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Abstract

The status of the SOC stock at any position in the landscape is subject to a complex interplay of soil-state factors
operating at different scales and regulating multiple processes resulting either in soils acting as a net sink or net
source of carbon. Forest landscapes are characterized by high spatial variability and key drivers of SOC stock
might be specific for subareas compared to those influencing the whole landscape. Consequently, separately
calibrating models for subareas (local models) that collectively cover a target area can result in different prediction
accuracy and SOC stock drivers compared to a single model (global model) that covers the whole area. The goal
of this study was therefore to (1) assess how global and local models differ in predicting the humus layer, mineral
soil and total SOC stock in Swedish forests, (2) identify the key factors for SOC stock prediction and their scale

of influence.

We used the Swedish National Forest Soil Inventory (NFSI) database and a digital soil mapping approach to
evaluate the prediction performance using Random Forest models calibrated locally for the northern, central and
southern Sweden (local models) and for the whole Sweden (global model). Models were built by considering (1)
only site characteristics which are recorded on the plot during NFSI, (2) group of covariates (remote sensing,
historical land use data etc.) and (3) both site characteristics and group of covariates consisting mostly of remote

sensing data.

Local models were generally more effective for predicting SOC stock after testing on independent validation data.
Using the group of covariates together with NFSI data indicated that such covariates have limited predictive
strength but that site specific covariates from the NFSI showed better explanatory strength for SOC stocks. The
most important covariates that influence the humus layer, mineral soil (0 — 50 cm) and total SOC stock were related
to the site characteristic covariates and include the soil moisture class, vegetation type, soil type and soil texture.
This study showed that local calibration has potential for improving prediction accuracy which will vary depending

on the type of available covariates.

1. Introduction

About 30 % of the global terrestrial carbon (C) stock is stored in forests with 60 % located below ground (Pan et
al., 2011). These forests act mostly as a large net sink for atmospheric carbon but concerns exist for potential
release of C under the impact of global warming over the next century (Price et al., 2013;Kauppi et al., 2014).
Moreover, the intensification of forest management for timber, fibre, and fuel to satisfy an ever-increasing demand

will likely affect the dynamic of the forest C pool. In recent decades, many studies have focused on assessing the
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soil organic carbon (SOC) stock in forest soils (Kumar et al., 2016;Ottoy et al., 2017;Sheikh et al., 2009;Prietzel
and Christophel, 2014) which is crucial to meet the requirement of the climate convention and the Kyoto protocol
for reporting all sources and sinks of carbon dioxide and also for the estimation of potential carbon credits
(Buchholz et al., 2014;Jandl et al., 2007). In that context, analysis of the C cycle in forests is central to

understanding management and climate-induced changes in global C pool.

Increased availability of remote sensing data and development of spatial statistical methods has led to an increased
use of digital soil mapping (DSM) (Minasny and McBratney, 2016). DSM aims at estimating the spatial
distribution of soil classes or soil properties by coupling field and laboratory observations with spatial and non-
spatial environmental covariates via quantitative relationships. Many studies used DSM approaches for predicting
SOC stock at different scales and for various land use/land cover, climate and across a wide range of soil types
(Soderstrom et al., 2016;Tranter et al., 2011;Beguin et al., 2017;Mansuy et al., 2014;Mallik et al., 2020). These
studies use different modelling techniques ranging from geostatistics, multiple linear regression to machine

learning models such as artificial neural network, support vector machine and boosted regression trees.

The accuracy and precision of predictions resulting from modelling over a large extent are often reported to be
poor because of the spatial heterogeneity encompassing different soil types, topography and soil properties (Grimm
et al., 2008;Schulp and Verburg, 2009;Schulp et al., 2013;Tang et al., 2017). Generally, models are applied to the
whole study area without prior stratification. However, models could be calibrated separately for subareas and
their predictions can then be combined to cover the whole area (Somarathna et al., 2016;Piikki and Soderstrom,
2019;Song et al., 2020). Since spatial variability is an important characteristic of forest landscapes, key drivers of
SOC stock might be specific for subareas compared to those influencing the whole landscape. Management
decision in relation to driving factors of SOC stock will likely be more cost-effective as models gain in reliability

for specific areas within a given landscape.

Building on the soil state-factor (climate, organisms, relief, parent material, age) equation developed by Jenny
(1941), McBratney et al. (2003) introduced the conceptual framework for DSM referred to as SCORPAN which
complemented the former with the inclusion of soil information and location coordinates. The relative contribution
of any of these factors to model accuracy in DSM vary and some turn out to be more relevant as explanatory
covariates compared to others. Ottoy et al. (2017) identified relief (highest groundwater level), soil (clay fraction),
land use (tree genus) as main predictors for mapping SOC stock in forest soils in Belgium while Mansuy et al.
(2014) reported relief and climatic covariates as the key covariates in mapping C, N and texture in Canadian
managed forests. Vasques et al. (2016) recorded parent material among the key covariates in mapping soil
properties in tropical dry forest in Brazil. These studies and many others rely mostly on covariates existing as maps
while survey data which present site specific information are left out during modelling. However, soil factors
affecting different processes in the landscape operate at different scale and taking into account site specific

covariates would inform model local variability which might not be captured by remote sensing covariates.

The goal of this study was therefore to (1) assess how global and local models differ in predicting the humus layer,

mineral soil and total SOC stock in Sweden forest ecosystems, (2) evaluate to which extent and at which scale
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remotely sensed covariates can explain the variability of SOC stock compared to site specific covariates in the
Swedish forest and, (3) identify covariates which may have potential for future prediction models in forest

SOC stock assessments.

2. Materials and methods
2.1 Data description

Forest data came from the Swedish National Forest Soil Inventory (NFSI) and the National Forest Inventory (NFT).
The NFSI runs concurrently every year with the NFI and consists in repeated survey of forest vegetation, soil
chemical and physical properties (Stendahl et al., 2017;0Ortiz et al., 2013). Data from the following inventory
periods were considered in the present study: 1993 — 2002, 2003 — 2012 and 2013 — 2015. However, the present
paper did not focus on SOC changes over these three inventory periods but on SOC stock using plot scale as a
unit. The NFSI are conducted on ca 23 500 permanent plots (Figure 1) with a radius of 10 m covering all land uses
in Sweden except urban areas, cultivated land and the high mountains. The plots are distributed based on a stratified
and random national grid system covering all the Swedish forest soils. They are organized in quadratic clusters
(tracts) consisting in 8 (in the north) to 4 (in the southwest) circular (314 m?) sample plots. Each plot of the NFSI

are inventoried once every 10 years.

Soil samples are collected in a subset of the plots with humus sampling on ca. 10 000 plots and mineral soil
sampling on ca. 4500 plots (Stendahl et al., 2017). Based on the NFSI dataset, pedogenetic carbonates are not
formed in these soils due to sufficient leaching and also sedimentary bedrocks which could potentially contain
CaCO3 cover less than 1% of Swedish forests. Therefore the content of inorganic carbon in mineral soil is
considered negligible in the study area. Humus layer volumetric samples are taken using a soil core (core diameter
10 cm) below the O horizon down to 30 cm depth. The mineral soil is sampled at 0-10, 10-20 and 55-65 cm depth
from the mineral soil surface. These samples are dried at 35°C and sieved to <2 mm. Total C is determined for all
samples by dry combustion with elemental analysers (LECO CNS-1000 and LECO TruMac CN). Total O horizon
SOC stock is calculated from sampled amount of soil material and C concentration of the sample. The total mineral
SOC stock down to 50 cm depth for each site is calculated using the SOC stock of measured layers with empirical
model for bulk density (Nilsson and Lundin, 2006), corrections for stoniness (Stendahl et al., 2009) and linear
interpolation between measured layers. Since potential SOC stock change is very small compared to the entire
SOC stock the averaged SOC stock between the inventories was considered representative of the plots and was
therefore considered for all computations and modelling in order to reduce variability between plots. The organic

and mineral soil SOC stock were summed up to get the total SOC stock.

