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Abstract 10 

As the largest terrestrial carbon pool, Ssoil organic carbon (SOC), as the largest terrestrial carbon pool, has the 11 

potential to influence and mitigate climate change and mitigation, and consequentlyhence the importance of SOC 12 

monitoring is important in the frameworks of different various international treaties. There is therefore a need for 13 

hHigh resolution SOC maps are therefore required. Machine learning (ML) offers new opportunities to do this 14 

develop these due to its capability for data mining of large datasets. The aim of this study, therefore, was to test 15 

apply three commonly used algorithms commonly used in digital soil mapping – random forest (RF), boosted 16 

regression trees (BRT) and support vector machine for regression (SVR) – on the first German Agricultural Soil 17 

Inventory to model agricultural topsoil (0-30 cm) SOC content. and develop a two-model approach to address the 18 

high variability of SOC in German agricultural soils. Model performance is often limited by the size and quality 19 

of the soil dataset available for calibration and validation. Therefore, the impact of enlarging the training data was 20 

tested by including data from the European Land Use/Land Cover Area Frame Survey for agricultural sites in 21 

Germany. Nested cross-validation was implemented for model evaluation and parameter tuning. Moreover, Ggrid 22 

search and the differential evolution algorithm were also applied to ensure that each algorithm was appropriately 23 

tuned and optimised suitably. The SOC content of the German Agricultural Soil Inventory was highly variable, 24 

ranging from 4 g kg-1 to 480 g kg-1. However, only 4% of all soils contained more than 87 g kg-1 SOC and were 25 

considered organic or degraded organic soils. The results showed that SVR provided produced the best 26 

performance with an RMSE of 32 g kg-1 when the algorithms were trained on the full dataset. However, the average 27 

RMSE of all algorithms decreased by 34% when mineral and organic soils were modelled separately, with the best 28 

result from SVR with a RMSE of 21 g kg-1. Model performance is often limited by the size and quality of the 29 

available soil dataset for calibration and validation. Therefore, the impact of enlarging the training data was tested 30 

by including 1223 data points from the European Land Use/Land Cover Area Frame Survey for agricultural sites 31 

in Germany. The model performance was enhanced for maximum by up to 1% for mineral soils and by 2% for 32 

organic soils. Despite the capability of machine learning algorithms in general, and particularly SVR in particular, 33 

in to modelling SOC on a national scale, the study showed that the most important aspect to for improvinge the 34 

model performance was to separate the modelling of mineral and organic soils. 35 
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1 Introduction 36 

Soil organic carbon (SOC) is the largest terrestrial carbon pool (Wang et al., 2020) and plays an essential role in 37 

agriculture. Since SOC influences various physical, chemical and biological properties of soil (Reeves, 1997), 38 

numerous studies recognise it as a crucial indicator of soil quality (Castaldi et al., 2019; Meersmans et al., 2012a; 39 

Reeves, 1997) (Castaldi et al., 2019; Meersmans et al., 2012; Reeves, 1997) and therefore. Thus, its decline is 40 

identified as a threat that leads to soil degradation (Castaldi et al., 2019; Poeplau et al., 2020). Moreover, when 41 

considering carbon sequestration, the SOC pool provides the option for climate change mitigation (Meersmans et 42 

al., 2012a; Ward et al., 2019) (Meersmans et al., 2012; Ward et al., 2019). Consequently, SOC monitoring is 43 

therefore important in the frameworks of various international treaties such as the European Union Soil Thematic 44 

Strategy and the United Nations Framework Convention on Climate Change (Meersmans et al., 2012b; Poeplau et 45 

al., 2020)  (Meersmans et al., 2012; Poeplau et al., 2020).and Tthere is, therefore growing interest in understanding 46 

the spatial distribution of SOC at different scales in response to an increasing demand for a better assessment of 47 

SOC (Minasny et al., 2013). This is particularly important for agricultural land due to its potential for carbon 48 

sequestration (Lal, 2004).  49 

In digital soil mapping (DSM), a soil attribute is formulated asdescribed by an empirical quantitative function of 50 

seven factors: soil properties, climate, organisms, topography, parent material, time, and spatial position 51 

(McBratney et al., 2003). Therefore, tThis function, known as the SCORPAN model, can be applied to spatially 52 

predict the soil attribute property of interest (Minasny et al., 2013). Within this framework, machine learning 53 

algorithms aim to automatically extract the information from the data for predictive purposes (Behrens et al., 54 

2005). This is of particularly intriguing interest in view of the recent expansion of databases at a different scale in 55 

soil sciencesoil databases and the the complexity of the covariatesvast amount of data to approximate the soil 56 

forming factors in recent years (McBratney et al., 2003; Wadoux et al., 2020), thus making DSM cost-effective, 57 

time-efficient and applicable over large areas with good results (Behrens and Scholten, 2006; Camera et al., 2017).  58 

Despite the advantages of DSM, it is crucial to consider note that its application requires soil databases of an 59 

adequate sample size for training and testing. Furthermore, consistent and quality-checked datasets are a 60 

prerequisite for DSM. Several soil inventories and monitoring networks for SOC have been formed established on 61 

a national scale in countries such as Sweden (Poeplau et al., 2015), France (Belon et al., 2012; Arrouays et al., 62 

2002) (Belon et al., 2012; Meersmans et al., 2012) Denmark (Taghizadeh-Toosi et al., 2014) and Scotland 63 

(Chapman et al., 2013). NonethelessHowever, in Germany the most critical shortcomings of soil inventories in 64 

Germany concern are the lack of a large-scale, high-quality SOC inventory monitoring (Wiesmeier et al., 2012) 65 

with a periodic and standardised sampling focused on agricultural soils (Prechtel et al., 2009). These issues have 66 

now been solved addressed in the first German Agricultural Soil Inventory ( Poeplau et al., 2020). This inventory 67 

was conducted carried out on a national scale with a sampling depth down to 100 cmconsidering a sampling depth 68 

of 1 m at 3104 sampling sites covering agricultural land. Furthermore, on a European scale, the Land Use/Land 69 

Cover Area Frame Survey (LUCAS) undertaken in 2009 is the first harmonised topsoil survey with physico-70 

chemical analyses of georeferenced topsoil samples in from 23 European states (Tóth et al., 2013). Therefore, by 71 

taking advantage of DSM and of both the German Agricultural Soil Inventory and the LUCAS survey, it is possible 72 

to regionalise from single-point measurements to obtain complete high-resolution cover soil data nationwide and 73 

thus provide a baseline for both SOC monitoring as well as forand environmental and climatic modelling for 74 

Germany.  75 
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Boosted regression trees (BRT), random forest (RF) and support vector machine for regression (SVR) are among 76 

the most widely used algorithms in DSM (Padarian et al., 2020). For example, Martin et al. (2014) predicted topsoil 77 

SOC on a national scale for France using the BRT algorithm and comparinged its results when the same algorithm 78 

was coupled with a geostatistical approach. They concluded that due to the large distances between sampling sites, 79 

spatial autocorrelation is unlikely since spatial autocorrelation is not feasible in most national inventories, and the 80 

BRT algorithm alone is sufficient for this purpose. This algorithm has was also been used on a national scale in 81 

China for data from the 1980s and 2010s in order to predict topsoil SOC and its spatial-temporal change, as well 82 

as the main drivers of its variability (Wang et al., 2021). Moreover, RF has also become more popular in DSM due 83 

to its relative simplicity and performance. For example, this algorithm was implemented to map topsoil SOC on a 84 

national scale in Madagascar and obtain identify its main drivers (Ramifehiarivo et al., 2017). Ramifehiarivo et al. 85 

