

1 **Aluminous clay and pedogenic Fe oxides modulate aggregation and**
2 **related carbon contents in soils of the humid tropics**

3

4 Maximilian Kirsten^{*1}, Robert Mikutta², Didas N. Kimaro³, Karl-Heinz Feger¹, Karsten Kalbitz¹

5

6

7 ¹ Technische Universität Dresden, Institute of Soil Science and Site Ecology, Tharandt, Germany

8 ² Martin-Luther-Universität Halle-Wittenberg, Soil Science and Soil Protection, Halle/Saale Germany

9 ³ Mwenge Catholic University, Directorate of Research Innovations and Consultancy, Moshi, Tanzania

10

11

12

13

14

15

16

17

18

19

20

21

22 **Keywords:** tropical soils, aggregate size distribution, aggregate stability, soil mineralogy, kaolinite,
23 gibbsite, goethite, hematite, land-use change

24

25 * maximilian.kirsten@tu-dresden.de

26 **Abstract**

27 Aggregation affects a wide range of physical and biogeochemical soil properties with positive effects on
28 soil carbon storage. For weathered tropical soils, aluminous clays (kaolinite and gibbsite) and pedogenic
29 Fe (oxyhydr)oxides (goethite and hematite; termed 'Fe oxides') have been suggested as important building
30 units for aggregates. However, as aluminosilicates, aluminum hydroxides, and Fe oxides are part of the
31 clay-sized fraction it is hard to separate, how certain mineral phases modulate aggregation. In addition, it
32 is not known what consequences this will have for organic carbon (OC) persistence after land-use change.
33 We selected topsoils with unique mineralogical compositions in the East Usambara Mountains of
34 Tanzania under forest and cropland land uses, varying in contents of aluminous clay and Fe oxides.
35 Across the mineralogical combinations, we determined the aggregate size distribution, aggregate stability,
36 OC contents of aggregate size fractions as well as changes in aggregation and OC contents under forest
37 and cropland land use. Patterns in soil aggregation were rather similar across the different mineralogical
38 combinations (high level of macroaggregation and high aggregate stability). Nevertheless, we found some
39 statistically significant effects of aluminous clay and pedogenic Fe oxides on aggregation and OC storage.
40 An aluminous clay content $> 250 \text{ g kg}^{-1}$ in combination with pedogenic Fe contents $< 60 \text{ g kg}^{-1}$
41 significantly promoted the formation of large macroaggregates $> 4 \text{ mm}$. In contrast, a pedogenic Fe
42 content $> 60 \text{ g kg}^{-1}$ in combination with aluminous clay content of $< 250 \text{ g kg}^{-1}$ promoted OC storage and
43 persistence even under agricultural use. The combination with low aluminous clay and high pedogenic Fe
44 contents displayed the highest OC persistence, despite conversion of forest to cropland caused substantial
45 disaggregation. Our data indicate that aggregation in these tropical soils is modulated by the mineralogical
46 regime, causing moderate but significant differences in aggregate size distribution. Nevertheless,
47 aggregation was little decisive for overall OC persistence in these highly weathered soils, where OC
48 storage is more regulated by direct mineral-organic interactions.

49

50 **1. Introduction**

51 Many functions of soils such as food production, water purification as well as climate regulation are
52 tightly linked to soil structure (Bronick and Lal, 2005; FAO, 2015; Six et al., 2004). Aggregates are the
53 structural backbone of soil and changes in aggregation impacts various processes such as root
54 development, soil erosion, and soil organic carbon (OC) accumulation (Chaplot et al., 2010; Le Bissonnais
55 et al., 2018). Based on their size, soil aggregates are typically classified into small microaggregates
56 (< 20 μm), large microaggregates (20–250 μm), and macroaggregates (> 0.25 mm) (Tisdall and Oades,
57 1982). Cementing agents such as clay minerals, metal (oxyhydr)oxides, as well as organic matter (OM)
58 are considered as primary building units of microaggregates (Totsche et al., 2018), which provide the basis
59 for the formation of larger soil structural units (Asano and Wagai, 2014). The study by Six et al. (2002)
60 points to the special role of inorganic compounds such as clay minerals and pedogenic metal oxides in the
61 formation of aggregates in the tropics. Pedogenic iron (Fe_d) (oxyhydr)oxides (summarized as ‘Fe oxides’)
62 have been reported to facilitate macroaggregation (Peng et al., 2015) and aggregate stability (Duiker et al.,
63 2003). Under the acidic conditions of weathered tropical soils, Fe oxides provide positively charged
64 surfaces capable of reacting with negatively charged inorganic constituents, like clay minerals or OM
65 (Kaiser and Guggenberger, 2003; Kleber et al., 2015; Six et al., 2004; Totsche et al., 2018). Aggregation
66 might be ascribed to inorganic or organic cementing agents with no consensus about the relevance of each
67 individual agent. Understanding the effects of individual cementing agents for aggregation is needed to
68 disentangle their potential contribution to soil aggregation. For example, the extent of aggregation has
69 been either positively related to the contents of clay and OC (Chaplot and Cooper, 2015; Paul et al., 2008;
70 Spaccini et al., 2001), or to differences in the clay mineral composition (Fernández-Ugalde et al., 2013).
71 Furthermore, Barthès et al. (2008) showed that texture had no effect on macroaggregation over a range of
72 tropical soils characterized by low-activity clay minerals. Such kind of uncertainty may derive from the
73 fact that the clay size particle fraction (< 2- μm) not only contains OM and different types of clay minerals,
74 but also variable contents of pedogenic Fe and aluminum (Al) oxides (Barré et al. 2014; Fernández-
75 Ugalde et al. 2013; Wagai and Mayer 2007). Denef et al. (2004) showed that significant differences in the

Gelöscht: U

Gelöscht: also

78 amount of microaggregates encased in macroaggregates can be related to the clay mineral composition
79 (2:1, mixed layer, 1:1 clays). They assume that interactions of 1:1 clay minerals with Fe oxides cause a
80 higher aggregate stability compared to those involving 2:1 clay minerals (Denef et al., 2002, 2004). Such
81 mutual interactions between typical aluminous clay-sized minerals (e.g. kaolinite, gibbsite) and pedogenic
82 Fe oxides are thus possible drivers of aggregation in weathered tropical soils (Durn et al., 2019).

83 Soil aggregation is considered to be an important process that increases OC persistence, because of
84 the physical separation of OM from microorganisms and their exoenzymes (Six et al., 2004). Thus,
85 improved aggregation could contribute to enhanced OC storage in soils (Kravchenko et al., 2015; Marín-
86 Spiotta et al., 2008; Schmidt et al., 2011). Managing aggregation, e.g., for climate change mitigation,
87 requires profound knowledge on the controls of aggregation and their effects on OC persistence (Paul et
88 al., 2008). To the best of our knowledge there are no studies available, which investigated the influence of
89 changes in the content of clay minerals with low activity and the content of pedogenic metal oxides on
90 aggregation under comparable mineralogical conditions for weathered tropical soils. Macroaggregates are
91 particularly susceptible to soil management (Six et al., 2000a; Totsche et al., 2018). Consequently,
92 destruction of macroaggregates upon changes from forests to cropland might account for OC losses that
93 were observed in tropical soils (Don et al., 2011; Kirsten et al., 2019; Mujuru et al., 2013). The stability of
94 aggregates should thus determine OC losses induced by land-use change and higher losses should be
95 related to lower aggregate stability (Denef et al., 2002; Le Bissonnais et al., 2018; Six et al., 2000b). We
96 are currently not aware of any studies that solve the puzzle to which extent the amount of aluminous clay
97 and pedogenic Fe oxides controls soil aggregation and OC storage in highly weathered soils of the humid
98 tropics.

Gelöscht: As indicated above, s

99 This study takes advantage of soils under natural forest and cropland in the East Usambara
100 Mountains of Tanzania. The mineralogical composition of the study soils is very homogeneous with
101 kaolinite and gibbsite as the main aluminous minerals of the clay fraction and goethite and hematite as
102 dominant pedogenic Fe oxides (Kirsten et al., 2021). Yet, the ratio of aluminous clays to Fe oxides
103 differed strongly, giving rise to unique mineralogical combinations under both land use types. Thus, the

105 conversion of natural forest to cropland in the study region enables us to evaluate the effect of land-use
106 change under each mineralogical combination on soil physical properties and related OC persistence. In
107 the precursor study, we found a positive relationship between the storage of mineral-associated OC and
108 the ratio of pedogenic Fe to aluminous clay under forest and cropland land use, suggesting that a larger
109 share of Fe oxides is linked to larger OC storage and persistency against land-use change (Kirsten et al.,
110 2021). In the present study, we test whether aggregation and its contribution to OC storage follow similar
111 patterns, or are decoupled from the individual contribution of main mineral constituents. In detail, our
112 main research goal was to investigate the individual role of aluminous clay and pedogenic Fe oxides for
113 determining (i) the soil aggregate size distribution, (ii) aggregate stability, (iii) the consequences for OC
114 allocation into different aggregate size fractions, and (iv) the consequences for OC persistence related to
115 land-use change. We hypothesize that the mineralogical combination resulting in the largest aggregate
116 stability also results in the largest OC persistence. For this purpose, we determined the aggregate size
117 distribution of soils under both land uses, determined the OC contents of obtained aggregate fractions, and
118 tested the stability of the two largest aggregate size fractions (2–4 mm and > 4 mm). As a measure of OC
119 persistence, the OC content of aggregate size fractions was compared between the two land uses in the
120 same mineralogical combination. We generally focused on soil samples from 0–10 cm to test our current
121 hypothesis since land-use induced OC losses from soils of the study region largely occur in this depth
122 increment (Kirsten et al., 2019).