2.2 Explanatory covariates for prediction

The set of covariates used in this study consist of topographic covariates, climate covariates, geochemical and

gamma-ray data, historical land use maps and site characteristics (Table 1).

Topographic covariates were computed from high-resolution digital elevation models (DEM) derived from Light
Detection And Ranging (LiDAR) produced by the Swedish National Mapping Agency. It was originally created
3
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with 2-m spatial resolution (Dowling et al., 2013). However, the initial DEM was resampled in ArcGIS 10 software
package using the aggregation procedure with bilinear interpolation to a final resolution of 10 m x 10 m which is
reasonable for the data considered in the present study. The topographical covariates were computed using the
SAGA GIS software (Conrad et al., 2015). However, the depth to water (DTW, 2 x 2 m) considered in this study
is an estimation of the elevation along a defined least-cost-path (Lidberg et al., 2019;Murphy et al., 2008). The
depth to groundwater was obtained from the Swedish Forest Agency (SGU, 2018) and computes the difference in

elevation in relation to surrounding cells following the vertical flow path.

Climate maps (1 km x 1 km) of the annual mean temperature and annual precipitation for 1970-2000 were obtained
from the WorldClim platform (Fick and Hijmans, 2017). The Geological Survey of Sweden (SGU) has produced
geochemical data based mainly on the spatial distribution of till which covers about 75% of the Swedish landscape.
The following base cations Ca (ppm), Mg (ppm), K (ppm), Na (ppm) and Mn (ppm) were considered for the

present study in predicting carbon storage (Andersson et al., 2014).

Several studies in Sweden pointed to some correlation between gamma-ray data and soil properties (Piikki et al.,
2015;Soderstrom and Eriksson, 2013). Gamma-ray data are recorded by SGU since 1968 with measurements
carried out along flight lines at 200 m interval in general. The flight heights were 30 m up to 1994 while subsequent
surveys were carried out at 60 m altitude. The concentrations of the following radioisotopes “°K, *?Th, and 23%U
are measured and corrected for background and cosmic radiation (Erdi-Krausz et al., 2003). The gamma-ray
dataset was filtered for values < 0 which were omitted as they are mostly related to water entities. The resulting
gamma-ray data as well as the geochemical data were interpolated in this study into maps either by ordinary kriging

or inverse distance weighing when geostatistic assumption such as normal distribution were not met.

The Swedish Forest Agency has developed several forest attributes maps based on the combination of satellite
images and field data from the NFI (Nilsson et al., 2017). Maps (25 x 25 m) of the stand age, tree biomass, tree
height and stem volume produced for the year 2010 were used in the present study. Auffret et al. (2017) digitized
some historical map series (Ekonomiska kartan) which were initially published in 1935 - 1978. The digitized
versions of these maps (1 x 1 m) were only produced for the southern part of Sweden and present past major land
use, settlements and infrastructure. These maps were available per counties but were merged into a single raster
file in ArcMap 10.7. For the present study, we consider two variants of these maps: (1) areas which were cropland

and are now forest lands, and (2) areas which were grasslands and are now forest lands.

The records of site characteristics (Table 1) are also carried out during the NFSI. Site description include soil
types, soil moisture class, soil texture class, vegetation type and parent material class. The soil classification was
based on the World Reference Base (WRB) for soil resources. The location of the average ground water table over
the vegetation season was the main criterion for defining classes of soil moisture. The texture index was made by
manual assessment in the field, e.g. through rolling and washing test. The vegetation type as reported in Table 1
was defined by combining the descriptions of the field layers which refer to the understory. Field layers consisted
of four main types which are categorized from fertile to poor, namely herb types (tall or low), grounds without

field layer, grass types and dwarf-shrub types.
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2.3 Prediction models: Random Forest and quantile regression forests

The Random Forest (RF) algorithm was selected for SOC stock prediction. Additionally, the quantile regression

forest (QRF) was used to estimate the standard deviation related to the predictions.

RF is a classification and regression method that builds multiple decision trees. For regression, the tree predictors
provide numerical output instead of class labels for classification (Breiman, 2001). The RF is able to model
complex and nonlinear relationships between input predictors and response covariates. The RF is characterized by
double randomness in the construction of the decisions trees. An ensemble of growing decision trees is generated
by combining bagging (bootstrap aggregating) along with random feature selection. Bagging consists in producing
training datasets (bootstrap sample) by drawing randomly with replacement from the original training dataset
generated. A regression tree is fitted to each of the bootstrap samples from a random subset of the input predictors
when deciding to split a node. For any new given input X = x, RF provides the prediction of a single tree as a

weighted average of the original observations Y;, (i = 1, ..., n) in each node.

fix) = Xy wi(x, 0)Y; )

where w; is the weight vector which results either in a positive constant when the observation (V;, X;) is inherent
to the leaf generated from the random vector of covariates or is 0 if otherwise. The weight vector (Meinshausen,

2006) w; is defined as follows:

1{"1’ ERl(x,Q)}

Wil 0) = T re)

2)

Ry(x,0) is the rectangular subspace defined by the leaf [(x, 8) of the tree built from the random vector of covariates
0 and the input X; and Xj, (j = 1, ...,n). The conditional mean E(Y|X = x) is computed by averaging the

predictions of k single trees which are individually built with independent vectors having similar distributions.

The weighted average of trees is computed as follows:

wi(x) = k71X wi(x, 6,) 3)
The final prediction of the RF regression is given by:

Alx) = X wi(0)Y; “4)

The number of trees to grow in the RF model (ntree) and the number of randomly selected predictor covariates at
each node (mtry) are the two key parameters to be tuned for RF modelling. To reduce computational load, the
ntree was set at 500 while the mtry was tuned using the grid search (2: p, with p the number of covariates) method
in the R “caret” package (Kuhn, 2015) with fiftyfold cross validation. The importance of each input predictor can
be assessed by the RF based on the mean decrease accuracy (MDA) (Hastie et al., 2011). The MDA is computed
by (i) randomly permuting the values of each predictor within the out of bag sample, and (ii) measuring the
reduction in model accuracy resulting from that permutation. The hypothesis is that this permutation would result
in little to no effect on model accuracy for less important covariates, while significant drop will follow the

permutation of important covariates.
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2.4 Covariate layers processing for subareas

We considered three subareas in Sweden (Fig. 1) which are hereafter reported as northern (North), central (center)
and southern (South) Sweden areas in the remaining of the paper. These areas were defined by merging the
northern, central and southern climatic regions which were considered in Ortiz et al. (2013). A buffer of 4 km was
considered for the shapefiles of each subarea to create overlapping zones which ensured smooth transition while
merging by averaging the SOC stock values within these shared units. The covariates were delimited for each
subarea. They were resampled to 10 m resolution using the bilinear method for continuous covariates and the
nearest neighbor method for categorical covariates. A value to point extraction was carried out by overlaying the
coordinates of the sampling points of each subareas over the stacked raster files in R (Kuhn, 2015). The pixel

values of each subarea were compiled to form the database of the humus layer, mineral and total SOC stock.

2.5 Modelling with different category of covariates: global and local models

For modelling, three categories of covariates were considered: (1) only the plot level site specific covariates (SSC),
(2) all the covariates without the SSC, namely group of covariates (GoC) and (3) both the SSC and GoC (allC).
Modelling with RF was carried out with each category of covariate related to its subareas as well as for the
compiled dataset for the whole Sweden. Moreover, to reduce computation time while keeping relatively the same
level of accuracy, we (1) used feature pre-processing capabilities implemented in the caret package (Kuhn, 2017)
of R to remove highly correlated (Pearson’s correlation) expressions using a cutoff point of 0.80 and (2) the
recursive feature elimination (RFE) using RF as method to select the optimal set of covariates for each RF model.
The RFE functions by carrying out variable importance classification then proceeds by eliminating iteratively the
least important features (Gomes et al., 2019;Hounkpatin et al., 2018). For each RF model, the RFE was carried out

and therefore model-specific optimal set of covariates were identified for both subareas and whole Sweden.

