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Abstract. Information on soil properties is crucial for soil preservation, improving food security, and the provision of ecosystem

services. Especially, for the African continent, spatially explicit information on soils and their ability to sustain these services

is still scarce. To address data gaps, infrared spectroscopy has gained great success as a cost-effective solution to quantify

soil properties in recent decades. Here, we present a mid-infrared soil spectral library (SSL) for central Africa (CSSL) that

can predict key soil properties allowing for future soil estimates with a minimal need for expensive and time-consuming5

wet chemistry. Currently, our CSSL contains over 1,800 soils from ten distinct geo-climatic regions throughout the Congo

Basin and wider African Great Lakes region. We selected six hold-out core regions from our SSL, augmented them with

the continental AfSIS SSL, which does not cover central African soils. We present three levels of geographical extrapolation,

deploying Memory-based learning (MBL) to accurately predict carbon (TC) and nitrogen (TN) contents in the selected regions.

The Root Mean Square Error of the predictions (RMSEpred) values were between 0.38–0.86 % and 0.04–0.17 % for TC and10

TN, respectively, when using the AfSIS SSL only to predict the six regions. Prediction accuracy could be improved for four

out of six regions when adding central African soils to the AfSIS SSL. This reduction of extrapolation resulted in RMSEpred

ranges of 0.41–0.89 % for TC and 0.03–0.12 % for TN. In general, MBL leveraged spectral similarity and thereby predicted

the soils in each of the six regions accurately; the effect of avoiding geographical extrapolation and forcing regional samples

in the local neighborhood (MBL-spiking) was small. We conclude that our CSSL adds valuable soil diversity that can improve15

predictions for the regions compared to using the continental scale AfSIS SSL alone; thus, analyses of other soils in central

Africa will be able to profit from a more diverse spectral feature space. Given these promising results, the library comprises an

important tool to facilitate economical soil analyses and predict soil properties in an understudied yet critical region of Africa.

1

https://doi.org/10.5194/soil-2020-99
Preprint. Discussion started: 8 January 2021
c© Author(s) 2021. CC BY 4.0 License.



Our SSL is openly available for application and for enlargement with more spectral and reference data to further improve soil

diagnostic accuracy and cost-effectiveness.20

1 Introduction

Soil health is critical to crop nutrition, agricultural production, food security, erosion prevention, and climate change mitigation

via carbon (C) storage. Global climate change and soil degradation by deforestation and soil mismanagement critically threaten

these ecosystem services (Birgé et al., 2016). In particular, the humid tropics are a front line for these anthropogenic impacts.

For example, increasing temperatures and accelerating deforestation in the humid tropics are estimated to enhance greenhouse25

gas emissions (Cox et al., 2013; Don et al., 2011), but also to significantly reduce soil functions and ecosystem services such

as soil fertility, water storage and filtration capabilities and erosion protection (Veldkamp et al., 2020). Despite the expected

severity of these impacts, our understanding of the effects in the humid tropics are limited by sparse data and uneven distribution

of low-latitude research.

Within the tropics, both the future impacts and data gaps are most severe in the Congo Basin, which contains the second30

largest tropical forest ecosystem on Earth and represents a considerable reservoir of soil C (FAO and ITTO, 2011). Forest loss

in central Africa is mainly driven by smallholder farmers practicing shifting cultivation (Tyukavina et al., 2018; Curtis et al.,

2018). Thus, the projected drastic population growth in the coming decades (Vollset et al., 2020) will likely contribute to further

agricultural conversion (UNESCO World Heritage Centre, 2010).

In the wake of these current and future impacts, more spatially explicit soil information is urgently needed in many research35

fields. In recent decades, improvements have been made carrying out soil surveys and creating soil databases and maps for

central Africa (Goyens et al., 2007), for Rwanda (Imerzoukene and Van Ranst, 2002) and for the DRC (Baert et al., 2013).

Unfortunately, accessibility to such data is limited and gaps are still large in central Africa due to the high cost of specialized

equipment and chemicals for analyses (Van Ranst et al., 2010).

Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy has gained attention as a cost effective and fast40

method for soil analyses (e.g., Nocita et al., 2015). Many soil minerals, as well as functional groups of soil organic matter,

show distinct energy absorption features in the infrared (IR) region of the electromagnetic spectrum. These relationships can be

empirically modelled to quantify soil properties relevant for soil quality, such as C, N and other crop nutrients (e.g., Janik et al.,

1998; Soriano-Disla et al., 2014). Due to its simple handling, quick measurements, low costs, and minimal need for chemical

consumables, infrared spectroscopy is an important tool for soil analyses. Especially in developing countries, where practices45

are often hampered by the prohibitive costs of conventional soil analyses, IR spectroscopy has great potential (Shepherd and

Walsh, 2007; Ramirez-Lopez et al., 2019).

Despite the abundance of literature on the calibration of quantitative models of soil properties using both mid-infrared

(MIR) and near-infrared (NIR) data, there is still a lack of simple and efficient modeling strategies that could bring soil spectral

libraries (SSLs) to an operational level. Such workflows of spectral soil estimation can thereby target regional, field or plot-50

scale estimation of soil properties, and should drastically reduce the amount of chemical reference analyses required on new
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(local) soils in order to be efficient. In particular, soil spectral libraries are useful for inferring soil properties when positive

predictive transfer occurs; it applies when the SSL (compositionally) related to the local soil prediction set improves the

predictive accuracies compared to a calibration using a limited set of samples with local reference analyses available (Padarian

et al., 2019; Lin et al., 2013).55

Partial Least Squares (PLS) regression is the most widely used tool to calibrate models that translate spectral data into

meaningful chemical and or physical information. The method is especially useful in a non-complex context, where the rela-

tionships between spectra and response variables is essentially linear (e.g. spectral models developed for a small field where

sol forming factors are relatively constant). One of the main aims of establishing large-scale SSLs is to minimize the need

for future wet chemical analyses (e.g., Nocita et al., 2014; Stevens et al., 2013; Shi et al., 2014; Viscarra Rossel et al., 2016).60

