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Abstract 
 
The status of the SOC stock at any position in the landscape is subject to a complex interplay of soil-state factors 

operating at different scales and regulating multiple processes resulting either in soils acting as a net sink or net 10 

source of carbon.  Forest landscapes are characterized by high spatial variability and key drivers of SOC stock 

might be specific for subareas compared to those influencing the whole landscape. Consequently, separately 

calibrating models for subareas (local models) that collectively cover a target area can result in different prediction 

accuracy and SOC stock drivers compared to a single model (global model) that covers the whole area. The goal 

of this study was therefore to (1) assess how global and local models differ in predicting the humus layer, mineral 15 

soil and total SOC stock in Swedish forests, (2) identify the key factors for SOC stock prediction and their scale 

of influence.  

 

We use the Swedish National Forest Soil Inventory (NFSI) database and a digital soil mapping approach to 

evaluate the prediction performance using Random Forest modelling calibrated locally for the northern, central 20 

and southern Sweden (local models) and for the whole Sweden (global model). Models were built by considering 

(1) only site characteristics which are recorded on the plot during NFSI, (2) remotely sensed variables and (3) both 

site characteristics and remotely sensed variables.  

 

Local models are generally more effective for predicting SOC stock after testing on independent validation data. 25 

Using remotely sensed variables together with NFSI data indicates that such covariates have limited predictive 

strength but that site specific variables from the NFSI covariates show better explanatory strength for SOC stocks. 

The most important covariates that influence the humus layer, mineral soil and total SOC stock were related to the 

site characteristic covariates and include the soil moisture class, vegetation type, soil type and soil texture. Future 

studies could focus in mapping these influential site covariates which have potential for future SOC stock 30 

prediction models.  

 
1. Introduction 
 
About 30 % of the global terrestrial C stock is stored in forests with 60 % located below ground (Pan et al., 2011). 35 

These forests act mostly as a large net sink for atmospheric carbon but concerns exist for potential release of C 

under the impact of global warming over the next century (Price et al., 2013;Kauppi et al., 2014). Moreover, the 

intensification of forest management for timber, fibre, and fuel to satisfy an ever-increasing demand will likely 

affect the dynamic of the forest C pool. In recent decades, many studies have focused on assessing the soil organic 

carbon (SOC) stock in forest soils (Kumar et al., 2016;Ottoy et al., 2017;Sheikh et al., 2009;Prietzel and 40 
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Christophel, 2014) which is crucial to meet the requirement of the climate convention and the Kyoto protocol for 

reporting all sources and sinks of carbon dioxide and also for the estimation of potential carbon credits (Buchholz 

et al., 2014;Jandl et al., 2007). In that context, analysis of the carbon (C) cycle in forests is central to understanding 

management and climate-induced changes in global C pool. 

 45 

Increased availability of remote sensing data and development of spatial statistical methods has led to an increased 

use of digital soil mapping (DSM) (Minasny and McBratney, 2016). DSM aims at estimating the spatial 

distribution of soil classes or soil properties by coupling field and laboratory observations with spatial and non-

spatial environmental covariates via quantitative relationships. Many studies used DSM approaches for predicting 

SOC stock at different scales and for various land use/land cover, climate and across a wide range of soil types 50 

(Söderström et al., 2016;Tranter et al., 2011;Beguin et al., 2017;Mansuy et al., 2014). These studies use different 

modelling techniques ranging from multiple linear regression to machine learning models such as artificial neural 

network and support vector machine and boosted regression trees. 

 

The accuracy and precision of predictions resulting from modelling over a large landscape are often reported to be 55 

poor because of the spatial heterogeneity encompassing different soil types, topography and soil properties (Grimm 

et al., 2008;Schulp and Verburg, 2009;Schulp et al., 2013;Tang et al., 2017). Generally, models are applied to the 

whole study area without prior stratification. However,  models could be calibrated separately for subareas and 

their predictions can then be combined to cover the whole area (Somarathna et al., 2016). Since spatial variability 

is an important characteristic of forest landscapes, key drivers of SOC stock might be specific for subareas 60 

compared to those influencing the whole landscape. Management decision in relation to driving factors of SOC 

stock will likely be more cost-effective as models gain in reliability for specific areas within a given landscape.  

 

Building on the  soil state-factor (climate, organisms, relief, parent material, age)  equation  developed  by  Jenny 

(1941),  McBratney et al. (2003) introduced the conceptual framework for DSM referred to as SCORPAN which 65 

complemented the former with the inclusion of the location coordinates. The relative contribution of any of these 

factors to model accuracy in DSM vary and some turn out to be more relevant as explanatory variables compared 

to others. Ottoy et al. (2017) identified relief (highest groundwater level), soil (clay fraction), land use (tree genus) 

as main predictors for mapping SOC stock in forest soils in Belgium while Mansuy et al. (2014) reported  relief 

and climatic variables as the key covariates in mapping C, N and texture in Canadian managed forests. Vasques et 70 

al. (2016) recorded parent material among the key covariates in mapping soil properties in tropical dry forest in 

Brazil. These studies and many others rely mostly on remote sensing variables existing as maps while survey data 

which present site specific information are left out during modelling. However, soil factors affecting different 

processes in the landscape operate at different scale and taking into account site specific variables would inform 

model local variability which might not be captured by remote sensing variables.  75 

 

The goal of this study was therefore to (1) assess how global and local models differ in predicting the humus layer, 

mineral soil and total SOC stock in Sweden forest ecosystems, (2) evaluate to which extent and at which scale 

remotely sensed variables can explain the variability of SOC stock compared to site specific variables in the 
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Swedish forest and, (3) identify  variables  which  may  have  potential  for  future prediction  models  in  forest  80 

SOC stock assessments.  