The RF models built on data covering the whole area of Sweden are hereafter called “global models”. The RF
models created for each of the subareas are hereafter reported as “local models”. Considering the subareas as strata,
the local models were built by randomly splitting the local datasets into calibration (80%) and validation (20%)
subset. Each local model was validated against their respective local validation set. For comparison, the global
models were validated using the same local validation set used for the local models. The data used for calibrating
the global model was made up of the 80% random split of the three local training set (Northern, Central and
Southern training set). The same approach is used for validation at a national scale by considering as one dataset
the 20% split of the three local validation dataset (Northern, Central and Southern validation set). We trained both
global and local models based on tenfold cross validation with 5 repetitions using the R “caret” package (Kuhn,

2015).

2.6 Assessment of model performance and mapping

To compare model performance, we computed several assessment metrics : R%, Lin’s concordance (Lawrence and
Lin, 1989) correlation (p.), root mean square error (RMSE), and mean absolute error (MAE) and the bias.

1
p— /2 ©)
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where “P” is the predicted value, “O” is the observed/true value, “p,ps " and “ iyreq ” the means of the observed

and predicted values respectively, “02,; ” and “o

Z .q’ are the associated variances, p is the correlation between

the observed and the predicted values.

Though these error metrics are widely used for assessing models, they cannot inform about the uncertainty related
to the prediction. Therefore, we additionally considered the density distribution of the predicted versus actual SOC
stock. Further, the scattergram of the prediction interval coverage probability (PICP) was also considered (Vaysse
and Lagacherie, 2017). The latter is the graphical representation of the proportion of time the actual values of SOC
stock fall within a series of probability (p) of prediction intervals (PI) limited by (1-p)/2 and (1+p)/2 quantiles. The
QREF was used to predict all percentiles including the 5th and 95th percentile required to create the 90 %-prediction
intervals. Finally, the coverage of the 90 %-prediction intervals by the observation from the validation set was also

analysed.

The SOC stock maps were computed only for the models based on the GoC models because of their availability
as maps. The uncertainty of the SOC stock predictions was expressed by considering the coefficient of variation
which is the percentage ratio of the standard deviation map divided by the mean SOC stock prediction. A
qualitative assessment of the spatial distribution of the humus layer, mineral soil and total SOC stock from the

produced maps was carried out and compared to literature.

3. Results

3.1 Validation performance of global models over whole Sweden

The performance metrics of the cross and independent validation of the RF models at the national scale are
presented in Table 3. The internal accuracy statistics showed that modelling with all covariates resulted generally
in marginally lower RMSE and higher R? for all SOC stock. Modelling with allC reduced the cross-validation
RMSE by 2%, 1% and 6% compared to SSC models and by 7.9%, 10%, 6% compared to GoC models respectively
for the humus layer, mineral soil and total SOC stock. Though modelling with allC resulted in higher cross-
validation R? compared to the remaining models, only 30%, 29% and 28% of the total variance were explained

respectively for the total SOC stock, mineral soil and the humus layer SOC stock.

The independent validation showed similar trends as observed for the cross-validation. The Lin’s correlation

concordance coefficient (CCC) confirmed that the predictive performance of RF for the different SOC stock was

7



285

290

295

300

305

310

315

320

enhanced either by using only SSC or allC. The similarity between the RMSE values of both training and validation
data shows that the global models over Sweden did no overfit. However, the explained variances are as lower as
for the cross-validation varying from 15% to 27% for the SSC models, 10% to 18% for the GoC models and from
26% to 30% for the allC models. For both cross and independent validation, the RMSE increased with depth with

the lowest values recorded for the humus layer.

3.2 Validation performance of local models versus global models

As observed for the global models at the national scale, better accuracy were recorded for the local models based
on allC and SSC which present in general lower RMSE as well as higher CCC and R? when compared to the local
GoC models for the cross-validation (Table 4). The cross-validation with the local models resulted in lower RMSE
compared to the values recorded for the global models (Table 3) except for the southern Sweden models which
recorded higher values no matter the category of covariates. Local models with allC reduced the RMSE of cross-
validation in relation to the global models (Table 3) by 18% for both North and Central Sweden for the humus
layer SOC stock, by 21% (North) and 20% (center) for the mineral soil SOC stock, and by 9% (North) and 24%
(central) for the total SOC stock. The variances explained by the local models based on cross validation varied

from 17% to 32% for allC models, 12% to 25% for the SSC models and from 5% to 20% for the GoC models.

The global models were also used to make prediction with the same independent validation set used for the local
models. Though the local models generally outperformed the global models, the results were different based on
the subareas and category of covariates (Fig. 2). However, the local SSC models were more consistent at
outperforming the global SSC models compared to GoC and allC models when tested with an independent dataset.
For the humus layer (Fig. 2A), the mineral (Fig. 2B) and total soil layers (Fig. 2C), the local models had in general
better performance than the global models in term of RMSE within each set of variables. The best local models
were mostly associated with all covariates or site specific covariates especially for central and southern Sweden.
Only with the local model of mineral SOC stock for Northern Sweden that the GoC gave a better accuracy as
compared to other models. It was also noted that the RMSE of the local models increased in general from the
humus layer to the mineral soil for both the cross and independent validation as previously observed for the global

models no matter the validation type and category of factors.

The local and global models showed similar trend for the density distribution of actual versus predicted SOC stock
(Fig. 3). For Fig. 3 and Fig. 4, only global and local models with the lowest RMSE were reported to avoid
redundancies. All RF models presented an underestimation of lower and higher values of SOC stock while an
overestimation was observed for the values centred around the means. However, underestimation of high values
was less pronounced with the global models over the entire Sweden and also with the predictions for the humus
layer. The local model associated with the group of covariates of the mineral soil SOC stock in northern Sweden

also presented a pronounced overestimation of the lower values.

The PICP estimates seem to correspond quite well with the respective confidence level (Fig. 4) except for the
humus and mineral SOC stock of southern Sweden. For southern Sweden, it appears that at higher level of

confidence the corresponding PICP is higher for the humus layer and lower for the mineral SOC stock. Considering
8
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a 90% prediction interval, most of the validation observations (80% - 95%) were located within the prediction
interval especially for models based on specific site covariates or all covariates (Supplementary information SI-

1A,B,C).

3.3 Variable importance

The global RF models using only site factors shows that (Table 5) the latitude (Northing) was the most important
variable influencing the distribution the humus layer and the total SOC stock though it ranked second for the
mineral soil. A consistent negative but significant correlation was observed between the different SOC stocks and

the latitude suggesting lower stock northwards no matter the depth.

The site specific covariates took pre-eminence over the GoC both at global and local scales when considering
models using all covariates (Table 5). The occurrences of soil moisture or soil type among the top two most
influential covariates are higher compared to the remaining covariates. For the humus layer SOC stock, the key
covariate involved in the prediction was the soil moisture reported both for global and local models except in
southern Sweden where it came as the third key variable. The most prominent covariate in predicting the mineral
soil SOC stock with the global allC model was the soil type as also recorded for southern Sweden while remaining
local models indicated Texture for northern and central Sweden. The global model revealed soil moisture and soil
type as the main covariates affecting the prediction of the total SOC stock over Sweden. A similar trend is observed
in northern Sweden while the remaining models recorded 40K as second key variable in addition to soil moisture

and soil type for the central and southern Sweden respectively.

