochemical properties of agricultural soils (Table 4). The R_f value of BH was positively correlated with both soil sand content and pH (slope > 0).

The correlation with soil sand content was significant (P = 0.027), while that with soil pH was 287 not significant (P = 0.285). In contrast, the R_f value of BH was negatively correlated with soil 288 silt content, clay content, cation exchange capacity (CEC), organic carbon (OC) content, and 289 organic matter (OM) content (slope < 0), but these correlations were not significant (P = 0.681, 290 291 0.152, 0.258, 0.181, and 0.160, respectively). Previous research has indicated that the BH adsorption capacity of agricultural soils is positively correlated with soil clay content, CEC, 292 293 OC content, and OM content (Rao et al. 2020). Therefore, our results confirmed that the 294 migration capacity of BH in agricultural soils is negatively correlated with the soil adsorption 295 capacity of BH.

296 3.3. Leaching characteristics of BH in soil columns

297 3.3.1. Influence of soil type on BH leaching and migration

298 The leaching of herbicides in the soil is an important process determining whether 299 herbicides enter groundwater and cause pollution (Younes & Galal-Gorchev 2000). The soil column leaching test results showed that the leaching and migration characteristics of BH 300 varied considerably with different soil types (Fig. 2.). After leaching with CaCl₂ solution (250 301 302 mL), BH in the S_1 soil columns was mainly distributed in the 0–20 cm sections, with the maximum BH content in the 10-20 section. In the S2 soil columns, BH was also mainly 303 distributed in the 0-20 cm sections, but the BH content in these sections was markedly higher 304 than that of S_1 , while the maximum BH content occurred in the 0–10 cm section. For soils S_3 305 306 and S₄, BH was mainly distributed in the leachate, with the leaching rate of BH in S₄ greater 307 than that in S₃.

Based on the R_i values, the leaching rate of BH in the four agricultural soils was in the

order $S_4 > S_3 > S_1 > S_2$ (Table 5). According to the "Test Guidelines on Environmental Safety 309 Assessment for Chemical Pesticide" (NY 2014), BH was relatively difficult to leach in 310 Ferralsols, difficult to leach in Phaeozems, and easy to leach in Anthrosols and Lixisols. The 311 leaching and migration characteristics of BH in the four agricultural soils were distinctly 312 313 different, indicating the strong influence of soil physicochemical properties on the environmental behavior of this herbicide. For example, BH not being detected in the leachate 314 315 of S₂ might be attributed to the high organic matter content (Table 1) and strong BH adsorption 316 capacity of the Phaeozems, which blocked BH migration.

317 3.3.2. Influence of herbicide dosage on BH leaching and migration

The speed and depth of the downward migration of herbicides in soil are closely related 318 to their adsorption process in the soil (Oliveira Jr et al. 2001). Therefore, the factors influencing 319 the adsorption process will also influence the herbicide migration process. In addition to soil 320 321 physicochemical properties, the application dosage of herbicides is an important factor influencing their leaching and migration in soil (Ferrero et al. 2001). After applying BH at 322 different dosages, the distribution and content of this herbicide in the soil sections and leachate 323 324 changed considerably (Fig. 3.). When 56 µg of BH was applied, BH in the S₁ soil columns was mainly distributed in the 0-20 cm sections and the maximum BH content was located in the 0-325 10 cm section. When the dosage of BH was increased to 84 and 112 μ g, BH was still mainly 326 distributed in the 0-20 cm sections of S₁, but the maximum BH content moved down to the 327 328 10–20 cm section. In particular, after applying BH at the high dosage of 112 μ g, BH seeped 329 out of the soil column and was detected in the leachate. In the S_2 soil columns that received 56 μg of BH, all BH was distributed in the 0–20 cm sections after leaching. However, when the 330

BH dosage was increased to 84 and 112 μ g, the herbicide migrated down to the 20–30 cm section, but none was detected in the leachate. In the S₃ and S₄ soil columns, the maximum BH content was observed in the leachate. Furthermore, with increasing BH dosage, the BH content in each soil section decreased, while the BH content in the leachate increased.