(2017) concluded that that the uncertainty of the map generated by RF model traininguncertainty of the algorithm 86 

was lower when compared with the maps that were formerly generated for the country. Moreover, this algorithm 87 

was compared with the Cubist model algorithm for mapping SOC at different resolutions on a regional scale in 88 

China and could was found to outperformed it (Li et al., 2021). Fewer studies have used SVR than RF to predict 89 

SOC than RF. Studies have mainly implemented SVR on a regional scale with a limited number of samples 90 

(Forkuor et al., 2017; Were et al., 2015) or on a national scale (Switzerland) with very few samples (150 samples 91 

from the European LUCAS survey) (Zhou et al., 2021). However, in a study comparing different algorithms, 92 

including SVR and RF, on a continental scale and within each country in Latin America, the results indicated that 93 

the best-performing algorithm varied in different countriesfrom country to country (Guevara et al., 2018). Theis 94 

difference mainly depended on sample data density, quality, dispersity andrepresentativeness and also country 95 

size, which affects the heterogeneity of land use and environmental conditions.  96 

Another important consideration when applying machine learning is the impact of the parameter-tuning strategy 97 

in algorithm performance. This is particularly crucial when the objective of the study is the comparisons ofto 98 

compare different machine learning algorithms. Although some algorithms are less sensitive to tuning, this step is 99 

more important for others, particularly those with a higher number of parameters (Tziachris et al., 2020; Wadoux 100 

et al., 2020). Furthermore, as algorithms differ by the type of their parameters, continuous or discrete, the chosen 101 

strategy should be aligned in accordance with this difference (Ließ et al., 2021). This is particularly more important 102 

for algorithms with continuous parameters.  For example, it has been shown that that the performance of SVR and 103 

BRT is has been shown to be better and more stable when optimised by a differential evolution (DE) algorithm 104 

than tuned by grid search (Zhang et al., 2011; Gebauer et al., 2020). Despite this importance, in a review of studies 105 

that have applied DSM, Wadoux et al. (2020) state that almost half of them implemented parameter tuning, with 106 

grid search the most common strategy applied for this purpose. This finding indicates that the role of parameter 107 

tuning and optimisation is unfortunately undermined in DSM. This is particularly evident when the application of 108 

machine learning in this field is compared with other fields, where various studies have shown the impact of 109 

parameter-tuning strategies on the performance of algorithms such as SVR and BRT (Liang et al., 2011; Santos et 110 

al., 2021; Bhadra et al., 2012; Deng et al., 2019). 111 

The aims of the present study werewas therefore: i) to address the above-mentioned parameter-tuning issue and 112 

consequently provide a true comparison of the performance of BRT, RF, and SVR in modelling the SOC contents 113 

of German agricultural topsoils (0-30 cm), ii) to assess the impact of training data size by extending the data of the 114 

German Agricultural Soil Inventory with LUCAS data for model calibration, and iii) to develop a two-model 115 
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approach to address the high variability of SOC in German agricultural soils and compare it with a single-model 116 

approach.  117 

2 Materials and methods 118 

2.1 Soil data 119 

The models were built using SOC content data from two soil inventories. The first dataset was from the German 120 

Agricultural Soil Inventory, which consists comprise of 3104 sites with a fixedcollected along a grid of 8x8 km 121 

throughout Germany (Poeplau et al., 2020). The sites were sampled and analysed for different soil properties, 122 

including SOC content measured via dry combustion, for the upper 30 cm of the soil between 2012 and 2018. The 123 

second dataset was the European LUCAS survey that provides SOC content, similarly also measured via dry 124 

combustion, for all EU countries, with the sampling depth limited to 0-20 cm (Tóth et al., 2013). For Germany, 125 

data collected on agricultural soils cover 1223 sites. Therefore, in order to harmonise the depths of both datasets, 126 

theyse were subdivided into two classes: mineral and organic soils  classes according to a SOC threshold value of 127 

87.0 g kg-1. Accordingly, considering all soils above this threshold were considered as organic soils comprising 128 

peat soils and disturbed and degraded peat soils (Poeplau et al., 2020). Linear regression functions were derived 129 

for both mineral, Eq. 1, and organic, Eq. 2, soil classes on behalf of the data of the German Agricultural Soil 130 

Inventory to relate the SOC content of 0-30 cm to that of 0-20 cm.Linear correlation functions between 0-30 cm 131 

and 0-20 cm were derived for each soil class of the German Agricultural Soil Inventory separately. These functions 132 

were then applied to the corresponding soil class from the LUCAS data in order to estimate 0-30 cm topsoil SOC. 133 

With a slope of 0.881 for mineral soils and 1.02 for organic soils, they changed the mean of LUCAS data by less 134 

than 6%. The depth-extrapolated values of mineral and organic soils were then combined to form the complete 135 

dataset. The 0-30 cm LUCAS data generated and the original 0-20 cm LUCAS data were then used by each 136 

algorithm to check the effect of depth extrapolation. 137 

𝑦 = 1.01 + 0.881𝑥          (1) 138 

𝑦 = 1.6 + 1.02𝑥           (2) 139 

2.2 Covariates 140 

Covariates from multiple sources were included to approximate the SCORPAN factors throughout Germany. In 141 

the case of multiple data products for one covariate, the one with the best quality (least fewer artefacts), and the 142 

highest spatial resolution was added. These were then resampled in ArcGIS (ESRI, 2013) using the INSPIRE 143 

standard grid at 100 m resolution (Eurostat grid generation tool for ArcGIS). The resampling method was either 144 

the nearest neighbour for categorical covariates or bilinear interpolation for continuous covariates. The same 145 

INSPIRE grid was also used to rasterise the vector covariates as well. Finally, they were stacked and overlaid on 146 

SOC databases in order to extract the values at the sampling points. 147 

Following the SCORPAN framework, 24 covariates including x and y coordinates for spatial positions were 148 

compiled. In order to capture represent the climate factors (C factor), precipitation (DWD, 2018c), sunshine 149 

duration (DWD, 2017), summer days (DWD, 2018b), and minimum temperature (DWD, 2018a) were used applied 150 

according to the study of Schneider et al. (2021). Using principal component analysis, these four covariates were 151 

indicated identified to be the most important among out of 34 available climate factors for SOC in the German 152 

Agricultural Soil Inventory dataset. Moreover, type of agricultural land use is one of the main drivers of SOC 153 



5 
 

variability at on a national scale (Poeplau et al., 2020). Thus, therefore the land -use map from the official 154 

topographic-cartographic information system (BKG, 2019) with its corresponding classes according to the German 155 

Agricultural Soil Inventory was rasterised and included. This is a categorical covariate, representing the organism 156 

factor of SCORPAN (O factor), that which distinguishes croplands from grasslands and captures their spatial 157 

distribution throughout Germany.  158 

The European Digital Elevation Model (EUDEM) (European Union Copernicus Land Monitoring Service, 2016) 159 

with original resolution of 25 m was resampled to 100 m. and sSix covariates derived from the is layerresampled 160 

layer were also added to integrate the topography and relief parameters (R factor). Slope, plan curvature and profile 161 

curvature, generated on with SAGA (Conrad et al., 2015), were included to capture the slope’s gradient, convexity-162 

concavity and convergence-divergence. These factors influence the soil distribution throughout the landscape, e.g. 163 

affecting flow over the surface, thus impacting SOC and its dynamic (Ritchie et al., 2007). Moreover, north-south 164 

and east-west aspects wereslope exposition (aspect) was obtained calculated from the from EUDEM as these it 165 

influences soil development and subsequently affects SOC (Carter and Ciolkosz, 1991). The circular variable was 166 

then decomposed into northness and eastness. The Topographic Wetness Index (TWI), generated on SAGA 167 