123 **2. Material and methods**

124 **2.1 Study area and soil sampling**

125 The study was conducted in the Eastern Usambara Mountains of Tanzania close to the village Amani
126 (5°06'00" S; 38°38'00" E). The climate is humid monsoonal with a mean annual precipitation of
127 1,918 mm, and a mean annual temperature of 20.6°C with low variability within the study area (Hamilton
128 and Bensted-Smith, 1989). The dominating Acrisols and Alisols, developed from Precambrian crystalline
129 bedrock, are deeply weathered and highly leached, with visible clay illuviation in the subsoil (Kirsten et
130 al., 2019). Briefly, all soil samples were collected on mid-slope position. We sampled six plots under
131 forest and three under annual cropping. The site selection was done based on total clay amount determined
132 in the field and the associated total Fe amount measured with a portable XRF device (Kirsten et al., 2021).
133 We did not observe systematic differences in vegetation composition of the forest sites and NMR spectra
134 showed a similar composition of litter for each of the two land uses investigated (Kirsten et al., 2021) .
135 Furthermore, several visits in the study region over the last decade (2012, 2013, 2015, and 2018)
136 combined with personal talks to farmers and local partners working in the region, enabled us to select
137 cropland sites with similar agricultural management (cultivation of cassava (*Manihot esculenta*), hand hoe
138 tillage, biomass burning before seed bed preparation). At each plot, mineral soil from three adjacent and
139 randomly distributed soil pits at mid-slope position was sampled at 0–5 and 5–10 cm depths. This
140 procedure was chosen because we identified two soil horizons at 0–5 and 5–10 cm depth based on
141 differences in color and structure. To have a consistent sampling design, we applied this distinction to the
142 cropland sites, too. Living roots were removed and aliquots of the soils were sieved to < 2 mm after
143 drying at 40°C. For each depth increment, three undisturbed soil cores (100 cm³) were collected for bulk
144 density determination.

145

146 **2.2 Soil analyses**

147 *Basic soil properties and selected mineralogical combinations*

148 Bulk density was determined after drying the soil at 105°C and corrected for coarse fragments (*Carter and*
149 *Gregorich, 2008*). Soil pH was measured in 0.01 M CaCl₂ at a soil to solution ratio of 1 : 2.5. Extraction
150 of poorly crystalline Fe and Al phases as well as of Fe and Al complexed by OM was done with
151 ammonium oxalate according to *Schwertmann (1964)*. Effective cation exchange capacity (CEC_{eff}) and
152 base saturation (BS) were determined following the procedure provided by *Triby and Aldinger (1989)*.
153 Contents of OC and total N were analyzed by high temperature combustion at 950°C and thermo-
154 conductivity detection (Vario EL III/Elementar, Heraeus, Langenselbold, Germany). A combined
155 dithionite-citrate-bicarbonate extraction and subsequent texture analysis was applied to determine the
156 contents of aluminous clay and total pedogenic Fe (Fe_d). Briefly, 5–6 g soil pre-treated with 30% H₂O₂
157 were extracted with 30 g sodium dithionite (Na₂S₂O₄) and 1.35 L buffer solution (0.27 M trisodium citrate
158 dihydrate (C₆H₅Na₃O₇ • 2H₂O) + 0.11 M sodium bicarbonate (NaHCO₃)) at 75°C in a water bath for
159 15 min (*Mehra and Jackson, 1958*). The Fe concentration of the extracts were measured by inductively
160 coupled plasma optical emission spectroscopy (ICP-OES) using a CIROS-CCD instrument (Spectro,
161 Kleve, Germany). The residues of the extraction were then subjected to a texture analysis using the pipette
162 method (*Gee and Bauder, 1986*). Details of the procedure are described in *Kirsten et al. (2021)*. Based on
163 the respective content of aluminous clay and pedogenic Fe oxide in the 5–10 cm depth increment, each
164 sample was assigned to a certain mineralogical combination. The threshold values for aluminous clay and
165 pedogenic Fe oxides to distinguish between “high” and “low” were set to 250 g kg⁻¹ and 60 g kg⁻¹,
166 respectively. We differentiated four groups varying in contents of aluminous clay and pedogenic Fe oxides
167 under forest (i.e. ‘low clay–low Fe’, ‘low clay–high Fe’, ‘high clay–low Fe’, ‘high clay–high Fe’), and
168 three analogous groups under cropland (i.e. ‘low clay–low Fe’, ‘low clay–high Fe’, ‘high clay–high Fe’).
169

170 *Aggregate size distribution, aggregate stability and carbon contents*

171 Aggregate size distribution was determined by dry sieving as it most closely resembles soil conditions at
172 the end of the long dry season. Undisturbed soil was dried at 40°C for 48 hours. Separation of aggregate
173 sizes was conducted with a sieving machine (AS 200 control “g”, Retsch, Hanau, Germany) combined

174 with a set of four sieves with meshes of 4, 2, 1, and 0.25 mm, respectively (Larney, 2008). The amplitude
175 was set to 1.51 mm (7.6 g-force), which was applied over a sieving duration of three minutes. Aggregate
176 stability was tested for the two largest aggregate size fractions (2–4 mm and > 4 mm). The fast wetting
177 pretreatment was applied to both fractions (Le Bissonnais, 1996) using a wet-sieving apparatus
178 (Eijkelkamp, Giesbeek, Netherlands) with sieve openings of 63 µm. This procedure simulates the
179 transition of aggregates from dry to rainy season. Sieving was conducted in ethanol for three minutes
180 (stroke 1.3 cm, $f = 34 \text{ min}^{-1}$). All aggregates remaining on the sieve were dried at 105°C. Water-stable
181 aggregates were subsequently introduced to a sieving apparatus with a set of five sieves with mesh sizes of
182 4, 2, 1, 0.63, and 0.25 mm, respectively (Larney, 2008). For each obtained aggregate fraction by dry
183 sieving, OC contents analyzed by high temperature combustion at 950°C and thermo-conductivity
184 detection (Vario EL III/Elementar, Heraeus, Langenselbold, Germany). The mass corrected OC content of
185 a certain aggregate fraction was calculated using equation 1 to resemble the contribution to total soil OC,

$$186 \text{Mass - corrected } OC_{\text{Aggregate}} = \frac{m_i}{\sum_{i=0}^n m_i} \times OC_{\text{Aggregate}} \quad (\text{Eq. 1})$$

187 where m_i represents the mass of an aggregate size fraction (g), $\sum m_i$ the sum of masses of all size
188 fractions (g), and $OC_{\text{Aggregate}}$ the OC content of aggregate fraction "i".

189 The mean weight diameter (MWD) of aggregates was calculated using equation 2 for undisturbed soil to
190 describe the initial aggregate size distribution, and for the large aggregate size fractions after exposure to
191 the stability test to evaluate the effect of fast wetting on aggregate stability,

$$192 MWD = \sum_{i=0}^n \frac{m_i}{\sum m_i} \times d_i \quad (\text{Eq. 2})$$

193 where m_i represents the mass of an aggregate size fraction (g), $\sum m_i$ the sum of masses of all size
194 fractions (g), and d_i the mean mesh diameter of fraction "i" (mm). The MWD of the aggregate fraction
195 > 4 mm was estimated by doubling the largest sieve size diameter (Youker and McGuinness, 1957).

196

197 2.3 Statistics and calculations

198 The mean and standard deviation of data were calculated with the software package R (version 3.6.0). To
199 test for significant differences between mineralogical combinations, land uses, and depths, we applied the

Gelöscht: treatments

201 linear model function [lm()] in combination with analysis of variance [aov(lm())]. The Tukey-HSD test
202 was used as a post-hoc comparison of means; the LSD-test was applied in the case of non-equality of
203 variances. Regression analysis was used to test for relationships between mineralogical properties and
204 MWD, masses of aggregate size fractions, aggregate stability, and OC losses due to land-use change.
205 Statistical differences are reported at a significance level of $p < 0.05$. Based on our selected threshold
206 values for aluminous clay and pedogenic Fe oxides, we were able to achieve the following number of
207 replicates for the mineralogical combinations: 'low clay–low Fe' under forest ($n = 4$), 'low clay–high Fe'
208 under forest ($n = 4$), 'high clay–low Fe' under forest ($n = 3$), 'high clay–high Fe' under forest ($n = 7$); all
209 cropland combinations ($n = 3$).

