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Abstract 20 

(E)-Pyriminobac-methyl (EPM), a pyrimidine benzoic acid esters herbicide, has a high potential as weedicide; 21 

nevertheless, its environmental behaviors are still not well understood. In this study, we systematically 22 

investigated for the first time the adsorption–desorption, degradation, and leaching behaviors of EPM in 23 

agricultural soils from five exemplar sites in China (Phaeozem: S1, Anthrosol: S2, Ferralsol: S3, Alisol: S4, and 24 

Plinthosol: S5) through laboratory simulation experiments. Our results show that the EPM adsorption–desorption 25 

results were well fitted by the Freundlich model (R2 > 0.9999). In the analyzed soils, the Freundlich adsorption 26 

(i.e., Kf-ads) and desorption (i.e., Kf-des) coefficients of EPM varied between 0.85–32.22 mg1−1/n L1/n kg−1 and 27 

between 0.78–5.02 mg1−1/n L1/n kg−1, respectively. The mobility of EPM in the soils S1–S5 was categorized as 28 

immobile, slightly mobile, highly mobile, slightly mobile, and slightly mobile, respectively. Moreover, the 29 

degradation of EPM reflected first-order kinetics: its half-life ranged between 37.46–66.00 d depending on the 30 

environmental conditions, and abiotic degradation was predominant in the degradation of this compound. Overall, 31 

the high leaching ability and desorption capacity of EPM were accompanied by a low adsorption capacity and 32 

there were no significant relationships between pH and the leaching rate of EPM in the five types of soils. In 33 

contrast, the organic matter content, cation exchange capacity, and soil clay content were the main responsible for 34 

the observed leaching rates. We found that EPM degrades easily, has a high adsorption affinity and a low mobility 35 

in S1, which result in a low contamination risk for groundwater systems. On the contrary, this compound degrades 36 

slowly in S2, S3, S4, and S5, due to a low adsorption affinity and moderate mobility, which result in a high 37 

contamination risk for groundwater systems. Therefore, our results may serve as a reference for evaluating the 38 

risks involved in the increasingly wide application of this compound. 39 

Keywords: (E)-pyriminobac-methyl, herbicide, soil organic matter, KOC, risk assessment  40 
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1. Introduction 41 

Herbicides are usually applied to chemically control the growth of weeds associated with different types of crops, 42 

both in China and worldwide (Barchanska et al., 2021; Brillas, 2021). Unfortunately, with the applications of 43 

weedicides, they have been detected outside of their original application sites, meaning that they contribute to 44 

environmental contamination and food safety problems (Jiang et al., 2018; Perotti et al., 2020; Marvin and 45 

Bouzembrak, 2020). Therefore, the Guidelines for good herbicide application (Ny/T, 2011) and the National food 46 

safety standard -- Maximum residue limits for pesticides in food have been established in China (Gb, 2021), which 47 

contain the maximum residual limit (MRL) and acceptable daily intakes (ADI) of 548 commonly used pesticides, 48 

for example, the MRL of pyriminobac-methyl (PM) in paddy rice and brown rice is 0.2 and 0.1 ppm respectively, 49 

and the ADI of PM is 0.02 ppm. Most studies have reported that with the increasing use of glyphosate (a non-50 

selective herbicide), especially in tea plantations (the detected MRL of glyphosate is 4.12 ppm much bigger than 51 

the limited value 1 ppm) and aquatic systems, the problem of excessive residues of glyphosate has attracted more 52 

and more attention, raising potential environmental threats and public health concerns (Liu et al., 2021a; Luo et 53 

al., 2019; Huang et al., 2016). Importantly, the environmental fate of herbicides in soil mainly depends on the 54 

adsorption–desorption, degradation, and leaching processes. In fact, herbicides can be transferred from soil to 55 

groundwater through surface runoff or leaching, resulting in groundwater pollution (Cueff et al., 2020; Gawel et 56 

al., 2020). Furthermore, the adsorption–desorption rate and the degradation capability of herbicides regulate the 57 

migration of herbicides: the groundwater ubiquity score (GUS) can be used to evaluate their ecological and 58 

environmental safety (Acharya et al., 2020; Liu et al., 2021b). However, few scholars have assessed the effects of 59 

soil properties on the adsorption–desorption, degradation, and leaching behaviors of weedicide, especially the 60 

environmental consequences of these changes. 61 
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PM [methyl-2-(4,6-dimethoxy-2-pyrimidinyloxy)-6-(1-methoxyiminoethyl) benzoate] (Fig. S1), is composed of 62 

a mixture of its (E) - isomer (I) and (Z) - isomer (II) as the active ingredient due to its chemical structure contain 63 

oxime(Song et al., 2010), a mixture of two isomers (I and II) in a > 9:1 (major/minor) ratio which was developed 64 

from sulfonylurea by Kumiai Chemical Industry Co., Ltd. In 1996 (Tokyo, Japan)(Tamaru and Saito, 1996). 65 

Tamaru et al. (1997) reported that (E) - isomer (I) has been confirmed to restrain the plant enzyme 66 

acetolactate synthase (ALS) and prevent branched chain amino acid biosynthesis, and the (E) - pyriminobac-67 

methyl (EPM) showed stronger soil adsorption and weaker hydrophilic properties than (Z) - pyriminobac-methyl 68 

(ZPM), thus EPM was selected as the best compound to develop a commercial weedicide, which is commonly 69 

used to control the growth of sedges and both gramineous and annual weeds. The chemistry of EPM is well 70 

understood; the octanol-water partition coefficient is 2.31 (low) at pH 7, 20 °C, the solubility - in water is 71 

9.25 mg L–1 (low) at 20 °C, and the vapour pressure is just 3.1×10-5 Pa (low) at 20 °C (Lewis et al., 2016). A 72 

distinct advantage of EPM as a weedicide is that, this compound has an herbicidal activity 1.5–2 times higher 73 

and requires an application rate 1/5–1/10 lower than bensulfuron-methyl (a broad-spectrum herbicide) on 74 

Echinochloa crusgalli and Leptochloa chinensis (Iwakami et al., 2015; Shibayama, 2001; Song et al., 2010). 75 

Notably, EPM can prevent the growth of E. crusgalli and L. chinensis populations and suppress them effectively 76 

over long periods, while being non-toxic, and eventually increasing the yield of paddy rice and subsequent crops 77 

(e.g., rape, cabbage, Astragalus smicus, wheat, and potato) (Iwafune et al., 2010; Qin et al., 2017; Tang et al., 78 

2010; Yoshii et al., 2020). Nevertheless, few studies have lucubrated the environmental behaviors of EPM after it 79 

was widely used as herbicide in the farming industry. 80 

Most former investigations on EPM as a weedicide mainly focused on the photo-transformation in water and low 81 

temperature storage stability in paddy rice. Inao et al. (2009) demonstrated that the photoconversion of PM in 82 
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water is the main fate, and the main process is EPM / ZPM reached approximately equilibrium after 4.5 h, 83 

furthermore, the EPM / ZPM ratio is about 1/1.35. Another researcher found that even if proper water management 84 

to prevent EPM surface runoff from paddy fields was practiced, a significant amount of EPM components were 85 

discharged into drainage channels through percolation (Sudo et al., 2018). Indeed, the harm of weedicide leaching 86 

have been frequently reported in groundwaters. Several studies have indicated that the leaching risk potential of 87 

herbicides to groundwater is positively correlated with its mobility in soil (Chen et al., 2021; Wang et al., 2019; 88 