The cumulative contribution of each category of covariates to model accuracy based on their contribution to the
MDA using all covariates is presented in Fig. 5. Topography covariates greatly influence model accuracy in the
northern part of Sweden contributing to about 30% - 40% of the model MDA especially for the humus layer and
mineral soil SOC stock. This is further corroborated by a high correlation of these covariates with the SOC stock
in northern Sweden (Table 10). For the humus and mineral SOC stock, the importance of topography decreased
from the north to the south of Sweden with the gamma-ray, site specific and climate covariates gaining more
prominence (contributing together up to 60% of MDA) in central Sweden while site factors were the most
influential variable with a share 0f 40% of MDA in southern Sweden (Fig 5.). These categories of covariates which
ranked first in central and southern Sweden were also classified among the top three covariates - site specific

covariates, climate and gamma-ray data for the global humus layer model.

As observed for the humus layer, topography was less prominent for central and southern Sweden for both mineral
soil and total SOC stock (Fig. 5). Site specific covariates, climate and geochemical data which provided the highest
contribution to MDA mineral soil for the global model over Sweden where also the most influential over central
and Southern Sweden contributing together up to 60% and 70% to the MDA. Gamma ray data seemed to play a
key role in the distribution of the total SOC stock especially in southern Sweden together with the site specific
covariates and climate. It is important to note that for the global model of the total SOC layer, the different category
of covariates contributed almost equally to the MDA with the gamma-ray and climate taking pre-eminence over

the site specific covariates. The forest covariates had very low contributions as compared to the remaining (Fig.
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5) category of covariates and they were mostly absent from the top 10 (Table 5) while those ranked have very low

correlation with the different SOC stock.

3.4 Maps of SOC stock

Fig. 6 shows the SOC stock maps from the GoC global and local models. Though the global GoC models generally
outperformed the local GoC models (Table 4), their predictive maps follow generally the same pattern. Broadly,
there is an increasing gradient of SOC stock from North to South for the humus layer, mineral soil and total SOC
stock. The local models tend to present lower values of SOC stock in northern and central Sweden for the humus
layer while global model displays higher values over the whole country. For the mineral soil, there seems to be no
distinct difference in the spatial prediction of SOC stock which resulted in similar pattern from the North to the
South for both local and global model maps. Since the total SOC stock is the sum between the humus layer and
mineral SOC stock, its spatial distribution follows the same trend with lowest SOC recorded in northern and central
Sweden while higher stock are located in the south. No matter the type of SOC stock, the coefficient of variation

is high and generally above 60% throughout Sweden.

Figure 6: Maps of the spatial distribution of the humus layer, mineral soil and total SOC stock based on the GoC

models

4  Discussion

4.1 Prediction with global and local models

This study examined how global and local models differ in predicting the humus layer, mineral soil and total SOC
stock in Sweden forests. The local models recorded lower RMSE at modelling stage with the cross-validation
compared to the global models except for the Southern area. When predictions were carried out on the same
validation set, local models including those of southern Sweden generally outperformed the global models. This
suggests on the one hand that global models with higher sample size might not necessarily result in a more accurate
model compared to models built from a reduced dataset corresponding to a subarea of a bigger region. On the
other hand, the particular case for southern Sweden suggests that though a global model might present a
comparative advantage at modelling stage, they might not necessarily have a better predictive power when
confronted with a new set of samples. The findings of this study are in line with those of Somarathna et al. (2016)
for predicting SOC content who also found locally calibrated models to perform better than global models.
However, the results of the present study differed from the latter in that, the comparative advantage was dependent

of the category of covariates used.

Findings (Fig. 2) showed that local models which outperformed global models were either associated with all
covariates or site specific covariates. For example, local models in central Sweden required all covariates to
outperform global models for the humus layer, mineral soil and total SOC stock. The same pattern was observed
for Southern Sweden except for the mineral SOC stock for which the best local model was associated with the
SSC. The local best model for the total SOC stock in Northern Sweden was also associated with SSC. The higher
occurrences of SSC and allC with the best local models showed that modelling with GoC alone is not the optimal

choice. On the one hand, forest SSC are more relevant for capturing local variability of the sampling plots than the
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other covariates which are mostly remote sensing products. When both SSC and GoC are used as covariates, the
locally specific information at plot scale are complemented by higher scale covariates which cover a larger range

of the feature space resulting in model improvement especially for the humus layer.

In addition, using both site characteristics and remotely sensed products for predicting SOC stock generally
increased the variance explained with both cross-validation and independent validation methods for the humus
layer, mineral soil and total SOC stock. However, despite the combination of these two category of covariates, the
accuracy of the SOC stock prediction remained low for both the global models (maximum R?is 0.30) and local
models (maximum R?2is 0.33). There seems to be no study comparable in scope and methodology targeting the
prediction of SOC stock in forest soils. The closest is the digital mapping of SOC stock for the humus layer and
mineral stock using machine learning models such as RF and the k-nearest neighbour (kNN) based on dataset from
the US national forest inventory (Cao et al., 2019). The authors also found lower fit between predicted and
observed SOC stock after the independent validation and reported an R? 0f 0.20 and 0.11 for the humus layer while
recording an R? of 0.33 and 0.28 for the mineral soil respectively for the RF and kNN models. Other studies
conducted in temperate forests for predicting SOC stock, showed also poor goodness of fit values with a cross
validation R? of 0.22 (1 m depth) with the boosted regression trees (Ottoy et al., 2017). For other soil properties,
Mansuy et al. (2014) reported for some Canadian managed forest an R? of 0.04 and 0.05 for SOC content in the
humus layer and mineral soil respectively with the kNN while Beguin et al. (2017) recorded for the Canadian

forest an R? of 0.05 for SOC content for the mineral soil with RF model.

Low explained variances in predictive modelling could be related to different factors (Nelson et al., 2011). For
example, the omission of key covariates with greater explanatory power or conversely using non-essential
covariates with very low explanatory power which only increase the prediction error variance. Omitting key
covariates in relation to SOC stock for forest ecosystem in the present study is less likely since covariates
considered in this study well represent the surrogates for soil forming factors considered in the SCORPAN
equation defined by McBratney et al. (2003). In addition, the removal of redundant and non-informative covariates
was carried out via dimension reduction with the exclusion of highly correlated covariates and elimination of some
others via recursive feature elimination. However, the Pearson correlations (min = 0, max = 0.28) between
covariates and the different SOC stock were found to be poor though significant for most of the predictors (Table
5, SI 2-4). This could be expected because the data cover a wide range of different site conditions, soil types and

parent materials.

Another source of errors could be inherent to the model with prediction accuracy varying with different type of
model. Many studies have already compared different machine learning models and concluded that RF has
generally a strong predictive ability in different ecosystems (Cao et al., 2019;Forkuor et al., 2017;Wang et al.,
2018). Preliminary steps in the present study also tested extreme gradient boosting and the Cubist models (results
not shown) alongside the RF with the latter displaying higher predictive capabilities. On the other hand, applying
geostatistical approaches (SI5) for the humus layer, mineral soil and total SOC stock revealed very low spatial
autocorrelation for the different SOC stock suggesting that the structure of these SOC data is having a shorter

range than the sampling interval. For soil properties which vary over short distance such as SOC stock, data driven

11



445

450

455

460

465

470

475

480

models such as RF might capture better the inherent variability of the data when the data itself are a good
representative of the phenomenon the SOC stock is subject to in the landscape, including small scale variation.
Beguin et al. (2017) recorded poor performance of different models including RF for predicting C:N because the
sampling scheme failed to capture the distance variation (< 20 km) at which better accuracy would have occurred.
Model accuracy would likely improve if more samples covering the spatial variability of each inventory plot were
taken. The increase in RMSE with depth recorded for some models is consistent with previous studies where
prediction of lower soil layers resulted in lower accuracy (Henderson et al., 2005;Yam et al., 2019). This may be

due to a higher sensitivity of the humus layer which is directly exposed to the influence of environment covariates.

