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Abstract

Aggregation affects a wide range of physical and biogeochemical soil properties with positive effects on
soil carbon storage. For weathered tropical soils, aluminous clays (kaolinite and gibbsite) and pedogenic
Fe (oxyhydr)oxides (goethite and hematite; termed ‘Fe oxides’) have been suggested as important building
units for aggregates. However, as aluminosilicates, aluminum hydroxides, and Fe oxides are part of the
clay-sized fraction it is hard to separate, how certain mineral phases modulate aggregation. In addition, it
is not known what consequences this will have for organic carbon (OC) persistence after land-use change.
We selected topsoils with unique mineralogical compositions in the East Usambara Mountains of
Tanzania under forest and cropland land uses, varying in contents of aluminous clay and Fe oxides.
Across the mineralogical combinations, we determined the aggregate size distribution, aggregate stability,
OC contents of aggregate size fractions as well as changes in aggregation and OC contents under forest
and cropland land use. Patterns in soil aggregation were rather similar across the different mineralogical
combinations (high level of macroaggregation and high aggregate stability). Nevertheless, we found some
statistically significant effects of aluminous clay and pedogenic Fe oxides on aggregation and OC storage.
An aluminous clay content >250gkg® in combination with pedogenic Fe contents <60 gkg®
significantly promoted the formation of large macroaggregates >4 mm. In contrast, a pedogenic Fe
content > 60 g kg™ in combination with aluminous clay content of < 250 g kg™ promoted OC storage and
persistence even under agricultural use. The combination with low aluminous clay and high pedogenic Fe
contents displayed the highest OC persistence, despite conversion of forest to cropland caused substantial
disaggregation. Our data indicate that aggregation in these tropical soils is modulated by the mineralogical
regime, causing moderate but significant differences in aggregate size distribution. Nevertheless,
aggregation was little decisive for overall OC persistence in these highly weathered soils, where OC

storage is more regulated by direct mineral-organic interactions.



50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

1. Introduction

Many functions of soils such as food production, water purification as well as climate regulation are
tightly linked to soil structure (Bronick and Lal, 2005; FAO, 2015; Six et al., 2004). Aggregates are the
structural backbone of soil and changes in aggregation impacts various processes such as root
development, soil erosion, and soil organic carbon (OC) accumulation (Chaplot et al., 2010; Le Bissonnais
et al., 2018). Based on their size, soil aggregates are typically classified into small microaggregates
(< 20 um), large microaggregates (20-250 um), and macroaggregates (> 0.25 mm) (Tisdall and Oades,
1982). Cementing agents such as clay minerals, metal (oxyhydr)oxides, as well as organic matter (OM)
are considered as primary building units of microaggregates (Totsche et al., 2018), which provide the basis
for the formation of larger soil structural units (Asano and Wagai, 2014). The study by Six et al. (2002)
points to the special role of inorganic compounds such as clay minerals and pedogenic metal oxides in the
formation of aggregates in the tropics. Pedogenic iron (Feg) (oxyhydr)oxides (summarized as ‘Fe oxides’)
have been reported to facilitate macroaggregation (Peng et al., 2015) and aggregate stability (Duiker et al.,
2003). Under the acidic conditions of weathered tropical soils, Fe oxides provide positively charged
surfaces capable of reacting with negatively charged inorganic constituents, like clay minerals or OM
(Kaiser and Guggenberger, 2003; Kleber et al., 2015; Six et al., 2004; Totsche et al., 2018). Aggregation
might be ascribed to inorganic or organic cementing agents with no consensus about the relevance of each
individual agent. Understanding the effects of individual cementing agents for aggregation is needed to
disentangle their potential contribution to soil aggregation. For example, the extent of aggregation has
been either positively related to the contents of clay and OC (Chaplot and Cooper, 2015; Paul et al., 2008;
Spaccini et al., 2001), or to differences in the clay mineral composition (Fernandez-Ugalde et al., 2013).

Furthermore, Barthés et al. (2008) showed that texture had no effect on macroaggregation over a range of

tropical soils characterized by low-activity clay minerals. Such kind of uncertainty may derive from the ///[ Geldscht: U

fact that the clay size particle fraction (< 2-pum) not only contains OM and different types of clay minerals,
but also variable contents of pedogenic Fe and aluminum (Al) oxides (Barré et al. 2014; Fernandez-

Ugalde et al. 2013; Wagai and Mayer 2007). Denef et al. (2004) showed that significant differences in the

Geloscht: also
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78 amount of microaggregates encased in macroaggregates can be related to the clay mineral composition
79  (2:1, mixed layer, 1:1 clays). They assume that interactions of 1:1 clay minerals with Fe oxides cause a
80  higher aggregate stability compared to those involving 2:1 clay minerals (Denef et al., 2002, 2004). Such
81  mutual interactions between typical aluminous clay-sized minerals (e.g. kaolinite, gibbsite) and pedogenic

82  Fe oxides are thus possible drivers of aggregation in weathered tropical soils (Durn et al., 2019).

83 Soil aggregation is considered to be an important process that increases OC persistence, because of ///[ Geldscht: As indicated above, s

84  the physical separation of OM from microorganisms and their exoenzymes (Six et al., 2004). Thus,