However, these libraries often span vast geographical areas that include different soil types and climate zones, which comprise

complex soil organic C forms and mineral compositions. Due to this heterogeneity, predictions rendered by traditional linear

regression models (such PLS) are often unfeasible for proper soil assessments at small-scale studies due to their high levels

of uncertainty. To overcome this issue, new methods have recently been proposed, including local data-driven resampling ap-

proaches (RS-LOCAL, Lobsey et al. (2017)) or memory based learning (MBL, Ramirez-Lopez et al. (2013)). For each new65

spectral observation, MBL searches a subset of spectrally similar samples in a reference spectral library, which are then used

to fit a custom predictive model for the new observation. This method has shown promising results when applied to extremely

complex spectral libraries such as the MIR library of the United States (Dangal et al., 2019) and in one developed for the

European continent (Tsakiridis et al., 2019). Spiking of libraries with samples from the target site has also shown to improve

prediction accuracy (Guerrero et al., 2010; Seidel et al., 2019; Barthès et al., 2020; Wetterlind and Stenberg, 2010). So far,70

spectral libraries have mainly been used for predictions of soil samples originating from the geographical domain. Studies have

shown that subsetting large-scale libraries for new spectra by their geographical zones can result in good prediction accuracy

(Shi et al., 2015; Nocita et al., 2014). These geographical restrictions could allow for extrapolation to new areas that contain

similar soils.

Here, we present the first SSL for central Africa (CSSL) along with an improved memory-based learning algorithm to accu-75

rately predict soil chemical properties. This study had two primary goals: (1) to fill the critical data gap for central Africa and

complement an existing continental library, and (2) to establish a workflow to accurately predict six selected core regions of the

CSSL and demonstrate how new regions can be predicted in order to further enlarge the library. This effort represents an im-

portant first step towards fulfilling the need for spatially explicit and high-resolution soil data in an important yet understudied

region in the humid tropics, promoting vital soil information that is critical to the future of the region.80

2 Methods

2.1 Site descriptions

Soil samples were collected from past projects in the Congo Basin and along the central African Rift Valley. Table 1 gives an

overview of corresponding references to the different sample sets and denotes the sampling layer used in this study. Site specific
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characteristics, coordinate ranges, altitudes, average climate, and dominant soil types are summarized in Table 2. The sampling85

area covers a large geographic area of central Africa, from a latitude of 2.8 ◦N to -11.6 ◦N and a longitude of 12.9 ◦E to 30.4 ◦E.

Annual precipitation ranges from about 1100 mm in Kongo Central to over 2000 mm in the tropical forest of Tshuapa. Mean

annual temperature varies from 12.8 ◦C in the high altitudes of North Kivu to 25.5 ◦C in Équateur and Kongo Central (Fick

and Hijmans, 2017). The study elevations range from nearly sea level in the very west to high altitudes of 2000 m.a.s.l. along

the rift valley and 3000 m.a.s.l. on Nyiragongo volcano in North Kivu (Jarvis et al., 2008). Soil types are primarily Ferralsols,90

Acrisols, or Nitisols (Jones et al., 2013; WRB, 2006). The different regions contain multiple Köppen-Geiger climatic zones:

The four regions located close to the equator (Équateur, Tshuapa, Tshopo, Kabarole) are classified as Af (tropical rainforest),

while the north and west DRC is classified as Aw (tropical savannah). Eastern DRC and western Rwanda are classified as a

mixture of climate zones Cfb (temperate, without dry season, warm summer), Csb (temperate, dry summer, warm summer),

Aw (tropical savannah) and Cwb (temperate, dry winter, warm summer). The regions along the rift valley (South Kivu, North95

Kivu, Iburengerazuba, Kabarole) are partially also classified as Am (tropical monsoon). Finally, the south-east of the DRC is

classified as Cwa (temperate, dry winter, hot summer) (Beck et al., 2018).

Figure 1. Locations and resampled spectra for the sampling regions (six selected core regions with a ◦ symbol and the remaining four regions

with a O symbol). All samples are included in the archive of the spectral library for central Africa. For the Democratic Republic of Congo

(DRC) and Rwanda (RWA), the regions correspond to provinces, for Uganda (UGA), the sampling region corresponds to a district (left). The

average spectra of each region are shown (bold line) along with the individual sample spectra (transparent lines; right).

2.2 Laboratory soil analyses

All soil samples were dried prior to analysis. Total C (TC) and total N (TN) were analyzed via dry combustion on either a

LECO 628 Elemental Analyzer (LECO Corporation, USA), on an ANCA-SL Automated Nitrogen Carbon Analyzer (SerCon,100
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Table 1. Soil sample archive used for the central African soil spectral library. The references show publications including the corresponding

samples. The regions are provinces of the Democratic Republic of Congo (DRC) and Rwanda (RWA) and a district of Uganda (UGA).

References Region Soil depth (cm)

Bauters et al. (2015, 2017) Tshopo (DRC) 5–10

Gallarotti et al. (2021), Baumgartner et al. (2020) Tshopo, South Kivu, Équateur (DRC) 0–15, 15–30, 0–10, 10–20, 30–40, 40–50,

50–60, 60–70, 70–80, 80–90, 90–100

Kearsley et al. (2013, 2017) Tshopo (DRC) 0–10, 10–20, 20–30,

30–50, 50–100

Bauters et al. (2019a) Tshopo, South Kivu (DRC) 0–5

Bauters et al. (2021), Moonen et al. (2019) Tshopo (DRC) 0–5, 5–10, 10–20

Bauters et al. (2019b) Tshuapa (DRC) 0–10, 10–20, 20–30,

30–50, 50–100

Minten (2017) Tshuapa (DRC) 0–20

Summerauer (2017) Tshuapa (DRC) 0–20, 20–50

Heri-Kazi (2020) South Kivu (DRC) 0–20

Université catholique de Louvain South Kivu, Haut-Katanga (DRC) 0–20, 20–30

Mujinya (2012); Mujinya et al. (2010, 2011, 2013, 2014) Haut-Katanga (DRC) Termite mound profiles

IITA/ICRAF Bas-Uélé, South Kivu (DRC) 0–20, 20–40, 20–50

Baert et al. (2009); Baert (1995) Lower Congo and Central (DRC) 0–123 soil pit

Doetterl et al. (2021b, a) South Kivu (DRC), Iburengerazuba (RWA), Kabarole (UGA) 0–10, 30–40, 60–70, 90–100