The estimates of SOC stocks are slightly biased towards the extreme values with an underestimation of the lowest
and highest values for both local and global models (Fig. 3). This tends to confirm earlier findings which reported
issues related to the underestimation or overestimation of extreme values by the RF model (Ceh et al., 2018;Hu et
al., 2020;Horning, 2010). On the one hand, this seems to be typical for regression models with RF because
predictions are the average values of all of the trees with a tendency to predict the mean when correlation of
response and covariate is weak. On the other hand, this may also be related to an under representation of the lower
and higher values compared to those centred around the mean in the training dataset. However, though
underestimation of the lowest and highest values could be recorded for all models, the 90% PICP shows in general
that the 90% prediction interval covers adequately the observed values of the humus, mineral and total SOC stock
layers (Fig. 4). This is an indication that the prediction intervals are accurate representative of the prediction
uncertainties for each of these SOC stocks for both local and global models. However, for southern Sweden, the
PICP presented higher values for the humus layer and lower values for the mineral SOC stock with increasing
level of confidence, suggesting a higher level of uncertainties in the predictions. This could be attributed to
southern Sweden being characterized by a longer management history and more intensive forestry compared to
northern Sweden (Angelstam, 1997), leading to a diversity of forest management patterns with potential feedback

on SOC stock distribution.

4.2 Variable importance and modelling accuracy

SOC stocks in forest soils are the product of the dynamic equilibrium between input flux of plant-derived materials
and output flux of carbon as a result of decomposition. Classical soil forming factors - climate, organisms
(vegetation, fauna, human activities), topography, parent material and time are known to govern the amount and
distribution of SOC stock. Though covariates used as proxy for these soil forming factors were considered
separately for the sake of analysis in this study, they are actually involved in dynamic interactions leading to

complex soil processes in the landscape.

With the global RF models using only site specific covariates, the latitude (northing) was the main variable driving
the distribution of the SOC stock with a negative correlation suggesting lower stock northwards (Table 5). The
latitudinal gradient (Millberg et al., 2015) in Sweden results also in climatic gradient (Jungqvist et al., 2014) which
in turn interact with topography (Johansson and Chen, 2003) to determine the heterogeneity in net primary
production in relation to the spatial variability of precipitation and temperature. Even at regional level, the latitude

was still critical and was mostly present among the top ten covariates being selected by the local RF models using
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all covariates (Table 5). However, climate and topographical covariates were overshadowed consistently by SSC
when all the covariates were used for modelling both at a national and regional scale. Though precipitation
regulates net primary productivity (NPP) and temperature controls microbial decomposition of organic matter,
their local variability is generally small (Wiesmeier et al., 2019). This makes them less relevant in contrast to SSC
taken at plot level which describe more closely factors controlling the decomposition and stabilization of organic

matter.

Among the site characteristics, the soil moisture was the key site factor affecting the humus layer SOC stock
especially in the northern and central Sweden while vegetation type was ranked first in southern part of Sweden
(Table 5). The box plots of these two covariates showed that they have clearly different distribution of SOC stock
in the humus layer, although some of the inter-quantile ranges overlap (SI-6). As observed for the humus layer,
soil moisture was the most important variable associated with total SOC stock along with the soil type. For a
sequence from dry to moist soils, there was an increase of SOC stock in the humus layer as well as for the mineral
and total stock (box-plot of soil moisture SI 6-8). This might be explained by higher productivity in litter supply
as water is more available in the tree root zone of fresh and moist sites. On the other hand, these latter soils are
subject to a longer period of saturation (reducing conditions) slowing down decomposition. The impact of soil
moisture could also be noted when considering the partial dependence plot of the RF global model of the humus
layer showing the interaction between the soil moisture class and vegetation type (SI-9A). Each vegetation type

tends consistently towards higher values of SOC stock for moist sites compared to dry and fresh sites.

Generally, soil type and texture were ranked by the allC global models as the top covariates influencing the SOC
stock in the mineral soil (Table 5). The link between these two covariates could be related to the soil moisture
content of their classes. On the one hand, soil types (Histosols, Gleysols) with fine texture (fine silt, clay) having
high moisture content are more subject to reducing conditions with higher SOC stock compared to soils (Leptosols,
Arenosols) with coarse (stone, boulder, coarse sand) texture. On the other hand, the relevance of soil texture as
predictor of SOC could be related to the physicochemical SOC stabilization mechanisms. Clay minerals as well
as clay and silt sized particles generally have a positive correlation with mineral SOC stocks, as the association of
organic matter with mineral surfaces, and occlusion inside aggregates hinders microbial decomposition and

enhances SOC accumulation (Liitzow et al., 2006;Zhang et al., 2020).

The addition of the other group of covariate (GoC) to the site specific covariates resulted in limited improvement
for both global and local models (Table 3-4). This suggests that their level of distinct complementarity in the
feature space is low as the GoC might be carrying redundant information with the site specific covariates in relation
to the humus layer, mineral soil and total stock. For example, the prominence of site specific covariates over
topographical covariates (Table 5, allC) might be due to the fact they are indirectly incorporated into the definition
of the site specific covariates. For this study, wetness index, distance to groundwater and depth to water are indexes
to characterize soil moisture while gamma ray data describe parent material. Similar observation was shared by
Wiesmeier et al. (2011) who also recorded land use and soil type as key covariates affecting SOC stock while
topographic covariates contributed very weakly to model accuracy using Random Forest. However, though lowly

ranked among all covariates (Table 5, allC), the cumulated variable importance analysis showed that topographical
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covariates stood out in contributing to model accuracy in northern Sweden (Fig. 5) but were less relevant
southward. Obviously, higher elevation and derivatives in northern Sweden explains such influence on the SOC

stock.

Next to site characteristics and climate, the cumulative gamma-ray data was more consistent in contributing to
model accuracy of the total SOC stock compared to geochemical data with the individual ranking further revealing
higher occurrence of radioactive K both at global and regional level (Table 5, Fig. 5). This suggests that K-bearing
minerals of the parent material have greater explanatory power over total SOC stock than U and Th, the nature of
which might require further studies. Malone et al. (2009) also recorded gamma K as the key covariate for mapping

SOC stock in an agriculture dominated land use in Australia.

The geochemical data was revealed to be the key covariates in the distribution of SOC stock in southern Sweden
especially for the humus layer (Na) and mineral stock (Ca, Na) though of much lower magnitude compared to site
specific covariates. However, base cations seemed not to primarily affect SOC distribution but rather
environmental covariates that regulate their dynamics. The low ranking of forest parameters may be related to (1)
their low correlations with the SOC stock data and (2) the fact that the data set cut across different data forest types
without any specific stratification which could have created a homogeneous strata for modelling. However, the
focus of the present study was not on a specific forest type which could have reduced further the training dataset
while machine learning models require high data samples to learn pattern and accurately predict target values on

independent dataset.

4.3 Spatial prediction of SOC stock

The maps of the humus layer, mineral soil and total stock present a pattern of increasing accumulation of SOC
stock from south to north with the highest uncertainties in the southern part of Sweden no matter the predicting
models (Fig. 6). In general, it is expected that the global latitudinal trend will result in increasing stock in higher
latitude which correspond to colder and humid regions. Possible explanations are associated with slower microbial
decomposition rates while other studies suggest non conducive soil conditions such as water logging, low pH
values, high aluminium concentration as the main constraints (Dieleman et al., 2013;Hobbie et al., 2000; Wiesmeier

etal., 2019).

The contrary configuration observed in the maps with decreasing South-North distribution in SOC stock for humus
layer and mineral (SI-10) are consistent with findings from different studies (Kleja et al., 2008;Froberg et al.,
2011;Hyvonen et al., 2008). These studies advocate that the high SOC stocks in the south could be related to a
higher deposition of nitrogen (N) compared to the center and northern Sweden. It has been suggested that N
deposition results in both increasing litter inputs and increasing mean residence time. Also, high concentrations of
inorganic N inhibit the activities of lignin-degrading phenol oxidase released by microorganisms (Zak,
2017;Carreiro et al., 2000). However, warmer climate makes trees grow faster along with a higher litter input in
the south than in the north. With co-occurring north-south gradient of temperature (lower), pH (higher), soil carbon

(lower) (Iwald, 2016;Framstad, 2013), N deposition might have contributed to strengthen the North-South SOC
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stock gradient. As southern Sweden (Fig. 6) recorded higher range in SOC stocks, the associated average variation

around the mean was also larger.