85  improved aggregation could contribute to enhanced OC storage in soils (Kravchenko et al., 2015; Marin-

86  Spiotta et al., 2008; Schmidt et al., 2011). Managing aggregation, e.g., for climate change mitigation,

87  requires profound knowledge on the controls of aggregation and their effects on OC persistence (Paul et

88 al., 2008). To the best of our knowledge there are no studies available, which investigated the influence of

89  changes in the content of clay minerals with low activity and the content of pedogenic metal oxides on

90  aggregation under comparable mineralogical conditions for weathered tropical soils. Macroaggregates are

91  particularly susceptible to soil management (Six et al., 2000a; Totsche et al., 2018). Consequently,

92  destruction of macroaggregates upon changes from forests to cropland might account for OC losses that

93  were observed in tropical soils (Don et al., 2011; Kirsten et al., 2019; Mujuru et al., 2013). The stability of

94  aggregates should thus determine OC losses induced by land-use change and higher losses should be

95 related to lower aggregate stability (Denef et al., 2002; Le Bissonnais et al., 2018; Six et al., 2000b). We

96 are currently not aware of any studies that solve the puzzle to which extent the amount of aluminous clay

97 and pedogenic Fe oxides controls soil aggregation and OC storage in highly weathered soils of the humid

98 tropics.

99 This study takes advantage of soils under natural forest and cropland in the East Usambara
100  Mountains of Tanzania. The mineralogical composition of the study soils is very homogeneous with
101 kaolinite and gibbsite as the main aluminous minerals of the clay fraction and goethite and hematite as
102  dominant pedogenic Fe oxides (Kirsten et al., 2021). Yet, the ratio of aluminous clays to Fe oxides

103  differed strongly, giving rise to unique mineralogical combinations under both land use types. Thus, the
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conversion of natural forest to cropland in the study region enables us to evaluate the effect of land-use
change under each mineralogical combination on soil physical properties and related OC persistence. In
the precursor study, we found a positive relationship between the storage of mineral-associated OC and
the ratio of pedogenic Fe to aluminous clay under forest and cropland land use, suggesting that a larger
share of Fe oxides is linked to larger OC storage and persistency against land-use change (Kirsten et al.,
2021). In the present study, we test whether aggregation and its contribution to OC storage follow similar
patterns, or are decoupled from the individual contribution_of main mineral constituents. In detail, our
main research goal was to investigate the individual role of aluminous clay and pedogenic Fe oxides for
determining (i) the soil aggregate size distribution, (ii) aggregate stability, (iii) the consequences for OC
allocation into different aggregate size fractions, and (iv) the consequences for OC persistence related to
land-use change. We hypothesize that the mineralogical combination resulting in the largest aggregate
stability also results in the largest OC persistence. For this purpose, we determined the aggregate size
distribution of soils under both land uses, determined the OC contents of obtained aggregate fractions, and
tested the stability of the two largest aggregate size fractions (2—4 mm and >4 mm). As a measure of OC
persistence, the OC content of aggregate size fractions was compared between the two land uses in the
same mineralogical combination. We generally focused on soil samples from 0-10 cm to test our current
hypothesis since land-use induced OC losses from soils of the study region largely occur in this depth

increment (Kirsten et al., 2019).
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2. Material and methods

2.1 Study area and soil sampling

The study was conducted in the Eastern Usambara Mountains of Tanzania close to the village Amani
(5°06'00" S; 38°38'00" E). The climate is humid monsoonal with a mean annual precipitation of
1,918 mm, and a mean annual temperature of 20.6°C with low variability within the study area (Hamilton
and Bensted-Smith, 1989). The dominating Acrisols and Alisols, developed from Precambrian crystalline
bedrock, are deeply weathered and highly leached, with visible clay illuviation in the subsoil (Kirsten et
al., 2019). Briefly, all soil samples were collected on mid-slope position. We sampled six plots under
forest and three under annual cropping. The site selection was done based on total clay amount determined
in the field and the associated total Fe amount measured with a portable XRF device (Kirsten et al., 2021).
We did not observe systematic differences in vegetation composition of the forest sites and NMR spectra
showed a similar composition of litter for each of the two land uses investigated (Kirsten et al., 2021) .
Furthermore, several visits in the study region over the last decade (2012, 2013, 2015, and 2018)
combined with personal talks to farmers and local partners working in the region, enabled us to select
cropland sites with similar agricultural management (cultivation of cassava (Manihot esculenta), hand hoe
tillage, biomass burning before seed bed preparation). At each plot, mineral soil from three adjacent and
randomly distributed soil pits at mid-slope position was sampled at 0-5 and 5-10 cm depths._This

procedure was chosen because we identified two soil horizons at 0-5 and 5-10 cm depth based on

differences in color and structure. To have a consistent sampling design, we applied this distinction to the

cropland sites, too. Living roots were removed and aliquots of the soils were sieved to <2 mm after
drying at 40°C. For each depth increment, three undisturbed soil cores (100 cm®) were collected for bulk

density determination.