Silva et al., 2019; Kaur et al., 2021; Willett et al., 2020). Guimares et al. (2019), who found that hexazinone 89 

(herbicide) proved to be a potential contaminant of groundwater and metribuzin (herbicide) presented high 90 

leaching in the soil profile. As well as metribuzin, atrazine was found to be accumulated in algal cells, which 91 

indicates that herbicide pollution might eventually affect the marine food web and even threaten the seafood safety 92 

of human beings (Yang et al., 2019). On the other hand, Kolakowski et al. (2020) and Mehdizadeh et al. (2021) 93 

reported that the residue levels of herbicides which were uptake by plants and the risk to consumers depends on 94 

the application technique, the environmental conditions, the stage of growth of plants, the volume of use, water 95 

quality and the use of coadjuvants. EPM is also proved to be safe in rice. Jia et al. (2020) showed that the detected 96 

MRL of EPM in paddy rice is 0.0092 ppm far less than the limited value 0.2 ppm. Hence, previous knowledge of 97 

the physico-chemical properties of soils cultivated with crops is essential to recommend the use of these herbicides 98 

in weed management. 99 

In the paddy rice field, the half-life of EPM calculated from 4.0 to 19.3 days (half-life ≤ 30 day, easily 100 

degradable) (Gb, 2014c) monitored in the Lake Biwa basin, Japan (Iwafune et al., 2010), the sorption constants 101 

of the OC (Koc) values ranged from 372 to 741 ( 200 < Koc ≤ 1000, sub-difficultly adsorbed compound)(Gb, 102 

2014a) conducted with Habikino and Ushiku soils in Japan, indicating that EPM is low-persistence herbicide, 103 



6 

 

which result in a low contamination risk for groundwater systems(Inao et al., 2009). The Japanese Environment 104 

Agency sets limits for residues in paddy rice discharge water by allowing for a 10-fold dilution in river water and 105 

applying the drinking-water limit of EPM is 200 µg L-1 (Hamilton et al., 2003). In China, EPM has been registered 106 

to control grassy weeds in paddy rice and brown rice fields at present (Gb, 2021). Nevertheless, the effects of soil 107 

properties on the adsorption–desorption, degradation, and leaching behaviors of EPM have rarely been reported. 108 

A number of researchers have reported that the soil matrix is a highly complicated system, in which environmental 109 

processes (e.g., the sorption–desorption and leaching of herbicides) are affected by multiple factors, including the 110 

soil organic matter (OM) content, pH, cation exchange capacity (CEC), microbial or chemical degradation, 111 

chemical type, environmental conditions (e.g., temperature, humidity, and rainfall), and texture (Alonso et al., 112 

2011; Rao et al., 2020; Xie et al., 2020; Zhou et al., 2019a). Nevertheless, soil organic or inorganic colloids 113 

and pH (pH < pKa neutral state and pH > pKa negative charge) can influence soil–herbicide interactions. In this 114 

context, the leaching of anionic compounds is likely (Pérez-Lucas et al., 2020). Moreover, the leaching of 115 

herbicides in soil and the associated risk of water pollution are both affected by sorption and desorption (Xie et 116 

al., 2020).  117 

Until present, the environmental fate of EPM in soils has not been studied in detail. Clarifying the adsorption and 118 

transport of EPM in soil is very important for the protection of surface water and groundwater from EPM pollution. 119 

Hence, this study aimed at: 1) gaining an essential understanding of the adsorption–desorption, degradation, and 120 

leaching behaviors of EPM in agricultural soils through laboratory simulation experiments; 2) determining the 121 

effects of soil properties on the above behaviors in agricultural soils; and 3) conducting a basic evaluation of the 122 

safety and applicability of EPM in the environment. Overall, our results provide a scientific basis for the 123 

prevention or, at least, minimization of the possible effects of EPM on groundwater, as well as for modeling the 124 
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fate of EPM in the environment and the potentially associated risks. 125 

2. Materials and Methods 126 

2.1. Chemicals 127 

EPM (99.0%; chemical formula: C17H19N3O6; structure shown in Fig. S1) was obtained from ZZBIO Co., Ltd. 128 

(Shanghai, China). Moreover, we used only organic solvents of chromatographic grade (Sigma-Aldrich, Germany). 129 

EPM was dissolved in acetonitrile, obtaining a 1000 mg L–1 test mother liquor. Moreover, a standard EPM working 130 

solution (0.01–5.00 mg L–1) was prepared by diluting the stock solution with a CaCl2 solution (0.01 mol L–1), 131 

which was used as an electrolyte to maintain a constant ionic strength and reduce the cationic exchange. 132 

In March 2020, five different soils were sampled from the surface layer (0–20 cm) of paddy fields located in five 133 

Chinese provinces: Phaeozem (S1, from Heilongjiang), Anthrosol (S2, from Zhejiang), Ferralsol (S3, from 134 

Jiangxi), Alisol (S4, from Hubei), and Plinthosol (S5, from Hainan). The soil samples were all air-dried, ground, 135 

and passed through a 2-mm sieve before being used. Afterward, standard soil testing methods were applied to 136 

define the basic physicochemical properties of the soils (Table S1) (Gee, 1986; Jackson, 1958; Nelson, 1985), 137 

which were then classified based on the system of the World Reference Base for Soil Resources (WRB) (L’huillier, 138 

1998). Interestingly, the EPM residues in the analyzed soils were always below the detection limit. 139 

2.2. Soils samples 140 

The batch equilibration method suggested by the GB 31270.4-2014 guidelines: Adsorption/Desorption in Soils 141 

for these soils (Gb, 2014a) was applied to conduct adsorption–desorption experiments. First, for the adsorption 142 

kinetics tests, each soil sample (2.0 g) was introduced in a centrifuge tube containing 10 mL of a EPM aqueous 143 

solution (1 mg L–1). For each of these tubes, we also analyzed a blank tube (which contained no herbicide) and a 144 
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control tube (which contained no soil). All the tubes were then shaken by an oscillator at 25 °C ± 1 °C for different 145 

time intervals of 0.5, 1, 2, 4, 6, 8, 12, 16, 20, and 24 h. 146 

The desorption kinetics were analyzed instead by taking 5 mL of supernatant from each tube after adsorption 147 

equilibration and by replacing them with an equal volume of CaCl2 solution (which contained no EPM). A 148 

microvortex mixer was used to thoroughly mix the resulting solution and an oscillator was used to shake it at 149 

25 °C ± 1 °C for several time intervals: 0.5, 1, 2, 4, 6, 8, 12, and 24 h. Finally, for the high-performance liquid 150 

chromatography-mass spectrometry (UPLC-MS/MS) analyses, the samples were centrifuged for 10 min at 151 

2,400×g and the supernatants were filtered through 0.22-μm mixed-cellulose ester filter membranes. 152 

The adsorption–desorption equilibrium time of EPM in the five soils was 24 h (Fig. 1); moreover, the initial EPM 153 

concentrations adopted for these experiments were 0.01, 0.10, 0.50, 1.00, and 5.00 mg L–1. The concentration of 154 