When the application dosage of BH increased from 56 to 112 µg, the BH content in the 0-335 10 cm section of the four agricultural soils decreased and migrated to lower sections of the soil 336 337 column. Except for S₂, the BH content in the leachate of different soils increased, indicating 338 that the application dosage of the herbicide influenced its migration behavior in the soil. A 339 higher concentration of the herbicide resulted in greater migration depth into the soil and higher leachability. A plausible explanation is that the soil has a fixed number of effective adsorption 340 sites for the herbicide. When the BH dosage increases, the soil adsorption sites are occupied 341 342 and cannot adsorb additional BH molecules, leading to downward migration along with the 343 leachate.

344 3.3.3. Influence of rainfall amount on BH leaching and migration

The migration behavior of herbicides in soil mainly includes upward, downward, and 345 346 lateral migration, of which downward migration, driven by the effect of gravity on seepage water, is dominant (Oppong &Sagar 1992). Therefore, rainfall can influence the migration 347 behavior of herbicides in soil. The results of the leaching test under different rainfall conditions 348 showed that BH leaching and migration in the four types of agricultural soil were influenced 349 350 by the rainfall amount (Fig. 4). When the simulated rainfall was 250 mL, BH was mainly 351 distributed in the soil sections of S_1 , with the maximum BH content in the 10–20 cm section. In S₂, all BH was distributed in the soil sections, and the maximum BH content was located in 352

- the 0–10 cm section. Limited BH was distributed in the soil sections of S_3 and S_4 , while the
- 354 majority of the herbicide was detected in the leachate of these two soils.
- When the simulated rainfall amount was increased to 500 mL, the BH content in the 355 leachate increased for all different soils, and the depth of the maximum BH content in S₁ and 356 357 S₂ moved downward by 10 cm. When the simulated rainfall was further increased to 1000 mL, the depth of the maximum BH content in S1 and S2 changed to the 20-30 cm section. However, 358 359 no BH was detected in the soil sections of S₃ and S₄, and all BH was leached from the soil and 360 distributed in the leachate (Fig. 4.). The rainfall intensity was positively correlated with the 361 depth and amount of BH leaching in the soil. This result indicated that with an increasing amount of rainfall, more BH migrated to a greater depth in the soil, and the leaching rate of BH 362 from the soil also increased. 363

364 3.3.4. Influence of solution pH on BH leaching and migration

365 The pH can influence the activity of soil microorganisms, the conversion of soil organic matter, and the existence of soil substances. Furthermore, pH affects the physicochemical 366 properties of herbicides, directly or indirectly influencing their adsorption, migration, 367 368 transformation, and enrichment processes in soil (Walker &WELCH 1989). Triketone herbicides such as BH are weak acids (pKa ~3) that are stable under acidic conditions, but 369 relatively unstable in neutral and alkaline media (Williams & Tjeerdema 2016). The leaching 370 test results showed that changes in the pH value of the leaching solution strongly influenced 371 372 the downward mobility of BH in the soil (Fig. 5.). Under different pH conditions, the amount 373 of BH migrating from the soil was largest in S₄. When the leaching solution pH was 9, the amount of BH in the leachate in the four soils was markedly higher than that in the 374

- corresponding soils at pH 3, 5, and 7. This result indicated that the migration ability of BH was
 stronger in alkaline environments compared with neutral and acidic environments.
- When the leaching solution pH was 3 and 5, BH in the soil columns of S_1 and S_2 was 377 mainly distributed in the 0-20 cm sections, and the maximum BH content was located in the 378 379 0-10 cm section. In contrast, the maximum BH content in the soil columns of S₃ and S₄ was located in the 20-30 cm section, and the BH content of the leachate was greater than that of 380 381 any soil section. When the leaching solution pH was 7, the depth of maximum BH content in 382 the soil columns did not change, except for the soil column of S_1 , in which it moved down to 383 the 10-20 cm section. In summary, changing the solution pH significantly influenced the mobility of BH in the soil columns, with a higher solution pH resulting in easier BH migration 384 downward, which was more likely to pose a threat to groundwater quality. 385