4.4 Implication and limitations of the study

The present study compared a local and a global modelling approach for DSM. To the question which approach
to use when mapping a big area, our research showed that it is dependent on the type of covariates available. In
general, building local models for subareas of the study region will require having covariates which correlate most
with the sampling sites thereby offering a better description at a smaller scale. In this study, the site characteristics
were a better representative of the sampling locations and their local models generally performed better than global
models. In situation where such site characteristics data are not available, it would be preferable to use a global
model for the whole area. However, machine learning models such as RF are data driven, and therefore results
will vary according to the specificity of a given area. Therefore, there is no silver bullet in the approach to use for
any specific area and it will be necessary to draw conclusions from the modelling results. However, it is very likely
that the combination of site characteristic with the GoC data would result in higher accuracy at both local and

global scale than using only the group of covariates dominated by remote sensing data.

The maps produced with the GoC global and local models for the humus layer, mineral soil and total SOC stock
present accurately the distribution of SOC stock observed for Sweden in many studies. Given that the underlying
models were not the most accurate in the present study, such maps should be treated with caution for decision
especially with the associated high coefficient of variation. However, they could serve as a high resolution
indicator of the spatial trend in SOC stock at different depth for the landscape of the Swedish forest. In addition,
the use of a DSM approach in the present study allows: flexibility in future improvement upon acquisition of new
covariates or data point, repeatability in modelling with the application of the same modelling principles using
open source software (e.g. R) and capitalizing on multi-source information (topography, site characteristics, forest
data, gamma radiometry and geochemical data). Therefore, smaller counties could evaluate this approach on their

own dataset for mapping other soil properties (pH, texture, Fe, Al etc.) and SOC stock for local applications.

DSM relies on existing maps for building regression models and for mapping. The quality and accuracy of
predictions depend as discussed earlier on choosing the most relevant covariates in relation to the target to be
predicted. The present study revealed that covariates which were available as maps did contribute to the MDA,
but site characteristics were more prominent in relation to the SOC stock in Sweden. This might suggest that
mapping these variables that were more decisive for SOC stock prediction and including them as covariates for
mapping may improve accuracy. Since the primary focus of the present study was mainly to evaluate the GoC data
versus the SSC data at different scale of modelling and not primarily for making a map, the observed data of the
latter were used. However, since only the observed data of the site characteristics were considered, this study fails
to consider that the mapping of these site characteristics would involve modelling errors and the propagation of
these errors into the final maps of these site variables might actually reduce their predictive power. For
completeness, we carried out a preliminary mapping of the site characteristics (SI-11) using additional soil
inventory data, random forest and the GoC as predictors. These mapped site characteristics (mSSC) were then

used as covariate for predicting the SOC stocks.

15



605

610

615

620

625

630

635

640

645

Table 6 presents the error metrics after independent validation for both local and global models along with the
percentage margin of the RMSE in relation of the models based on GoC. First, the local mSSC based models still
recorded lower RMSE as compared to global mSSC models. Compared to the GoC models, the overall positive
percentage margin of the RMSE for the independent validations indicated that the mSSC models recorded the
lowest RMSE. However, when assessing the RMSE margin between the global models of GoC and SSC, negative
percentages were mainly recorded for the Northern Sweden independently of the depth. This indicated that the
mSSC based global models were less accurate at predicting SOC stock locally in the Northern Sweden. On the
other hand, the mSSC based local model did present a better prediction for Northern Sweden for the humus layer
and mineral SOC stock. The mean SOC predictions based on the mSSC showed a stronger increasing gradient
from Northern to Southern Sweden (SI-12) as compared to the pattern observed with the GoC maps. However,
the uncertainty distribution was of similar magnitude (SI-12) as those observed for the maps based on GoC
probably due to error propagations as these covariates were used to make the site specific characteristics maps.
This suggests that the SSC should still be supplemented for improvement at this stage with other covariates
different from the GoC such as multi-temporal spectral (e.g. normalized difference vegetation index) data that are
able to capture vegetation dynamic in forests. Notwithstanding the possibility of error propagation, the study of
which was beyond the scope our focus, the preceding results tend to confirm the potential of the high resolution
maps of the site characteristics to contribute to the improvement of SOC stock prediction as compared to using
only the GoC data. Given that the preliminary mappings of the SSC recorded low kappa (0.17 — 0.48) values (SI-
11) at this stage further improvements are still necessary to improve their SOC stock predictive ability and

associated coefficient of variations.

Conclusion

This study has shown that:
e Local models have a comparative advantage over global models when using either site characteristics
alone or the combination of the latter with a group of covariates dominated by remotely sensed data.
e Using group of covariates dominated by remote sensing data with soil inventory dataset indicates that
such covariates have limited predictive compared to site specific covariates.
e The most important covariates that influence the humus layer, mineral soil and total SOC stock were
related to the site characteristic covariates consisting of the soil moisture class, vegetation type, soil type

and soil texture.

Code
As a R file (pdf) in the supplement materials (SI-13).
Data availability

The data used in this study is available upon reasonable request sent to Johan Stendahl (Johan.Stendahl@slu.se).

The high-resolution digital elevation models (DEM) should be requested by contacting the Swedish national
mapping agency (Lantmaiteriet, https://www.lantmateriet.se). The climate data used (MAT, MAP) can be

downloaded from the source: WorldClim, (Fick and Hijmans, 2017). The geochemical and gamma-ray data can
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be obtained from the Geological Survey of Sweden (SGU, https://www.sgu.se). Requests for forest maps should

be directed to the Swedish Forest Agency (Skogsstyrelsen, https://www.skogsstyrelsen.se). The dataset related to

the historical map series can be freely downloaded from the figshare repository using the following

link: https://doi.org/10.17045/sthimuni.4649854.
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Table 1: List of explanatory covariates for predicting SOC stock

Type Variables Abbreviation

Topography Elevation (m) DEM
Slope (%) Slope
cos(Aspect) cosAsp
sin(Aspect) sinAsp
Plan curvature (°m—1) PLCur
Profile curvature (°m—1) PRCurv
Terrain ruggedness index TRI
Saga wetness index SWI
Distance to streams (mm) strDist
Depth to water (m) DTW
Distance to Groundwater (mm) DTG

Climate Temperature (°C) Temp
Precipitation (mm) Prep

Geochemical data

Gamma-ray data

Ca, Mg, K,
Na, Mn (ppm)
40K (ppm), 232Th (ppm), 238U (%)

GeoCa, GeoMg, GeoK,
GeoNa, GeoMn
GamK, GamTh, GamU

Forest Stand age (years) For.Age
Biomass (kg) For.Biom
Height (m) For.Height
Stem volume (m®) For.Vol

Historical land use map* Former Cropland histCL
Former Grassland histGL

Site characteristics Soil types SoilTyp

Levels 1 Histosol; 2 Leptosol; 3 Gleysol; 4 Podzol; 5 Umbrisol; 7 Arenosol; 6 Cambisol,
8 Regosol; 9 Unclassified
Soil moisture class SoilMst

Levels 1 Dry; 2 Fresh; 3 Fresh/moist; 4 Moist; 5 Wet
Soil texture class Texture

Levels 0 Boulders in the profile; 1 Stone/Boulder/Bedrock; 2 Gravel/Gravely till; 3 Coarse
sand/Sandy till; 4 Sand/Sandy silty till;5 Fine sand/Silty sandy till; 6 Coarse
silt/Coarse silty till; 7 Fine silt/Fine silty till; 8 Clay/Clayish till/Gyttja; 9 Peat
Parent material ParMat

Levels 1 Well sorted sediments; 2 Poorly sorted sediments; 3 Till; 4 Bedrock; 5 Peat
Vegetation type VegTyp