(Conrad et al., 2015), was also added since it captures the soil moisture distribution of the landscape and some 168 

studies have shown its direct correlation has a direct correlation with SOC (Pei et al., 2010). A geomorphographic 169 

map of Germany (Federal Institute for Geosciences and Natural Resources (BGR), 2007)  containing featuring 25 170 

geomorphic categories was also used to distinguish between four different landscape areas of the country: North 171 

German lowlands, highlands, Alpine foothills and the Alps. 172 

Continuing with the framework, a large-scale soil landscape unit map (“Soil Scapes in 173 

GermanyBodengrosslandschaft”) (Federal Institute for Geosciences and Natural Resources (BGR), 2008) 174 

comprising 38 classes was used. This covariate divides Germany by various geo-factors that can be compiled into 175 

a map with 12 soil regions representing mainly the parent materials. Similarly, large-scalethe soil-climate region 176 

map (“Bodenklima”) (Roßberg et al., 2007) with 50 classes was added. Moreover, the Hydrogeological unit 177 

according Hydrogeological map of GermanyGermany’s hydrogeological unit map (BGR and SGDG, 2019). The 178 

hydrogeological map provides information about  hydrogeologically relevant attributes including consolidation, 179 

type of porosity, permeability, type of rock and geochemical classification. lithology and its hydrological 180 

characteristics. These categorical maps were rasterised and applied to the model as the P factor of SCORPAN. 181 

Moreover, the soil factor of the framework (S factor) was captured by eight covariates that represent different 182 

aspects of its properties: the map of organic soils (Roßkopf et al., 2015) that distinguishes mineral soils from 183 

organic ones and explains their spatial distribution throughout the country, as well as the maps of nitrogen 184 

(Ballabio et al., 2019) and clay content (Ballabio et al., 2016) since they directly correlate with SOC. As nitrogen 185 

is a crucial component of soil organic matter, regions with higher total nitrogen have higher SOC (Ballabio et al., 186 

2019). Also for clay content, different studies have shown that coarser soil textures tend to have a lower 187 

accumulation of SOC (Zhong et al., 2018; Hoyle et al., 2011). The Mmap of pH from (Ballabio et al., (2019) was 188 

included since soil pH directly impacts microbial activities that influence the turnover of soil organic matter, and 189 

consequently negatively correlates with SOC (Malik et al., 2018). Furthermore, the map of available water capacity 190 

(Ballabio et al., 2016) was used as this soil properties property is another interactive factor with SOC through plant 191 

productivity and soil texture (Burke et al., 1989; Yu et al., 2021). Soil erosion is also a key factor in the SOC cycle 192 

( Li et al., 2019), which was added through the soil map of Europe’s net soil erosion and deposition rates erosion 193 
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map of Europe (Borrelli et al., 2018). Based on the WaTEM/SEDEM model, this map illustrates the potential 194 

spatial displacement and transport of soil sediments due to water erosion (Borrelli et al., 2018). Figure S1 provides 195 

a more detailed view for better visualisation of the covariates that were used in this study. 196 

2.3 Boosted Regression Trees 197 

Developed by Friedman et al. (2000), BRT is a tree-based algorithm that applies boosting method to improve 198 

accuracy. Boosting method relies on combining several approximate prediction models rather than obtaining one 199 

single highly accurate one model (Schapire, 2003). Thus, the decision trees are grown sequentially so that each 200 

decision tree predicts the residual of the previous one and therefore. Consequently, the number of trees influences 201 

the performance of the algorithm and requires tuning. However, to incorporate randomness into the model and 202 

subsequently increase the robustness of performance, the trees are grown on a randomly selected data subset with 203 

no replacement (Friedman, 2002). The size of this subset is controlled by a parameter known as a bag fraction. 204 

Furthermore, the contribution of each new tree to the final model is regularised by learning rate, also known as 205 

shrinkage(Friedman et al., 2009). Finally, the number of splits in each tree that divides the response variable into 206 

subsets is optimised by interaction depth. The BRT model was built in R using the “gbm” package (Greenwell et 207 

al., 2019).  208 

2.4 Random Forest 209 

Similar to BRT, RF is another tree-based algorithm. RF uses bootstrap sampling of the dataset for growing a 210 

decision tree. Subsequently, by aggregating the results of a large number of decision trees, the bias and variance 211 

of the final model can be reduced (Breiman, 1999). The method of bootstrapping in conjunction with aggregating, 212 

known as bagging, increases the robustness and stability of RF. However, the trees from different bootstraps may 213 

form a similar structure if all covariates participate in a split of each node. Thus, the variance cannot be reduced 214 

optimally through the bagging process (Kuhn and Johnson, 2013). In order to avoid this tree correlation, a random 215 

subset of covariates, i.e. predictors, is selected at each split. The parameter mtry defines the number of predictors 216 

included in this subset and should be tuned (Kuhn and Johnson, 2013). The RF algorithm was implemented by 217 

setting the number of trees to 1000 and using the “Ranger” package (Wright and Ziegler, 2017) in R.  218 

2.5 Support Vector Regression 219 

SVR is a form of support vector machine adopted for regression. From all possible solutions, i.e. estimation 220 

function, for the problem, SVR tries to obtain an estimation function with  that has at most the maximum 𝞮 error 221 

deviation from the response values of the training data while minimising model complexity (Smola and Schölkopf, 222 

2004). Thus, a symmetrical tolerance threshold, 𝞮-insensitivity zone, is created around the estimation function 223 

within which the vectors are not penalised (Awad and Khanna, 2015). However, tThe data vectors of the samples 224 

that lie on the boundary of the 𝞮-insensitivity zone are called support vectors. The vector lying within the 225 

insensitivity zone are not penalized. Therefore, 𝞮 is an optimisable parameter that controls the width of 𝞮-226 

insensitivity, alters the model complexity and inversely impacts the number of support vectors inversely 227 

(Cherkassky and Ma, 2004). Moreover, the trade-off between model complexity and tolerance of 𝞮 deviation is 228 

controlled by a parameter named C (Smola and Schölkopf, 2004; Cherkassky and Ma, 2004). Optimising the C 229 

parameter has a crucial impact on SVR performance since a high C can lead to overfitting, while a low C can cause 230 

under fitting (Kuhn and Johnson, 2013). The use of kernel functions makes SVR a powerful tool for nonlinear 231 

problems. By implementing these functions, SVR can map the data space from its original dimension to a higher 232 
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dimensional space where a nonlinear problem can be solved linearly. In this study, the Radial Basis Function 233 

(RBF) kernel was used with gamma as its tuneable parameter. This parameter affects the generalisation 234 

performance of SVR by inversely controlling the influence of support vectors inversely (Battineni et al., 2019). 235 

SVR was implemented from the package e1071 in R (Hornik et al., 2021). 236 

2.6 Performance evaluation 237 

When training a predictive model, it is important to evaluate its generalisation performance on unseen data of the 238 

same type (Hawkins et al., 2003). However, as the number of available samples is usually a limiting factor, the 239 

evaluation process is often done by k-fold cross validation (CV). Therefore, the dataset is divided into k folds and 240 

k – 1 folds are used for training the model and one fold for testing. This process is repeated k times so each fold 241 

participate in train and test. However, as the number of available samples is usually a limiting factor, the evaluation 242 

process is often done by randomly splitting the available dataset into training and testing sets multiple times, i.e. 243 

cross-validation (CV). Although this process is effective, it is not entirely immune from biased estimation of error. 244 