210

Gelöscht: was used

212 **3. Results**

213 **3.1 Mineralogical composition and general soil properties**

214 The selected mineralogical combinations represent a broad spectrum of possible combinations mineral
215 aluminous clay and Fe oxide constituents. Amounts of aluminous clay varied between 149 and 438 g kg⁻¹,
216 and Fe_d between 21 and 101 g kg⁻¹ across all sites and land uses. Amorphous Fe and Al phases
217 contributed little to pedogenic oxides as indicated by low proportions of oxalate-extractable Fe and Al
218 (Table 1). The advanced weathering state of study soils was also reflected in low pH and CEC_{eff} values
219 (Table 1).

220 **Table 1:** Basic properties of the two soil depth increments sampled along the mineralogical combinations with aluminous clay
221 (clay), dithionite-citrate-bicarbonate-extractable Fe (Fe_d), total soil organic carbon content (OC), Fe_d to aluminous clay ratios
222 (Fe_d/clay), effective cation exchange capacity (CEC_{eff}), hydrogen peroxide- and dithionite-citrate-bicarbonate-treated sand and
223 silt contents, and oxalate-extractable Fe and Al content (Fe_o and Al_o). Aluminous clay represents the weight sum of kaolinite and
224 gibbsite present in the < 2- μm fraction after removal of OM and pedogenic Fe oxides. Lower case letters indicate significant
225 differences within a certain land use as separated by depth, and **capital letters denote significant differences between land uses**.
226 Sample numbers for the combinations are as follows: 'low clay–low Fe' under forest ($n = 4$), 'low clay–high Fe' under forest (n
227 = 4), 'high clay–low Fe' under forest ($n = 3$), 'high clay–high Fe' under forest ($n = 7$); all cropland combinations ($n = 3$).

Land use	Mineralogical Combination	Depth (cm)	Sand (g kg ⁻¹)	Silt (g kg ⁻¹)	Clay (g kg ⁻¹)	Fe_d/clay	Fe_d	Fe_o	Al_o	OC	pH	CEC _{eff}	(0.01 M CaCl_2) (cmol _c kg ⁻¹)
Forest	Low aluminous clay–	0–5	788 ^a (21)	63 ^c (24)	149 ^b (19)	21 ^d (4)	0.15 ^b (0.04)	1.4 ^a (0.3)	1.2 ^a (0.2)	76 ^{ab} _a (27)	3.5 ^b (0.1)	5.7 ^a (2.6)	Gelösch: , ^A
	Low pedogenic Fe oxides	5–10	712 ^a (46)	107 ^b (57)	181 ^b (19)	38 ^b (13)	0.21 ^{bc} (0.09)	1.8 ^a (0.3)	1.4 ^a (0.2)	34 ^{ba} _a (6)	3.7 ^b (0.1)	2.9 ^a (0.1)	
Forest	Low aluminous clay–	0–5	617 ^b (36)	201 ^a (52)	182 ^b (38)	78 ^a (14)	0.45 ^a (0.12)	1.3 ^a (0.2)	1.5 ^a (0.2)	57 ^{ba} (14)	3.8 ^a (0.2)	5.6 ^a (1.7)	Gelösch: , ^A
	High pedogenic Fe oxides	5–10	647 ^b (49)	179 ^a (26)	174 ^b (42)	77 ^a (4)	0.47 ^{ba} (0.13)	1.3 ^b (0.1)	1.6 ^a (0.1)	37 ^{na} _a (0.3)	3.8 ^{ab} (0.1)	3.2 ^a (0.9)	
Forest	High aluminous clay–	0–5	571 ^c (19)	131 ^b (32)	298 ^a (41)	36 ^c (5)	0.11 ^b (0.01)	0.9 ^b (0.1)	1.3 ^a (0.2)	43 ^b (0.2)	4.0 ^a (6)	5.2 ^a (0.2)	Gelösch: , ^A
	Low pedogenic Fe oxides	5–10	489 ^c (24)	137 ^{ab} (1)	374 ^a (24)	44 ^b (7)	0.12 ^c (0.02)	1.0 ^b (0.1)	1.5 ^a (0.1)	23 ^b (0.3)	3.9 ^{ab} (5)	3.0 ^a (0.1)	
Forest	High aluminous clay–	0–5	530 ^c (28)	152 ^b (41)	318 ^a (5)	67 ^b (5)	0.22 ^b (0.03)	1.2 ^{ab} (0.3)	1.9 ^a (0.8)	95 ^{na} _a (31)	4.1 ^a (0.2)	7.8 ^a (1.8)	Gelösch: , ^A
	High pedogenic Fe oxides	5–10	473 ^c (35)	178 ^b (45)	349 ^a (40)	81 ^a (6)	0.23 ^b (0.02)	1.3 ^b (0.1)	1.7 ^a (0.2)	35 ^{na} _a (5)	4.0 ^a (5)	4.9 ^a (0.1)	
Cropland	Low aluminous clay–	0–5	670 ^a (8)	103 ^c (4)	227 ^b (6)	30 ^c (2)	0.13 ^b (0.01)	0.6 ^c (0.1)	1.1 ^c (0.1)	19 ^{cb} _a (0)	5.0 ^b (0.1)	5.1 ^b (0.2)	Gelösch: , ^A
	Low pedogenic Fe oxides	5–10	669 ^a (8)	118 ^b (28)	213 ^b (24)	29 ^c (4)	0.14 ^b (0.03)	0.6 ^c (0.0)	1.1 ^b (0.1)	19 ^{cb} _a (1)	5.0 ^b (0.1)	5.1 ^b (0.2)	
Cropland	Low aluminous clay–	0–5	602 ^b (17)	200 ^a (13)	198 ^b (29)	101 ^a (4)	0.51 ^a (0.06)	1.5 ^a (0.2)	4.1 ^a (0.2)	47 ^{na} _a (1)	4.9 ^c (0.1)	5.1 ^b (0.2)	Gelösch: , ^A

		High pedogenic Fe oxides		0-5		5-10		High pedogenic Fe oxides		0-5		5-10		
Cropland	High aluminous clay-	437 ^c	129 ^b	434 ^a	63 ^b	0.15 ^b	1.2 ^b	1.4 ^b	3.4 ^{b,A}	5.4 ^a	9.4 ^a	Gelöschte, B		
		(14)	(12)	(18)	(3)	(0.01)	(0.0)	(0.0)	(0.0)	(1)	(0.0)	(0.5)		
	High pedogenic Fe oxides	163 ^{ab}	438 ^a	66 ^b	1.2 ^b	1.3 ^b	3.0 ^{b,A}	5.2 ^a	7.3 ^a				Gelöschte, A	
		(35)	(17)	(4)	(0.01)	(0.01)	(0.1)	(0.2)	(3)	(0.1)	(0.1)	(0.7)		

240 **3.2 Influence of aluminous clay and pedogenic Fe on aggregate size distribution**

241 ***Mean weight diameter***

242 The studied soils were highly aggregated and showed significant variation in their aggregate size
243 distribution across the mineralogical combinations (Figure 1a, Table 2). The low clay–low Fe combination
244 under forest displayed the significant smallest MWD (e.g., 2.9 mm in 0–5 cm depth; Table 2). In contrast,
245 the low clay–high Fe combination always had the largest MWD (e.g., 4.8 mm in 0–5 cm depth; Table 2)
246 among the other forest combinations. Our data suggest that the MWD under forest is significantly
247 positively influenced by the Fe_d content (e.g., $MWD_{Forest\ 0-5\ cm}: r^2 = 0.40, p < 0.001$; Table S1), whereas
248 nearly no effect was observed for aluminous clay. Contrary to the mineralogical combinations under
249 forest, the significant smallest MWD under cropland was within the low clay–high Fe combination
250 (2.7 mm in both depths; Table 2). The low clay–low Fe and high clay–high Fe cropland combinations
251 showed no strong differences in their MWDs. Nonetheless, a significant negative linear relationship
252 existed between MWD and the pedogenic-Fe to aluminous clay ratio ($MWD_{Cropland\ 0-5\ cm}: r^2 = 0.47,$
253 $p = 0.03$; $MWD_{Cropland\ 5-10\ cm}: r^2 = 0.47, p = 0.02$) for the mineralogical combinations under cropland (Table
254 S1).

255

256 ***Macroaggregates > 4 mm and 2–4 mm***

257 Corresponding to the smallest MWD, the low clay–low Fe forest combination contained the smallest
258 fraction of > 4 mm aggregates. The contribution of these large aggregates under forest increased in the
259 order: low clay–low Fe < low clay–high Fe = high clay–high Fe < high clay–low Fe (Figure 1a). For
260 croplands, the low clay–high Fe combination comprised the smallest amount of > 4 mm aggregates
261 whereas the high clay–high Fe combination exhibited the respective highest share (Figure 1a). The
262 explained variance of > 4 mm aggregate mass by aluminous clay and Fe_d was generally low, except for the
263 cropland combinations (positive effect of aluminous clay and negative effect of pedogenic Fe; Table S1).

Gelöscht: A

Gelöscht: For most combinations, about 74% of soil mass was present in aggregates > 2 mm (Figure 1a), whereas in forest soils with low contents in both aluminous clay and Fe oxides only 40% could be assigned to aggregates > 2 mm. Only 3–12% of total soil mass remained in < 0.25 mm aggregates (Table 2).