EPM in the supernatant was determined after centrifugation. Then, the amount of adsorbed–desorbed EPM in 155 

each soil was calculated based on the concentration of EPM in the solution before and after the adsorption–156 

desorption process. The supernatant removed after the adsorption experiments was replaced with 5 mL of CaCl2 157 

containing no EPM; then, the tubes were shaken for 24 h and centrifuged. Finally, the EPM concentration was 158 

determined based on the supernatant collected after this procedure. Considering the results of preliminary 159 

experiments and with the aim of desorbing the majority of the adsorbed EPM, we decided to repeat the desorption 160 

process for at least three times. 161 

2.3. Degradation experiments 162 

By following the GB 31270.1-2014 guidelines(Gb, 2014c), we performed a series of EPM soil degradation 163 

experiments. To ensure aerobic conditions, 20 g of each type of agricultural soil were weighed and introduced 164 
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in 250-mL Erlenmeyer flasks (in three replicates). Ultrapure water was added during the subsequent cultivation 165 

process in order to maintain the soil water content at 60% of the maximum water holding capacity. We then 166 

spiked each soil sample with 400 µL of the 100 mg L–1 EPM working solution (achieving an initial concentration 167 

of 2 mg kg–1 in the soil: the water-soluble, organic solvent volume was ≤1%) and then cultured in the dark in an 168 

incubator kept at 25 ± 1 °C. Subsequently, we collected three parallel sub-samples on 0, 1, 2, 4, 6, 10, 15, 30, 45, 169 

60, 90, and 120 day, and the EPM content was determined by UPLC-MS/MS on the respective days of collection. 170 

The amount of water in the Erlenmeyer flasks was periodically adjusted during the culturing process with the 171 

aim of retaining the original water-holding state. Each treatment was done in triplicate, totalizing 60 samples per 172 

treatment (5 soil samples per treatment per sampling day; 12 sampling days in total), The following experiment 173 

was done in the same way. 174 

Another set of experiments was conducted under anaerobic conditions. In this case, we first cultured the soil 175 

samples for 30 days and then added a 2 cm-thick water layer to each of them. To maintain the desired conditions, 176 

N2 was continuously introduced into the culture system. The soil samples were subsequently moved into an 177 

incubator and cultivated in the dark at 25 ± 1 °C. Finally, three parallel sub-samples were collected on 0, 1, 2, 4, 178 

6, 10, 15, 30, 45, 60, 90, and 120 day, and the EPM content was determined by UPLC-MS/MS on the respective 179 

days of collection.  180 

A set of degradation experiments was performed under sterilized conditions. With this objective, the sterilized 181 

soils (20 g each) were weighed and introduced in 250-mL Erlenmeyer flasks in three replicates. Notably, in order 182 

to keep the soil water content at 60% of the maximum water holding capacity, sterile water was added during the 183 

cultivation process. Then, each soil sample was spiked with 400 µL of the 100 mg L–1 EPM working solution, 184 

achieving an initial concentration of 2 mg kg–1 (the water-soluble, organic solvent volume was ≤1%). The samples 185 
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were hence moved into an incubator and cultured in the dark at 25 ± 1 °C. Three parallel sub-samples were 186 

collected on 0, 1, 2, 4, 6, 10, 15, 30, 45, 60, 90, and 120 day, and the EPM content was determined by UPLC-187 

MS/MS on the respective days of collection. 188 

These experiments were done under different soil moisture conditions and aerobic conditions, at a EPM 189 

fortification level of 2 mg kg–1. After adjusting their moisture by adding water (water percentage = 40%, 60%, 190 

and 80% of the total volume), the soils were incubated in the dark at 25 ± 11 °C. During this last phase, we 191 

regularly added ultrapure water to keep the moisture at 40%, 60%, and 80%. 192 

2.4. Leaching experiments 193 

The herbicide leaching process was investigated by following the GB 31270.5-2014 guidelines (Gb, 2014b). PVC 194 

columns (length = 35 cm, internal diameter = 4.5 cm), each hand-packed with 600–800 g of one soil type, were 195 

used to observe the downward movement of the herbicide. Notably, the top 3 cm and the bottom 2 cm were filled 196 

with quartz sand (for minimizing soil disturbance) and glass wool + sea sand (for avoiding soil loss). After packing 197 

each column, we removed any air still present in the column by adding 0.01 mol L–1 CaCl2; moreover, the excess 198 

water was eliminated by gravity. The pore volume (PV) was determined by subtracting the volume of water 199 

leached from that of the water added. Subsequently, 1 mL of acetonitrile solution containing 200 μg mL –1 of the 200 

herbicide (spiking level = 1 μg g–1) was added to the top of each column. afterward, the adsorption equilibrium 201 

was achieved by infiltrating 700 μL of 100 mg L–1 EPM solution into soil surface and leaving it to rest for 24 h. 202 

To simulate rainfall leaching, 2,000 mL of 0.01 mol L–1 CaCl2 solution (21 mL h-1) were added into the soil column 203 

at a peristaltic pump speed of 250 mL 12 h–1. The leachate was collected every 8 h with a conical flask. 204 

Subsequently, each soil column was extracted, cut into three parts (length = 10 cm), and analyzed by UPLC-205 

MS/MS on the same day. The total mass of the leachate and soil fractions along the soil column was determined, 206 
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together with the EPM and water contents within each of them. 207 

2.5. Extraction and final analyses  208 

The soil samples were transferred to centrifuge tubes and 10 mL of acetonitrile (containing 0.1% of ammonia 209 

water) were added to each of them for extracting EPM. After vortexing the tubes for 5 min, we added 2 g of NaCl 210 

and 3 g of MgSO4. Then, the tubes were capped and vortexed again for 1 min and centrifuged at 2,400 × g for 5 211 

min. The supernatant (1.5 mL) was transferred into a 2.5-mL single-use centrifuge tube that was already containing 212 

the sorbent (50 mg C18 + 150 mg MgSO4). Afterward, all the samples were vortexed again for 1 min and 213 

centrifuged at 5,000 rpm for 5 min (Jia et al., 2019b). Finally, the resulting supernatant was extracted with a sterile 214 

syringe, passed through a 0.22-μm organic membrane filter, and poured into vials for UPLC system (1260 series, 215 

Agilent Technologies, USA) equipped with a triple quadrupole mass spectrometer (6460C series, Agilent 216 

Technologies) using positive ion mode in multiple reaction monitoring (MRM) mode analysis. The instrument 217 

parameters for Agilent 6460C QQQ UPLC-MS/MS analysis are as follows: The flow rate was maintained at 0.2 218 

mL min-1, and the column (Agilent ZORBAX Eclipse XDB-C18, length 150 mm, inner diameter = 4.6 mm, 5µm 219 

coating) was heated to 35°C. The mobile phase A was water which consisted of 0.1% formate and mobile phase 220 

B was acetonitrile. Gradient condition was: 0.0-0.5 min, 20% B; 0.5-1.0 min, 20%-80% B; 1.0-4.0 min, 80% B; 221 

4.0-5.0 min, 20% B. The mass spectrometer was operated in electrospray ionization positive with MRM scanning 222 

mode, dry gas temperature at 500 °C, Ion source temperature at 150 °C, desolvation gas flow at 1000 L h-223 