386 3.3.5. Influence of surfactant type on BH leaching and migration

387 The interaction of surfactants and herbicides is a complicated process. In water-soil systems, surfactants can change the soil physicochemical properties, such as the surface tension 388 of soil water, capillary diffusion, water holding capacity, osmosis, pH value, and CEC, 389 390 influencing the environmental behavior of herbicides in soil (Haigh 1996). In the present study, the leaching test results showed that various types of surfactant had distinctly different 391 influences on BH leaching and migration in the four agricultural soils (Fig. 6.). Compared with 392 the control without surfactant treatment, the BH content was much higher in the 0-10 cm 393 394 section of CTAB-treated soil columns, while the BH content in the leachate of CTAB-treated 395 soil columns was lower. These results indicated that cationic surfactant CTAB had a delaying effect on BH leaching and migration in the soil. This might be due to the soil itself being 396

negatively charged, such that the cationic surfactant is replaced by inorganic cations in the soil
and then adsorbed by the soil, enhancing the herbicide adsorption capacity of the soil (Sheng
et al. 1996, Zhu et al. 2000). Therefore, BH was adsorbed and fixed in the soil under the action
of the cationic surfactant, blocking BH migration in the soil.

401 When anionic surfactant SDBS or nonionic surfactant Tween-80 was added to the leaching solution, the amount of BH leached from the four agricultural soils was higher than that in the 402 403 control. The leached amount of BH in SDBS-treated soil columns was greater than that in 404 Tween-80-treated soil columns (Fig. 6.). Specifically, in the control soil columns of S_1 and S_2 , 405 BH was mainly distributed in the 0-20 cm sections, and the maximum BH content was located in the 10-20 cm and 0-10 cm sections, respectively. When SDBS or Tween-80 was added to 406 the leaching solution, BH in the soil columns of S_1 was mainly distributed in the 10–30 cm 407 408 sections, with the maximum BH content located in the 20-30 cm section. The BH content in 409 the 0-10 cm section of S₂ was lower than that in the control. The BH content in the soil columns of S₃ and S₄ was mainly distributed in the leachate, and the BH content in each soil section was 410 lower than that in the control. These results indicated that adding anionic surfactant SDBS and 411 412 nonionic surfactant Tween-80 was an effective approach to promoting BH leaching and migration in the soil, with SDBS having a stronger effect than Tween-80. In general, herbicides 413 with higher water solubility show stronger leaching and migration abilities in soil. Anionic and 414 nonionic surfactants can produce a large number of micelles in water, which increases the 415 416 amount of OM and herbicide in the soil. Soil OM is dissolved in the water phase and the OM 417 content in the soil phase decreases, which weakens the herbicide adsorption ability of the soil. However, anionic and nonionic surfactants increase the water solubility of the herbicide, 418

419 facilitating its migration in the soil. Therefore, both anionic and nonionic surfactants increase

- 420 the solubility of BH in water and weaken BH adsorption by the soil, resulting in enhanced
- 421 herbicide leaching and migration in the soil.

422 3.3.6. Influence of humic acid concentration on BH leaching and migration

423 Humic acid is a natural weakly acidic macromolecular organic acid formed by the decomposition and transformation of animal and plant residues. Humic acid has a network 424 425 structure and is the main adsorption center of OM in soil. In general, the adsorption capacity 426 of soil is directly proportional to its OM content, and influences the environmental behavior of 427 organic compounds, such as herbicides in soil (Álvarez-Benedí et al. 1998). In this study, the results showed that adding different concentrations of humic acid strongly influenced BH 428 leaching and migration in the agricultural soils (Fig. 7.). In the control without humic acid 429 430 addition, BH in the soil columns of S_1 and S_2 was mainly distributed in the 0–20 cm sections, 431 with the maximum BH content located in the 10-20 cm section of S₁ and the 0-10 cm section of S₂. When 0.5% humid acid was added, the distribution and content of BH in the soil columns 432 of S₁ and S₂ changed, and the BH content in each soil section was higher than that of the control. 433 434 When the concentration of humic acid added was increased to 1% and 2%, the BH content in the 0-10 cm sections of both S1 and S2 increased, and the depth of the maximum BH content 435 in S_1 changed to 0-10 cm section. 436