However, to ensure that the estimated error in model evaluation is as unbiased as possible, However, to ensure the 245 

robustness of the model, every each model training step should be performed within the CV. This includes finding 246 

the best parameter sets for the chosen algorithm (Varma and Simon, 2006). Thus, the algorithms in this study were 247 

applied on a stratified nested CV.  248 

First, to ensure that the SOC distribution was represented in the CV scheme, Germany was divided into 50 strata 249 

using a 100x100 km INSPIRE grid into 50 strata. Random samples from each stratum were then taken and 250 

compiled into a fold. This procedure was continued to create five folds and was repeated five times, forming the 251 

outer loop of CV used for model evaluation. Large A long distance between neighboring samples, 8120 m on 252 

average, prevents train and test data from being spatially autocorrelated. Since the aim was to tune the algorithms’ 253 

parameters of the algorithms, the training set of the outer loop of CV was nested, creating five folds as the inner 254 

loop on which the parameter tuning was performed. To evaluate the performance of algorithms, root-mean-squared 255 

error (RMSE), Eq. 31, mean absolute error (MAE), Eq. 42, and mean absolute percentage error (MAPE), Eq. 53, 256 

were used.. Furthermore, AIC, Eq. 6, BIC, Eq. 7, and %Bias, Eq. 8, are also included in Table S2 for more detailed 257 

comparison.  258 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

2𝑛
𝑖=1          (31) 259 

𝑀𝐴𝐸 =  
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛
𝑖=1           (42) 260 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑃𝑖−𝑂𝑖

𝑂𝑖
|𝑛

𝑖=1 × 100         (53) 261 

𝐴𝐼𝐶 =  −2𝑙𝑛(𝐿) + 2𝑘          (6) 262 

𝐵𝐼𝐶 = −2𝑙𝑛(𝐿) + 𝑙𝑜𝑔(𝑛)log log 𝑘          (7) 263 

%𝐵𝐼𝐴𝑆 =  
1

𝑛
∑

(𝑃𝑖−𝑂𝑖)

𝑂𝑖
× 100𝑛

𝑖=1          (8) 264 

wWhere  𝑛 is the number of samples, 𝐿 is likelihood, 𝑘 is the number of parameters, and 𝑃𝑖  and 𝑂𝑖  are the predicted 265 

and observed values, respectively. were 266 
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2.6.1 Parameter tuning 267 

As mentioned in Sect.1previously, choosing a suitable strategy for parameter tuning is a crucial step in machine 268 

learning particularly for when comparing the performance of the algorithms. Therefore, two strategies were applied 269 

depending on the algorithm: 1) a grid search for RF and 2) optimisation with the DE algorithm for BRT and SVR. 270 

The first strategy was an exhaustive search over a defined space consisting of lower bound, upper bound and n 271 

steps in between for the target parameterOne major problem with applying the grid search strategy for algorithms 272 

that comprise continuous parameters such as BRT and SVR is that it is impossible to consider the whole continuous 273 

parameter space. Thus, the parameter combination for testing should be determined. However, this is not 274 

problematic for tuning RF in the present case since mtry is a parameter with discrete values. The DE algorithm 275 

however, is an stochastic approach to solve an optimisation problem that can be applied to both continuous and 276 

discrete parameters. Therefore, the target parameters in this strategy should be discrete or discretised beforehand 277 

if they are continuous (Probst et al., 2019). This strategy was applied to RF since the tuning parameter is discrete. 278 

However, the second strategy is a stochastic approach of searching over a continuous space in order to solve an 279 

optimisation problem (Qin et al., 2009) and. This method is described in more detail by Storn & Price (1997). 280 

Therefore, SVR and BRT were are optimised by this strategy as the former algorithm has continuous parameters 281 

and the latter one has both continuous and discrete parametersthey have continuous parameters. For the 282 

optimisation task in the present study, the R package “DEoptim” was applied (Peterson et al., 2021). Table S1 283 

shows the parameters and their tuning range for each algorithm. 284 

2.6.2 Variable importance 285 

Variable importance was assessed by permutation (Ließ et al., 2021). Therefore, tThe values of each a particular 286 

covariate in the test set was were shuffled 10 times and on each occasion the prior to applying the respective model 287 

to eliminate any predictor-response relationship present with regards to that predictor trained model corresponding 288 

to that test set was applied. The variable importance corresponds to the relative increase in the test set RMSE. This 289 

processprocedure was repeated 10 times for each covariate. The resulting values were averaged and T the 290 

population of RMSE was averaged and its to be used for calculation of relative change to the RMSE of the original 291 

test set was calculated. Thus, the variable importance of each covariate in terms of percentage relative change in 292 

RMSE was obtained. 293 

2.7 Modelling approaches 294 

Three approaches were designedWe followed a two-by-two strategy resulting in four modelling approaches to test 295 

the performance of the algorithms (Table 1). The models were built based on nested CV, while the train and test 296 

sets remained identical for the three algorithms to make the results comparable.  297 

Table 1: Modelling approaches 298 

 
Dataset 1: 

German Agricultural Soil Inventory 

Dataset 2: 

German Agricultural Soil Inventory + 

LUCAS 

One-Model-Approach AP1 AP1L 

Two-Model-Approach AP2 AP2L 

 299 
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On the one hand, weThe first approach (AP1) only used the SOC content data from the German Agricultural Soil 300 

Inventory and corresponding values from the covariates were used to build train the models (AP1). Thus, the 301 

dataset was cross-validated and used by BRT, RF and SVR to predict the SOC content of German agricultural 302 

soils. The results of this approach served as a baseline on which the model improvement for each algorithm in the 303 

other two approaches was assessed. 304 

Due to the high variability of SOC in the agricultural soils of Germany, we then trained two separate models for 305 

organic and mineral soils (AP2) was developed and tested to identify whether it this could improve model 306 

performance.  Accordingly, the German Agricultural Soil Inventory was subdivided by the threshold 87 g kg-1 into 307 

mineral and organic soils. and then two were used to train separate models were trained. This approach was named 308 

AP2. The same nested CV procedure was applied for both data subsets. The results of BRT, RF and SVR were 309 

compared to identify which one had better performance under mineral and organic soils separately. Finally, each 310 

algorithm's predicted SOC values from the two separate models was were combined, and the error metrics were 311 

calculated for the full data set to identify the impact of AP2 on model performance. The CV folds for this procedure 312 

match the one from the AP1 models. 313 

The impact of enlarging the training set on model performance was then examined for both, AP1 and AP2 314 

approaches. Thus, 1223 depth-extrapolated samples of the LUCAS data were added to the training sets of AP1. 315 

The corresponding modelling approach was and named AP1L. Moreover, the same threshold (87 g kg-1) was used 316 

to subdivide this dataset and each soil class was included to the training set of the corresponding soil class of AP2. 317 

This modelling approach was then  and named AP2L.  318 

The test sets for the model performance evaluationof the CV procedure remained the same for all four approaches. 319 

The models were built based on nested CV, while the train and test sets remained identical for the three algorithms 320 

to make the results comparable. Thus, the dataset was cross-validated and used by BRT, RF and SVR to predict 321 

the SOC content of German agricultural soils. The results of thisthe AP1 approach served as a baseline on which 322 

the model improvement for each algorithm in the other two approaches werewas assessed. 323 

3 Results and Discussion 324 

3.1 Comparison of algorithms on the data from the German Agricultural Soil Inventory (AP1) 325 

The range of the topsoil SOC content of topsoil for the German Agricultural Soil Inventory dataset was 4 g kg-1 to 326 

480 g kg-1, with a mean of 27 g kg-1 and a median of 16 g kg-1. Figure 1 shows the spatial distribution of the 327 

implemented data. For the first approach (AP1), BRT, RF, and SVR were applied to model SOC using data from 328 