1; capillary voltage at 2500 V; cone voltage at 18 V and collision gas was argon, dwell time at 50 ms, collision 224 

pressure at 58 eV. The detail information of the determination parameters of the chromatographic method, i.e., 225 

repeatability, reproducibility, recovery, measurement uncertainty, detection limit and limit of quantification were 226 

shown in the supplementary material (Fig. S2-S4 and Table S2-S4). 227 



12 

 

The efficiency of the EPM extraction during the adsorption–desorption, degradation, and leaching experiments 228 

was evaluated based on the results of recovery experiments. The average recovery rates of EPM in the adsorption–229 

desorption experiments, at initial spiked concentrations of 0.1 and 1.0 mg kg–1 in the soils, varied between 94.3–230 

102.4% (RSD = 1.1–3.8%). Meanwhile, the average recovery rates of EPM in soil in the degradation experiments, 231 

at initial spiked concentrations of 0.01, 0.2, and 2.0 mg kg–1 in the soils, ranged between 92.6–106.0% (RSD = 232 

1.1–2.9%). Furthermore, the average recovery rates of EPM at initial spiked concentrations of 0.0001, 0.01, and 233 

0.1 mg L–1 in the supernatant of soils were 88.7–107.9% (RSD = 1.7–4.9%). Furthermore, the average recovery 234 

rates of EPM in the leaching experiments at initial spiked concentrations of 0.05 and 1.0 mg kg–1 in the soils were 235 

95.8–109% (RSD = 1.6–4.4%).  236 

2.6. Data analysis 237 

The relationship between the concentrations of EPM sorbed in the soil and in the aqueous solution during the 238 

sorption–desorption equilibrium was described through the linear [Eq. (1)] and Freundlich [Eq. (2)] models 239 

(Azizian et al., 2007; Yang et al., 2021): 240 

                     Linear model: Cs = KCe + C                                            (1) 241 

                     Freundlich model: Cs = KfCe
1/n                                          (2) 242 

where Cs (mg kg-1) indicates the adsorption of EPM in the soil, Ce (mg L-1) the EPM concentration in the solution 243 

during the adsorption equilibrium, C (mg kg-1) the amount of soil adsorption when the EPM concentration was 0 244 

during the adsorption equilibrium, K (mL g-1) and Kf (mg1−1/n L1/n kg−1) the adsorption–desorption constants of the 245 

linear and Freundlich models, respectively (Kf-ads/Kf-des in the adsorption–desorption process), and 1/n the 246 

adsorption empirical constant (which provides information about the non-uniformity of the adsorbent surface). 247 
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For the isothermal sorption tests, the amount of EPM adsorbed in the soil was estimated using the subtractive 248 

method [Eq. (3)]: 249 

                           𝐶𝑆 =
(𝐶0−𝐶𝑒)×𝑉

𝑚
                                              (3) 250 

where C0 (mg L−1) is the amount of soil adsorption when the concentration of EPM was 0 during the adsorption 251 

equilibrium, m the soil mass (2.0 g), and V the solution volume (10 mL). 252 

The amount of EPM retained by the soil after desorption was obtained instead by using [Eq. (4)], while the 253 

hysteresis index (H) was estimated by applying [Eq. (5)] (Fan et al., 2021; Zhang et al., 2020b): 254 

                 

  

 𝐶𝑠𝑗 =
𝐶0×𝑉

𝑚
−  

𝐶𝑒𝑗×𝑉

2𝑚
−  

𝑉

𝑚
∑ 𝐶𝑒

𝑗
𝑛=1 (𝑗 − 1)                             (4) 255 

                        

𝐻 =
1 𝑛𝐹−𝑑𝑒𝑠⁄

1 𝑛𝐹−𝑎𝑑𝑠⁄
                                                

 (5) 256 

where Csj (mg kg-1) is the concentration of EPM adsorbed by the soil after the j-th desorption (i = 1–5), Cej (mg 257 

L-1) the EPM concentration in the supernatant after the j-th desorption, H the hysteresis coefficient, and 1/nads and 258 

1/ndes the empirical adsorption and desorption constants, respectively. 259 

The distribution coefficient (Kd) was calculated based on the distribution ratio of EPM in the water–soil system 260 

by using [Eq. (6)] (Carballa et al., 2008; Ternes et al., 2004): 261 

   𝐾𝑑 =
𝐶𝑠

𝐶𝑒
                                                 (6)  262 

The sorption constants of the OC (KOC) and OM (KOM) contents were calculated through [Eqs. (7) and (8)] (Rae 263 

et al., 1998; Zhang et al., 2011), respectively. Moreover, the Gibbs free energy change of sorption (ΔG, kJ mol–1) 264 

(Jia et al., 2019a) and the GUS (Gustafson, 1989) were calculated as follows: 265 

 266 
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                    𝐾𝑂𝑀 = 100 × 𝐾𝑓−𝑎𝑑𝑠/𝑂𝑀%
                                          

(7) 267 

%/100 OCKK dOC =
                                             

(8) 268 

                    
1000/ln OMKRTG −=

                                            
(9) 269 

                    
)lg4(lg 2/1 OCKtGUS −=

                                        
(10) 270 

where OM % and OC % represent the soil OM and OC contents, respectively, R the molar gas constant (8.314 J 271 

K–1 mol–1), T (K) the absolute temperature, and t1/2 the half-life (in days) given by [Eq. (12)]. Organic contaminants 272 

were categorized into five types: highly adsorbed compounds (KOC > 20,000), sub-highly adsorbed compounds 273 

(5,000 < KOC ≤ 20,000), medium-adsorbed compounds (1,000 < KOC ≤ 5,000), sub-difficultly adsorbed compounds 274 

(200 < KOC ≤ 1,000), and difficultly adsorbed compounds (KOC ≤ 200)(Gb, 2014a). 275 

The degradation data relative to herbicides in soil could be successfully fitted to a first-order kinetic model [Eq. 276 

(11)], previously used in similar studies (Bailey et al., 1968; Liu et al., 2021b; Ou et al., 2020): 277 

                  Ct=C0e
-kt                                                    (11) 278 

where Ct (mg kg−1) and C0 (mg kg−1) are the concentrations of EPM in the soil at incubation times t (d) and 0 (d), 279 

respectively, while k is the first-order rate constant (d−1).  280 

The half-life (t1/2) to be used in above model was calculated through [Eq. (12)] (Yin and Zelenay, 2018): 281 

t1/2=0.693/k                                                     (12)         282 

Four categories of herbicide degradability were defined: easily degradable (t1/2 ≤ 30), moderately degradable 283 

(30 < t1/2 ≤ 90), slightly degradable (90 < t1/2 ≤ 180), and poorly degradable (t1/2 > 180)(Gb, 2014c). 284 
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Based on the content of EPM in different sections of the soil columns and in the leachate [Eq. (13)](Gb, 2014b), 285 

we were able to calculate the leaching rate of EPM: 286 

                    

100
0

=
m

m
R i

i

                                                      

(13) 287 

where Ri (%) is the ratio of EPM content in each soil section or in the leachate to the total added amount, mi (mg) 288 

the mass of EPM in each soil section (where i = 1, 2, 3, and 4, representing the 0–10 cm, 10–20 cm, and 20–30 289 

cm soil sections and in the leachate, respectively), and m0 (mg) the total added amount of EPM (m0 = 0.02 mg). 290 