Levels 1 tall herbs without shrubs; 2 tall herbs with shrubs/bilberry; 3 tall herb with shrubs /vitis
idea ; 4 low herbs without shrubs; 5 low herbs with shrubs /bilberry; 6 low herbs with shrubs
Wvitis idea ; 7 without field layer,; 8 broad leaved grass; 9 narrow leaved grass, 10 tall sedge;
11 low sedge; 12 horse tail type; 13 bilberry type; 14 vitis idaea/whortleberry, marsh
rosemary; 15 crowberry/heather type; 16 poor shrubs type

Coordinates northern NorthC

FEastern EastC

*: used only for the southern part of Sweden
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Table 2: Descriptive statistics for the training and validation datasets

Training Validation
n min max median mean sd cv  skewness n min max median mean sd cv  skewness

Humus North 1008 246.00 18.10 23.57 21.78 0.92 425 252 0 128.00 18.05 23.05 18.28 0.79 2.57
i?}(lje;ha) Center 1708 299.52 1842 23.87 21.49 0.90 3.61 424 0 14377 1842 2354 1931 0.82 2.33
South 1763 0  418.80 23.05 30.07 34.79 1.16 3.36 440 0 418.80 23.06 30.59 39.75 1.30 4.42

All 4479 0 41880 19.52 26.24 27.72 1.06 3.88 1116 0 41880 19.63 2621 29.18 1.11 5.07

Mineral North 478 2.36 305.59 4146 46.85 2596 0.55 3.44 116 1621 13647 4134 47.73 23.07 0.48 1.35
(t C/ha) Center 785 22424 4831 53.28 26.46 0.50 1.60 196 0 143.14 4827 5249 2351 045 0.85
South 875 386.70 62.43 68.32 40.49 0.59 1.93 216 206.00 63.09 6834 3791 0.55 1.16

All 2138 0 38670 51.44 5822 33.73 0.58 2.26 528 0 206.00 51.81 5793 31.39 0.54 1.46

Total North 478 16.11 360.18 6293 7246 39.62 0.55 2.94 115 20.02 331.56 63.00 75.12 45.76 0.61 2.90
(t C/ha) Center 784 12.88 229.87 71.80 77.33 31.34 041 1.32 196 15.92 254.69 71.69 78.67 37.20 047 1.78
South 870 0 48737 89.19 9934 50.63 0.51 237 216 16.78 35723 88.99 97.61 4447 0.46 2.01

All 2132 0 48737 176.26 8522 43.57 0.51 2.47 527 1592 35723 7646 85.64 43.32 0.51 2.11

Table 3: Cross-validation and independent validation of the global random forest models at the national scale

Cross-validation Independant Validation
RMSE R’ RMSE MAE  Bias  CCC R
(t C/ha) (tC/ha) (tC/ha) (t C/ha)
Site specific Humus layer  23.9 (£2.74) 0.26 (+0.06) | 208 13.7 045 043 026
covariates (SSC)  \rinoralsoil  28.6 (£334) 027 (£0.06) | 27.9 198 045 043 027
Total 38.9 (+4.28) 0.21 (£0.06) | 38.9 278 1.81 034 0.15
Group of Humus layer  25.4 (£3.20) 0.15 (0.04) 22.1 15.2 1.27 0.28 0.17
covariates (GoC)  \ineral soil ~ 31.5 (+3.33) 0.13 (£0.05)  |30.7 21.8 095 023  0.10
Total 38.9 (+4.40) 0.20 (£0.05) |38.4 27.7 087 032 0.8
All covariates Humus layer ~ 23.4 (£2.90) 0.28 (+0.06) 20.3 13.7 1.35 0.47 0.30
(allC) Mineral soil ~ 28.3 (43.46) 0.29 (£0.07) | 28.2 202 117 041 026
Total 36.5 (+4.35) 0.30 (£0.06) | 35.5 25.6 142 041 027

RMSE: root mean square error, MAE: mean absolute error, CCC: Lin’s correlation concordance coefficient, R? : coefficient of

determination
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Table 4: Cross-validation the local random forest models

Cross-validation

RMSE (t C/ha) R?

Site specific covariates Humus layer North 19.4 (+4.33) 0.19 (£0.11)
center 19.3 (£3.84) 0.19 (£0.07)

South 30.1 (+4.62) 0.25 (£0.09)

Mineral soil North 23.0 (£7.25) 0.12 (£0.07)

center 23.1 (£3.37) 0.13 (£0.09)

South 35.5 (+£5.48) 0.24 (£0.07)

Total North 34.7 (+8.88) 0.22 (£0.14)

center 29.1 (£2.85) 0.14 (+0.07)

South 47.7 (£7.80) 0.15 (£0.08)

Group of covariates Humus layer North 19.4 (+4.84) 0.18 (+0.09)
center 20.4 (+4.33) 0.08 (£0.04)

South 31.3 (£5.49) 0.18 (+0.08)

Mineral soil North 24.2 (£7.55) 0.08 (£0.06)

center 24.1 (£3.22) 0.05 (£0.04)

South 38.6 (£5.26) 0.10 (£0.07)

Total North 35.2 (+8.51) 0.20 (£0.10)

center 28.9 (£3.07) 0.16 (£0.08)

South 47.2 (£7.21) 0.12 (£0.07)

All covariates Humus layer North 19.0 (+4.67) 0.22 (+0.08)
center 19.0 (£4.05) 0.20 (+0.07)

South 28.5 (£5.15) 0.32 (£0.08)

Mineral soil North 22.3 (£6.51) 0.19 (+0.07)

center 22.6 (£2.82) 0.17 (£0.09)

South 35.3 (£5.42) 0.25 (£0.09)

Total North 33.2 (+8.29) 0.28 (£0.13)

center 27.7 (£2.90) 0.23 (£0.06)

South 44.9 (£7.29) 0.22 (£0.09)

RMSE: root mean square error, R? : coefficient of determination
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Table 5: Random Forest variable importance for the global and local models for the humus layer, mineral soil

and total SOC stock with their associated Pearson’s coefficient of correlation with the covariates (values in

bracket, *: p <0.05, p <0.05;**: p <0.01;***: p <0.001)