Table 2. Number of samples, GPS coordinates, elevation, annual precipitation (AP), mean annual temperature (MAT), Koeppen-Geiger

climate classifications and soil types for the sampled regions of the Democratic Republic of Congo, Rwanda and Uganda. Data were extracted

for all coordinates from raster files: Climate data is sourced from Fick and Hijmans (2017), elevation from SRTM (90m resolution; Jarvis

et al. (2008)), Köppen-Geiger climate classifications from Beck et al. (2018) and soil types from the Soil Atlas of Africa (Jones et al., 2013;

WRB, 2006)

Region n Longitude (° E) Latitude (° N) Elevation (m) MAT (°C) AP (mm) Köppen-Geiger Soil types

Haut-Katanga 119 27.48–27.85 -11.61– -11.29 1197–1323 20.6 1223 Cwa Rhodic/Haplic Ferralsols

South Kivu 369 28.64–28.91 -2.79– -2.1 1487–2310 17.6 1627 Cfb, Csb, Aw, Cwb Umbric Ferralsols, Haplic Acrisols

Tshopo 315 24.48–25.32 0.29–0.83 380–506 24.9 1789 Af Xanthic/Haplic Ferralsols

Tshuapa 738 21.84–22.53 0.28–0.8 385–578 24.7 2090 Af Xanthic/Haplic Ferralsols

Iburengerazuba 107 29.05–29.22 -2.47– -2.34 1565–1939 17.6 1496 Csb, Aw, Cwb Haplic/Umbric Acrisols

Kabarole 101 30.13–30.37 0.46–0.63 1271–1824 19.7 1360 Af, Cfb, Am Haplic Phaeozems, Rhodic Nitisols, Albic Luvisols

Équateur 12 18.31 0.06 322 25.5 1685 Af Eutric Ferralsols

Bas-Uélé 49 24.75 2.8 423 25.2 1641 Aw Haplic Ferralsols

North Kivu 4 29.25–29.27 -1.55– -1.53 2276–3250 12.8 1834 Cfb Umbric Silandic Andosols

Kongo-Central 40 12.89–14.63 -5.88– -4.71 30–470 25.5 1088 Aw Ferralic Cambisols, Haplic Acrisols,

Umbric Nitisols, Xanthic Ferralsols, Mollic Gleysols
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UK), or on a Vario EL Cube CNS Element Analyzer (Elementar, Germany). In order to ensure data quality and facilitate

the harmonisation of all TC and TN data, a subset of these samples were remeasured on the LECO (R2 = 0.99 for TC and

TN, results not shown). Additionally, soil pH, texture, and macro/micro nutrients (Al, Fe, Ca, Mg, Mn, Na, P and K) were

analyzed for a subset of samples. The chemical and MIR prediction results for these soil characteristics are not presented in

this manuscript but were carried out using the same methods and are available on our GitHub repository. The large majority of105

the soil samples originate from highly weathered and acidic soils and do not contain any carbonates. Therefore, TC contents

correspond to total organic carbon contents. Only in a few samples from termite mounds in the subtropical Haut-Katanga

province calcium carbonate has been detected and pH values are > 8 (Mujinya, 2012). Note, even if the proportion of samples

with inorganic carbon was very low (5 %), the term TC will be used in the study.

2.3 MIR spectral libraries110

Central African spectral library

All samples were finely ground using a ball mill and measured with a VERTEX70 Fourier Transform-IR (FT-IR) spectrometer

with a High Throughput Screening Extension (HTS-XT) (Bruker Optics GmbH, Germany) in order to determine the MIR

reflectance. A gold standard was used as a background material for all measured soils in order to normalize the sample spec-

tra. Reflectance was transformed into absorbance (1/reflectance) prior to further processing and subsequent modeling. Two115

replicates per sample were filled into the cups of a 24-well plate and the surface was flattened without compression using a

spatula. For each sample, 32 co-added internal measurements were averaged and corrected for CO2 and H2O using the OPUS

spectrometer software (Bruker Optics GmbH, Ettingen, Germany).

AfSIS spectral library120

We used a MIR SSL created by the World Agroforestry (ICRAF) centre. This SSL was created as part of the Africa Soil In-

formation Service (AfSIS) in order to improve soil information and land management on the continental scale of Sub-Saharan

Africa (Vågen et al., 2020). For this continental library (see Figure A1), reference values for TC and TN were obtained by

using a ThermoQuest EA 1112 elemental analyzer. The MIR spectra of the samples were obtained by scanning them on a Ten-

sor27 FT-IR spectrometer (Bruker Optics, Karlsruhe, Germany) with a high throughput screening extension. Four replicates125

per sample were measured and an average of 32-co-added scans were used for each sample (Sila et al., 2016).

2.4 Spectral resampling and pre-processing

All CSSL and AfSIS spectra were processed using the R packages ‘simplerspec’ (Baumann, 2020), ‘prospectr’ (Stevens and

Ramirez-Lopez, 2020) and ‘resemble’ (Ramirez-Lopez, 2020) in the R statistical computing environment (R Core Team,

2020). Replicates of spectral measurements were mean aggregated to obtain one spectrum per sample. The spectra were then130

resampled to a resolution of 16 cm−1 and trimmed to the 4000–600 cm−1 spectral range.