Regarding the mobility scheme we defined the following Ri ranges: class 1 (immobile, R1 > 50 %), class 2 (slightly 291 

mobile, R2 + R3 + R4 > 50 %), class 3 (mobile, R3 + R4 > 50 %), and class 4 (highly mobile, R4 > 50 %)(Gb, 292 

2014b). 293 

The data fittings (to the linear and Freundlich models for the adsorption isotherms and to the simple first-order 294 

kinetic model for degradation) were conducted with OriginPro 8.05 (OriginLab Corp., Northampton, USA). All 295 

the values reported here were calculated as the means of three replicates; furthermore, the differences between 296 

these means were statistically analyzed through Duncan's multiple range test, while their reciprocal relationships 297 

were determined though a Spearman's correlation analysis using SPSS Statistics 22.0 (IBM SPSS, Somers, USA). 298 

3. Results and discussion 299 

3.1. Adsorption–desorption kinetics 300 

The adsorption and desorption kinetic curves of EPM in different types of agricultural soils are shown in Fig. 1. 301 

After EPM had been in contact with the soil solution for 1 h, the concentration of EPM exhibited a sharp drop 302 

(from 0 to 95.35, 75.45, 51.57, 77.41 and finally 65.84 % between S1–S5). This event corresponded to the fast 303 

sorption phase. After 2–8 h, the EPM soil system entered the slow adsorption stage and there was a gradual 304 
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increase in the sorption of EPM. This last process reached an equilibrium state of EPM sorption after 8 h, which 305 

was reflected by stable concentrations of EPM. The sorption of EPM decreased from the Phaeozem (S1, 97.99%) 306 

to the Anthrosol (S2, 79.69%), Alisol (S4, 77.81%), Plinthosol (S5, 72.57%), and Ferralsol (S3, 52.35%) (Fig. 307 

1a). This trend reflected the soils’ OM contents. Previous studies have also found that the sorption of organic 308 

chemicals in soils is mainly related to their OM contents (Xu et al., 2021; Zhou et al., 2019b).  309 

The desorption equilibration of EPM in soil was slightly slower and a hysteresis effect was observed. The rapid 310 

and slow desorption stages occurred between 0–2 h and 2–12 h, respectively; afterward, the concentration of EPM 311 

remained unchanged, until the desorption process reached its equilibrium state (within 24 h). Based on these data, 312 

we defined 24 h as the period of EPM adsorption-desorption. The desorption value of EPM observed in our 313 

experiments after 24 h increased from the Phaeozem (S1, 8.04%) to the Anthrosol (S2, 12.07%), Alisol (S4, 314 

14.48%), Plinthosol (S5, 17.55%), and Ferralsol (S3, 24.08%) (Fig. 1b). 315 

The sorption of OM in soil typically occurs during the rapid reaction and slow equilibrium phases (Calvet, 1989). 316 

The tendency of sorbed hydrophobic organic pollutant to become more strongly bound with increasing organic 317 

matter (OM) contents of the soils is well demonstrated for EPM. This is consistent with previously reported 318 

observations that for sorbents with organic-carbon content greater than 0.1%, a highly significant positively 319 

correlation was found between the adsorption constants of non-polar or weakly polar organic compounds and the 320 

OM of soils (Schwarzenbach and Westall, 1981; Chefetz et al., 2004). The main reason is that the OM of soils has 321 

special binding sites with organic pesticide molecules. With the increase of OM content, the adsorption sites also 322 

increased, thus increasing the herbicide adsorption capacity (Stevenson, 1972; Ahmad et al., 2001; Delle Site, 323 

2001; Chianese et al., 2020). The role of different components of the OM in determining herbicide sorption has 324 

been clearly observed in previous studies. Hartley (1960) had speculated that the ‘oily’ constituent of the OM 325 
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might be responsible for uptake of nonionic compounds by soil. The existence of such a lipid phase was supported 326 

by Schnitzer and Khan (1972), who reported the presence off attyacids and alkanes at the surface of the OM 327 

resulting from long alkyl chains projecting from the surface. They suggested that interactions such as hydrogen 328 

bondingmight be important in uptake of nonionic contaminants by this lipid fraction. The hydrophobicity of the 329 

OM has generally been reported to originate from aromatic and alkyl domains of the organic matter component 330 

(Ahmad et al., 2001). Murphy and Zachara (1995) suggested the presence of heterogeneous sorption sites on the 331 

OM and considered the most hydrophobic domains as the most energetic and strong binding sites. Therefore, the 332 

reduction of the EPM content in the solution before and after the experiment was likely due to soil sorption. 333 

According to the above results, the soil sorption rate was inversely proportional to the soil desorption rate toward 334 

EPM. 335 

3.2. Adsorption–desorption isotherms 336 

Non-linear adsorption–desorption isotherms of EPM were observed (Fig. 1). When the concentration of EPM 337 

was low, this compound was preferentially adsorbed by OM (which has a strong adsorption capacity); 338 

meanwhile, soils with higher OM contents (e.g., Phaeozems, S1) desorbed EPM slowly. The positive 339 

relationship between sorption and OM has been reported previously (Hochman et al., 2021; Obregón Alvarez 340 

et al., 2021; Patel et al., 2021). Moreover, the adsorption ability of EPM has been found to be high, similar 341 

to those of other herbicides (e.g., chlorsulfuron, imazamethabenz-methyl, flumetsulam, and bispyribac-342 

sodium) (Kalsi and Kaur, 2019; Medo et al., 2020; Spadotto et al., 2020). Generally, a low mobility of 343 

herbicides in soil is related to a high sorption constant. Hence, the EPM contained in the soils tested in this 344 

study (excluding the phaeozem, S1) is likely to have been polluting the groundwater and surface water of the 345 

respective areas of origin. 346 
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OM adsorption in soil is currently explained mainly by partitioning and adsorption-site theories (Martins and 347 

Mermoud, 1998), which are well described by the linear and Freundlich isotherm models, respectively. Our 348 

isothermal sorption and desorption data were thus fitted to these two models: the obtained fitting parameters are 349 

listed in Table 1. The average R2 value for the linear model (0.9950) was smaller than that for the Freundlich 350 

model (0.9999); moreover, the C values obtained for the Plinthosol (S5, –0.01 ± 0.06) by fitting the data to the 351 

linear model were negative (Table 1) and did not meet the experimental requirements, indicating that this type of 352 

model was not suitable for this experiment. Meanwhile, the sorption-site theory was found to more accurately 353 

describe the sorption–desorption process: the Freundlich model provided a more accurate description of the EPM 354 

sorption-desorption characteristics observed in this study.  355 

Generally, larger Kf-ads values correspond to higher sorption capacities (Carneiro et al., 2020; Khorram et al., 2018; 356 

Silva et al., 2019). Here, the Kf-ads values of EPM ranged between 0.85 (in S4) and 32.22 (in S1) (mg1–1/n L1/n kg–357 

1), while the 1/nf-ads values ranged between 0.80 (S1) and 1.06 (S5) (Table 1). In brief, S5 showed an S-type 358 

adsorption isotherm (since 1/nf-ads > 1), while S1, S2, S3, and S4 showed an L-type adsorption isotherm (since 359 