2.2 Soil analyses

Basic soil properties and selected mineralogical combinations
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Bulk density was determined after drying the soil at 105°C and corrected for coarse fragments (Carter and
Gregorich, 2008). Soil pH was measured in 0.01 M CaCl, at a soil to solution ratio of 1 : 2.5. Extraction
of poorly crystalline Fe and Al phases as well as of Fe and Al complexed by OM was done with
ammonium oxalate according to Schwertmann (1964). Effective cation exchange capacity (CEC) and
base saturation (BS) were determined following the procedure provided by Triiby and Aldinger (1989).
Contents of OC and total N were analyzed by high temperature combustion at 950°C and thermo-
conductivity detection (Vario EL Ill/Elementar, Heraeus, Langenselbold, Germany). A combined
dithionite-citrate-bicarbonate extraction and subsequent texture analysis was applied to determine the
contents of aluminous clay and total pedogenic Fe (Feg). Briefly, 5-6 g soil pre-treated with 30% H,0O,
were extracted with 30 g sodium dithionite (Na,S,0,) and 1.35 L buffer solution (0.27 M trisodium citrate
dihydrate (CsHsNazO; « 2H,0) + 0.11 M sodium bicarbonate (NaHCOs3)) at 75°C in a water bath for
15 min (Mehra and Jackson, 1958). The Fe concentration of the extracts were measured by inductively
coupled plasma optical emission spectroscopy (ICP-OES) using a CIROS-CCD instrument (Spectro,
Kleve, Germany). The residues of the extraction were then subjected to a texture analysis using the pipette
method (Gee and Bauder, 1986). Details of the procedure are described in Kirsten et al. (2021). Based on
the respective content of aluminous clay and pedogenic Fe oxide in the 5-10 cm depth increment, each
sample was assigned to a certain mineralogical combination. The threshold values for aluminous clay and
pedogenic Fe oxides to distinguish between “high” and “low” were set to 250 g kg™ and 60 g kg,
respectively. We differentiated four groups varying in contents of aluminous clay and pedogenic Fe oxides
under forest (i.e. ‘low clay-low Fe’, ‘low clay-high Fe’, ‘high clay—low Fe’, ‘high clay-high Fe’), and

three analogous groups under cropland (i.e. ‘low clay—low Fe’, ‘low clay-high Fe’, “high clay-high Fe”’).

Aggregate size distribution, aggregate stability and carbon contents
Aggregate size distribution was determined by dry sieving as it most closely resembles soil conditions at
the end of the long dry season. Undisturbed soil was dried at 40°C for 48 hours. Separation of aggregate

sizes was conducted with a sieving machine (AS 200 control “g”, Retsch, Hanau, Germany) combined



174 with a set of four sieves with meshes of 4, 2, 1, and 0.25 mm, respectively (Larney, 2008). The amplitude
175  was set to 1.51 mm (7.6 g-force), which was applied over a sieving duration of three minutes. Aggregate
176  stability was tested for the two largest aggregate size fractions (2-4 mm and >4 mm). The fast wetting
177  pretreatment was applied to both fractions (Le Bissonnais, 1996) using a wet-sieving apparatus
178  (Eijkelkamp, Giesbeek, Netherlands) with sieve openings of 63 um. This procedure simulates the
179  transition of aggregates from dry to rainy season. Sieving was conducted in ethanol for three minutes
180  (stroke 1.3 cm, f = 34 min). All aggregates remaining on the sieve were dried at 105°C. Water-stable
181  aggregates were subsequently introduced to a sieving apparatus with a set of five sieves with mesh sizes of
182 4, 2, 1, 0.63, and 0.25 mm, respectively (Larney, 2008). For each obtained aggregate fraction by dry
183  sieving, OC contents analyzed by high temperature combustion at 950°C and thermo-conductivity
184  detection (Vario EL Ill/Elementar, Heraeus, Langenselbold, Germany). The mass corrected OC content of

185  acertain aggregate fraction was calculated using equation 1 to resemble the contribution to total soil OC,

186  Mass — corrected OCpggregate = ﬁ X 0Cpggregate (EQ. 1)
187 where m; represents the mass of an aggregate size fraction (g), >.m;, the sum of masses of all size

188  fractions (g), and OCaggregate the OC content of aggregate fraction "i".
189  The mean weight diameter (MWD) of aggregates was calculated using equation 2 for undisturbed soil to
190  describe the initial aggregate size distribution, and for the large aggregate size fractions after exposure to

191  the stability test to evaluate the effect of fast wetting on aggregate stability,

192 MWD =3l,stxd; (Ed.2)
193 where m; represents the mass of an aggregate size fraction (g), >m;, the sum of masses of all size

194  fractions (g), and d; the mean mesh diameter of fraction “i" (mm). The MWD of the aggregate fraction
195 >4 mm was estimated by doubling the largest sieve size diameter (Youker and McGuinness, 1957).