As spectral pre-treatments have a marked impact on the performance of quantitative infrared models (Rinnan, 2014), the

pre-processing procedure was specifically optimized for the MIR spectra of the central African samples. This procedure was
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based on the PLS method, which was also known as projection to latent structures. This method has been traditionally used for

regression analysis in infrared spectroscopy. However, it is also useful for projecting the spectral data onto a low-dimensional135

(and therefore less complex) subspace containing all the meaningful information of the original data. This projection model

can be expressed as:

X = TP′+ E (1)

where X is the original spectral matrix of n× d dimensions, T is the PLS score matrix of n× l dimensions (where l ≤
min(n,d)) which contains the extracted variables, P is the matrix of loadings of d× p dimensions which captures the spectral140

variability across observations. E is an error term. For spectral data with high collinearity, the optimal l (or the number of PLS

factors) is usually small, which means that the first few PLS factors are enough to properly represent the original variability

of X. An important aspect of this type of projection is that it is obtained in such a way that the covariance between T and an

external set of one or more variables is maximized. For a detailed description on PLS, see Wold et al. (2001). In PLS, P can be

used on new spectral observations to project them onto the lower dimensional space:145

Tnew = XnewP−1 (2)

The spectral reconstruction error of the projection model can be then computed by back-transforming the matrix of scores

to a spectral matrix and comparing it against the original spectral matrix as follows:

Enew = Xnew −TnewP′ (3)

The above spectral reconstruction error concept was used to find an optimal combination of spectral pre-treatments. We de-150

fined a set of different pre-treatments {h1,h2, ...,hz}where hi(X) represents one pre-treatment or a sequence of pre-treatments

(with unique parameter values) to be applied on the spectral data. A projection model was built with the AfSIS spectra (using

TC and TN as external variables) for each combination of spectral pre-treatments:

hi(XAfSIS) = T(i)P′(i) (4)

this model was used on the CSSL pre-treated spectra and the reconstruction error (ECSSL) was computed as follows:155

ECSSL = hi(XCSSL)− [hi(XCSSL)P−1TCSSLP′(i)] (5)

The final reconstruction error (re) is computed as the root mean squared of the elements in ECSSL:

re(i) =
1
m d

m∑

j=1

d∑

k=1

ejk (6)
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where m is the number of samples in the CSSL. To allow for comparisons across the reconstruction errors obtained for the

different pre-treatments, the re(i) standardized as follows:160

sre(i) =
re(i)

max(hi(XCSSL))−min(hi(XCSSL))
(7)

The pre-treatments tested included different combinations of standard normal variate, multiplicative scatter correction, spec-

tral detrend, first and second derivatives (with different window sizes).

The aim behind our reconstruction error approach was to identify a sequence of pre-processing steps that return spectral

matrices which can be properly represented by a PLS model. In this respect, we assumed that a proper representation of the165

spectral data by a global PLS projection model might also be appropriate for local PLS models which are at the core of the

predictive methods presented in the next sections.

Minimal spectral reconstuction error was achieved with a Savitzky-Golay filter combined with a second derivative using a

second order polynomial approximation with a window size of 17 cm-1, resulting in a final resolution of 272 cm-1 (resampling

resolution of 16 cm-1 x window size of 17 cm-1) (Savitzky and Golay, 1964), and a subsequent multiplicative scatter correction;170

this optimized pre-treatment was used for MBL.

2.5 Modeling scenarios

Here we describe the method we used to assess the performance of MBL for predicting TC and TN for six distinct regions at

different scenarios of regional soil extrapolation. Figure 2 gives an overview of the modeling strategies. Three specific modeling

strategies were tested on the selected regional sets which we call prediction sets (see subsubsection 2.5.2). With the regional175

analysis we demonstrate how predictions of soil properties within new sites from distinct regions—which are compositionally

less variable than the available SSLs—might perform and profit from knowledge present in the AfSIS SSL. It also demonstrates

the added value of our new CSSL in addition to the AfSIS SSL alone. The aim of the modeling scenarios were twofold: 1) to

minimize the costs and time for traditional methods by optimizing the transfer of stored spectral information to the new region

of interest 2) test different levels of geographical extrapolations to demonstrate how accurate predictions are for new regions,180

when no local samples area available.

2.5.1 Modeling and prediction data

We used two main data sources and subsets as follows.

1. The AfSIS data set (A): Continental large-scale SSL including 1902 soil samples with MIR spectra and corresponding

reference data, originating from Sub-Saharan Africa (Figure A1).185

2. The central African data set: From our CSSL, six regions were identified which contained at least 80 samples. These six

regions were Haut-Katanga, South Kivu, Tshopo, and Tshuapa provinces of the DRC, Iburengerazuba, also known as

the Western Province of Rwanda, and Kabarole, a district in western Uganda (Figure 1). To test how well these regions
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could be predicted by the SSLs, they were defined as hold-out core regions. These six regions comprise together 1578

soil samples with MIR spectra and corresponding reference data. The sets were defined as following:190

(a) Central African set (C): A set formed from the union of the sets of the six different regions in central Africa (n =

1442 and 1458 for TC and TN, respectively, after the removal of the 6 x 20 spiking samples for each region; see

below). This set can be written as

C =
6⋃

1

Gi

where Gi represents the data of the ith region.

(b) Six regional sets Gi, (n = 80–718 after removal of 20 spiking samples for every set; see below).195

(c) Six regional spiking sets (Ki): for each complete regional set, 20 samples were selected using the k-means sampling

algorithm (Næs, 1987; Stevens and Ramirez-Lopez, 2020).

2.5.2 Modeling strategies

Three different scenarios were compared which are related to the scale of the geographical extrapolation:

– Strategy 1: MBL predictions for the C set were computed from A. This scenario represents an extreme case of extrapo-200

lation (from the geographical perspective) since no samples from the entire central African area are present in the AfSIS

set Figure A1, which is the only data used to build the predictive models. In addition, the MIR data from the central

African (C) set originates from a different spectrometer type than the one used for scanning the AfSIS samples.

– Strategy 2: Predictions for every Gi are computed by using MBL models built from the pooled AfSIS data A together

with the data from the remaining five regions Ci, i.e. A∪Ci, where205

Ci =
6⋃

j=1
j /∈i

Gj

Although in this case there is also extrapolation (from the geographical perspective), is not as extreme as in Strategy 1.

– Strategy 3: Strategy 2 was repeated, but in this case, extrapolation was avoided by using the spiking samples from the

same geographical region; Each regional set Gi was predicted by the pooled AfSIS data, the data of the remaining

regions and the respective spiking set, i.e. A∪Ci ∪Ki.

9
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Figure 2. Flow chart representing the work flow of the modeling strategies with three different levels of geographic extrapolation. Strategy

1: Predictions of the six selected core-regions using only the AfSIS soil spectral library (SSL; without any central African soils), Strategy 2:

Predicting each hold-out region by the pooled remaining five regions (adding closer samples) together with the AfSIS SSL and Strategy 3:

avoiding extrapolation by adding 1 to 20 spiking samples to the models regional models of Strategy 2.