Gelöscht: ,

Gelöscht: with

Gelöscht: and 3.7 mm in 5–10 cm depth (

Gelöscht: and 3.7 mm in 5–10 cm depth (

Gelöscht: , and 4.6 mm in 5–10 cm depth

Gelöscht: $MWD_{Forest\ 5-10\ cm}: r^2 = 0.15, p = 0.06$

Gelöscht: ($MWD_{Forest\ 0-5\ cm}: r^2 < 0.01, p = 0.79$; $MWD_{Forest\ 5-10\ cm}: r^2 < 0.01, p = 0.30$, Table S1)

Gelöscht: 0–5 cm depth and 2.7 mm in 5–10 cm

Gelöscht: due to

290
291 **Figure 1:** Aggregate size distribution of the combined 0–5 and 5–10 cm depth increments (a), and relative
292 mass-corrected OC contents (b) along the mineralogical combinations. Clay represents the weight sum of
293 kaolinite and gibbsite present in the < 2- μ m fraction after removal of OM and pedogenic Fe oxides, and
294 Fe denotes the content of pedogenic Fe oxides extracted with dithionite-citrate-bicarbonate. Sample
295 numbers for the combinations are as follows: 'low clay–low Fe' under forest ($n = 4$), 'low clay–high Fe'
296 under forest ($n = 4$), 'high clay–low Fe' under forest ($n = 3$), 'high clay–high Fe' under forest ($n = 7$); all
297 cropland combinations ($n = 3$).
298

299 The mineralogical combinations affected the amounts of 2–4 mm aggregates differently than those
300 of > 4 mm aggregates. The low clay–high Fe combination under forest and cropland contained slightly but
301 significantly more 2–4 mm aggregates (Figure 1a), being associated with a significantly higher Fe_d to
302 aluminous clay ratio (Table 1). In fact, in a multiple regression model for the entire data set (combined
303 land uses and depths), we observed a positive relationship between the mass of 2–4 mm aggregates and

304 Fe_d content, whereas the content of aluminous clay had a negative effect ($r^2 = 0.57$, $p < 0.001$; Table S1).

Gelöscht: The same model separated by soil depth showed similar relationships (Table S1).

306 **Microaggregates < 0.25 mm**

307 Across all mineralogical combinations, amounts of < 0.25 mm aggregates were principally similar, despite
308 of significantly higher shares in the low clay–low Fe and high clay–high Fe combinations under forest. A
309 significant larger amount of < 0.25 mm aggregates was observed in the low clay–high Fe combination
310 under cropland. In this mineralogical combination, land-use change caused a quadrupling of < 0.25 mm

Gelöscht: comparable

Gelöscht: In contrast, a

316 aggregate mass from about 30 to nearly 120 g kg⁻¹ (Table 2). In contrast to the macroaggregate fractions
317 shown above, there was no correlation between mineralogical parameters and the mass of < 0.25 mm
318 aggregates, neither for the entire data set (combined land uses and depths) nor when separated by soil
319 depth (Table S1).

Gelöscht: Only under cropland we observed a negative effect of aluminous clay and a positive influence of Fe_d on microaggregate contents (aggregate mass < 0.25 mm_{0-5 cm}; $r^2 = 0.8$, $p = 0.004$; aggregate mass < 0.25 mm_{5-10 cm}; $r^2 = 0.61$, $p = 0.03$).

327 **Table 2:** Aggregate masses (mass) and OC content of aggregate size fractions (dry sieving) within different combinations of aluminous clay and
 328 pedogenic Fe oxides, OC change (Δ OC) between land uses within a certain mineralogical combination and depth, and related mean weight diameter
 329 (MWD). Aluminous clay represents the weight sum of kaolinite and gibbsite present in the $< 2\text{-}\mu\text{m}$ fraction after removal of OM and pedogenic Fe
 330 oxides. Lower case letters indicate significant differences within a certain land use separated by depth, and capital letters denote significant differences
 331 between land uses. Sample numbers for the combinations are as follows: 'low clay–low Fe' under forest ($n = 4$), 'low clay–high Fe' under forest ($n =$
 332 4), 'high clay–low Fe' under forest ($n = 3$), 'high clay–high Fe' under forest ($n = 7$); all cropland combinations ($n = 3$).

Land use	Mineralogical Combination	Depth	mass	OC	Δ OC	mass	OC	Δ OC	mass	OC	Δ OC	mass	OC	Δ OC	mass	OC	Δ OC	MWD
			(cm)	(g kg^{-1})	(%)	(g kg^{-1})	(%)	(g kg^{-1})	(%)	(g kg^{-1})	(%)	(g kg^{-1})	(%)	(g kg^{-1})	(%)	(g kg^{-1})	(%)	(mm)
Forest	Low aluminous clay–	0–5	249 ^{a,A} (33)	76 ^{a,A} (32)	na	144 ^{b,A} (21)	83 ^{a,A} (22)	na	191 ^{a,A} (4)	65 ^{a,A} (9)	na	345 ^{a,A} (40)	56 ^{b,A} (18)	na	70 ^{a,A} (15)	125 ^{a,A} (51)	na	2.9 ^{a,A} (0.3)
	Low pedogenic Fe oxides	5–10	343 ^{b,A} (61)	40 ^{b,A} (8)	na	176 ^{b,B} (21)	39 ^{a,A} (10)	na	181 ^{a,A} (15)	27 ^{a,A} (9)	na	257 ^{a,A} (36)	28 ^{a,A} (5)	na	44 ^{a,B} (11)	51 ^{a,A} (17)	na	3.7 ^{a,A} (0.4)
Forest	Low aluminous clay–	0–5	493 ^{ab,A} (99)	68 ^{ab,A} (19)	na	210 ^{ab,A} (20)	65 ^{ab,A} (22)	na	115 ^{b,B} (38)	62 ^{ab,A} (25)	na	150 ^{c,B} (42)	49 ^{b,A} (25)	na	33 ^{b,B} (14)	62 ^{b,A} (36)	na	4.8 ^{a,A} (0.7)
	High pedogenic Fe oxides	5–10	451 ^{ab,A} (36)	40 ^{ab,A} (11)	na	210 ^{ab,A} (27)	36 ^{ab,B} (5)	na	139 ^{ab,B} (10)	29 ^{ab,A} (7)	na	166 ^{b,B} (24)	31 ^{a,A} (11)	na	34 ^{a,B} (20)	44 ^{a,A} (18)	na	4.6 ^{a,A} (0.3)
Forest	High aluminous clay–	0–5	604 ^a (84)	38 ^b (5)	na	140 ^b (21)	63 ^a (34)	na	100 ^b (21)	80 ^a (51)	na	125 ^c (31)	62 ^{ab} (28)	na	31 ^b (13)	101 ^b (59)	na	4.3 ^{ab} (0.4)
	Low pedogenic Fe oxides	5–10	561 ^a (47)	26 ^a (14)	na	163 ^b (12)	28 ^b (7)	na	118 ^b (17)	22 ^a (3)	na	127 ^b (21)	25 ^a (6)	na	30 ^a (1)	43 ^a (18)	na	4.1 ^a (0.2)
Forest	High aluminous clay–	0–5	397 ^{b,A} (91)	86 ^{a,A} (21)	na	157 ^{b,A} (27)	89 ^{a,A} (32)	na	163 ^{a,A} (32)	99 ^{a,A} (50)	na	208 ^{b,B} (36)	91 ^{a,A} (38)	na	74 ^{a,A} (14)	133 ^{b,A} (47)	na	4.0 ^{b,A} (0.6)
	High pedogenic Fe oxides	5–10	474 ^{ab,A} (139)	35 ^{ab,A} (7)	na	156 ^{b,A} (27)	33 ^{ab,A} (4)	na	146 ^{ab,A} (41)	30 ^{a,A} (4)	na	172 ^{b,A} (61)	34 ^{a,A} (4)	na	52 ^{a,A} (26)	51 ^{a,A} (6)	na	4.6 ^{a,A} (1.0)
Cropland	Low aluminous clay–	0–5	347 ^{a,A} (69)	20 ^{b,B} (3)	-73	147 ^{b,A} (13)	21 ^{c,B} (1)	-75	115 ^{b,B} (4)	17 ^{c,B} (1)	-74	318 ^{a,A} (52)	11 ^{c,B} (3)	-80	74 ^{b,A} (12)	24 ^{c,B} (1)	-81	3.6 ^{a,A} (0.5)
	Low pedogenic Fe oxides	5–10	368 ^{b,A} (28)	20 ^{b,B} (1)	-50	143 ^{b,A} (8)	22 ^{b,B} (5)	-44	113 ^{b,B} (10)	17 ^{b,A} (2)	-37	299 ^{a,A} (15)	11 ^{c,B} (2)	-61	77 ^{b,A} (1)	24 ^{c,A} (3)	-53	3.7 ^{b,A} (0.2)
Cropland	Low aluminous clay–	0–5	201 ^{b,B} (39)	47 ^{a,A} (7)	-30	212 ^{a,A} (12)	49 ^{a,A} (2)	-25	173 ^{a,A} (18)	42 ^{a,A} (3)	-32	296 ^{a,A} (33)	46 ^{a,A} (1)	-6	119 ^{a,A} (4)	62 ^{a,A} (2)	± 0	2.7 ^{b,B} (0.3)

High pedogenic Fe oxides		High pedogenic Fe oxides	
Crapland	High aluminous clay—	5–10	19 ^a _b
	—	0–5	29 ^a _b
High pedogenic Fe oxides	High aluminous clay—	5–10	59 ^a _b
	—	0–5	25 ^a _b

na = not applicable.