196

197 2.3 Statistics and calculations

198  The mean and standard deviation of data were calculated with the software package R (version 3.6.0). To

199 | test for significant differences between mineralogical combinations, land uses, and depths, we applied the /[ Gel6scht: treatments

8
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linear model function [Im()]_jn combination with analysis of variance [aov(Im()]. The Tukey-HSD test /[ Geloscht: was used

was used as a post-hoc comparison of means; the LSD-test was applied in the case of non-equality of
variances. Regression analysis was used to test for relationships between mineralogical properties and
MWD, masses of aggregate size fractions, aggregate stability, and OC losses due to land-use change.
Statistical differences are reported at a significance level of p <0.05. Based on our selected threshold
values for aluminous clay and pedogenic Fe oxides, we were able to achieve the following number of
replicates for the mineralogical combinations: ‘low clay—low Fe’ under forest (n = 4), ‘low clay—high Fe’
under forest (n = 4), “high clay—low Fe’ under forest (n = 3), ‘high clay—high Fe’ under forest (n = 7); all

cropland combinations (n = 3).
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3. Results

3.1 Mineralogical composition and general soil properties

The selected mineralogical combinations represent a broad spectrum of possible combinations mineral
aluminous clay and Fe oxide constituents. Amounts of aluminous clay varied between 149 and 438 g kg™,
and Fey between 21 and 101 gkg™ across all sites and land uses. Amorphous Fe and Al phases
contributed little to pedogenic oxides as indicated by low proportions of oxalate-extractable Fe and Al
(Table 1). The advanced weathering state of study soils was also reflected in low pH and CEC. values

(Table 1).

10
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3.2 Influence of aluminous clay and pedogenic Fe on aggregate size distribution

A

Geldscht: A

Mean weight diameter

The studied soils were highly aggregated and showed significant variation in their aggregate size

distribution across the mineralogical combinations (Figure 1a, Table 2). The low clay—low Fe combination

under forest displayed the significant smallest MWD, (e.g., 2.9 mm in 0—5 cm depth; Table 2). In contrast,

the low clay—high Fe combination always had the largest MWD (e.q., 4.8 mm in 0-5 cm depth; Table \

among the other forest combinations. Our data suggest that the MWD under forest is significantly

Geloscht: For most combinations,
about 74% of soil mass was present in
aggregates > 2 mm (Figure 1a),
whereas in forest soils with low
contents in both aluminous clay and Fe
oxides only 40% could be assigned to
aggregates > 2 mm. Only 3-12% of
total soil mass remained in < 0.25 mm

\\ aggregates (Table 2).
\

positively influenced by the Feq content (e.9., MWDgorest 05 em: I = 0.40, p < 0.001;, Table S1), whereas

{Geléscht: ,

(

Geloscht: with

nearly no effect was observed for aluminous clay, Contrary to the mineralogical combinations under

Geldscht: and 3.7 mm in 5-10 cm
depth (

forest, the significant smallest MWD under cropland was within the low clay-high Fe combination

(2.7 mm in poth depths; Table 2). The low clay—low Fe and high clay—high Fe cropland combinations \!

| Gelbscht: and 3.7 mm in 5-10 cm

depth (

showed no strong differences in their MWDs. Nonetheless, a significant negative linear relationship

Geloscht: , and 4.6 mm in 5-10 cm

\ '\ depth

existed between MWD and the pedogenic-Fe to aluminous clay ratio (MWDcroptand 0-5 cm r?=0.47,

Gel6scht: MWDk reqi5-10 cm

\ r?=0.15,p =0.06

p = 0.03; MWDcrpiand 5-10 cm: r? =0.47, p = 0.02) for the mineralogical combinations under cropland (Table

Geloscht: (MWDkgq e 0-5 cm:

r?<0.01, p =0.79; MWDgqre5-10 em:
r?<0.01, p = 0.30, Table S1)

S1).

Geloscht: 0-5 cm depth and 2.7 mm
in 5-10 cm

)
)
|
|
|
|
|

Macroaggregates >4 mm and 2—4 mm

Corresponding to the smallest MWD, the low clay—low Fe forest combination contained the smallest
fraction of >4 mm aggregates. The contribution of these large aggregates under forest increased in the
order: low clay-low Fe < low clay-high Fe = high clay-high Fe < high clay—low Fe (Figure la). For
croplands, the low clay-high Fe combination comprised the smallest amount of >4 mm aggregates

whereas the high clay—high Fe combination exhibited the respective highest share (Figure la). The

explained variance of > 4 mm aggregate mass py aluminous clay and Fey was generally low, except for the /{

Geloscht: due to

cropland combinations (positive effect of aluminous clay and negative effect of pedogenic Fe; Table S1).

13
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290
291  Figure 1: Aggregate size distribution of the combined 05 and 5-10 cm depth increments (a), and relative

292  mass-corrected OC contents (b) along the mineralogical combinations. Clay represents the weight sum of
293 kaolinite and gibbsite present in the < 2-um fraction after removal of OM and pedogenic Fe oxides, and
294  Fe denotes the content of pedogenic Fe oxides extracted with dithionite-citrate-bicarbonate. Sample
295  numbers for the combinations are as follows: ‘low clay—low Fe’ under forest (n = 4), ‘low clay—high Fe’
296  under forest (n = 4), ‘high clay—low Fe’ under forest (n = 3), “high clay-high Fe’ under forest (n = 7); all
297  cropland combinations (n = 3).

298

299 The mineralogical combinations affected the amounts of 2—4 mm aggregates differently than those
300  of >4 mm aggregates. The low clay—high Fe combination under forest and cropland contained slightly but
301  significantly more 2-4 mm aggregates (Figure 1a), being associated with a significantly higher Fey to
302  aluminous clay ratio (Table 1). In fact, in a multiple regression model for the entire data set (combined

303  land uses and depths), we observed a positive relationship between the mass of 2—4 mm aggregates and

by soil depth showed similar

304 | Feycontent, whereas the content of aluminous clay had a negative effect (> = 0.57, p < 0.001; Table S1) Gelbscht: The same model separated
relationships (Table S1).