Regarding S_3 and S_4 , BH in the soil columns of the control was mainly distributed in the leachate. As the concentration of humic acid added to the soil increased, the BH content in the leachate gradually decreased and the BH content in each section of the soil columns was higher than that in the control (Fig. 7.). These results indicated that adding humic acid to the soil

441	blocked downward leaching and migration of BH in the agricultural soils, with this blocking										
442	effect increasing with an increasing concentration of humic acid. We speculated that adding										
443	humic acid to the soil reduced the soil pH and increased the soil OM content. According to										
444	previous research, the ability of soil to adsorb BH is negatively correlated with soil pH and										
445	positively correlated with soil OM content. Therefore, adding humic acid enhanced the BH										
446	adsorption capacity of the soil, blocking BH leaching and migration into the deeper soil.										
447	4. Conclusions										
448	This study explored the leaching and migration behavior of benzobicyclon hydrolysate										
449	in four different types of agricultural soil in China using soil thin-layer chromatography and										
450	column leaching tests. The results indicated that this herbicide was moderately or less mobile										
451	and difficult to leach in Ferralsols and Phaeozems, and highly mobile and easily leached in										
452	Anthrosols and Lixisols. Among the four types of agricultural soil, benzobicyclon hydrolysate										
453	had the lowest migration ability in Phaeozems and appeared safe to surface water and										
454	underground water. However, it possessed a moderate migration ability in Ferralsols, posing										
455	a threat to groundwater and drinking water. In Anthrosols and Lixisols, this herbicide showed										
456	a high migration ability and might pollute groundwater and drinking water.										
457 458 459 460 461 462	Ethical Approval (Not applicable) Consent to Participate All of the authors consent to participate in drafting of this manuscript Consent to Publish All of the authors consent to Publish this manuscript Authors Contributions										
463	Lang Liu: Conceptualization, Methodology, Software, Investigation, Writing -Original										
464	Draft										
465	Lei Rao: Validation, Formal analysis, Visualization										
466	Wenwen Zhou: Writing -Review & Editing										

467	Limei Tang: Writing -Review & Editing
468	Baotong Li: Resources, Writing -Review & Editing, Supervision Data Curation
469	
470	Funding
471	This study was supported by the "13th Five-Year" National Key Research Program of
472	China (Grant No. 2017YFD0301604).
473	Competing Interests
474	The authors declare no competing financial interest.
475 476 477	Availability of data and materials All data generated or analysed during this study are included in this published article
478	References
479	Alvarez-Benedí J, Cartón A, Fernández J (1998): Sorption of tribenuron-methyl, chlorsulfuron,
480	and imazamethabenz-methyl by soils. Journal of Agricultural and Food Chemistry 46,
481	2840-2844 Alwadani N. Estahi D. (2018). Symthetic and lignin hazad synfactants. Challenges and
482	Anwadani N, Fateni F (2016). Synthetic and fighth-based suffactants. Chantenges and
465	Ashour S Kattan N (2013): Simultaneous Determination of Clidinium Bromide and
485	Chlordiazepoxide in Combined Dosage Forms by High-Performance Liquid
486	Chromatography. J Pharm (Cairo) 2013, 417682-417682
487	Brabham C, Norsworthy JK, Sandoski CA, Varanasi VK, Schwartzlazaro LM (2019): Spray
488 489	deposition, adjuvants, and physiochemical properties affect benzobicyclon efficacy. Weed Technology 33, 258-262
490	Carvalho FP (2017): Pesticides, environment, and food safety. Food and Energy Security 6, 48-
491	60
492	FAO I (1988): Revised Legend of the FAO-UNESCO Soil Map of the World. ISRIC Report 1
493	Fartyal D, Agarwal A, James D, Borphukan B, Ram B, Sheri V, Agrawal PK, Achary VMM,
494	Reddy MK (2018): Developing dual herbicide tolerant transgenic rice plants for
495	sustainable weed management. Scientific Reports 8, 11598
496	Ferrero A, Vidotto F, Gennari M, Negre M (2001): Behavior of cinosulturon in paddy surface
497	Waters, sediments, and ground water. Journal of environmental quality 30, 131-140
498 100	Science of the Total Environment 185, 161-170
4 <i>99</i>	Haskis P Mantzos N Hela D Patakioutas G Konstantinou I (2019): Effect of biochar on the
501	mobility and photodegradation of metribuzin and metabolites in soil-biochar thin-layer
502	chromatography plates. International Journal of Environmental Analytical Chemistry
503	99, 310-327
504	Jackson M (1958): Soil chemical analysis prentice Hall. Inc., Englewood Cliffs, NJ 498
505	Jamet P, Thoisydur J (1988): Pesticide mobility in soils: assessment of the movement of
506	isoxaben by soil thin-layer chromatography. Bulletin of Environmental Contamination