335 Summary

336 Mineralogical combinations and land use significantly affected the aggregate size distribution of soils,

337 despite quantitative relations to mineralogical proxies could not be observed for each aggregate class. In

338 undisturbed forest soils, higher pedogenic Fe contents resulted in increasing MWD especially in 0–5 cm

339 depth and significantly larger amounts of > 2 mm aggregates. The conversion from forest to croplands

340 either decreased MWD, as particularly observed for the low clay–high Fe combination, or had no effect

341 (low clay–low Fe). Overall, the observed differences in aggregate masses and MWD were surprisingly

342 moderate, given the widely differing contents in aluminous clay and Fe oxides across the mineralogical

343 combinations.

344

345 **3.3 Aggregate stability**

346 In general, there was little variation of MWD values for > 4 mm aggregates over all mineralogical

347 combinations. In fact, the MWD of this fraction was always close to its calculated mean diameter (6 mm;

348 calculation was done after (Youker and McGuinness, 1957)), overall indicating a high stability.

349 Nevertheless, there were some minor differences in aggregate stability across mineralogical combinations.

350 The low clay–low Fe and high clay–low Fe combinations had a significantly lower aggregate stability in

351 comparison with the two other combinations under the two land uses (Table 3). The slightly higher

352 abundance of 2–4 mm aggregates in the low clay–high Fe combination under forest and cropland was

353 accompanied by a significantly higher aggregate stability under both land uses (Table 2 and 3). In

354 summary, all aggregates can be classified as stable with only minor differences imposed by the

355 mineralogical combinations. Slightly higher aggregate stability was associated with a larger amount of

356 pedogenic Fe, and increasing Fe_d to aluminous clay ratios, whereas differences in the amount of aluminous

357 clay had almost no effect on the aggregate stability (Table S2).

358

359

360

Gelöscht: In summary, m

363 **Table 3:** Aggregate stability of selected aggregate size fractions after applying the fast wetting procedure
 364 along the different combinations of aluminous clay and pedogenic Fe oxides, indicated by the resulting
 365 mean weight diameter (MWD). Aluminous clay represents the weight sum of kaolinite and gibbsite
 366 present in the <2- μ m fraction after removal of OM and pedogenic Fe oxides. Lower case letters indicate
 367 significant differences within a certain land use separated by depth, and capital letters denote significant
 368 differences between land uses. Sample numbers for the combinations are as follows: 'low clay-low Fe'
 369 under forest ($n = 4$), 'low clay-high Fe' under forest ($n = 4$), 'high clay-low Fe' under forest ($n = 3$), 'high
 370 clay-high Fe' under forest ($n = 7$); all cropland combinations ($n = 3$).

Land use	Mineralogical combination	Depth	MWD	
			Fast wetting > 4 mm	Fast wetting 2–4 mm
			(cm)	(mm)
Forest	Low aluminous clay–	0–5	4.9 ^{b,A} (0.4)	2.6 ^{b,A} (0.1)
	Low pedogenic Fe oxides	5–10	5.1 ^{b,A} (0.3)	2.4 ^{b,A} (0.3)
Forest	Low aluminous clay–	0–5	5.6 ^{a,A} (0.2)	2.8 ^{a,A} (0.1)
	High pedogenic Fe oxides	5–10	4.9 ^{a,A} (0.9)	2.7 ^{a,A} (0.1)
Forest	High aluminous clay–	0–5	5.4 ^{ab} (0.4)	2.7 ^b (0.0)
	Low pedogenic Fe oxides	5–10	4.5 ^a (1.2)	2.4 ^b (0.3)
Forest	High aluminous clay–	0–5	5.5 ^{a,A} (0.2)	2.6 ^{b,A} (0.1)
	High pedogenic Fe oxides	5–10	5.2 ^{a,A} (0.4)	2.6 ^{ab,B} (0.1)
Cropland	Low aluminous clay–	0–5	4.4 ^{b,A} (0.1)	2.6 ^{c,A} (0.0)
	Low pedogenic Fe oxides	5–10	4.9 ^{b,A} (0.3)	2.4 ^{b,A} (0.1)
Cropland	Low aluminous clay–	0–5	5.2 ^{a,A} (0.2)	2.9 ^{a,A} (0.0)
	High pedogenic Fe oxides	5–10	5.3 ^{b,A} (0.1)	2.8 ^{a,A} (0.0)
Cropland	High aluminous clay–	0–5	4.9 ^{a,B} (0.2)	2.7 ^{b,A} (0.1)
	High pedogenic Fe oxides	5–10	5.6 ^{a,A} (0.2)	2.8 ^{a,A} (0.0)

3.4 Organic carbon in soils and aggregate size fractions

372 In the entire data set, variation in mineral constituents caused pronounced differences in the OC content of
 373 the soils between 19 to 95 g OC kg⁻¹ (Table 1). A significant proportion of the total OC content of all

Gelöscht: Variation in mineral constituents caused different soil OC contents, ranging between

Gelöscht: across all sites including both land use and depth

380 forest soils was present in > 4 mm aggregates in both depth increments (low clay–low Fe: 33% < high
 381 clay–high Fe: 43% < high clay–low Fe: 51% < low clay–high Fe: 52%; Figure 1b). Forest to cropland
 382 conversion caused OC losses from most aggregate size fractions (Figure 2). For the > 4 mm aggregates
 383 this was significantly modified by the mineralogical combinations at least at 0–5 cm depth, generally
 384 following the order: low clay–high Fe < high clay–high Fe < low clay–low Fe (Table S3). Losses of OC
 385 from aggregate size fractions were generally higher at 0–5 than at 5–10 cm depth (Figure 2). As
 386 mentioned above, no significant loss of total OC occurred for the low clay–high Fe combination,
 387 irrespective of the significant mass redistribution of the > 4 mm aggregate fraction into smaller aggregate
 388 fractions (Table 2). Although there were differences in OC losses among mineralogical combinations,
 389 there was little indication that coarser aggregate size fractions lost more OC than smaller ones (Table 2).

390

391
 392 **Figure 2:** Mass-corrected OC contents of aggregate size fractions along the mineralogical combinations.
 393 Clay represents the weight sum of kaolinite and gibbsite present in the < 2-µm fraction after removal of

394 OM and pedogenic Fe oxides, and Fe denotes the content of pedogenic Fe oxides extracted with
395 dithionite-citrate-bicarbonate. Sample numbers for the combinations are as follows: 'low clay-low Fe'
396 under forest ($n = 4$), 'low clay-high Fe' under forest ($n = 4$), 'high clay-low Fe' under forest ($n = 3$), 'high
397 clay-high Fe' under forest ($n = 7$); all cropland combinations ($n = 3$).

398

399 **4. Discussion**

400 The aggregate size distribution of soils along the mineralogical combinations under both land uses were in
401 the range of values reported for African soils. For example, soils with strongly contrasting clay content
402 (220 and 650 g kg⁻¹) but similar clay mineralogy (kaolinite) in the central highlands of Kenya displayed
403 macroaggregate contents of 245 and 636 g kg⁻¹ soil, respectively (Gentile et al., 2010). In addition, for
404 soils from the catchment of the Riru river also located in the central highlands of Kenya it was shown that
405 macroaggregates (2–4.2 mm) displayed a large stability (Kamamia et al., 2021). The reported MWD's
406 after application of the fast-wetting stability test were 2.5 mm for cropland and 3.2 mm for indigenous
407 forest sites (Kamamia et al., 2021). These values are close to those observed in our study soils for 2–4 mm
408 aggregates. In contrast, soils in Brazil under native forest vegetation and similar mineral composition
409 (kaolinite, gibbsite, hematite) even subsumed over 90% of total aggregate mass in >2 mm aggregates
410 (Maltoni et al., 2017). Nonetheless, reported data all point at a better soil structure and aggregate stability
411 of tropical soils dominated by low-activity clay minerals and well-crystalline Fe oxides, which is
412 consistent with all mineralogical combinations of this study.

413

414 **4.1 Aggregation and aggregate stability as controlled by aluminous clay and pedogenic Fe oxides**

415 Our data demonstrates relatively small differences in aggregation among the generally well-aggregated
416 study soils, being characterized by high aggregate stability despite of large variations in aluminous clay
417 (factor three) and pedogenic Fe (factor five) contents. Yet, we noticed some distinct modifications of the
418 aggregation size distribution and aggregate stability in both forest and cropland soils.