2.6 Predictive modeling210

We used Memory-based learning (MBL) as our predictive modeling approach. MBL describes a family of (non-linear) machine

learning methods designed to handle complex spectral datasets (Ramirez-Lopez et al., 2013). In the chemometrics literature,

MBL is also known as local modeling. This type of learning method does not attempt to fit a general (global) predictive function

using all available data. Instead, a new and unique function (f̂i) is built on-demand, every time a new prediction for a given

response variable is required. This new function is built using only a subset of relevant observations from a reference set that215

are queried through k-nearest neighbour search. The MBL method implemented for this study uses a spectral nearest neighbour

search based on a moving window correlation dissimilarity. To measure the dissimilarity (d) between two spectra (xi and xj),

the following equation is used:

d(xi,xj ;w) =
1

2w

p−w∑

k=1

1− ρ(xi,{k:k+w},xj,{k:k+w})

where ρ represents the Pearson’s correlation function and w the window size. After nearest neighbor retrieval, our MBL

method fits a local model using the Weighted Average Partial Least Squares (WA-PLS) regression algorithm proposed by220
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Shenk et al. (1997). In WA-PLS, the final prediction is a weighted average of multiple predictions generated by PLS models

built from different PLS factors. The weight for each component is calculated as follows:

wj =
1

s1:j × gj

where s1:j is the root mean square of the spectral residuals of the new observation when a total of j pls components are used

and gj is the root mean square of the regression coefficients corresponding to the jth PLS component (see Shenk et al. (1997)

for more details).225

The number of neighbors to retrieve was optimized using the nearest neighbor (NN) cross-validation (Ramirez-Lopez et al.,

2013). Using this method, for each observation to be predicted, its nearest neighbor was excluded from the group of neighbors

and then a WA-PLS model is fitted using the remaining ones. This model is then used to predict the value of the response

variable of the nearest observation. These predicted values are finally cross-validated with the actual values (see Ramirez-

Lopez et al. (2013) for additional details). To avoid overfitting, the region was used as a grouping factor, which was a ’sentinel230

site’ for the AfSIS library and a ’province’ or ’district’ of the particular country for the CSSL. Samples from the same sampling

region were consequently assigned to the same fold when dividing them into hold-out and validation sets. Neighborhood sizes

varying from 150 to 500 neighbors in increments of 10 were tested. The best model and the optimal number of neighbours were

determined by the minimal RMSE (Equation 8) of the nearest neighbour validation, where n is the number of neighbours used

for the model, yi is the measured value of the hold-out neighbor, and ŷi is the value predicted by the remaining neighbours.235

Subsequently, 1 to 20 spiking samples were added from the target region and forced into the neighbourhood of every

observation and thus used in the predictive models, independent from their distances to the validation set. The stepwise spiking

was applied to test the effect of spiking in general and to find the smallest number of samples required for satisfying model

performances.

2.7 Model validation and prediction accuracy240

For model validation, the RMSE statistics of the nearest neighbor validation described in the previous section were used.

Prediction accuracy of the seven sets (the combined 6 regions C and the six individual regional sets Gi; see above), which is

the so-called independent or external validation, was also calculated using RMSE (Equation 8), where in this case yi is the

actual measured reference value and ŷi the prediction of the final model.

RMSE =

√√√√ 1
n

n∑

i=1

(yi− ŷi)2 (8)245

Model validation and prediction performance were additionally evaluated using the Ratio of Performance to the InterQuartile

distance (RPIQ) as suggested by Bellon-Maurel et al. (2010). The interquartile range of the observed reference data is divided

by the RMSE of the nearest neighbor validation or by the RMSE of the prediction (RMSEpred), respectively. The RPIQ is useful

because it does not make any assumptions about the distribution of the reference data.
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3 Results250

The sample archive of the CSSL covered a wide range of TC and TN contents (Table 3). Seven of the 10 regions (Bas-Uélé,

Equateur, Haut-Katanga, Kabarole, Kongo Central, Tshopo, Tshuapa) had mean TC and TN of 1.09–1.77 % and 0.07–0.17 %,

respectively. Maximum TC and TN values for these seven regions were 5.67 % and 0.51 %, respectively. The three regions

of South Kivu and North Kivu in Eastern DRC and Iburengerazuba in Western Rwanda had significantly higher TC and TN

contents, with TC and TN means of 2.63–31.02 % and 0.17–1.93 %, respectively. Volcanic soils from North Kivu had the255

highest TC and TN contents. The AfSIS SSL had generally lower TC and TN means of 1.2 % and 0.08 %, respectively.

Table 3. Summary of the reference data for total carbon (TC) and total nitrogen(TN) of the two soil spectral libraries (SSL). The central

Africal soil spectral library (CSSL) is divided into the main regions, with the six core regions (Haut-Katanga, South Kivu, Tshopo, Tshuapa,

Iburengerazuba, Kabarole) selected for the spectral analyses in in the first six rows. The remaining four regions (Équateur, Bas-Uélé, North

Kivu, Kongo-Central) are presented, but were not further analysed in this study.

SSL Covered region TC [%] TN [%]

n Mean Median Min Max n Mean Median Min Max

CSSL

Haut-Katanga (DRC) 119 1.13 0.97 0.13 3.47 119 0.11 0.10 0.04 0.29

South Kivu (DRC) 367 3.54 2.93 0.60 18.21 368 0.31 0.24 0.07 1.50

Tshopo (DRC) 134 1.38 1.24 0.40 5.67 149 0.10 0.09 0.02 0.45

Tshuapa (DRC) 738 1.26 1.16 0.37 4.74 738 0.10 0.09 0.02 0.39

Iburengerazuba (RWA) 104 2.63 2.27 0.15 9.38 104 0.17 0.15 0.01 0.55

Kabarole (UGA) 100 1.77 1.19 0.08 5.38 100 0.17 0.12 0.01 0.51

Équateur (DRC) 12 1.32 1.02 0.12 5.05 12 0.07 0.07 0.02 0.14

Bas-Uélé (DRC) 49 1.09 0.96 0.27 2.84 49 0.09 0.07 0.02 0.22

North Kivu (DRC) 4 31.02 31.97 18.96 41.17 4 1.93 1.80 1.20 2.92

Kongo-Central (DRC) 40 1.68 1.24 0.34 5.50 40 0.14 0.12 0.04 0.49

AfSIS SSL Sub-Saharan Africa 1902 1.24 0.78 0.08 11.29 1902 0.08 0.05 0.00 0.66

3.1 Principal components and spectral variability in the two libraries

A principal component analysis (PCA) was conducted on the pre-processed spectra of both libraries. The first three principal