507	and Toxicology 41, 135-142
508	Konstantinou IK, Zarkadis AK, Albanis TA (2001): Photodegradation of selected herbicides in
509	various natural waters and soils under environmental conditions. Journal of
510	environmental quality 30, 121-130
511	Kumari U, Singh SB, Singh N (2020): Sorption and leaching of flucetosulfuron in soil. Journal
512	of Environmental Science and Health, Part B, 1-8
513	Laabs V, Amelung W, Pinto A, Altstaedt A, Zech W (2000): Leaching and degradation of corn
514	and soybean pesticides in an Oxisol of the Brazilian Cerrados. Chemosphere 41, 1441-
515	1449
516	Li Y, Nie J, Chang W, Xu G, Farooq S, Liu M, Zhang J (2020): Enantioselective behavior
517	analysis of chiral fungicide tetraconazole in apples with UPLC-MS/MS. Food Control
518	116, 107305
519	Liu J, Zhou JH, Guo QN, Ma LY, Yang H (2020): Physiochemical assessment of environmental
520	behaviors of herbicide atrazine in soils associated with its degradation and
521	bioavailability to weeds. Chemosphere 262, 127830
522	Liu Y, Lonappan L, Brar SK, Yang S (2018): Impact of biochar amendment in agricultural soils
523	on the sorption, desorption, and degradation of pesticides: a review. Science of the Total
524	Environment 645, 60-70
525	McKnight BM, Webster EP, Blouin DC (2018): Benzobicyclon Activity on Common Louisiana
526	Rice Weeds. Weed Technology 32, 314-318
527	Morrissey CA, Devries JH, Sanchezbayo F, Liess M, Cavallaro MC, Liber KA (2015):
528	Neonicotinoid contamination of global surface waters and associated risk to aquatic
529	invertebrates: A review. Environment International 74, 291-303
530	Muhammad Ashraf B, Shafi Muhammad N, Syed Tufail Hussain S, Muhammad Iqbal B (2012):
531	Adsorption and leaching potential of imidacloprid pesticide through alluvial soil.
532	American Journal of analytical chemistry 2012
533	Nations AOftU (1998): World reference base for soil resources, 3. Food & Agriculture Org.
534	NY (2014): NY/T 788-2018 Guideline for the Testing of pesticide residues in crops[S].
535	Beijing: China Agriculture Press
536	OECD (2004): Test No. 312: Leaching in Soil Columns
537	Oliveira Jr R, Koskinen W, Ferreira F (2001): Sorption and leaching potential of herbicides on
538	Brazilian soils. Weed Research 41, 97-110
539	Oppong F, Sagar G (1992): The activity and mobility of triasulfuron in soil as influenced by
540	organic matter, duration, amount and frequency of rain. Weed Research 32, 157-165
541	Piper CS (1950): Soil and plant analysis.
542	Porel A, Sanyal Y, Kundu A (2014): Simultaneous HPLC determination of 22 components of
543	essential oils; method robustness with experimental design. Indian J Pharm Sci 76, 19-
544	30
545	Powles SB, Yu Q (2010): Evolution in Action: Plants Resistant to Herbicides. Annual Review
546	of Plant Biology 61, 317-347
547	Rao L, Luo J, Zhou W, Zou Z, Tang L, Li B (2020): Adsorption-desorption behavior of
548	benzobicyclon hydrolysate in different agricultural soils in China. Ecotoxicology and
549	Environmental Safety 202, 110915
550	Sabale R, Shabeer TPA, Dasgupta S, Utture SC, Banerjee K, Oulkar DP, Adsule PG, Deshmukh