419

420 ***Mineralogical control on the formation of large macroaggregates***

421 The low clay–low Fe soil under forest had a significantly smaller amount of >4 mm and 2–4 mm
422 aggregates and a significantly lower MWD than all other mineralogical combinations. Notably, a
423 combined increase in aluminous clay and Fe oxides did not necessarily cause a shift towards larger
424 aggregates and thus higher MWD (see low clay–high Fe forest). Furthermore, the low clay–low Fe and

425 high clay–high Fe combinations under forest contained more < 0.25 mm aggregates. Thus, under
426 undisturbed soil conditions it appears that the formation of larger aggregates is promoted if one of the two
427 aggregate-forming mineral fractions is more abundant than the other (high clay–low Fe and low clay–high
428 Fe combinations).

429 We assume that the positive effect of increasing aluminous clay content on the aggregate mass
430 > 4 mm is related to the hybrid electrostatic properties of kaolinite on edges (variable) and surfaces
431 (permanent negative), which enable the formation of characteristic cards-house structures (Qafoku and
432 Sumner, 2002). In addition to this increase in aggregation caused by the dominance in kaolinitic properties
433 (i.e. high clay–low Fe), we also expect that, similar to the study by Dultz et al. (2019), there are mixing
434 ratios between aluminous clay and pedogenic Fe minerals, which lead to improved aggregation (greater
435 MWD; i.e. low clay–high Fe). This effect is probably explained by changes in the electrostatic properties
436 of the mineralogical combinations, as was shown in the study by Hou et al. (2007) for kaolinite in
437 different relative combinations with goethite and hematite. Nevertheless, aluminous clay is the decisive
438 control for macroaggregation in these weathered tropical soils, confirming the often described promoting
439 effect of increasing clay content on aggregation (Feller and Beare, 1997). This is in line with results from
440 two Oxisols in Brazil (Vrdoljak and Sposito, 2002), showing kaolinite being the backbone of
441 macroaggregates.

442 Consequently, the dominant role of pedogenic Fe oxides for macroaggregation under undisturbed
443 tropical soil conditions proposed by Six et al. (2002) cannot be confirmed in our study. This is also
444 supported by the low clay–high Fe forest soil, which contained a smaller amount of > 4 mm aggregates
445 compared to the high clay–low Fe forest soil in both depth increments. Furthermore, the high clay–low Fe
446 and high clay–high Fe combinations under forest also nicely demonstrate how nearly equal amounts of
447 aluminous clay plus pedogenic Fe oxides (i.e. similar clay contents) cause different amounts of > 4 mm
448 aggregates. Consequently, the connection between textural properties and aggregation can remain hidden
449 (Barthès et al., 2008) without considering the mineralogical composition of the whole clay fraction
450 (Fernández-Ugalde et al., 2013; King et al., 2019; West et al., 2004).

[1] verschoben

Gelöscht: T

Gelöscht: also

Gelöscht: because

Gelöscht: Consequently, this rather points at the importance of kaolinite for macroaggregation, which is in line with results from two Oxisols in Brazil (Vrdoljak and Sposito, 2002), showing kaolinite being the backbone of the investigated aggregate size fractions.

[1] nach oben: The dominant role of pedogenic Fe oxides for macroaggregation under undisturbed tropical soil conditions proposed by Six et al. (2002) cannot be confirmed in our study. This is because the low clay–high Fe forest soil contained a smaller amount of > 4 mm aggregates compared to the high clay–low Fe forest soil in both depth increments. Consequently, this rather points at the importance of kaolinite for macroaggregation, which is in line with results from two Oxisols in Brazil (Vrdoljak and Sposito, 2002), showing kaolinite being the backbone of the investigated aggregate size fractions.

478 In contrast to the > 4 mm aggregates, 2–4 mm aggregates corresponded more clearly to the positive
479 effect of pedogenic Fe oxides on aggregation and aggregate stability as proposed for weathered tropical
480 soils (Igwe et al., 2013; Peng et al., 2015; Six et al., 2002). Both, the low clay–high Fe forest and low
481 clay–high Fe cropland soils contained somewhat but significantly more 2–4 mm aggregates than other
482 mineral combinations in concert with a higher aggregate stability of this particular fraction. This finding
483 also demonstrates that mineral interactions forming water-stable aggregates in tropical soils are differently
484 affected by a given mineralogical combination. Higher Fe_d to aluminous clay ratios (> 0.45) modulate
485 aggregate distribution towards aggregates 2–4 mm, whereas distinctly lower values (high clay–low Fe
486 forest: 0.12) shifted the maximum to > 4 mm aggregates.

487 Overall, the two macroaggregate fractions discussed above are differentially affected by the
488 mineralogical combinations, although the magnitude was less than expected, given the pronounced
489 variation in aluminous clay and Fe contents.

491 Land use impact on aggregation within mineral combinations– implications for aggregate stability

492 Land-use change had a distinct impact on aggregate distribution like indicated in other studies (Feller and
493 Beare, 1997; Six et al., 2002) and depended also on the mineralogical combinations, though croplands not
494 followed the trajectory observed under forest. A significantly lower MWD under low clay–high Fe rather
495 than low clay–low Fe can be mainly attributed to a reduced amount of > 4 mm aggregates. We assume
496 that differences in the ratio of pedogenic Fe to aluminous clay in the low clay–low Fe and high clay–high
497 Fe (0.13 to 0.15) in comparison with the low clay–high Fe combination (0.47 to 0.51) under cropland
498 explains the stability of ‘card-house’ structures like described for mineralogically similar Oxisols from
499 Brazil and India (Bartoli et al., 1992). Accordingly, a higher Fe_d to aluminous clay ratios seems to be
500 disadvantageous for the formation and stability of such structures, especially in > 4 mm aggregates. The
501 different pH-dependent charge characteristics of kaolinite and pedogenic Fe oxides (Kaiser and
502 Guggenberger, 2003), and their relative share can lead to altered charge properties of soils (Anda et al.,
503 2008). We hypothesize, that an increasing amount of Fe oxides adds more positive charge, thus possibly

504 reducing structural integrity and aggregate stability if not sufficiently compensated by OM or clay
505 minerals. Furthermore, in the low clay–high Fe cropland combination, land-use change caused a
506 significant four-fold increase of < 0.25 mm aggregates due to the breakdown of > 4 mm aggregates.

507 The less intense formation of > 4 mm aggregates in the low clay–high Fe forest combination was also
508 observed under cropland, whereas the low clay–low Fe and high clay–high Fe croplands showed either no
509 significant decrease or even an increase in > 4 mm aggregate mass. Thus, simultaneous abundance of
510 large amounts of aluminous clay and pedogenic Fe oxides preserved a higher aggregate stability than
511 under mineralogically imbalanced conditions, although no conclusions can be drawn for the high clay–low
512 Fe combination. Nonetheless, > 4 mm aggregates had a higher resistance to field operations in
513 mineralogical combinations with lower Fe_d to aluminous clay ratios (0.13 to 0.15). Nonetheless, our
514 results show that agricultural management does not necessarily decrease macroaggregation and related
515 MWD's, like reported in *Rabbi et al. (2015)*.

516

517 **4.2 Importance of aggregation for OC persistence – effects of aluminous clay and pedogenic Fe
518 oxides**

519 Clay minerals and Fe oxides are considered as important mineral constituents fostering aggregation and
520 subsequent OC storage via physical protection (*Denef et al., 2004*). The overwhelming portion of OC in
521 the studied topsoils resided in mineral-organic associations (35–81%), whereas OC occluded in
522 aggregates amounted to 7–24%, with a lower share under cropland than forest as determined by density
523 fractionation (*Kirsten et al., 2021*). The low clay–high Fe cropland had an OC content more than twice
524 larger than that of the low clay–low Fe cropland, but comprised a significantly smaller MWD. Thus, a
525 shift towards more macroaggregation, indicated by a larger MWD in certain mineralogical combinations,
526 did not result in higher total OC storage, like shown for other tropical soils (*Barthès et al., 2008; Bartoli et
527 al., 1991; Spaccini et al., 2001*). The OC content of the > 4 mm aggregate and 2–4 mm aggregate fractions
528 accounted for 42 to 73% of the total soil OC content (Figure 1b). This, however, does not *per se* indicate
529 the relevance of macroaggregation for OC storage in weathered tropical soils like proposed by others

530 (*Feller and Beare, 1997; King et al., 2019; Six et al., 2002*). The high clay–low Fe forest with the highest
531 share in > 4 mm and 2–4 mm aggregates had significant lower OC contents in these fractions than most
532 other mineralogical combinations. Comparing forest with cropland soils (Table 2), we observed
533 significantly reduced OC contents in the majority of macroaggregate fractions of the low clay–low Fe and
534 high clay–high Fe croplands, as reported in other studies (*Blanco-Canqui and Lal, 2004; Lobe et al.,*
535 2011). In contrast, fewer changes of aggregate-associated and total soil OC contents was observed in the
536 low clay–high Fe combination, despite it experienced the strongest disaggregation of the largest
537 macroaggregates (Figure 1a and Figure 2). We conclude that larger amounts of > 2 mm aggregates or
538 higher stability during wet sieving ~~does~~ not automatically translate into higher aggregate-associated OC
539 contents, as reported for Ferralsols (*Maltoni et al., 2017*). Given all these observations and the fact that
540 occluded OM determined by density fractionation was mostly of subordinate relevance, particularly in
541 croplands, OC storage in study soils seems rather disconnected from their aggregation status.
542 Consequently, the loss of large aggregates and the mass redistribution into smaller aggregate size fractions
543 does not automatically imply a loss of soil OC, because a substantial part of the OC in aggregate fractions
544 is bound to minerals with a higher persistence against land-use change (*Kirsten et al., 2021*). Here, density
545 fractionation could shed more light on the nature and quantity of OM located in certain aggregate size
546 fractions.