components account for 70 % of the spectral variability. These components indicate that bulk of CSSL samples are within the

spectral domains of the AfSIS SSL as their PCA scores overlap (Figure 3). The overlapping, however, is less evident for the260

spectra of the South Kivu region and, to a lower extent, for the samples of the Iburengerazuba region, which suggests that the

type of soils in these regions might not be very well represented by the samples in the AfSIS SSL. Note that these two regions

are geographically close (Figure 1).
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Figure 3. Score plot of the the first three pricipal components of the pre-processed MIR spectra. The six central African hold-out regions

(colours) and the AfSIS SSL (black). The regions South Kivu (orange) and Iburengerazuba (green) are covering an area, which is neither

represented by the AfSIS SSL, nor by the remaining four central African regions.

3.2 Predictive performance of the three strategies

The prediction results for the three strategies are presented in Table 4 and Figure 4. In general, MBL retrieved good predictive265

results for all the strategies and for both TC and TN. As expected, the predictions for the South Kivu and Iburengerazuba

regions showed the lowest accuracy levels. This was expected as the principal component analysis indicate that the sols of

these regions might not be properly represented by the AfSIS library.
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Table 4. Statistics of the independent validations of the predictions of total carbon and total nitrogen for each region and three strategies.

Strategy 1: Predictions of the combined six regions by the AfSIS soil spectral library (SSL), Strategy 2: Predictions of the individual regions

by the remaining five regions together with the AfSIS SSL, Strategy 3: Spiking six regional models from Strategy 2 with 20 samples from

each target area.

Strategy Region Total carbon [%] Total nitrogen [%]

npred RMSEpred R2
pred MEpred RPIQpred npred RMSEpred R2

pred MEpred RPIQpred

Strategy 1

Haut-Katanga 99 0.60 0.79 0.50 1.62 99 0.08 0.31 0.07 0.59

South Kivu 347 0.86 0.94 0.35 2.43 348 0.17 0.85 0.13 1.10

Tshopo 114 0.73 0.47 0.26 0.96 129 0.05 0.52 0.03 0.93

Tshuapa 718 0.38 0.71 0.21 1.84 718 0.04 0.68 0.03 1.37

Iburengerazuba 84 0.87 0.84 0.45 2.60 84 0.08 0.81 0.06 2.13

Kabarole 80 0.57 0.86 0.11 3.95 80 0.07 0.84 0.05 2.86

Strategy 2

Haut-Katanga 99 0.42 0.72 0.18 2.30 99 0.03 0.59 0.00 1.50

South Kivu 347 0.89 0.95 0.47 2.36 348 0.12 0.89 0.07 1.55

Tshopo 114 0.54 0.64 0.03 1.31 129 0.03 0.72 0.01 1.49

Tshuapa 718 0.41 0.78 0.22 1.71 718 0.03 0.77 0.01 1.88

Iburengerazuba 84 0.80 0.86 0.27 2.84 84 0.05 0.82 0.00 3.21

Kabarole 80 0.86 0.83 0.43 2.65 80 0.06 0.86 0.04 2.90

Strategy 3

Haut-Katanga 99 0.36 0.80 0.14 2.72 99 0.03 0.71 0.01 1.87

South Kivu 347 0.73 0.95 0.15 2.86 348 0.09 0.89 0.03 2.05

Tshopo 114 0.49 0.69 0.01 1.43 129 0.03 0.75 0.00 1.62

Tshuapa 718 0.32 0.80 0.09 2.22 718 0.02 0.79 0.00 2.25

Iburengerazuba 84 0.63 0.91 0.11 3.57 84 0.04 0.91 0.00 4.45

Kabarole 80 0.41 0.94 0.17 5.48 80 0.04 0.91 0.02 4.27

3.2.1 Strategy 1: Predicted central African soils by AfSIS SSL

The prediction performance for TC and TN for the six regions of central Africa (C) are characterized by errors (RMSEpred)270

ranging from 0.38–0.87 % and 0.04–0.17 % respectively. The best prediction accuracies were achieved for the regions Tshuapa,

Kabarole, Haut-Katanga and Tshopo. For three of these regions with low RMSEpred (Tshopo, Haut-Katanga and Tshuapa), the

goodness of fit was less precise than for the other regions with R2
pred of 0.47–0.79 and 0.31–0.68 for TC and TN, respectively

and RPIQpred of 0.96–1.84 for TC and 0.59–1.36 for TN. For South Kivu, samples with high TC and TN contents (> 10 % TC

and > 0.5 % TN) are deviating from the 1:1 line. Moreover, TC predictions in three regions (Haut-Katanga, Tshopp, Tshuapa275

and Iburengerazuba) as well as TN predictions in all six regions showed a clear underestimation trend (Figure 4). This might

be caused by one or the combination of the two following effects: i) spectral offset and/or multiplicative effects in the spectra

14

https://doi.org/10.5194/soil-2020-99
Preprint. Discussion started: 8 January 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 4. Predicted vs. measured total carbon (TC) and total nitrogen (TN) for soil samples of six hold-out regions using Memory-based

learning; Strategy 1: predicting the six regions together by the AfSIS SSL, Strategy 2: Predicting each individual hold-out region by the

remaining five regions together with the AfSIS SSL and Strategy 3: Spiking each model of Strategy 2 with local samples from the target

regions. A 1:1 line is indicated as a visual aid.

(due to instrument differences) that might not have been completely accounted by the pre-pocessing methods ii) differences

between the conventional laboratory analyses used to obtain the reference property values.

15

https://doi.org/10.5194/soil-2020-99
Preprint. Discussion started: 8 January 2021
c© Author(s) 2021. CC BY 4.0 License.