German Agricultural Soil Inventory. The RMSE and MAPE indicated that SVR had a better general performance 329 

than the two other two algorithms (Fig., 2). In this respect, the RMSE of SVR was 5% lower than that from RF 330 

and 4% lower than that from BRT. Furthermore, its MAPE was 3% and 7% lower than that from RF and BRT 331 

respectively. However, despite the difference in overall performance, the spatial distribution of relative residuals 332 

indicated that all three algorithms were less accurate in the northern of Germany compared with the centre and 333 

south of the country (Fig. 3A). This can be explained by the characteristics of this region and its higher SOC 334 

variability. The northern part of Germany is a lowland dominated by a sandy soil texture from pleistoceen 335 

sedimentation with geomorphological structures such as ground moraines, terminal moraines and aprons (Roßkopf 336 

et al., 2015). Despite general geomorphological and pedological similarities throughout the region, 1) organic soils 337 

in under agricultural use Germany are mainly located in the north and 2) mineral soils with the lowest and the 338 
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highest SOC contents are also located in the northeast and northwest respectively. Therefore, this region has the 339 

highest widest SOC range on agricultural soils.  340 
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 341 

Figure 1: Soil organic carbon content in the topsoil of two soil inventories:. A) German Agricultural Soil Inventory (0-342 
30 cm), B) LUCAS at its original sampling depth (0-20 cm) and, C) LUCAS after depth extrapolation (0-30 cm) 343 
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344 
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 345 

Figure 2: Performance indicators of the three algorithms. One-model approach (wWithout LUCAS data AP1 and with 346 
LUCAS data AP1L) versus the two-model approach (AP2 and AP2L) for A) RMSE (g kg-1), B) MAE (g kg-1) and C) 347 
MAPE (%). The whiskers of boxplots show 1.5 times the interquartile range. Please note that the y-axis is shortened for 348 
better visibility and does not display a zero. BRT = boosted regression trees, RF = random forest, and SVR = support 349 
vector regression. 350 

Consequently, the variable importance (Fig. 4A) indicated that the map of organic soils contains the highest 351 

available information among allwas the most important covariates for the algorithms. The value for of the variable 352 

importance for this covariate was 65% in SVR, 72% in RF and 84% in BRT. These values firstly show the crucial 353 

role of the map of organic soils for the algorithms in explaining the variability of SOC and, secondly, the 354 

comparatively greater importance of this predictor and the lower variable importance of other predictors in the 355 

BRT model compared with the SVR model.how BRT mainly relies on the map of organic soils to predict SOC 356 

compared with SVR. Despite the importance of the organic soil map, the scatterplots (Fig. 5A) show that all three 357 

algorithms underpredicted the SOC of the organic soils and had similar heteroscedasticity patterns in their 358 

residuals. Thus, while most residuals from mineral soils followed the 1:1 line, they became more scattered in soils 359 

with a higher SOC content. The underprediction of SOC in organic soils can be explained by their low small 360 

sample size, resulting in a dataset with a high wide SOC range and a unimodal distribution that leaves these soils 361 

in the tail. Consequently, the organic soils were underrepresented and the results were systematically pulled 362 

towards mineral soils, regardless irrespective of the choice of algorithm. Different studies have shown that 363 
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predicting soil properties with mineral and organic soils combined can lead to underprediction or overprediction 364 

of one soil class, depending on the distribution of the dataset (Brogniez et al., 2015; Guio Blanco et al., 2018; 365 

Mulder et al., 2016).  366 

Although the map of organic soils was able to distinguish between the two soil classes, i.e. between mineral and 367 

organic soil, it could not separate the mineral soils with a low SOC content in the northeast from those with a high 368 

SOC content in the northwest. The spatial distribution of the residuals (Fig. 6A) showeds that SVR and BRT 369 

generally underpredicted the mineral soils in the northwest part of Germany, while RF overpredicted them. 370 

Furthermore, unlike RF and SVR, BRT distinctively appreciably overpredicted SOC of the north-east Germany’s 371 

mineral soils with the lowest SOC content (<10 g kg-1). This result indicates that the algorithms differed in their 372 

performance in mineral soils. This difference was mainly due to the information they obtained from the land use 373 

map. As the second most important covariate for all three algorithms (Fig. 4 A), the value for variable importance 374 

for this covariate was 22% in SVR, but just 11% in RF and 9% in BRT. Thus, SVR exploits more information 375 

from this covariate than RF and particularly BRT. Land use is one of the main drivers of SOC variability on a 376 

national scale due to the higher SOC content in grasslands than in croplands (Poeplau et al., 2020). Therefore, this 377 

covariate was able to differentiate between the soils of the northeast, which are under cropland, and those in the 378 

northwest as they are more under grassland. Consequently, the reliance of BRT on the map of organic soils at the 379 

cost expense of land use could explain why this algorithm overpredicted SOC in croplands in the northeast.  380 
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 381 

Figure 3: Spatial distribution of relative residuals. A) AP1 approach, B) AP1L approach, C) AP2 approach and D) 382 
AP2L approach. BRT = boosted regression trees, RF = random forest, and SVR = support vector regression. 383 
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 384 

Figure 4: Variable importance in terms of average relative change (%) in RMSE. A) AP1, B) mineral soil subset of 385 
AP2 and C) organic soil subset of AP2. The full name for each abbreviation is presented in Table S43. BRT = boosted 386 
regression trees, RF = random forest, and SVR = support vector regression. 387 
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3.2 Enlarging the dataset with additional soil inventories (AP1L) 388 

A larger soil dataset may provide additional information and consequently improve model performance. This 389 

possibility was explored in the AP1L approach with by adding the LUCAS data. The SOC content of LUCAS data 390 

at its original depth ranged from 4 g kg-1 to 500 g kg-1 , with a mean of 30 g kg-1 and a median of 18 g kg-1. After 391 

extrapolating the depth to 30 cm, the new range was from 5 g kg-1 to 512 g kg-1 , with a mean of 28 g kg-1 and a 392 

median of 17 g kg-1. The spatial distribution of LUCAS data at their original and extrapolated depth is shown in 393 

Figure 1. 394 

A statistical test was performed on the residuals of models built on LUCAS data with the original and extrapolated 395 

depths. That was done to identify whether extrapolating the depth of LUCAS data to that of the German 396 

Agricultural Soil Inventory would significantly affect model performance after their inclusion in the training set. 397 

With the Shapiro-Wilk test rejecting the normality assumption of residuals of all corresponding algorithms at 20 398 

cm and 30 cm, the non-parametric Kruskal-Wallis test showed no significant difference between the residuals at 399 

both either depths. Thus, the extrapolation of the soil depth had no significant impact on the data quality to 400 

regionalisze SOC. As a result, any further change in the performance of the algorithms after adding LUCAS data 401 

was due to enlargement of the training set being enlarged. The result of the algorithms at both depths can be found 402 

in the supplementary information (Fig. S31).  403 

After enlarging the training set from 2278 to 3501 sampling points, BRT obtained the lowest RMSE (Fig. 2A1) 404 

and MAE among the algorithms (Fig. 2B1). A comparison of the error metrics of corresponding algorithms from 405 

the AP1 approach with those from the AP1L approach showed that BRT had the highest error reduction at 7% in 406 

the MAPE and 5% in the RMSE and MAE. Furthermore, although the error metrics of RF did not improve as 407 

much as those of BRT, additional training points were still beneficial for this algorithm. However, SVR did not 408 

follow any systematic change under the AP1L. Despite a 2% decrease in MAPE, the RMSE increased by 3% and 409 