1/nf-ads < 1). In this study, the H values of EPM ranged between 0.013 (Phaeozem, S1) and 0.845 (Ferralsol, S3). 360 

Since the H values were < 0.7 in S1, S2, S4, and S5, these particular soils showed a positive hysteresis: the 361 

desorption rate of EPM was lower than its sorption rate. Meanwhile, since the H values in S3 were between 0.7–362 

1.0, the sorption and desorption rates were in equilibrium: S3 did not exhibit any obvious hysteresis. Similar 363 

results were reported that hysteresis was absent when 0.7 < H < 1(Gao and Jiang, 2010; Yue et al., 2017; Barriuso 364 

et al., 1994). 365 

Soil physicochemical properties are important factors influencing herbicide adsorption behaviors (Urach Ferreira 366 

et al., 2020; Wei et al., 2020). We determined the relationship between the Freundlich adsorption–desorption 367 
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constant and the soil physicochemical (soil pH, CEC, soil clay content, OM content, and OC content) properties 368 

and carried out a linear correlation analysis based on the experimental data fitting (Table S5). The results showed 369 

that the soil pH, CEC, soil clay content, OM content, and OC content were positively correlated with Kf-des and Kf-370 

ads (slope > 0). In soils, some polar contents, ionizable groups, and the CEC tend to increase during OM 371 

humification (Calvet, 1989; Meimaroglou and Mouzakis, 2019; Rae et al., 1998). This mechanism possibly 372 

explains the adsorption of EPM in soils high in OM and CEC. Our findings agree with those of Acharya et al. 373 

(2020) and García-Delgado et al. (2020): the soil humic acid and clay fractions (high in OM and CEC and 374 

possessing a high number of active sites) are capable of intense EPM adsorption; in contrast, the soil coarse sand 375 

fraction (low in OM and CEC) is characterized by a weaker EPM adsorption. Notably, the soil with the highest 376 

fumigant adsorption capacity was also possibly that with the highest OM abundance and CEC. For example, 377 

strong linear and positive correlations have been found between the adsorption–desorption of benzobicyclon 378 

hydrolysate and the soil clay content, OC content, OM content, and CEC, while moderate linear and negative 379 

correlations were observed between those processes and the soil pH (Rao et al., 2020). 380 

The KOC value is typically used to indicate the EPM sorption capacity of a soil (Fao, 2000; Xiang, 2019) (see 381 

Table 2). EPM was sub-difficultly adsorbed in S2, S3, S4, and S5: this aspect was reflected by the KOC values, 382 

which ranged between 200–1,000. However, in S1 the KOC values ranged between 1,000–5,000, indicating a 383 

medium adsorbance of EPM in this soil. Overall, an increasing trend in the mobility of EPM was observed from 384 

the Phaeozem (S1) to the Anthrosol (S2), Alisol (S4), Plinthosol (S5), and Ferralsol (S3). We hence infer that a 385 

relatively low soil adsorption capacity is linked to a relatively high mobility of EPM in that soil. 386 

The degree of spontaneity of the adsorption process can be quantitatively evaluated based on variations in the ΔG 387 

values: negative ΔG values generally indicate that an adsorption process is spontaneous and exothermic (Nandi et 388 
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al., 2009). Notably, the change of free energy linked to physical adsorption is smaller than that linked to 389 

chemisorption. The former is in the range of −20 to 0 kJ mol−1, while the latter is in the range of −80 to −400 kJ 390 

mol−1 (Bulut and Aydın, 2006; Yu et al., 2004). We found that the ΔG values relative to EPM adsorption in all 391 

soils were comprised between −16.2242 and −12.5753 kJ mol−1. Therefore, the adsorptions we observed in our 392 

experiments can be regarded as typically spontaneous and exothermic physical adsorptions (Table 2).  393 

3.3. Degradation of EPM in soil 394 

To investigate the effects of aerobic and anaerobic microorganisms on EPM degradation, we sterilized the soil 395 

samples or removed all aerobic microorganisms. The soil samples were kept in the dark at 25 ℃, maintaining a 396 

soil moisture of 60%. The degradation kinetics of EPM under aerobic, anaerobic, and sterilized conditions are 397 

depicted in Fig. 2, while the fitted parameters are summarized in Table 3. The R2 values for EPM in the five soils 398 

ranged between 0.9313–0.9924, suggesting that the first-order kinetic model agreed with the correspondent 399 

degradation data. The half-life of EPM ranged between 37.46–58.25 d in the aerobic soils, between 41.75–59.74 400 

d in the anaerobic soils, and between 60.87–66.00 d in the sterilized soils. A moderate degradation (30 d < t1/2 ≤ 401 

90 d) of EPM was observed under aerobic, anaerobic, and sterilized conditions. These results can be partly 402 

explained by aerobic and anaerobic transformations occurring in the soils, which have been described by the GB 403 

31270.1-2014 guidelines for the testing of chemicals(Gb, 2014c). Overall, the half-life of EPM decreased from 404 

the aerobic to the anaerobic and sterilized soils. Understanding the degradation kinetics of herbicides is critical 405 

for predicting their persistence in soil and the soil parameters, which affect regional agronomic and environmental 406 

practices (Buerge et al., 2019; Buttiglieri et al., 2009). Under dark conditions, the degradation of herbicides in soil 407 

mainly results from microbial and abiotic degradation (Marín-Benito et al., 2019). In this study, when EPM was 408 

retained under dark conditions for 30 d, its degradation rates in all soils under sterilized conditions (35.44, 36.27, 409 
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33.27, 32.80, and 34.78%) were a little slower than under anaerobic (48.60, 41.51, 35.92, 35.61, and 38.07%) and 410 

aerobic conditions (53.32, 43.20, 36.73, 35.61, and 39.31%) (Fig. 2). As the degradation rate increased only by 411 

10% compared to that observed under sterilized conditions, degradation under aerobic/anaerobic conditions 412 

appeared to be mainly abiotic degradation. In contrast, other studies have found that anaerobic microorganisms 413 

are predominant contributors in the degradation process and capable of accelerating it. For example, the 414 

degradation rates of phenazine-1-carboxamide (PCN) were much higher under anaerobic than aerobic conditions, 415 

due to its own structural characteristics (Ou et al., 2020). Between 30–120 d, there were no significant differences 416 

in the degradation rates of EPM between sterilized and unsterilized soils, suggesting that EPM degradation was 417 

largely abiotic in this time interval. This might be attributed to a low bioavailability of EPM for microbial 418 

degradation, derived from a high adsorption affinity of this compound under the right OM content and pH 419 

conditions (Liu et al., 2021b; Wang et al., 2020a). Overall, it appears that EPM decomposition in the tested soils 420 

was mainly driven by abiotic degradation. 421 

The degradation rate of EPM decreased from S1 to S2, S4, S5, and S3 under both aerobic and anaerobic conditions 422 

(Table 3). A negative correlation was noted between the half-life of EPM and the soil OM content and CEC under 423 

aerobic conditions (slope < 0, P < 0.05; R2 = 0.9478 and 0.8022, respectively); besides, a negative correlation was 424 

observed between the half-life of EPM and the soil OM content under aerobic conditions (slope < 0, P < 0.05, R2 425 