Gelöscht: s

547 Microaggregates contained the highest OC content per unit of mass for almost all mineralogical
548 combinations, depth increments, and land uses (Table 2). This is in line with the findings of *Chenu and*
549 *Plante (2006)* and *Lobe et al. (2011)* that microaggregates can significantly contribute to OC storage. As
550 aggregates were isolated by dry sieving, these microaggregates were not located inside larger aggregates,
551 rendering them principally better accessible for OC allocation. Particularly OC contained in the
552 < 0.25 mm aggregates of the low clay–high Fe combination revealed a strong persistence against land-use
553 change, which explains well the unaltered soil OC contents upon land-use change.

554

556 **5. Conclusions**

557 Classification of soils into mineralogical combinations of aluminous clay and pedogenic Fe oxides
558 revealed significant effects of mineral constituents on soil structure and related OC storage in weathered
559 tropical soils. Despite that, overall patterns across combinations were more similar than different, *i.e.*,
560 always comprising a high level of macroaggregation and aggregate stability. Aggregates > 4 mm of the
561 low clay–low Fe and high clay–high Fe combinations were less affected by land-use change, thus
562 pedogenic Fe in a certain relation with aluminous clay (0.13 to 0.23) seems beneficial to maintain the
563 structural integrity of macroaggregates. Despite the high physical stability, OC contents of
564 macroaggregates declined substantially in most mineralogical combinations if forest was compared with
565 cropland land use. This highlights the fact that structural integrity of macroaggregates during land-use
566 change cannot be equated with OC persistence. For the low clay–high Fe combination, substantial
567 destruction of > 4 mm aggregates during land-use change due to agricultural management was also not
568 accompanied by higher OC losses. Hence, we must reject our initial hypothesis that the mineralogical
569 combination that results in the greatest aggregate stability best preserves OC during the conversion from
570 forest to cropland. Thus, the formation of macroaggregates cannot be considered as a main stabilization
571 process for OC in strongly weathered soils of the humid tropics. We suggest that the formation of mineral-
572 organic associations as part of the aggregate size fractions is the most important process that preserves OC
573 during land-use change in these soils.

Gelöscht: during

Gelöscht: –

Gelöscht: conversion

577 **7. Author contribution**

578 KK, RM, MK, and KHF designed the project. MK, KK, RM, DNK, and KHF collected soil or data to
579 supported the sampling campaign. MK, KK, RM, and KHF evaluated data and all authors conducted a
580 thorough critical review of the manuscript. MK, KK, and RM wrote the manuscript with contribution of
581 all authors.

582

583 **8. Competing interests**

584 The authors declare that they have no conflict of interest.

585

586 **9. Acknowledgements**

587 We are grateful to the officials of Amani Nature Reserve who supported the field campaign in February
588 2018. Aloyce Mkongewa enthusiastically assisted fieldwork. We are also indepted to Gisela Ciesielski,
589 Manuela Unger, Mandy Meise, Tobias Krause, Thomas Klinger, Gudrun Nemson-von Koch, and
590 Christine Krenkewitz for laboratory support and analytical work. Finally, the authors would like to thank
591 the two reviewers for their comprehensive reading of the manuscript and constructive suggestions for its
592 improvement. This study was supported by grants of the Deutsche Forschungsgemeinschaft (DFG): FE
593 504/15-1, KA 1737/16-1, and MI 1377/11-1.

594 **10. References**

595 *Anda, M., Shamshuddin, J., Fauziah, C. I., Omar, S. S.* (2008): Mineralogy and factors controlling charge
596 development of three Oxisols developed from different parent materials. *Geoderma* 143, 153–167.

597 *Asano, M., Wagai, R.* (2014): Evidence of aggregate hierarchy at micro- to submicron scales in an
598 allophanic Andisol. *Geoderma* 216, 62–74.

599 *Barthès, B. G., Kouakoua, E., Larré-Larrouy, M.-C., Razafimbelo, T. M., de Luca, Edgar F., Azontonde,*
600 *A., Neves, C. S.V.J., de Freitas, Pedro L., Feller, C. L.* (2008): Texture and sesquioxide effects on water-
601 stable aggregates and organic matter in some tropical soils. *Geoderma* 143, 14–25.

602 *Bartoli, F., Burtin, G., Herbillon, A. J.* (1991): Disaggregation and clay dispersion of Oxisols: Na resin, a
603 recommended methodology. *Geoderma* 49, 301–317.

604 *Bartoli, F., Philippy, R., Burlin, G.* (1992): Influence of organic matter on aggregation in Oxisols rich in
605 gibbsite or in goethite. I. Structures: the fractal approach. *Geoderma* 54, 231–257.

606 *Blanco-Canqui, H., Lal, R.* (2004): Mechanisms of Carbon Sequestration in Soil Aggregates. *CRC Crit.*
607 *Rev. Plant Sci.* 23, 481–504.

608 *Bronick, C. J., Lal, R.* (2005): Soil structure and management: a review. *Geoderma* 124, 3–22.

609 *Carter, M. R., Gregorich, E. G.* (Eds.) (2008): Soil sampling and methods of analysis. Canadian Society of
610 Soil Science; CRC Press, [Pinawa, Manitoba], Boca Raton, FL, USA, p. 1224.

611 *Chaplot, V., Bouahom, B., Valentin, C.* (2010): Soil organic carbon stocks in Laos: spatial variations and
612 controlling factors. *Glob. Change Biol.* 16, 1380–1393.

613 *Chaplot, V., Cooper, M.* (2015): Soil aggregate stability to predict organic carbon outputs from soils.
614 *Geoderma* 243–244, 205–213.

615 *Chenu, C., Plante, A. F.* (2006): Clay-sized organo-mineral complexes in a cultivation chronosequence:
616 revisiting the concept of the 'primary organo-mineral complex'. *Eur. J. Soil Sci.* 57, 596–607.

617 *Denef, K., Six, J., Merckx, R., Paustian, K.* (2002): Short-term effects of biological and physical forces on
618 aggregate formation in soils with different clay mineralogy. *Plant Soil* 246, 185–200.

619 *Denef, K., Six, J., Merckx, R., Paustian, K.* (2004): Carbon Sequestration in Microaggregates of No-
620 Tillage Soils with Different Clay Mineralogy. *Soil Sci. Soc. Am. J.* 68, 1935.

621 *Don, A., Schumacher, J., Freibauer, A.* (2011): Impact of tropical land-use change on soil organic carbon
622 stocks - a meta-analysis. *Glob. Change Biol.* 17, 1658–1670.

623 *Duiker, S. W., Rhoton, F. E., Torrent, J., Smeck, N. E., Lal, R.* (2003): Iron (Hydr)Oxide Crystallinity Ef-
624 ffects on Soil Aggregation. *Soil Sci. Soc. Am. J.* 67, 606.

625 *Dultz, S., Woche, S. K., Mikutta, R., Schrapel, M., Guggenberger, G.* (2019): Size and charge constraints
626 in microaggregation: Model experiments with mineral particle size fractions. *Applied Clay Science* 170,
627 29–40.

628 *Durn, G., Škapin, S. D., Vdović, N., Rennert, T., Ottner, F., Ružičić, S., Cukrov, N., Sondi, I.* (2019): Im-
629 pact of iron oxides and soil organic matter on the surface physicochemical properties and aggregation of
630 Terra Rossa and Calcocambisol subsoil horizons from Istria (Croatia). *Catena* 183, 104184.

631 *FAO* (2015): Status of the World's Soil Resources: Main report. FAO; ITPS, Rome, XXXIX, 608 str.

632 *Feller, C., Beare, M. H.* (1997): Physical control of soil organic matter dynamics in the tropics. *Geoderma*
633 79, 69–116.

634 Fernández-Ugalde, O., Barré, P., Hubert, F., Virtó, I., Girardin, C., Ferrage, E., Caner, L., Chenu, C.
635 (2013): Clay mineralogy differs qualitatively in aggregate-size classes: clay-mineral-based evidence for
636 aggregate hierarchy in temperate soils. *Eur. J. Soil Sci.* 64, 410–422.

637 Gee, G. W., Bauder, J. W. (1986): Particle-size analysis, in Klute, A., Page, A. L.: Methods of soil analysis:
638 Part 1 Physical and mineralogical methods. 2nd ed. no. 9. American Society of Agronomy; Soil Science
639 Society of America, Madison, pp. 383–412.

640 Gentile, R., Vanlauwe, B., Kavoo, A., Chivenge, P., Six, J. (2010): Residue quality and N fertilizer do not
641 influence aggregate stabilization of C and N in two tropical soils with contrasting texture. *Nutr. Cycling
642 Agroecosyst. (Nutrient Cycling in Agroecosystems)* 88, 121–131.