305

306 Microaggregates < 0.25 mm

307 | Across all mineralogical combinations, amounts of < 0.25 mm aggregates were principally similar, despite /[Gelascht: comparable

308 | of significantly higher shares in the low clay—low Fe and high clay—high Fe combinations under forest.A_/[Gewscht; In contrast, a

309  significant larger amount of < 0.25 mm aggregates was observed in the low clay—high Fe combination

310  under cropland. In this mineralogical combination, land-use change caused a quadrupling of <0.25 mm
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318

319

aggregate mass from about 30 to nearly 120 g kg™ (Table 2). In contrast to the macroaggregate fractions

shown above, there was no correlation between mineralogical parameters and the mass of <0.25 mm

aggregates, neither for the entire data set (combined land uses and depths) nor when separated by soil

depth (Table S1),,

15

—| Geldscht: Only under cropland we

observed a negative effect of
aluminous clay and a positive
influence of Feq on microaggregate
contents (aggregate mass < 0.25 mmj_s
om: 2 = 0.8, p = 0.004; aggregate mass
< 0.25 MMs_jg om: I = 0.61, p = 0.03).
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Summary

Mineralogical combinations and land use significantly affected the aggregate size distribution of soils,

despite quantitative relations to mineralogical proxies could not be observed for each aggregate class. In
undisturbed forest soils, higher pedogenic Fe contents resulted in increasing MWD especially in 0-5 cm
depth and significantly larger amounts of >2 mm aggregates. The conversion from forest to croplands
either decreased MWD, as particularly observed for the low clay—high Fe combination, or had no effect
(low clay—low Fe). Overall, the observed differences in aggregate masses and MWD were surprisingly
moderate, given the widely differing contents in aluminous clay and Fe oxides across the mineralogical

combinations.

3.3 Aggregate stability

In general, there was little variation of MWD values for >4 mm aggregates over all mineralogical
combinations. In fact, the MWD of this fraction was always close to its calculated mean diameter (6 mm;
calculation was done after (Youker and McGuinness, 1957)), overall indicating a high stability.
Nevertheless, there were some minor differences in aggregate stability across mineralogical combinations.
The low clay-low Fe and high clay—low Fe combinations had a significantly lower aggregate stability in
comparison with the two other combinations under the two land uses (Table 3). The slightly higher
abundance of 2-4 mm aggregates in the low clay—high Fe combination under forest and cropland was
accompanied by a significantly higher aggregate stability under both land uses (Table 2 and 3). In
summary, all aggregates can be classified as stable with only minor differences imposed by the
mineralogical combinations. Slightly higher aggregate stability was associated with a larger amount of
pedogenic Fe, and increasing Fey to aluminous clay ratios, whereas differences in the amount of aluminous

clay had almost no effect on the aggregate stability (Table S2).

18

/[ Geldscht: In summary, m




362

363
364
365
366
367
368
369
370

371

372

373

374

Table 3: Aggregate stability of selected aggregate size fractions after applying the fast wetting procedure
along the different combinations of aluminous clay and pedogenic Fe oxides, indicated by the resulting
mean weight diameter (MWD). Aluminous clay represents the weight sum of kaolinite and gibbsite
present in the < 2-um fraction after removal of OM and pedogenic Fe oxides. Lower case letters indicate
significant differences within a certain land use separated by depth, and capital letters denote significant
differences between land uses. Sample numbers for the combinations are as follows: ‘low clay—low Fe’
under forest (n = 4), “low clay—high Fe’ under forest (n = 4), “high clay—low Fe’ under forest (n = 3), ‘high
clay—high Fe’ under forest (n = 7); all cropland combinations (n = 3).

L e o
Fast wetting Fast wetting
>4 mm 24 mm

(cm) (mm)
Forest Low aluminous clay— 0-5 4.90A 2.6%A
(0.4) 0.1)
Low pedogenic Fe oxides 5-10 5.1aA 2.40A
(0.3) (0.3)
Forest Low aluminous clay— 0-5 5.6%A 2.8~
©2) ©1)
High pedogenic Fe oxides 5-10 4.92A 2,704
(0.9) (0.1)
Forest High aluminous clay- 0-5 5.43° 2.7°
0.4 0.0
Low pedogenic Fe oxides 5-10 452 2.4°
(12) (0.3)
Forest High aluminous clay- 0-5 553 A 2,624
0.2) 0.1)
High pedogenic Fe oxides 5-10 5.oaA 268
(0.4) (0.1)
Cropland  Low aluminous clay— 0-5 4.4PA 2654
(0.1) (0.0)
Low pedogenic Fe oxides 5-10 4904 2404
(0.3) (0.1)
Cropland  Low aluminous clay— 0-5 5.23A 2.9%A
02) 0.0)
High pedogenic Fe oxides 5-10 5,330 A 2.8%4~
(0.1) 0.0
Cropland  High aluminous clay— 0-5 4.9*8 2704
02) ©.0)
High pedogenic Fe oxides 5-10 5.6%A 2.8%A
(0.2) 0.0