MAE remained unchanged. To explore the potential explanation for this behaviour by SVR, the residuals of 410 

mineral soils were separated from those of organic soils. Additional samples reduced the RMSE in mineral soils 411 

for all algorithms by between 9% and 13%. However, this error increased by 9% in the organic subset for SVR, 412 

while it increased by just 1% for RF and even decreased by 1% for BRT. This indicated that enlarging the training 413 

set by data with similar characteristics had a greater influence on systematic error of the underrepresented soil 414 

class in SVR. This influence is understandable when considering the higher optimised 𝞮 in the AP1L approach 415 

compared with that of the AP1 approach. The higher value of 𝞮 means that the hyperplane for the training set is 416 

less complex (Cherkassky and Ma, 2004) and more suitable for predicting most soil samples, i.e. mineral soils. 417 

Thus, when this hyperplane was fitted to the test set identical to the AP1, the generalisation performance was 418 

hindered because it could not capture the variability of samples with higher SOC values, i.e. organic soils.  419 

Further evaluation revealed that regardless of the change in error metrics, the relative residuals of the three 420 

algorithms had a similar spatial pattern to their counterpart from the AP1. Thus, they all showed lower accuracy 421 

in the northern region of Germany for similar reasons (Fig. 3B). Moreover, the scatterplots had a similar pattern 422 

with underpredicted organic soils (Fig. 5B). This confirmeds that when organic soils are modelled with mineral 423 

soils, enlarging the training set does not provide enough information for BRT or RF to capture the high variability 424 

of SOC, particularly in the north of Germany.  425 
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 426 

Figure 5: Scatterplot of residuals. A) AP1 approach and mineral and organic soils of AP2 and B) AP1L approach and 427 
mineral and organic soils of AP2L. BRT = boosted regression trees, RF = random forest, and SVR = support vector 428 
regression. 429 
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 430 

Figure 6: Spatial distribution of residuals. A) AP1 approach, B) AP1L approach, C) AP2 approach and D) AP2L 431 
approach. BRT = boosted regression trees, RF = random forest, and SVR = support vector regression. 432 
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3.3 Subdividing soil inventories into mineral and organic subsets (AP2 and AP2L) 433 

As presented outlined in the sections above, the modelling of SOC content when mineral and organic soils were 434 

combined led to a systematic underprediction of soils with higher SOC values by all three algorithms, regardless 435 

irrespective of the number of training samples. Therefore, by implementing the AP2 approach with two models 436 

one for mineral soils and one for organic soils, a noticeable improvement in the performance of all algorithms was 437 

observed,observed (Table S3B), with SVR showing the best error metrics (Fig. 2A6, Fig. 2B6, Fig. 2C6). This 438 

meant 34% lower RMSE, 30% lower MAE, and 32% lower MAPE than when this algorithm was trained under 439 

the AP1 approach with one model for all soils. As the high variability of SOC was initially hard to capture, the 440 

subdivision of the dataset provided a range that better represented each soil class. This was particularly beneficial 441 

for mineral soils (ranging from 4 g kg-1 to 85 g kg-1) since the number of samples did not reduce drastically (only 442 

by 99 samples). Thus, the algorithms could better capture the relationship between SOC and covariates. 443 

Consequently, the overall performance improved when the underrepresented soil class was modelled separately. 444 

This is in line with the study of Rawlins et al. (2009) which that recommends the separate modelling of mineral 445 

and organic soils.  446 

Nonetheless, following the AP2L approach with additional data, the RMSE and MAPE of the algorithms improved 447 

by less than 2% compared with AP2 (Table S3E). However, the greatest change was observed in the MAE of SVR 448 

with a 2% improvement. Therefore, additional training samples did not considerably greatly influence the 449 

performance since the majority of these samples were in mineral soils, while the limiting factor was the high 450 

variability of organic soils combined with its low number of samples. NeverthelessHowever, an improvement was 451 

noted in relation to the all error metrics of SVR in the AP2L approach. This was in contrasted to with when the 452 

training set was enlarged without subdividing the data, i.e. AP1L. Therefore, it further confirmed that it is more 453 

important for SVR than for BRT and RF to model the soil classes separately when its the training set is enlarged 454 

by datasets with similar characteristics.  455 

Furthermore, the improvement of the algorithms in AP2 and AP2L was particularly noticeable in their relative 456 

residuals. By comparing these results with those from AP1 and AP1L, it was evident that the greatest improvement 457 

was observed in the northern region and the spatial distribution of relative residuals was more homogenous 458 

throughout the country for all algorithms, but particularly for RF and SVR (Fig. 3 C and D). This is understandable 459 

since by subdividing the data, the algorithms can no longer exploit any information from the map of organic soil 460 

for spatial variability of SOC in mineral soils. Thus, they obtain information from other covariates for this soil 461 

class (Fig. 4 B). Although land use and total nitrogen were still among the most important variables for the 462 

algorithms in mineral soils, the importance of the predictors representing the SCORPAN C and P factors increased 463 

in the absence of a soil organic map. This could was to be expected because the north-east of Germany, for 464 

example, has a continental climate (Roßkopf et al., 2015) and young moraine landscapes, while the north-west has 465 

a more oceanic climate (Roßkopf et al., 2015) with old moraine landscapes.  466 

It is unsurprising that all the algorithms still relied on the map of organic soil to explain SOC in organic soil class. 467 

However, while SVR and RF still obtained information from other covariates, the value for variable importance 468 

of this map alone is was 93% in BRT (Fig. 4 C),. That which makes this algorithm prone to greater errors, as can 469 

be seen in its error metrics (Table S2). Similar to mineral soils, the order of covariates was different between the 470 

algorithms in organic soils. In other words, in AP1 the three algorithms obtained almost all the information from 471 

the map of organic soil, land -use and total nitrogen with in that similar order of importance. In contrast, after 472 
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subdividing the data, the algorithms differedntiated from each other by the order of covariates in their variable 473 

importance (Fig.ure 4). 474 

A comparison of the error metrics of each soil class in AP2 with its counterpart in AP2L revealed that the additional 475 

1177 samples had a minor influence on the performance (from zero to a maximum of 2%) of the algorithms in 476 

mineral soils (Table S2). These results indicated that the German Agricultural Soil Inventory offers a good 477 

representation of the spatial variability of SOC in mineral soil under agricultural use throughout the country and 478 

that the inclusion of including more sample points do did not provide additional information about SOC variability 479 

in this soil class. 480 

However, 46 additional organic soil samples from the LUCAS dataset improved the MAPE and MAE by 12% and 481 

6% for SVR, by 10%, and 4% for RF, and by 7% and 2% for BRT, respectively, but the RMSE of the three 482 

algorithms was improved by less than 2%. Thus, additional organic samples mainly influenced the average 483 

magnitude of the error. This could be explained by organic soils having a wide range of SOC and the number of 484 

samples was being limited. Thus, the addition of LUCAS data to the training set offered gave the algorithms more 485 

information about spatial variability of SOC in this soil class. Despite this limitation, SVR had the best overall 486 

performance among the algorithms in AP2 and AP2L. It should be noted that training samples must span the 487 

complexity of the parameter space in order for the model to be able to effectively match the training data effectively 488 

and to generalisze unseen data. A sSmall sample size can therefore negatively influence the predictive power of 489 

the algorithms. This complexity can be addressed by structural risk minimisation (SRM) (Al-Anazi and Gates, 490 

2012). Implementation of SRM makes SVR capable of performing well in such datasets. Other studies have 491 

compared the performance of algorithms on different sample sizes for in predicting soil properties and shown that 492 

SVR is one of the best choices, if not the best, when the number of samples is a limiting factor (Al-Anazi and 493 