0 Most important variables'
Site Global Humus layer 7 Northing (-0.12**%*), Soil moisture, Easting (-0.09***), Vegetation type, Soil type, Parent materiel, Texture
(S:](J:/zllrfii;cs Mineral soil 7  Easting (-0.13***), Northing (-0.27***), Soil type, Vegetation type, Texture, Parent materiel, Soil moisture
N=7) Total 7  Northing (-0.28***), Soil moisture, Soil type, Easting (-0.15%**), Texture, Vegetation type, Parent materiel
North Humus layer 7 Soil moisture, Soil type, Vegetation type, Northing (-0.09**), Easting (0.06), Parent materiel, Texture
Mineral soil 7  Easting (-0.13**), Vegetation type, Texture, Parent materiel , Northing (-0.09*), Soil moisture, Soil type
Total 7  Soil moisture, Soil type, Vegetation type, Texture, Parent materiel, Easting (0.00), Northing (-0.11%)
Center Humus layer 4 Soil moisture, Northing (-0.08***), Easting (-0.02), Vegetation type
Mineral soil 4  Parent material, Texture, Northing (-0.05), Soil type, Soil moisture, Easting (0.00)
Total 7  Soil moisture, Northing (-0.13***), Easting (0.03), Parent materiel, Texture, Vegetation type, Soil type
South Humus layer 4 Vegetation type, Soil moisture, Soil type, Easting (-0.15%%%*)
Mineral soil 7  Soil type, Easting (0.02), Northing (-0.08*),Vegetation type, Parent materiel, Texture, Soil moisture
Total 4 Soil type, Easting (-0.10**), Soil moisture, Northing (-0.13*%*%*)
Group of Global Humus layer 20 Mn (-0.08**%), Precipitation (0.16***), 40K (-0.20***), 232Th (-0.15***), Na (0.03), Terrain ruggedness (-
covariates 0.11%%%), K (-0.07**%), Distance to groundwater (-0.14**%*), 238U (-0.10***), sinAsp (-0.06***)
(N =26) Mineral soil 20 Temperature (0.28%**), Precipitation (0.18***), Mn (0.05**), Elevation (-0.16***), Terrain ruggedness (-
0.12**%*), Na (-0.05), Ca (0.22***), 40K (-0.13***), Wetness Index (0.11***), K (0.01)
Total 21 Temperature (0.28***), K ()Distance to groundwater (-0.17***), Precipitation (0.21***), 40K (-0.24%*%),
232Th (0.16**%*), Na (-0.01), K (-0.04), Mn (-0.02), 238U (-0.11***), Elevation (-0.18***)
North Humus layer 8 40K (-0.23***), Distance to groundwater (-0.18**%*), Elevation (-0.15**%*), Ca (-0.06), Temperature (0.16%*%*),
Mn (-0.10**), Na (-0.06), K (0.00)
Mineral soil 8 40K (-0.25***), Wetness index (-0.01), Ca (-0.05), Na (-0.09), Temperature (0.01), Precipitation (0.16***), K
(0.04), Aspect (0.03), Stand Age (0.02), Elevation (0.13%)
Total 8  Depth to water (-0.22***), 40K (-0.30**%*), K (0.04) ,Temperature (0.10%), Precipitation (0.16***), Elevation (-
0.06), Mn (-0.07), Distance to streams (-0.15%*%*)
Center Humus layer 16 238U (-0.05), 232Th (-0.10%**), Aspect (0.04), 40K (-0.16***), Terrain ruggedness (-0.11***), Elevation (-
0.06), Precipitation (0.08**), Distance to groundwater (-0.16***), sinAsp (-0.06*), Profile curvature (-0.04)
Mineral soil 19 40K (-0.11%¥), 232Th (-0.07*), Mn (0.04), Elevation (-0.03), Wetness index (0.09*), Stand age (0.06), 238U (-
0.02), sinus Aspect (-0.01), Height (0.07), Precipitation (0.08%*%*)
Total 16 40K (-0.21***), Depth to water (-0.11*%*), 232Th (-0.12***), Mn (-0.02), Elevation (-0.08*), sinAsp (-0.06), Na
(0.02), Precipitation (0.13***), Terrain ruggedness (-0.14***), Aspect (0.03)
South Humus layer 16 40K (-0.24***), Precipitation (0.18***), Mn (-0.11***), Na (0.13***), Distance to groundwater (-0.12**%), K
(N=28) (0.11#*%), Stem Volume (0.05*), Slope (-0.09***), Stand age (0.05%), 238U (-0.16%**)
Mineral soil 20 Temperature (0.18***), Precipitation (0.02), Stand age (-0.07*), Distance to groundwater (-0.16***), Na (0.05),
Elevation (-0.11*%*), Ca (0.24***), 232Th (-0.09**), Slope (-0.09**), 40K (-0.09**)
Total 21 Precipitation (0.14***), Distance to groundwater (-0.17***), Elevation (0.00), Slope (-0.11**), Temperature
(0.12%%*%), 238U (-0.20***), Height (-0.11**), Ca (0.12***), K (0.04), 40K (-0.22%**)
All Global Humus layer 28 Soil moisture, Vegetation type, Northing, Easting, Precipitation, Profile curvature (-0.04**), Temperature
covariates (0.12***),232Th, 40K, Mn
(N=33) Mineral soil 28 Soil type, Parent material, Texture, Temperature, Vegetation type, Easting, Northing, Elevation, Mn, Na
Total 16  Soil moisture, Soil type, Precipitation, 40K, Elevation, Na, Northing, Distance to groundwater, Mn, K
North Humus layer 28 Soil moisture, Distance to groundwater, Mn, Elevation, Temperature, Ca, K, Northing, 40K, Na
Mineral soil 16 Texture, Wetness index, precipitation, K, Distance to groundwater, 238U (-0.13),Vegetation type, 40K, 232Th
(-0.13**), Elevation
Total 8  Soil type, Soil moisture, Depth to water, Vegetation type, Texture, 40K, K, Precipitation
Center Humus layer 26 Soil moisture, 232Th, 40K, Northing, 238U, Easting, Elevation, Profile curvature, Precipitation, Ca (-0.03)
Mineral soil 26 Texture, Parent materiel, Precipitation, Northing, Mn, Elevation, Soil type, 40K, Ca (0.00), Easting
Total 26  Soil moisture, 40K, Northing, Parent materiel, Texture, Elevation, 232Th, Depth to water, Precipitation, Na
(N=35) South Humus layer 16 Vegetation type, Soil type, Soil moisture, Easting, Na, 40K, Precipitation, Temperature (-0.03), Stem Volume,
K
Mineral soil 29  Soil type, Parent materiel, Texture, Vegetation type, Easting, Northing, Precipitation, Ca, Na, Temperature
Total 30 Soil type, 40K, Northing, Soil moisture, Precipitation, Easting, 238U, Na (0.14***), Texture, Wetness index
(0.03)
935 ISite specific covariates have no correlation values since they are categorical covariates. Pearson’s coefficient of correlation are provided at

first occurrence for a specific category of covariates and SOC type. N : Total number of covariates, n = number of covariates after feature

selection.
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Table 6: Independent validation of the global and local random forest models based on the mapped site specific

covariates compared to models based on observed site specific covariates and grouped of covariates

RMSE (t R ARMSE
C/ha) GoC-mSSC (%)
Independant validation
Global Humus layer All Sweden 20.87 0.27 5.57
models Mineral soil All Sweden 26.57 0.28 13.44
Total All Sweden 34.35 0.28 10.55
Local models Humus layer North 19.22 0.22 2.46
center 17.56 0.16 2.47
South 24.81 0.31 6.37
Mineral soil North 20.21 0.22 4.68
center 22.89 0.09 20.23
South 32.11 0.29 11.04
Total North 29.82 0.28 -0.74
center 27.36 0.09 22.06
South 41.79 0.23 6.30
Error metrics by Global models for local validation set
Humus layer North 20.28 0.14 -1.91
center 18.02 0.13 -1.24
South 25.27 0.27 4.64
Mineral soil North 22.72 0.10 -4.70
center 23.14 0.05 20.75
South 34.96 0.15 2.35
Total North 40.70 0.01 -43.56
center 30.00 0.07 13.49
South 43.18 0.18 0.74

ARMSE GoC-mSSC (%): percentage estimate of the difference between the root mean square error of models based on group of covariates
and mapped site specific covariates, negative values: models with mapped site specific covariates present higher root mean square error as
compared to models based on either observed site specific variable or group of covariates, positive values : models with mapped

site specific covariates present lower root mean square error as compared to models based on either observed site

specific variable or group of covariates, , R? : coefficient of determination.
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Figure 1: Sites from the Swedish Forest Soil Inventory for northern, central and southern Sweden
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with corresponding R? (A: litter layer, B: mineral soil layer, C: total soil layer, SSC: site specific covariates,

GoC: group of covariates, allC: all covariates)
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Figure 3: Density plots of the actual versus predicted humus layer, mineral soil and total SOC stock from the

local and global Random Forest models (with lowest root mean square errors), line: average values, SSC: site

specific covariates, GoC: Group of covariates, allC: all covariates; lines: mean of SOC stock
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Figure 4: Prediction interval coverage probability of the local and global random models for the humus layer,

mineral soil and total SOC stock. SSC: site specific covariates, GoC: Group of covariates, allC: all covariates.
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Figure 5: Variable importance of the main category of covariates for local and global random models for the humus

layer, mineral soil and total SOC stock
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Figure 6: Mean SOC stock prediction and Prediction uncertainties of the spatial distribution of the
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