3.4 Organic carbon in soils and aggregate size fractions

constituents caused different soil OC
contents, ranging between

In the entire data set, variation in mineral constituents caused pronounced differences in the OC content of

Geloscht: Variation in mineral

the soils between, 19 to 95 g OC kg™, (Table 1). A significant proportion of the total OC content of all /

_—| Gel6scht: across all sites including
both land use and depth
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forest soils was present in >4 mm aggregates in both depth increments (low clay—low Fe: 33% < high
clay-high Fe: 43% < high clay-low Fe: 51% < low clay-high Fe: 52%; Figure 1b). Forest to cropland
conversion caused OC losses from most aggregate size fractions (Figure 2). For the >4 mm aggregates
this was significantly modified by the mineralogical combinations at least at 0—5 cm depth, generally
following the order: low clay—high Fe < high clay-high Fe < low clay—low Fe (Table S3). Losses of OC
from aggregate size fractions were generally higher at 0-5 than at 5-10 cm depth (Figure 2). As
mentioned above, no significant loss of total OC occurred for the low clay—high Fe combination,
irrespective of the significant mass redistribution of the > 4 mm aggregate fraction into smaller aggregate
fractions (Table 2). Although there were differences in OC losses among mineralogical combinations,

there was little indication that coarser aggregate size fractions lost more OC than smaller ones (Table 2).

Aggregates = 4 mm Aggregates = 0.25 mm
Aggregates = 2 mm B Aggregates < 0.25 mm
Aggregates = 1 mm

i
© 100 l
5 80
& 1
o |
2 60 n
'z (L]
£ n
8 404 [
3 il L il
2 204 L
i e L i
0 n

0-5cm  5-10cm 0-5cm  5-10cm 0-5cm  5-10cm 0-5cm 5-10cm

a— = -— = — = a— = -— = — = -— = -— =

oC o o o o o o o O o (==Y O o O o

-5 -5 LG -5 -5 s -5 -5
low clay—low Fe ° low clay-high Fe * high clay—low Fe ° high clay—high Fe

Figure 2: Mass-corrected OC contents of aggregate size fractions along the mineralogical combinations.
Clay represents the weight sum of kaolinite and gibbsite present in the < 2-um fraction after removal of
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OM and pedogenic Fe oxides, and Fe denotes the content of pedogenic Fe oxides extracted with
dithionite-citrate-bicarbonate. Sample numbers for the combinations are as follows: ‘low clay—low Fe’
under forest (n = 4), ‘low clay—high Fe’ under forest (n = 4), ‘high clay—low Fe’ under forest (n = 3), ‘high

clay-high Fe’ under forest (n = 7); all cropland combinations (n = 3).
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4. Discussion

The aggregate size distribution of soils along the mineralogical combinations under both land uses were in
the range of values reported for African soils. For example, soils with strongly contrasting clay content
(220 and 650 g kg™) but similar clay mineralogy (kaolinite) in the central highlands of Kenya displayed
macroaggregate contents of 245 and 636 g kg™ soil, respectively (Gentile et al., 2010). In addition, for
soils from the catchment of the Riru river also located in the central highlands of Kenya it was shown that
macroaggregates (2—4.2 mm) displayed a large stability (Kamamia et al., 2021). The reported MWD's
after application of the fast-wetting stability test were 2.5 mm for cropland and 3.2 mm for indigenous
forest sites (Kamamia et al., 2021). These values are close to those observed in our study soils for 2-4 mm
aggregates. In contrast, soils in Brazil under native forest vegetation and similar mineral composition
(kaolinite, gibbsite, hematite) even subsumed over 90% of total aggregate mass in >2 mm aggregates
(Maltoni et al., 2017). Nonetheless, reported data all point at a better soil structure and aggregate stability
of tropical soils dominated by low-activity clay minerals and well-crystalline Fe oxides, which is

consistent with all mineralogical combinations of this study.

4.1 Aggregation and aggregate stability as controlled by aluminous clay and pedogenic Fe oxides

Our data demonstrates relatively small differences in aggregation among the generally well-aggregated
study soils, being characterized by high aggregate stability despite of large variations in aluminous clay
(factor three) and pedogenic Fe (factor five) contents. Yet, we noticed some distinct modifications of the

aggregation size distribution and aggregate stability in both forest and cropland soils.

Mineralogical control on the formation of large macroaggregates

The low clay-low Fe soil under forest had a significantly smaller amount of >4 mm and 2-4 mm
aggregates and a significantly lower MWD than all other mineralogical combinations. Notably, a
combined increase in aluminous clay and Fe oxides did not necessarily cause a shift towards larger

aggregates and thus higher MWD (see low clay-high Fe forest). Furthermore, the low clay—low Fe and
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high clay-high Fe combinations under forest contained more <0.25mm aggregates. Thus, under
undisturbed soil conditions it appears that the formation of larger aggregates is promoted if one of the two
aggregate-forming mineral fractions is more abundant than the other (high clay—low Fe and low clay—high
Fe combinations).