Gates, 2012; Khaledian and Miller, 2020). In contrast, in a study by Zhou et al. (2021), 150 samples with different 494 

sets of covariates at different resolutions were used to compare RF, BRT and SVR to predict SOC content in 495 

Switzerland. Their results showed that the best-performing algorithm varied depending on the resolution and 496 

covariates. However, the best performance throughout all scenarios was obtained by BRT. The discrepancy 497 

between their results and the results of the present study may be due to the parameter-tuning method of the 498 

algorithms, as they only used grid search, or other factors, including the spatial distribution of samples or the 499 

chosen set of covariates. 500 

Table 2: Mean of error metrics of the three models for each approach. 501 

Approach 
Mean RMSE 

(g kg-1) 

Mean MAE 

(g kg-1) 

Mean MAPE 

(%) 

AP1 32.6 12.3 49.0 

AP1L 32.1 12.1 46.9 

AP2 21.6 8.8 34.4 

AP2L 21.3 8.7 34.3 

Overall, the change in performance across different sample sizes, different algorithms and different approaches 502 

(Table S3) indicated that the most important aspect of modeling SOC content of German agricultural topsoil is a 503 

two-model approach. Although combining soil inventories for more training samples can possibly improve model 504 

performance, the effect was not noticeable compared to when each soil class was predicted by its dedicated model 505 
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(Table S3B and Table S3D). The advantage of two-model approach can also be seen in the average error metrics 506 

of the three models (Table 2). While the average RMSE of the models reduces by less than 1 g kg-1 after enlarging 507 

the training set, the same error metrics reduces by more than 10 g kg-1 in AP2 and AP2L (Table 2). Therefore, it 508 

is also recommended to consider the two-model approach in soil-landscape settings similar to Germany or 509 

situations where one-model approach cannot have good predictive performance. 510 

The map of organic soil was used to spatially distinguish each soil class to map the SOC content of the class by its 511 

corresponding model. Figure S5 shows the spatial distribution of SOC content using the AP2L approach for the 512 

three algorithms. Although SVR captured a wider range of SOC, 2 g kg-1 to 371.5 g kg-1, than BRT, 8 g kg-1 to 513 

341.1 g kg-1, and RF, 7.7 g kg-1 to 354.6 g kg-1, all three algorithms showed a relatively similar distribution of SOC 514 

content across the country particularly in mineral soils. As shown in Figure S5, organic soils are mainly distributed 515 

in the north. These soils are mostly bogs in the northwest and fens in the northeast (Roßkopf et al., 2015). There 516 

is also a small distribution of organic soil in the foothills of Alps in the south. In mineral soils, a higher SOC 517 

content is mainly found in northwest and south of the country. As explained in the previous sections, one of the 518 

main reasons for this distribution is land use since these regions are mainly under grassland while low SOC content 519 

regions are found under cropland. 520 

4 Conclusions 521 

The three most commonly used algorithms most commonly used in DSM were implemented applied to predict the 522 

SOC content of German agricultural soils under different approaches. Suitable tuning strategies for each algorithm 523 

ensured optimum parameter tuning and made their performance truly comparable. Machine learning algorithms 524 

was shown to be powerful in at modelling SOC on a national scale. However, the study showed that separate 525 

modelling of mineral and organic soils was a better approach for modelling SOC compared to with using just one 526 

model. Thus, this approach has takes priority to over the choice of algorithm and number of training samples. We 527 

recommendFurther testing of this approach to be further testedis recommended in countries and regions that cover 528 

both of these soil classes. Nonetheless, SVR had a better performance than RF and BRT, except when the number 529 

of samples in training was increased by additional dataset. This was disadvantageous for SVR and advantageous 530 

for BRT unless mineral and organic soils were modelled separately. In general, increasing the number of training 531 

samples led to limited improvement of performance. Therefore, this approach should be done adopted with giving 532 

consideration of the algorithm and the characteristics of the data. Furthermore, the better performance of SVR over 533 

compared with that of RF and BRT was particularly highlighted when predicting SOC in organic soils. Thus, this  534 

The good performance of algorithm SVR suggests that this algorithm should therefore be taken into greater account 535 

in DSM when the number of samples is limited. 536 
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Supplements  10 
Table S1: The range of parameters for tuning in full dataset (AP1 and AP1L) and mineral and organic soil subsets 11 
(AP2 and AP2L)Tuning parameter ranges corresponding to the models trained by different algorithms. The ranges 12 
differ considering the one-model (full dataset, AP1 & AP1L) or two-model approach (mineral and organic data 13 
subset, AP2 & AP2L). BRT = boosted regression trees, RF = random forest, and SVR = support vector regression. 14 

Algorithm 
Tuning 

pParameter 

Full 

dataset 

Mineral 

soil data 

subset 

Organic 

soil data 

subset 

SVR 

C 1-100 1-50 1-200 

epsilon 0-5 0-1 0-5 

gamma 0.001-1 0.001-1 0.001-1 

RF mtry 3-13 3-13 3-13 

BRT 

number of trees 100-3000 100-3000 100-3000 

shrinkage 0.001-0.1 0.001-0.1 0.001-0.1 

interaction depth 1-5 1-5 1-5 

bag fraction 0.5-0.9 0.5-0.9 0.5-0.9 

Table S2: Error metrics of the algorithmsPredictive model performance of the models trained with different machine 15 
learning algorithms and datasets: A) built on the German Agricultural Soil Inventory, B) including LUCAS data in 16 
the training set. BRT = boosted regression trees, RF = random forest, and SVR = support vector regression. 17 

 

Algorithm RMSE MAE %MAPE %Bias AIC BIC Approach 

A 

BRT 32.9 12.4 50.9 -32 14865 14889 AP1 

RF 33.2 12.3 48.6 -30 14913 14919 AP1 

SVR 31.6 12.3 47.4 -20 14643 14661 AP1 

BRT 9.5 6.2 35.9 -20 7500 7524 Mineral 

RF 9.1 5.9 34 -20 7288 7294 Mineral 

SVR 9.2 5.8 31.8 -10 7331 7349 Mineral 

BRT 107 90.4 48.5 -26 757 768 Organic 

RF 106.1 89.3 48.2 -28 750 753 Organic 

SVR 101.7 86.9 45.6 -22 746 754 Organic 

BRT 22 9.1 36.3 -20 12578 12602 AP2 

RF 21.7 8.8 34.5 -20 12496 12502 AP2 

SVR 21 8.6 32.3 -10 12310 12328 AP2 



2 
 

 

Algorithm RMSE MAE %MAPE %Bias AIC BIC Approach 

B 

BRT 31.3 11.8 47.4 -30 14568 14592 AP1L 

RF 32.5 12.1 46.8 -30 14754 14759 AP1L 

SVR 32.6 12.3 46.4 -20 14775 14792 AP1L 

BRT 9.4 6.2 35.6 -20 7429 7453 Mineral 

RF 9.1 6 34.6 -20 7268 7274 Mineral 

SVR 9.1 5.8 31.7 -10 7275 7293 Mineral 

BRT 105.4 88.4 45 -20 754 765 Organic 

RF 104.1 86.2 43.5 -20 745 748 Organic 

SVR 100.2 81.7 40.2 -12 741 749 Organic 

BRT 21.7 9 36 -20 12486 12510 AP2L 

RF 21.4 8.7 34.9 -20 12379 12385 AP2L 

SVR 20.7 8.4 31.9 -10 12191 12209 AP2L 

 18 

Table S3: Percent change in predictive model performance comparing models trained with different machine learning 19 
algorithms and data sets: A) and B) comparison of models trained by using data from the   German Agricultural Soil 20 
Inventory, C) and D) comparison of models trained by using data from the German Agricultural Soil Inventory and 21 
LUCAS, A) and C) comparison of models trained withcomparison with regards to the  different machine learning 22 
algorithms, B) and D) comparison of the one-model approach (AP1) to the two-model approach (AP2), E) comparison 23 
of the approaches before and after including LUCAS. BRT = boosted regression trees, RF = random forest, and SVR = 24 
support vector regression. 25 