551 552	MB (2015): Adsorption-desorption and leaching behavior of kresoxim-methyl in different soils of India: kinetics and thermodynamic studies. Environmental Monitoring
553	and Assessment 187, 436-436
554	Sengül Ü (2016): Comparing determination methods of detection and quantification limits for
555	aflatoxin analysis in hazelnut. Journal of Food and Drug Analysis 24, 56-62
556	Sheng G. Xu S. Boyd SA (1996): Mechanism (s) controlling sorption of neutral organic
557	contaminants by surfactant-derived and natural organic matter. Environmental science
558	& technology 30, 1553-1557
559	Van Almsick A (2009): New HPPD-inhibitors - a proven mode of action as a new hope to solve
560	current weed problems. Outlooks on Pest Management 20, 27-30
561	Walker A, WELCH SJ (1989): The relative movement and persistence in soil of chlorsulfuron,
562	metsulfuron-methyl and triasulfuron. Weed Research 29, 375-383
563	Walkley A, Black IA (1934): An examination of the Degtjareff method for determining soil
564	organic matter, and a proposed modification of the chromic acid titration method. Soil
565	science 37, 29-38
566	Wang Y, Wang A, Wang C, Cui B, Sun C, Zhao X, Zeng Z, Shen Y, Gao F, Liu G (2017):
567	Synthesis and characterization of emamectin-benzoate slow-release microspheres with
568	different surfactants. Scientific reports 7, 1-9
569	Willett CD, Grantz EM, Sena MG, Lee JA, Brye KR, Clarke JA (2020): Soil sorption
570	characteristics of benzobicyclon hydrolysate and estimated leaching risk in soils used
571	for rice production. Environmental Chemistry, -
572	Williams KL, Tjeerdema RS (2016): Hydrolytic activation kinetics of the herbicide
573	benzobicyclon in simulated aquatic systems. Journal of agricultural and food chemistry
574	64, 4838-4844
575	Williams KL, Gladfelder JJ, Quigley LL, Ball DB, Tjeerdema RS (2017): Dissipation of the
576	herbicide benzobicyclon hydrolysate in a model California rice field soil. Journal of
577	Agricultural and Food Chemistry 65, 9200-9207
578	Younes M, Galal-Gorchev H (2000): Pesticides in drinking water-a case study. Food and
579	chemical toxicology 38, S87-S90
580	Younes M, Galalgorchev H (2000): Pesticides in drinking watera case study. Food and
581	Chemical Toxicology 38
582	Zhu L, Chen B, Shen X (2000): Sorption of phenol, p-nitrophenol, and aniline to dual-cation
583	organobentonites from water. Environmental Science & Technology 34, 468-475
584	
585	
586	
587	
588	
589	
590	
591	
592	
593	
594	

596 Sampling sites and basic physicochemical properties of four different agricultural soils in

597 China

Soil	C '4	Classification	Texture					CEC	00	014
	Site (latitude longitude)	Classificatio	Sand	Silt	Clay	Type	pН	CEC	(%)	(%)
_	(lutitude, longitude)	11	(%)	(%)	(%)	rype		(enior kg)	(70)	(70)
\mathbf{S}_1	Nanchang, Jiangxi	Ferralsols	26.68	14.39	58.93	Clay	4.74	12.50	0.40	0.69
(N28°46', E115°36')										
\mathbf{S}_2	Haerbin, Heilongjiang	Phaeozems	18.52	36.24	45.24	Sandy	6.24	34.18	1.35	2.04
	(N41°36', E127°53')					loam				
S_3	Ningbo, Zhejiang	Anthropos	41.16	22.24	36.60	Loam	7.06	14.98	0.24	0.42
	(N29°14', E121°48')									
S_4	Yichang, Hubei	Lixisols	62.75	23.18	14.07	Sandy	7.17	9.34	0.14	0.23
	(N35°06', E118°21')									