3.2.2 Strategy 2: Regional predictions by soil spectral libraries280

The predictive performance in this strategy exhibited errors (RMSEpred) ranging between 0.41–0.89 % and 0.03–0.12 % for

TC and TN respectively (Table 4). Similarly to strategy 1, the most accurate predictions were obtained for the regions Haut-

Katanga, Tshopo and Tshuapa, where the errors (RMSEpred) were below or equal to 0.54 % and 0.03 % for TC and TN,

respectively. In comparison to strategy 1, the RMSEpred for Haut-Katanga and Tshopo regions were reduced by 0.2 %, while

they were about the same for Tshuapa, South Kivu and Iburengerazuba. Kabarole was the only region, where the RMSEpred285

increased in strategy 2 compared to strategy 1 (Figure 2, Table 4). When compared to strategy 1, the TN prediction errors

were consistently lower. This might be due to the inclusion of CSSL samples in the training set for this strategy. By doing so,

variance coming from instrument and reference laboratory differences is then discarded from the local models. The R2
pred of

the TC predictions indicate that the precision of such models was, in general, equal or slightly better for the strategy 2 than

for the strategy 1. Also the RPIQvalues for the TC predictions tended to be the same as in strategy 1 or slightly higher, except290

for region Kabarole where RPIQpred was reduced from 3.95 to 2.65 for strategy 1 and strategy 2, respectively. For TN, with

the exception of South Kivu, all regional predictions resulted in better regression fits than when using the AfSIS SSL only

for predictions, which is demonstrated by the higher R2
pred and RPIQpred values. R2

pred and RPIQpred for TN had a range of

0.59–0.89 and 1.50–3.21, respectively. In Figure 4, the improved prediction accuracy and better fits are visible especially for

region Haut-Katanga. Also for the other five regions, the underestimation of TC and TN contents was reduced or even removed295

compared to strategy 1.

3.2.3 Strategy 3: Spiking of the regional models

Spiking the regional models with up to 20 local samples Ki (Figure 2) consistently returned the lowest prediction errors for

all the regions (Table 4, Figure 5). Especially for the Ugandan region Kabarole the spiking effect was markedly large and

RMSEpred values were reduced from 0.60 % to 0.36 % and 0.06 % to 0.04 % for TC and TN, respectively. The RMSEpred values300

for three regions Haut-Katanga, Tshopoa and Tshuapa were smaller compared to strategy 2, but the differences were relatively

small (< 0.1 % for TC and < 0.01 for TN). With 20 spiking samples, RMSEpred for TC and TN contents for South Kivu could be

reduced from 0.89 % to a minimal RMSEpred 0.73 % TC and from 0.12 % to a minimal RMSEpred of 0.09 % TN, respectively.

The prediction error (RMSEpred for TC in the Iburengerazuba region could be reduced, but as in South Kivu, it remained

relaviely large (> 0.6 %). Comparing the effect of 20 spiking samples with the previous strategies 1 and 2, the predictions could305

better be fitted to the measured values (higher R2
pred and RPIQpred values).
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Figure 5. Root Mean Square Error of predicted total carbon (left) and total nitrogen (right; RMSEpred) for the six hold-out regions of central

Africa built from pooled AfSIS data together with the five remaining regions and the spiking samples. The 20 spiking samples were selected

from each particular target area and stepwise added to the predictive models. Stepwise addition was done in order to find the lowest number

of spiking samples that reduces the prediction accuracy to a satisfactory tolerance level.

4 Discussion

4.1 Using soil spectral libraries in geographically different domains

We showed that TC and TN in six regions of our CSSL can be accurately predicted, leveraging existing SSLs informed by soils

from completely different geographical areas using MBL methods (Table 4, Figure 4). The advantage of using MBL is that it310

finds spectrally similar observations for every new observation to fit specific models. The spectral similarity is in fact reflecting

the similarity between observations) in terms of soil composition which information is largely contained in the MIR features.

This means that the predictive success of MBL models largely depends on the quality of the spectra dissimilarity methods used

to find the spectral neighbors. In other words, MBL can be described as a method driven by compositional similarity search.

For central African soils together C by the AfSIS SSL (A) and for each hold-out region Gi predicted by the pooled AfSIS315

SSL together with the remaining five hold-out regions (A∪Ci; Figure 2), MBL models were able to find similar samples

and could accurately model and predict a new set without any additional local calibration samples. The improved prediction

accuracy (lower RMSEpred) when reducing extrapolation (strategy 2) can be explained by the addition of soils to the library

that are more similar to the hold-out region. The AfSIS SSL is missing data for most of central Africa (Figure A1); for

example, none of the tropical forest soils with high contents of organic carbon with distinctive mineral-organic composition320

are covered by this large-scale SSL. This, naturally, impacts the generalization ability of any predictive model or modeling

strategy. Two regions (South Kivu and Iburenerazuba) show large variability in TC and TN contents (Table 3). Both sites

17

https://doi.org/10.5194/soil-2020-99
Preprint. Discussion started: 8 January 2021
c© Author(s) 2021. CC BY 4.0 License.



contain samples from both tropical forests and agricultural fields, from diverse altitudes (Table 2) and parent materials and

have therefore transformed under a variety of environmental conditions. We conclude that the particularly high soil diversity

in these two regions in terms of soil biogeochemical properties introduces additional complexity in the soil spectral prediction325

workflow. To improve predictions for these diverse regions, more data particularly with high TC and TN values are needed for

calibrating the CSSL, and ultimately deliver better regional estimates using local methods (i.e., memory-based learning). High

diversity in organic compounds and their stabilization in soils (i.e. organo-mineral association, complexation, aggregation) can

introduce non-linear relationships that are difficult to predict with linear calibration models (i.e., memory-based learning in

combination with PLS regression). Similarly high RMSEs have been shown in other studies for samples with organic C higher330

than 15 % (Nocita et al., 2014). As in our study, these high errors were attributed to low sample numbers with high organic

C contents. The creation of subsets from large spectral libraries via spectral similarities has been shown to be effective to

train calibration models (e.g., Wetterlind and Stenberg, 2010; Clairotte et al., 2016; Tziolas et al., 2019; Dangal et al., 2019;

Sanderman et al., 2020). Hence, in order to reduce uncertainties for regions in central Africa that are diverse in terms of soil

chemical composition, in particular for the Eastern Congo Basin, there is an urgent need for filling the existing gaps in the335

continental library by gathering more data on the ground.