643 Hamilton, A. C., Bensted-Smith, R. (1989): Forest Conservation in the East Usambara Mountains, Tanzania.
644 *IUCN - The World Conservation Union, Gland, Switzerland.*

645 Hou, T., Xu, R., Zhao, A. (2007): Interaction between electric double layers of kaolinite and Fe/Al oxides
646 in suspensions. *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 297, 91–94.

647 Igwe, C. A., Zarei, M., Stahr, K. (2013): Stability of aggregates of some weathered soils in south-eastern
648 Nigeria in relation to their geochemical properties. *J. Earth Syst. Sci.* 122, 1283–1294.

649 Kaiser, K., Guggenberger, G. (2003): Mineral surfaces and soil organic matter. *Eur. J. Soil Sci.* 54, 219–
650 236.

651 Kamamia, A. W., Vogel, C., Mwangi, H. M., Feger, K.-H., Julich, S. (2021): Mapping soil aggregate sta-
652 bility using digital soil mapping: A case study of Ruiru reservoir catchment, Kenya. *Geoderma Regional*
653 24.

654 King, A. E., Congreves, K. A., Deen, B., Dunfield, K. E., Voroney, R. P., Wagner-Riddle, C. (2019): Quan-
655 tifying the relationships between soil fraction mass, fraction carbon, and total soil carbon to assess
656 mechanisms of physical protection. *Soil Biol. Biochem.* 135, 95–107.

657 Kirsten, M., Kimaro, D. N., Feger, K.-H., Kalbitz, K. (2019): Impact of land use on soil organic carbon
658 stocks in the humid tropics of NE Tanzania. *J. Plant Nutr. Soil Sci.* 182, 625–636.

659 Kirsten, M., Mikutta, R., Vogel, C., Thompson, A., Mueller, C. W., Kimaro, D. N., Bergsma, H. L. T.,
660 Feger, K.-H., Kalbitz, K. (2021): Iron oxides and aluminous clays selectively control soil carbon storage
661 and stability in the humid tropics. *Scientific Reports* 11.

662 Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., Nico, P. S. (2015): Mineral–Organic
663 Associations: Formation, Properties, and Relevance in Soil Environments. *Adv. Agron.* 130, 1–140.

664 Kravchenko, A. N., Negassa, W. C., Guber, A. K., Rivers, M. L. (2015): Protection of soil carbon within
665 macro-aggregates depends on intra-aggregate pore characteristics. *Scientific Reports* 5, 16261.

666 Larney, F. J. (2008): Dry-Aggregate Size Distribution, in Carter, M. R., Gregorich, E. G.: Soil sampling
667 and methods of analysis. 2nd ed. Canadian Society of Soil Science; CRC Press, [Pinawa, Manitoba],
668 Boca Raton, FL, USA, pp. 821–831.

669 Le Bissonnais, Y. (1996): Aggregate stability and assessment of soil crustability and erodibility: I. Theory
670 and methodology. *Eur. J. Soil Sci.* 47, 425–437.

671 Le Bissonnais, Y., Prieto, I., Roumet, C., Nespoulous, J., Metayer, J., Huon, S., Villatoro, M., Stokes, A.
672 (2018): Soil aggregate stability in Mediterranean and tropical agro-ecosystems: effect of plant roots and
673 soil characteristics. *Plant Soil* 424, 303–317.

674 *Lobe, I., Sandhage-Hofmann, A., Brodowski, S., du Preez, C. C., Amelung, W.* (2011): Aggregate dynamics
675 and associated soil organic matter contents as influenced by prolonged arable cropping in the South
676 African Highveld. *Geoderma* 162, 251–259.

677 *Maltoni, K. L., Mello, L. M. M. de, Dubbin, W. E.* (2017): The effect of Ferralsol mineralogy on the distribution
678 of organic C across aggregate size fractions under native vegetation and no-tillage agriculture.
679 *Soil Use Manag.* 33, 328–338.

680 *Marín-Spiotta, E., Swanston, C. W., Torn, M. S., Silver, W. L., Burton, S. D.* (2008): Chemical and mineral
681 control of soil carbon turnover in abandoned tropical pastures. *Geoderma* 143, 49–62.

682 *Mehra, O. P., Jackson, M. L.* (1958): Iron Oxide Removal from Soils and Clays by a Dithionite-Citrate
683 System Buffered with Sodium Bicarbonate. *Clays Clay Miner.* 7, 317–327.

684 *Mujuru, L., Mureva, A., Velthorst, E. J., Hoosbeek, M. R.* (2013): Land use and management effects on
685 soil organic matter fractions in Rhodic Ferralsols and Haplic Arenosols in Bindura and Shamva districts
686 of Zimbabwe. *Geoderma* 209–210, 262–272.

687 *Paul, S., Flessa, H., Veldkamp, E., López-Ulloa, M.* (2008): Stabilization of recent soil carbon in the hu-
688 mid tropics following land use changes: Evidence from aggregate fractionation and stable isotope anal-
689 yses. *Biogeochemistry* 87, 247–263, www.jstor.org/stable/40343548.

690 *Peng, X., Yan, X., Zhou, H., Zhang, Y. Z., Sun, H.* (2015): Assessing the contributions of sesquioxides and
691 soil organic matter to aggregation in an Ultisol under long-term fertilization. *Soil Tillage Res.* 146, 89–
692 98.

693 *Qafoku, N. P., Sumner, M. E.* (2002): Adsorption and Desorption of Indifferent Ions in Variable Charge
694 Subsoils. *Soil Science Society of America Journal* 66, 1231–1239.

695 *Rabbi, S.M.F., Wilson, B. R., Lockwood, P. V., Daniel, H., Young, I. M.* (2015): Aggregate hierarchy and
696 carbon mineralization in two Oxisols of New South Wales, Australia. *Soil Tillage Res.* 146, 193–203.

697 *Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M.,
698 Kögel-Knabner, I., Lehmann, J., Manning, David A C, Nannipieri, P., Rasse, D. P., Weiner, S.,
699 Trumbore, S. E.* (2011): Persistence of soil organic matter as an ecosystem property. *Nature* 478, 49–56.

700 *Schwertmann, U.* (1964): Differenzierung der Eisenoxide des Bodens durch Extraktion mit
701 Ammoniumoxalat-Lösung. *Z. Pflanzenernaehr. Dueng. Bodenk.* 105, 194–202.

702 *Six, J., Bossuyt, H., Degryze, S., Denef, K.* (2004): A history of research on the link between (mi-
703 cro)aggregates, soil biota, and soil organic matter dynamics. *Soil Tillage Res.* 79, 7–31.

704 *Six, J., Elliott, E.T., Paustian, K.* (2000a): Soil macroaggregate turnover and microaggregate formation: A
705 mechanism for C sequestration under no-tillage agriculture. *Soil Biol. Biochem.* 32, 2099–2103.

706 *Six, J., Feller, C., Denef, K., Ogle, S. M., Moraes, J. C. de, Albrecht, A.* (2002): Soil organic matter, biota
707 and aggregation in temperate and tropical soils - Effects of no-tillage. *Agronomie* 22, 755–775.

708 *Six, J., Paustian, K., Elliott, E. T., Combrink, C.* (2000b): Soil Structure and Organic Matter. *Soil Sci. Soc.*
709 *Am. J.* 64, 681.

710 *Spaccini, R., Zena, A., Igwe, C. A., Mbagwu, J. S. C., Piccolo, A.* (2001): Carbohydrates in water-stable
711 aggregates and particle size fractions of forested and cultivated soils in two contrasting tropical ecosys-
712 tems. *Biogeochemistry* 53, 1–22, www.jstor.org/stable/1469625.

713 *Tisdall, J. M., Oades, J. M.* (1982): Organic matter and water-stable aggregates in soils. *J. Soil Sci.* 33,
714 141–163.

715 Totsche, K. U., Amelung, W., Gerzabek, M. H., Guggenberger, G., Klumpp, E., Knief, C., Lehndorff, E.,
716 Mikutta, R., Peth, S., Prechtel, A., Ray, N., Kögel-Knabner, I. (2018): Microaggregates in soils. *J. Plant
717 Nutr. Soil Sci.* 181, 104–136.

718 Trüby, P., Aldinger, E. (1989): Eine Methode zur Bestimmung austauschbarer Kationen in Waldböden. *Z.
719 Pflanzenernaehr. Bodenk.* 152, 301–306.

720 Vrdoljak, G., Sposito, G. (2002): Soil aggregate hierarchy in a Brazilian oxisol, in Soil Mineral-Organic
721 Matter-Microorganism Interactions and Ecosystem Health, Dynamics, Mobility and Transformation of
722 Pollutants and Nutrients. Developments in Soil Science. Elsevier, pp. 197–217.

723 West, S. L., White, G. N., Deng, Y., McInnes, K. J., Juo, A. S. R., Dixon, J. B. (2004): Kaolinite, halloysite,
724 and iron oxide influence on physical behavior of formulated soils. *Soil Sci. Soc. Am. J.* 68, 1452–1460.

725 Youker, R. E., McGuinness, J. L. (1957): A short method of obtaining mean weight-diameter values of
726 aggregate analyses of soil. *J. Soil Sci.*, 291–294.