598 CEC, cation exchange capacity; OC, organic carbon content; and OM, organic matter content.

- 612 Linear equation, coefficient of determination (R^2) , limit of detection (LOD), limit of
- 613 quantification (LOQ), matrix effect (ME), accuracy and precision of benzobicyclon
- 614 hydrolysate in different matrices

	Matrix	Regression	R^2	LOD	LOQ	ME	Avorag	(0/)		Rela	Relative standard			
		equation		(mg/kg)	(mg/kg)		Averag	e recov	ery (%)	dev	viation	(%)		
							0.1	0.5	1.0	0.1	0.5	1.0		
							mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		
	Methanol	y=23.419x+0.916	1.0000	-	-	-	-	-	-	-	-	-		
	Water	y=21.886x+1.145	0.9992	0.0063	0.0208	0.93	101.09	97.75	97.61	6.18	1.99	3.62		
	\mathbf{S}_1	y=23.855x-0.493	0.9999	0.0139	0.0464	1.02	88.19	87.21	84.16	3.38	1.41	2.52		
	\mathbf{S}_2	y=23.452x+0.699	0.9999	0.0150	0.0501	1.00	87.68	81.79	84.16	4.67	4.38	1.92		
	S_3	y=25.785x-0.643	0.9998	0.0067	0.0223	1.10	94.48	93.72	94.82	7.87	3.15	0.56		
	S_4	y=23.567x+3.330	0.9990	0.0165	0.0550	1.01	95.49	92.63	92.02	3.38	4.11	0.76		
615														
616														
617														
618														
619														
620														
621														
623														
622 623														

Distribution and content of benzobicyclon hydrolysate in thin soil layers 636

Soil	S1	Benzobicyclon hydrolysate content (µg)								
	5011	0–2.5 cm	2.5–5 cm	5–7.5 cm	7.5–10 cm	10–12.5 cm	12.5–15 cm	Λf		
_	\mathbf{S}_1	1.67±0.03	2.36±0.08	3.2±0.13	1.44±0.04	0.59±0.02	0.17±0.01	0.45		
	S_2	2.99±0.27	4.3±0.31	1.4±0.08	0.89±0.05	0.11±0.01	ND	0.34		
	\mathbf{S}_3	0.07±0.01	0.3±0.02	1.09±0.09	2.48±	3.86±0.31	1.44±0.11	0.75		
	S_4	0.05±0.01	0.18±0.01	0.23±0.01	0.64±0.03	2.71±0.21	5.67±0.46	0.90		

	S_4	0.05±0.01	0.18 ± 0.01	0.23 ± 0.01	0.64 ± 0.03	2./1±0.21	5.67±0.46
\mathbf{S}_1	to S ₄ are o	defined in Ta	able 1. <i>R</i> _f , n	nobility rete	ention factor	: Values are	the means (n

= 3).

665 Linear correlations between the mobility retention factor (R_f) of benzobicyclon hydrolysate and

Soil property	Sand (%)	Silt (%)	Clay (%)	pН	CEC (cmol/kg)	OC (%)	OM (%)
Slope	72.654	-11.135	-61.520	3.089	-31.765	-1.752	-2.649
Intercept	-7.042	30.708	76.237	4.418	37.126	1.601	2.461
significance level	0.027	0.681	0.152	0.285	0.263	0.181	0.160
Correlation coefficient	0.919	0.102	0.720	0.511	0.543	0.671	0.706

666 the physicochemical properties of agricultural soils

 S_1 to S_4 are defined in Table 1. R_f , The mobility retention factor; CEC, cation exchange capacity;