4.2 Effect of spiking with local samples on prediction performance

The effect of spiking of the calibration models with local target samples was smaller than expected (Figure 5). Although

spiking could reduce RMSEpred somewhat for two regions (Iburengerazuba, South Kivu and Kabarole, Table 4), the effect was

rather small for the remaining regions. Regions that occupied the same score space of the first two principal components as340

the corresponding other regions and the AfSIS SSL (Figure 3) showed only a minimal effect from spiking (Figure 1). This is

especially true for the Tshuapa, Tshopo and Haut-Katanga regions. In these regions, similar spectra were apparently already

available and the MBL found the required neighbours to build accurate models and predict TC and TN. For South Kivu and

Iburengerazuba, the predictions could not be improved by adding the other regions to the AfSIS SSL, but spiking with samples

from the target area could slightly improve their results. However, the prediction error (RMSEpred remained relatively high345

(Figure 5). On one hand, no other region and also not the AfSIS SSL cover the same score space as these two regions and on

the other hand, the variability of soil properties within these two regions is large which also minimizes the effect of spiking.

Even though spiking is described as particularly effective in improving performance of small sized models (Guerrero et al.,

2010), spiking, in our study, did not have as strong of an effect as reported by earlier studies (e.g., Guerrero et al., 2014; Seidel

et al., 2019; Barthès et al., 2020; Wetterlind and Stenberg, 2010).350

4.3 Suggestions for building new models and extending the existing spectral library

Our regional predictions of TC and TN show promising results when analyzing soils from geographically distinct areas in

central Africa that are not covered by the continental AfSIS SSL (Figure A1). The addition of geographically proximal regions

to the large-scale library, which are included in our CSSL, improved prediction accuracy significantly. This improvement

underlines the usability of spectral libraries for new regions in general but encourages also the future amendment of currently355
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existing libraries to improve accuracy. To improve future soil analyses and to extend the geographical area covered by the SSL,

we suggest the following workflow:

1. Preprocessing: Different spectral pre-processing methods influence model and prediction performance. We suggest

selecting the best pre-processing strategies using spectral projections and minimizing the reconstruction error (see sub-

section 2.4).360

2. Estimate uncertainty for new samples: When analyzing new soil samples from a region which is not covered by the

SSL, samples with different composition and hence chemical properties are more likely to be introduced. Samples with

high distances in the score space to the SSL cannot be predicted accurately with a high certainty, since they are often

highly divergent from the SSL. A preliminary graphical inspection of resampled and pre-processed spectra can already

allow for recognition of differences. A further dimension reduction (e.g. with a PCA) with a subsequent 2D or 3D365

visualization of the first factors provides additional insights into dissimilarity.

3. Reference analysis for independent validation: If the new samples are from a completely new region or the new sample

set trends to differ from the SSL, a certain number of validation samples is recommended to test for prediction accuracy.

The number is dependent on the similarity/dissimilarity to the SSL.

4. Search for nearest neighbors and train a model: Run an MBL algorithm to find the nearest neighbors of the new set370

and train a subsequent weighted average PLS regression.

5. Model validation: For predicting soil TC and TN and quantifying the error of these predictions in new geographical

regions, a new model validation is required. The nearest neighbor validation is a suitable method, as demonstrated in this

study.

Our CSSL is freely available to use and build upon at GitHub. As shown with the AfSIS SSL, the application of already375

existing libraries and the extrapolation to new regions is accurate and suitable to estimate soil properties. However, to make

predictions more accurate, especially for more diverse, heterogeneous and complex soils, more data is required. As demon-

strated, the addition of new geographical regions improves the overall prediction accuracy when more proximal central African

regions were added to the large-scale library. These results encourage the use and amendment of existing libraries, rather than

the construction of new, separate, and extensive databases. Given the existing distribution of samples in the new CSSL, it is380

especially important to increase the number of forest soils with high TC content, which represent a large portion of the Congo

Basin. The future enlargement of the CSSL, preferably facilitated by our suggested workflow, is crucial to fill the gap of soil

information in this highly understudied part of the world.

5 Conclusions

Our study presents the results and workflow for building the first central African SSL for predicting soil properties (TC and TN)385

using lab based MIR spectroscopy in a crucial but understudied area of the African continent. Extrapolations were possible
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for central Africa and for all the hold-out regions. Our results further demonstrate how MBL algorithms are useful to find

spectral similarities and reduce the need for spiking when a new set covers the same score space as the existing library. These

encouraging insights highlight the utility of spectral libraries for future applications, since they are not necessarily limited

to certain geographical areas. Our approach of augmenting a smaller SSL with a continental SSL, even when scanned on a390

different instrument, lead to highly accurate predictions for new regions. The CSSL fills an appreciable continental gap of the

continental scale AfSIS SSL and contributes an important range of soil variability, particularly from lowland tropical forests.

However, in order to improve the accuracy of predicting soil organic matter across regions, especially for soil compartments

with high TC and TN contents, our study highlights the need to extend the existing library into new regions. The inclusion

of more samples and regions, in particular with more (vayring) data of humid tropical forest soils is crucial to fill existing395

gaps. Also combining spectral libraries will allow fast analyses of soil samples and provide spatially explicit data across humid

tropical Africa. Improved knowledge of soil properties is a major step to maintain ecosystem services that promote human and

ecological well-being.

Code and data availability. Data and R codes are available on our GitHub repository ’ssl-central-africa’ and can also can be found under

Zenodo with the DOI 10.5281/zenodo.4351254 (Summerauer, 2020) to reproduce our results presented in the submitted manuscript. Raw400

data can be provided to the reviewers upon reasonable request.
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Appendix A: Supplementary Figures

Figure A1. Location of samples used from the two spectral libraries from central Africa and the continental library from the African Soil

Information Service (AfSIS; left). The samples used from the core-regions and further analysed in this study are presented with a ◦ symbol,

the remaining samples of the central African library with a4 symbol and the AfSIS SSL with � symbol. The average resampled spectrum

of each library are shown (bold line) along with the individual resampled sample spectra (transparent lines; right).
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