 Algorithm 
RMSE  

(%) 
MAE (%) MAPE (%) Approach 

A 

BRT to RF 0.9 -0.8 -4.5 AP1 

RF to SVR -4.8 0.0 -2.5 AP1 

BRT to SVR -4.0 -0.8 -6.9 AP1 

BRT to RF -4.2 -4.8 -5.3 Mineral 

RF to SVR 1.1 -1.7 -6.5 Mineral 

BRT to SVR -3.2 -6.5 -11.4 Mineral 

BRT to RF -0.8 -1.2 -0.6 Organic 

RF to SVR -4.1 -2.7 -5.4 Organic 

BRT to SVR -5.2 -4.0 -6.0 Organic 

BRT to RF -1.4 -3.3 -5.0 AP2 

RF to SVR -3.2 -2.3 -6.4 AP2 

BRT to SVR -4.5 -5.5 -11.0 AP2 

 Algorithm RMSE MAE MAPE Approach 

B 

BRT -33.1 -26.6 -28.7 AP1 to AP2 

RF -34.6 -28.5 -29.0 AP1 to AP2 

SVR -33.5 -30.1 -31.9 AP1 to AP2 

 Algorithm RMSE MAE MAPE Approach 
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C 

BRT to RF 3.8 2.5 -1.3 AP1L 

RF to SVR 0.3 1.7 -0.9 AP1L 

BRT to SVR 4.2 4.2 -2.1 AP1L 

BRT to RF -3.2 -3.2 -2.8 Mineral 

RF to SVR 0.0 -3.3 -8.4 Mineral 

BRT to SVR -3.2 -6.5 -11.0 Mineral 

BRT to RF -1.2 -2.5 -3.3 Organic 

RF to SVR -3.7 -5.2 -7.6 Organic 

BRT to SVR -5.2 -8.2 -10.7 Organic 

BRT to RF -1.4 -3.3 -3.1 AP2L 

RF to SVR -3.3 -3.4 -8.6 AP2L 

BRT to SVR -4.6 -6.7 -11.4 AP2L 

 Algorithm RMSE MAE MAPE Approach 

D 

BRT -30.7 -23.7 -24.1 AP1L to AP2L 

RF -34.2 -28.1 -25.4 AP1L to AP2L 

SVR -36.5 -31.7 -31.3 AP1L to AP2L 

 Algorithm RMSE MAE MAPE Approach 

E 

BRT -4.9 -4.8 -6.9 AP1 to AP1L 

RF -2.1 -1.6 -3.7 AP1 to AP1L 

SVR 3.2 0.0 -2.1 AP1 to AP1L 

BRT -1.1 0.0 -0.8 Mineral  

RF 0.0 1.7 1.8 Mineral  

SVR -1.1 0.0 -0.3 Mineral  

BRT -1.5 -2.2 -7.2 Organic  

RF -1.9 -3.5 -9.8 Organic  

SVR -1.5 -6.0 -11.8 Organic  

BRT -1.4 -1.1 -0.8 AP2 to AP2L 

RF -1.4 -1.1 1.2 AP2 to AP2L 

SVR -1.4 -2.3 -1.2 AP2 to AP2L 

 26 

Table S43: List of covariates, their abbreviations and referencetheir SCORPAN ID. 27 

SCORPAN 

ID 
Covariates Abbreviation 

S 

Net erosion Net-Ero 

Available water capacity AWC 

Total nitrogen TN 

pH pH 

Soil organic map Peat 



4 
 

Clay content Clay 

C 

Multi-annual grid of annual sunshine duration over Germany Sun-Dur 

Multi-annual grids of number of summer days over Germany Summ-D 

Multi-annual grids of monthly averaged daily minimum air temperature 

(2m) over Germany 
Min-temp 

Multi-annual grids of precipitation height over Germany Precip 

O Landuse DLM 

R 

Digital elevation model EU-DEM 

Slope Slope 

Aspect north south direcion Aspect-NS 

Aspect east west direction Aspect-EW 

Plan Curvature Plan-Curv 

Profile curvature Prof-Curv 

Topographic wetness index TWI 

Geomorphographic map GMK 

P 

Large-scale landscape unit map (Bodengrosslandschaft) BGL 

Large-scale soil climate region map (Bodenklima) Bod-klim 

Hydrological unit HUK-HE 

N 
X coordination x 

Y coordination y 



5 
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Figure S1: Selected covariates: Sun-Dur) sunshine duration (DWD, 2017), Summ-D) summer days (DWD, 2018b), Min-29 
temp) minimum temperature (DWD, 2018a), Precip) precipitation (DWD, 2018c), EU-DEM) digital elevation model 30 
(European Union Copernicus Land Monitoring Service, 2016), Net-Ero) net soil erosion and deposition rates (Borrelli 31 
et al., 2018), AWC) available water capacity (Ballabio et al., 2016), N) total nitrogen (Ballabio et al., 2019), pH) map of 32 
pH (Ballabio et al., 2019), %Clay) % Clay (Ballabio et al., 2016), BGL) soil scapes unit (BGR, 2008) [Legend], Bod-33 

https://download.bgr.de/bgr/Boden/BGL5000/pdf/bgl5000_v20.zip


6 
 

Klim) soil-climate region (Roßberg et al., 2007), HUK-HE) hydrogeological unit of hydrogeological map (BGR, SDG, 34 
2019), GMK) geomorphographic map of Germany (BGR, 2007) [Legend], DLM) Land use (BKG, 2019), Peat) Organic 35 
soils (Roßkopf et al., 2015). 36 

  37 

https://download.bgr.de/bgr/Boden/GMK1000/pdf/gmk1000_250.zip


7 
 

 38 

Figure S2: Regression plot for SOC depth extrapolation in A) Mineral soils, B) Organic soils, C) Cropland, D) 39 
Grassland. 40 
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 41 

Figure S31: Boxplots comparing algorithm model performance with regards to the three machine learning algorithms 42 
considering.  LUCAS at the original sampling depth (20 cm) versus LUCAS with depth extrapolated (30 cm): A) RMSE 43 
(g kg-1), B) MAE (g kg-1) and C) MAPE (%). BRT = boosted regression trees, RF = random forest, and SVR = support 44 
vector regression. 45 
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 46 

Figure S4: Spatial distribution of relative residuals from the models trained with the different machine learning 47 
algorithms. A) AP1 approach, B) AP1L approach, C) AP2 approach and D) AP2L approach. BRT = boosted 48 
regression trees, RF = random forest, and SVR = support vector regression. 49 
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 50 

 51 

Figure S5: Spatial prediction of SOC content (g kg-1) of German agricultural soils based on the two-model approach 52 
for the three algorithms (BRT AP2L, RF AP2L, SVR AP2L). BRT = boosted regression trees, RF = random forest, 53 
and SVR = support vector regression. 54 
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Disclaimer: It is important to note that the provided spatial prediction of SOC content must not be used to identify 55 
the organic soils of Germany or to determine their spatial distribution. One reason is low sample size of organic 56 
soils and the systematic underestimation of their SOC content, which leads to an underestimation of their spatial 57 
extent. Furthermore, organic soils might have been mixed with mineral soil, i.e. due to deep ploughing, or feature 58 
a mineral soil cover. Thus, organic soils might be present despite having a mineral topsoils. Therefore, this study 59 
cannot nor intents to identify or classify organic soils. 60 