We assume that the positive effect of increasing aluminous clay content on the aggregate mass
>4 mm is related to the hybrid electrostatic properties of kaolinite on edges (variable) and surfaces
(permanent negative), which enable the formation of characteristic cards-house structures (Qafoku and
Sumner, 2002). In addition to this increase in aggregation caused by the dominance in kaolinitic properties
(i.e. high clay—low Fe), we also expect that, similar to the study by Dultz et al. (2019), there are mixing
ratios between aluminous clay and pedogenic Fe minerals, which lead to improved aggregation (greater
MWD:; i.e. low clay-high Fe). This effect is probably explained by changes in the electrostatic properties
of the mineralogical combinations, as was shown in the study by Hou et al. (2007) for kaolinite in
different relative combinations with goethite and hematite. Nevertheless, aluminous clay is the decisive
control for macroaggregation in these weathered tropical soils, confirming the often described promoting

effect of increasing clay content on aggregation (Feller and Beare, 1997). This is in line with results from

two Oxisols in Brazil (Vrdoljak and Sposito, 2002), showing kaolinite being the backbone of

macroaggregates.

Consequently, the dominant role of pedogenic Fe oxides for macroaggregation under undisturbed

tropical soil conditions proposed by Six et al._(2002) cannot be confirmed in our study. This is alsq, / /

supported by the low clay—high Fe forest soil, which contained a smaller amount of > 4 mm aggregates / /

compared to the high clay—low Fe forest soil in both depth increments. Furthermore, the high clay—low Fe / //
and high clay—high Fe combinations under forest also nicely demonstrate how nearly equal amounts of //
aluminous clay plus pedogenic Fe oxides (i.e. similar clay contents) cause different amounts of >4 mm //
aggregates. Consequently, the connection between textural properties and aggregation can remain hidden f
2008) without considering the mineralogical composition of the whole clay fraction ‘/‘/
(Fernandez-Ugalde et al., 2013; King et al., 2019; West et al., 2004), f/

(Barthés et al.,

23

/,//
/

[1] verschoben

/{ Geloscht: T

///{ Geloscht: also

{ Geldscht: because

(N N

Geloscht: Consequently, this rather
points at the importance of kaolinite
for macroaggregation, which is in line
with results from two Oxisols in Brazil
(Vrdoljak and Sposito, 2002), showing
kaolinite being the backbone of the
investigated aggregate size fractions.

[1]1 nach oben: The dominant role of

/| pedogenic Fe oxides for

macroaggregation under undisturbed
tropical soil conditions proposed by
Six et al. (2002) cannot be confirmed
in our study. This is because the low
clay—high Fe forest soil contained a
smaller amount of > 4 mm aggregates
compared to the high clay—low Fe
forest soil in both depth increments.
Consequently, this rather points at the
importance of kaolinite for
macroaggregation, which is in line
with results from two Oxisols in Brazil
(Vrdoljak and Sposito, 2002), showing
kaolinite being the backbone of the
investigated aggregate size fractions.
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In contrast to the > 4 mm aggregates, 2-4 mm aggregates corresponded more clearly to the positive
effect of pedogenic Fe oxides on aggregation and aggregate stability as proposed for weathered tropical
soils (Igwe et al., 2013; Peng et al., 2015; Six et al., 2002). Both, the low clay—high Fe forest and low
clay—high Fe cropland soils contained somewhat but significantly more 2—4 mm aggregates than other
mineral combinations in concert with a higher aggregate stability of this particular fraction. This finding
also demonstrates that mineral interactions forming water-stable aggregates in tropical soils are differently
affected by a given mineralogical combination. Higher Fe4 to aluminous clay ratios (> 0.45) modulate
aggregate distribution towards aggregates 2—4 mm, whereas distinctly lower values (high clay—low Fe
forest: 0.12) shifted the maximum to > 4 mm aggregates.

Overall, the two macroaggregate fractions discussed above are differentially affected by the
mineralogical combinations, although the magnitude was less than expected, given the pronounced

variation in aluminous clay and Fe contents.

Land use impact on aggregation within mineral combinations— implications for aggregate stability

Land-use change had a distinct impact on aggregate distribution like indicated in other studies (Feller and
Beare, 1997; Six et al., 2002) and depended also on the mineralogical combinations, though croplands not
followed the trajectory observed under forest. A significantly lower MWD under low clay—high Fe rather
than low clay—low Fe can be mainly attributed to a reduced amount of >4 mm aggregates. We assume
that differences in the ratio of pedogenic Fe to aluminous clay in the low clay—low Fe and high clay—high
Fe (0.13 to 0.15) in comparison with the low clay-high Fe combination (0.47 to 0.51) under cropland
explains the stability of ‘card-house’ structures like described for mineralogically similar Oxisols from
Brazil and India (Bartoli et al., 1992). Accordingly, a higher Fey to aluminous clay ratios seems to be
disadvantageous for the formation and stability of such structures, especially in >4 mm aggregates. The
different pH-dependent charge characteristics of kaolinite and pedogenic Fe oxides (Kaiser and
Guggenberger, 2003), and their relative share can lead to altered charge properties of soils (Anda et al.,

2008). We hypothesize, that an increasing amount of Fe oxides adds more positive charge, thus possibly
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reducing structural integrity and aggregate stability if not sufficiently compensated by OM or clay
minerals. Furthermore, in the low clay-high Fe cropland combination, land-use change caused a
significant four-fold increase of < 0.25 mm aggregates due to the breakdown of > 4 mm aggregates.