= 0.8983). Notably, an abundance of OM and high CEC result in an increase of the carbon sources accessible to 426 

microorganisms, effectively stimulating their activity (Xu et al., 2020). In the presence of microorganisms, the 427 

particularly high OM and CEC characterizing S1, resulted in the fastest EPM degradation among those observed 428 

in all soils under aerobic and anaerobic conditions. However, under sterilized conditions, the degradation rate of 429 

EPM decreased from S2 to S4, S1, S5, and S3 (Table 3); moreover, the half-life of EPM and the soil pH exhibited 430 
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a negative correlation under these same conditions (slope < 0, P < 0.05, R2 = 0.8850; Table S6). The rate of EPM 431 

hydrolysis is known to be positively affected by alkaline soil pH. This relationship explains why, in the presence 432 

of elevated hydrolysis and under sterilized conditions, the fastest degradation behavior among all the tested soils 433 

was observed in S2 (which was characterized by the highest pH). Notably, the highest differences in the 434 

degradation rate of EPM were observed under aerobic conditions. In order to comprehensively evaluate the 435 

influence of various factors on this degradation rate, we hence focused on the analysis of data collected under 436 

aerobic conditions. 437 

The data regarding the degradation behavior of EPM in the tested soils (Table 4 and Fig. 2) conform to first-order 438 

kinetics (R2 > 0.8769). The half-life of EPM varied depending on the moisture conditions: it diminished from soils 439 

with a 60% moisture to those with moisture of 80% and 40%. Additionally, after 120 days, the degradation rates 440 

of EPM in soils with a 40% moisture (74.59, 73.93, 69.98, 73.21, and 71.25 for S1–S5, respectively) were 441 

obviously lower than those in soils with 80% (77.55, 75.38, 72.79, 75.44, and 73.62 for S1–S5, respectively) and 442 

60% (80.04, 77.31, 75.43, 77.78, and 75.77% for S1–S5, respectively) moistures (Table 4 and Fig. 2d, e). These 443 

results show that, when the soil moisture increased from 40% to 60%, the decay rate of EPM accelerated, possibly 444 

due to the stimulation of a degradation pathway (e.g., through aerobic microorganisms and chemical hydrolysis) 445 

linked to the increase in soil moisture (Wang et al., 2014; Liu et al., 2021b). Conversely, EPM showed a slower 446 

decay when the soil moisture increased from 60% to 80%. This phenomenon might have been caused by an 447 

increase in sorption, which would have made EPM less bioavailable. This effect was more or less important 448 

according to the predominance of different biotic pathways of degradation (Bento et al., 2016; García-Valcárcel 449 

and Tadeo, 1999). 450 

3.4. Leaching potential 451 
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The correspondent results are shown in Fig. 3. It was found that the fluidity of EPM was lower in S1 than in S2, 452 

S3, S4, or S5. Furthermore, the Ri values of this compound in S1, S2, S3, S4, and S5 were R1 = 99 %, R2 + R3 + R4 = 453 

55.5 %, R4 = 71.95 %, R2 + R3 + R4 = 76 %, and R2 + R3 + R4 = 74 %, respectively. Based on the Test guidelines 454 

on environmental safety assessment for chemical pesticide-Part 5: Leaching in soil(Gb, 2014b), the mobility of 455 

EPM in the soils S1–S5 was categorized as immobile, slightly mobile, highly mobile, slightly mobile, and slightly 456 

mobile, respectively. The soil OM content was found to be the most important soil property influencing the 457 

mobility of molecular herbicides, followed by the clay content and the CEC. A lower clay content is usually 458 

associated with a higher sand content, a higher proportion of large pores, a smaller specific surface area per soil 459 

unit volume, and a lower adsorption affinity for herbicides, which, overall, result in a greater herbicide mobility 460 

(Boyd et al., 1988; De Matos et al., 2001; Kulshrestha et al., 2004; Temminghoff et al., 1997). We found that a 461 

lower soil OM content corresponded to a weaker adsorption affinity, a weaker tendency of EPM to pass from the 462 

soil solution to the solid phase, a higher availability of EPM for leaching, and a stronger mobility of this same 463 

compound. Notably, the OM content increased from the Ferralsol (S3) to the Plinthosol (S5), Alisol (S4), 464 

Anthrosol (S2), and Phaeozems (S1), while the mobility of EPM increased from the Phaeozem (S1) to the 465 

Anthrosol (S2), Alisol (S4), Plinthosol (S5), and Ferralsol (S3). This mobility tendency is the opposite compared 466 

to the adsorption affinity tendency of EPM in the five soils. As a matter of fact, it is generally known that the 467 

mobility of EPM in soil increases as its adsorption affinity decreases. Similar conclusions were reached through 468 

the study of other herbicides (Acharya et al., 2020; Zhang et al., 2020a).  469 

Here, the GUS was also used to estimate both the leaching potential of chemicals and the risk of contaminants 470 

into groundwater. The GUS values of EPM in S1, S2, S3, S4, and S5 were 0.9765, 2.0402, 2.7160, 2.3755, and 471 

2.6765, respectively (Table 2). The GUS value in S1 was considerably lower than 1.8, EPM should have little 472 
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leaching potential in this soil (Gustafson, 1989; Wang et al., 2020b); meanwhile, since the GUS values in the S2, 473 

S3, S4, and S5 soils were between 1.8–2.8, EPM has a considerable leaching potential there and, possibly, the 474 

ability to pollute groundwater (Huang, 2019; Martins et al., 2018). Overall, we can infer that the risk of 475 

groundwater contamination by EPM is low in Phaeozem (S1), due to the low mobility of this compound; however, 476 

the risk is much higher when the same compound is contained in Anthrosol (S2), Ferralsol (S3), Alisol (S4), and 477 

Plinthosol (S5). 478 

4. Conclusions 479 

In this study, we found that EPM degrades easily, has a high adsorption affinity and a low mobility in Phaeozem 480 

(S1), which result in a low contamination risk for groundwater systems. On the contrary, this compound degrades 481 

slowly in Anthrosol (S2), Ferralsol (S3), Alisol (S4), and Plinthosol (S5), due to a low adsorption affinity and 482 

moderate mobility, which result in a high contamination risk for groundwater systems. The adsorption–desorption, 483 

degradation, and leaching of EPM were systematically explored in five agricultural soils. We noticed that physical 484 

adsorption was the main mode of EPM adsorption. The effects of soil physicochemical properties on the 485 

adsorption and desorption of this compound were quantified by linear regression analysis. In this regard, the 486 

Freundlich adsorption (Kf-ads) and desorption (Kf-des) constants were linearly and positively correlated with the soil 487 

OC content, OM content, and CEC, while nonsignificant correlations were observed among the above constants 488 

and the soil pH and clay content. 489 

The dissipation of EPM depended mainly on soil conditions (i.e., moisture, pH, and soil type). EPM degradation 490 

was most likely derived from abiotic degradation mechanisms; furthermore, the leaching ability of EPM increased 491 

from the Phaeozem (S1) to the Anthrosol (S2), Alisol (S4), Plinthosol (S5), and Ferralsol (S3). Overall, the high 492 

leaching ability and desorption capacity of EPM were accompanied by a low adsorption capacity and there were 493 
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no significant relationships between pH and the leaching rate of EPM in the five types of soils. In contrast, the  494 

OM content, CEC, and soil clay content were the main responsible for the observed leaching rates. 495 