668 OC, organic carbon content; and OM, organic matter content

- 669
- 670

671 Table 5

- 672 The content (R_i) of benzobicyclon hydrolysate (BH) in the soil and leachate samples after
- 123 leaching with 250 mL of CaCl₂ solution for 48 h

Soil	R_1	R_2	R ₃	R_4	R_3+R_4	$R_2 + R_3 + R_4$
S_1	26.87±1.01	43.48±1.58	20.91±0.89	8.74 ±0.24	29.65	73.13
S_2	$66.35{\pm}2.35$	25.63±0.92	8.02±0.46	$0.00\pm\!0.00$	8.02	33.65
S ₃	4.54±0.12	10.45±0.54	21.49±1.01	63.52±1.93	85.01	95.46
S_4	2.11±0.08	4.11±0.36	11.71±0.69	82.06±2.56	93.78	97.89

 S_1 to S_4 are defined in Table 1. R_1 , R_2 , R_3 , and R_4 represent the mass fraction of BH recovered

from the 0-10, 10-20, and 20-30 cm soil sections and the leachate in the total amount of BH

added, respectively. Values are the mean (n = 3).

678 Figure captions

- 679 Fig. 1. Typical chromatograms of benzobicyclon hydrolysate (BH) in methanol and soil. A.
- Blank sample of S4; B. 0.5 mg/L standard product of BH; C. Soil sample spiked with 0.5 mg/L
- 681 BH
- 682 Fig. 2. The distribution and content of benzobicyclon hydrolysate (BH) in soil columns of four
- 683 different soil types after leaching with 250 mL of $CaCl_2$ solution for 48 h (S₁ to S₄ are defined
- in Table 1). Ri represents the mass fraction of BH recovered from the 0-10, 10-20, and 20-30
- 685 cm soil sections or the leachate in the total amount of BH added, respectively. Values are the
- 686 means \pm standard error (n = 3).
- 687 Fig. 3. The distribution and content of benzobicyclon hydrolysate in soil columns after leaching
- 688 under different application dosages of benzobicyclon hydrolysate (S₁ to S₄ are defined in Table
- 689 1). Values are the means \pm standard error (n = 3).
- 690 Fig. 4. The distribution and content of BH in soil columns after leaching with different rainfall
- amounts (S₁ to S₄ are defined in Table 1). Values are the means \pm standard error (n = 3).

692 Fig. 5. The distribution and content of BH in soil columns after leaching with different pH

levels (S₁ to S₄ are defined in Table 1). Values are the means \pm standard error (n = 3).

Fig. 6. The distribution and content of BH in soil columns after leaching in the presence of different surfactants (S₁ to S₄ are defined in Table 1). Values are the means \pm standard error (n = 3).

Fig. 7. The distribution and content of BH in soil columns after leaching with the addition of different concentrations of humic acid (S₁ to S₄ are defined in Table 1). Values are the means \pm standard error (n = 3).

706

Fig. 2. The distribution and content of benzobicyclon hydrolysate (BH) in soil columns of four different soil types after leaching with 250 mL of CaCl₂ solution for 48 h (S₁ to S₄ are defined in Table 1). Ri represents the mass fraction of BH recovered from the 0–10, 10–20, and 20–30 cm soil sections or the leachate in the total amount of BH added, respectively. Values are the means \pm standard error (n = 3).

Fig. 3. The distribution and content of benzobicyclon hydrolysate in soil columns after leaching

vunder different application dosages of benzobicyclon hydrolysate (S1 to S4 are defined in Table

717

Fig. 4. The distribution and content of BH in soil columns after leaching with different rainfall

amounts (S₁ to S₄ are defined in Table 1). Values are the means \pm standard error (n = 3).

721

722

725

Fig. 6. The distribution and content of BH in soil columns after leaching in the presence of different surfactants (S₁ to S₄ are defined in Table 1). Values are the means \pm standard error (n = 3).

- 731 different concentrations of humic acid (S₁ to S₄ are defined in Table 1). Values are the means \pm
- standard error (n = 3).
- 733

729

734