The less intense formation of >4 mm aggregates in the low clay—high Fe forest combination was also
observed under cropland, whereas the low clay—low Fe and high clay—high Fe croplands showed either no
significant decrease or even an increase in >4 mm aggregate mass. Thus, simultaneous abundance of
large amounts of aluminous clay and pedogenic Fe oxides preserved a higher aggregate stability than
under mineralogically imbalanced conditions, although no conclusions can be drawn for the high clay—low
Fe combination. Nonetheless, >4 mm aggregates had a higher resistance to field operations in
mineralogical combinations with lower Fey to aluminous clay ratios (0.13 to 0.15). Nonetheless, our
results show that agricultural management does not necessarily decreases macroaggregation and related

MWD's, like reported in Rabbi et al. (2015).

4.2 Importance of aggregation for OC persistence — effects of aluminous clay and pedogenic Fe
oxides

Clay minerals and Fe oxides are considered as important mineral constituents fostering aggregation and
subsequent OC storage via physical protection (Denef et al., 2004). The overwhelming portion of OC in
the studied topsoils resided in mineral-organic associations (35—-81%), whereas OC occluded in
aggregates amounted to 7—24%, with a lower share under cropland than forest as determined by density
fractionation (Kirsten et al., 2021). The low clay—high Fe cropland had an OC content more than twice
larger than that of the low clay—low Fe cropland, but comprised a significantly smaller MWD. Thus, a
shift towards more macroaggregation, indicated by a larger MWD in certain mineralogical combinations,
did not result in higher total OC storage, like shown for other tropical soils (Barthes et al., 2008; Bartoli et
al., 1991; Spaccini et al., 2001). The OC content of the > 4 mm aggregate and 2-4 mm aggregate fractions
accounted for 42 to 73% of the total soil OC content (Figure 1b). This, however, does not per se indicate

the relevance of macroaggregation for OC storage in weathered tropical soils like proposed by others
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(Feller and Beare, 1997; King et al., 2019; Six et al., 2002). The high clay—low Fe forest with the highest
share in >4 mm and 2-4 mm aggregates had significant lower OC contents in these fractions than most
other mineralogical combinations. Comparing forest with cropland soils (Table 2), we observed
significantly reduced OC contents in the majority of macroaggregate fractions of the low clay—low Fe and
high clay-high Fe croplands, as reported in other studies (Blanco-Canqui and Lal, 2004; Lobe et al.,
2011). In contrast, fewer changes of aggregate-associated and total soil OC contents was observed in the
low clay-high Fe combination, despite it experienced the strongest disaggregation of the largest
macroaggregates (Figure 1a and Figure 2). We conclude that larger amounts of > 2 mm aggregates or

higher stability during wet sieving does not automatically translate, into higher aggregate-associated OC

,/——//'[ Geldscht: s

contents, as reported for Ferralsols (Maltoni et al., 2017). Given all these observations and the fact that
occluded OM determined by density fractionation was mostly of subordinate relevance, particularly in
croplands, OC storage in study soils seems rather disconnected from their aggregation status.
Consequently, the loss of large aggregates and the mass redistribution into smaller aggregate size fractions
does not automatically imply a loss of soil OC, because a substantial part of the OC in aggregate fractions
is bound to minerals with a higher persistence against land-use change (Kirsten et al., 2021). Here, density
fractionation could shed more light on the nature and quantity of OM located in certain aggregate size
fractions.

Microaggregates contained the highest OC content per unit of mass for almost all mineralogical
combinations, depth increments, and land uses (Table 2). This is in line with the findings of Chenu and
Plante (2006) and Lobe et al. (2011) that microaggregates can significantly contribute to OC storage. As
aggregates were isolated by dry sieving, these microaggregates were not located inside larger aggregates,
rendering them principally better accessible for OC allocation. Particularly OC contained in the
< 0.25 mm aggregates of the low clay-high Fe combination revealed a strong persistence against land-use

change, which explains well the unaltered soil OC contents upon land-use change.

26




556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

5. Conclusions

Classification of soils into mineralogical combinations of aluminous clay and pedogenic Fe oxides
revealed significant effects of mineral constituents on soil structure and related OC storage in weathered
tropical soils. Despite that, overall patterns across combinations were more similar than different, i.e.,
always comprising a high level of macroaggregation and aggregate stability. Aggregates >4 mm of the
low clay-low Fe and high clay—high Fe combinations were less affected by land-use change, thus
pedogenic Fe in a certain relation with aluminous clay (0.13 to 0.23) seems beneficial to maintain the
structural integrity of macroaggregates. Despite the high physical stability, OC contents of

macroaggregates declined substantially in most mineralogical combinations jf forest was compared with

cropland Jand use. This highlights the fact that structural integrity of macroaggregates during land-use

change cannot be equated with OC persistence. For the low clay—high Fe combination, substantial
destruction of >4 mm aggregates during land-use change due to agricultural management was also not
accompanied by higher OC losses. Hence, we must reject our initial hypothesis that the mineralogical
combination that results in the greatest aggregate stability best preserves OC during the conversion from
forest to cropland. Thus, the formation of macroaggregates cannot be considered as a main stabilization
process for OC in strongly weathered soils of the humid tropics. We suggest that the formation of mineral-
organic associations as part of the aggregate size fractions is the most important process that preserves OC

during land-use change in these soils.
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