To completely understand the fate of EPM in the environment, it is necessary to perform additional studies on the 496 

microbial community structures and functional diversities of other types of soil besides those analyzed here. As a 497 

matter of fact, there are still only a few studies on the environmental fate of EPM; therefore, our results may serve 498 

as a reference for evaluating the risks involved in the increasingly wide application of this compound. 499 
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Table 1 808 

Comparison between the results of the linear and Freundlich models for the adsorption–desorption of EPM in five agricultural soils. 809 

Soil 

sample 
Soil type 

Adsorption  Desorption 

Linear model  Freundlich model  Linear model  Freundlich model 

K (mL g−1) a 
C0 (mg kg−1) 

a 
R2  

Kf-ads (mg1−1/n 

L1/n kg−1) a 
1/nads 

a R2  
K (mL g−1) 

a 
R2  

Kf-des 

(mg1−1/n L1/n 

kg−1) a 

1/ndes
a R2 H 

S1 Phaeozem 56.21 ± 3.56 0.17 ± 0.01 0.9841  32.22 ± 4.55 0.80 ± 0.07 0.9999  0.80 ± 0.24 0.8384  5.02 ± 0.02 0.01 ± 33.53 0.9999  0.013  

S2 Anthrosol 2.78 ± 0.06 0.13 ± 0.04 0.9982  2.95 ± 0.04 0.88 ± 0.03 0.9999  0.27 ± 0.03 0.9823   2.27 ± 0.01 0.71 ± 0.28 0.9999  0.807  

S3 Ferralsol 2.43 ± 0.07 0.16 ± 0.05 0.9975  2.65 ± 0.03 0.84 ± 0.03 0.9999  0.82 ± 0.19 0.8988   1.73 ± 0.05 0.11 ± 1.43 0.9999 0.131  

S4 Alisol 0.79 ± 0.01 0.05 ± 0.01 0.9990  0.85 ± 0.02 0.95 ± 0.03 0.9999  0.53 ± 0.05 0.9834   0.78 ± 0.01 0.12 ± 0.01 1.0000  0.126  

S5 Plinthosol 2.03 ± 0.07  −0.01 ± 0.06 0.9951  1.99 ± 0.05 1.06 ± 0.04 0.9999  2.53 ± 0.18 0.9905   1.38 ± 0.08 0.19 ± 0.56 0.9999 0.179  

a The values represent means ± standard error (SE, n = 3). 810 
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Table 2  811 

Empirical constants, Gibbs free energy, and groundwater ubiquity score (GUS) for the adsorption of EPM 812 

in five agricultural soils. 813 

Soil 

sample 
Soil type K Ce/C0 

Kf-ads (mg1−1/n 

L1/n kg−1) 
KOC KOM 

△G (kJ 

mol−1) 
GUS 

S1 Phaeozem 64.4821  0.0117  32.2230  2395.8435  695.6897  −16.2242  0.9765  

S2 Anthrosol 3.0971  0.2441  2.9540  606.7513  335.2273  −14.4143  2.0402  

S3 Ferralsol 2.7861  0.2641  2.6530  289.3500  159.6386  −12.5753  2.7160  

S4 Alisol 0.8393  0.5437  0.8520  413.3906  242.8571  −13.6153  2.3755  

S5 Plinthosol 2.0172  0.3314  1.9950  289.8034  165.8333  −12.6696  2.6765  

 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 

 826 

 827 

 828 

 829 

 830 
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Table 3  831 

Degradation kinetic models and parameters of EPM under different conditions. 832 

Soil 

sample 
Soil type 

Aerobic  Anaerobic  Sterilized 

First-order kinetic 

model 

Half-life 

t1/2 (d) 
R2  

First-order kinetic 

model 

Half- life 

t1/2 (d) 
R2  

First-order kinetic 

model 

Half- life 

t1/2 (d) 
R2 

S1 Phaeozem Ct = 1.5338e−0.0185t 37.46 0.9473  Ct = 1.7792e−0.0166t 41.75 0.9579  Ct = 1.8467e−0.0111t 62.43 0.9800  

S2 Anthrosol Ct = 1.6419e−0.0146t 47.47 0.9707  Ct = 1.8599e−0.0139t 49.85 0.9696  Ct = 1.7543e−0.0113t 60.87 0.9551 

S3 Ferralsol Ct = 1.9363e−0.0119t 58.25 0.9843  Ct = 1.9968e−0.0116t 59.74 0.9878  Ct = 1.9349e−0.0105t 66.00  0.9775 

S4 Alisol Ct = 1.9476e−0.0133t 52.10  0.9924  Ct = 1.9477e−0.0133t 52.11 0.9924  Ct = 1.7086e−0.0112t 61.88 0.9313 

S5 Plinthosol Ct = 1.7864e−0.0126t 55.00  0.9655  Ct = 1.9725e−0.0121t 57.27 0.9923  Ct = 1.8638e−0.0109t 63.58 0.9761 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 



 36 

Table 4  841 

Degradation kinetic models and parameters of EPM in soil under different moisture conditions. 842 

Soil 

sample 
Soil typea 

Saturation moisture capacity (40%)  Saturation moisture capacity (60%)  Saturation moisture capacity (80%) 

First-order kinetic 

model 

Half-life 

t1/2 (d) 
R2  

First-order kinetic 

model 

Half-life 

t1/2 (d) 
R2  

First-order kinetic 

model 

Half-life 

t1/2 (d) 
R2 

S1 Phaeozem Ct = 1.7324e−0.0141t 49.15 0.9582  Ct = 1.5338e−0.0185t 37.46 0.9473  Ct = 1.7792e−0.0166t 41.75 0.9579 

S2 Anthrosol Ct = 1.6551e−0.0133t 52.11 0.8769  Ct = 1.6419e−0.0146t 47.47 0.9707  Ct = 1.8599e−0.0139t 49.87 0.9696 

S3 Ferralsol Ct = 1.8659e−0.0110t 62.77 0.9884  Ct = 1.9363e−0.0119t 58.25 0.9843  Ct = 1.9968e−0.0116t 59.74 0.9878 

S4 Alisol Ct = 1.8428e−0.0116t 59.74 0.9742  Ct = 1.9476e−0.0133t 52.10  0.9924  Ct = 1.7076e−0.0121t 57.27 0.9849 

S5 Plinthosol Ct = 1.7637e−0.0104t 66.63 0.9650   Ct = 1.7864e−0.0126t 55.00  0.9655  Ct = 1.9725e−0.0121t 57.27 0.9923 

 843 

 844 

 845 

 846 

 847 
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Fig. 1 Adsorption (a) and desorption (b) kinetic curves and Adsorption (c) and desorption (d) isothermal curves of EPM in five different agricultural soils (S1 to S5 are 850 

defined in Table 1). Values are the means ± standard error (n=3).  851 
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    852 

     853 

Fig. 2 Degradation kinetics of EPM under aerobic (a), anaerobic (b), sterilization (c) conditions with 60% moisture, under aerobic conditions with 40% moisture(d) and with 854 

80% moisture(e)in five different agricultural soils (S1 to S5 are defined in Table 1). Values are the means ± standard error (n=3). 855 
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Fig. 3 Distribution of EPM in soil column and leachate of five different agricultural soils (S1 to S5 are defined in Table 1) 857 