 
2. Materials and methods 

 
2.1 Data description 85 
 
Forest data came from the Swedish National Forest Soil Inventory (NFSI) and the National Forest Inventory (NFI). 

The NFSI runs concurrently every year with the NFI and consist in repeated survey of forest vegetation and soil 

chemical and physical properties. Data from the following inventory periods were considered in the present study:  

1993 – 2002, 2003 – 2012 and 2013 – 2015. The NFSI are conducted on ca 23 500 permanent plots (Figure 1) 90 

revisited every 5 years with a radius of 10 m covering all land uses in Sweden except urban areas, cultivated land 

and the high mountains. The plots are distributed based on a stratified and random national grid system covering 

all the Swedish forest soils. They are organized in quadratic clusters (tracts) consisting in 8 (in the north) to 4 (in 

the southwest) circular (314 m2) sample plots. Each plot of the NFSI are inventoried once every 10 years.  

 95 

Soil samples are collected in a subset of the plots with humus sampling on c. 10 000 plots and mineral soil sampling 

on c. 4500 plots (Stendahl et al., 2017). Humus layer volumetric samples are taken using a soil core (core diameter 

10 cm) from the O horizon down to 30 cm depth. The mineral soil is sampled at 0-10, 10-20 and 55-65 cm depth 

from the mineral soil surface. These samples are dried at 35˚C and sieved to <2 mm. Total C is determined for all 

samples by dry combustion with elemental analysers (LECO CNS-1000 and LECO TruMac CN). Total O horizon 100 

SOC stock is calculated from sampled amount of soil material and C concentration of the sample. The total mineral 

SOC stock down to 50 cm depth for each site is calculated using the SOC stock of measured layers with empirical 

model for bulk density (Nilsson and Lundin, 2006), corrections for stoniness (Stendahl et al., 2009) and 

interpolation between measured layers. Since potential SOC stock change is very small compared to the entire 

SOC stock the averaged SOC stock between the inventories was considered representative of the plots and was 105 

therefore considered for all computations and modelling in order to reduce variability between plots. The organic 

and mineral soil SOC stock were summed up to get the total SOC stock.  

 

2.2 Explanatory variables for prediction 

 110 

The set of covariates used in this study consist of topographic variables, climate variables, geochemical and 

gamma-ray data, historical land use maps and site characteristics (Table 1). 

 

Topographic variables were computed from high-resolution digital elevation models (DEM) derived from Light 

Detection And Ranging (LiDAR) produced by the Swedish National Mapping Agency. It was originally created 115 

with 2-m spatial resolution (Grid 2+, LMV, Gävle, Sweden). However, the initial DEM was resampled in ArcGIS 

10 software package using the aggregation procedure with the averaging method to a final resolution of 10 m × 10 

m which is reasonable for the data considered in the present study. The topographical covariates were computed 

using the SAGA GIS software. However, the depth to water (DTW, 2 x 2 m) considered in this study is an 

estimation of the elevation along a defined least-cost-path (Lidberg et al., 2019;Murphy et al., 2008). The depth to 120 
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groundwater was obtained from the Swedish Forest Agency (Source: geodata.skogsstyrelsen.se) and computes the 

difference in elevation in relation to surrounding cells following the vertical flow path.  

 

Climate maps (1 km x 1 km) of the annual mean temperature and annual precipitation for 1970-2000 were obtained 

from the WorldClim platform (Fick and Hijmans, 2017). The Geological Survey of Sweden (SGU) has produced 125 

geochemical data based mainly on the spatial distribution of till which covers about 75% of the Swedish landscape. 

The following base cations Ca (ppm), Mg (ppm), K (ppm), Na (ppm) and Mn (ppm) were considered for the 

present study in predicting carbon storage.   

 

Several studies in Sweden pointed to some correlation between gamma-ray data and soil properties (Piikki et al., 130 

2015;Söderström and Eriksson, 2013). Gamma-ray data are recorded by SGU since 1968 with measurements 

carried out along flight lines at 200 m interval in general. The flight heights were 30 m up to 1994 while subsequent 

surveys were carried out at 60 m altitude. The concentrations of the following radioisotopes 40K,  232Th, and  238U 

are measured and corrected for background and cosmic radiation (Erdi-Krausz et al., 2003). The gamma-ray 

dataset was filtered for values < 0 which were omitted as they are mostly related to water entities. The resulting 135 

gamma-ray data as well as the geochemical data were interpolated into maps either by ordinary kriging or inverse 

distance weighing when geostatistic assumption such as normal distribution were not met.  

 

The Swedish Forest Agency has developed several forest attributes maps based on the combination of satellite 

images and field data from the NFI (Nilsson et al., 2017). Maps (25 x 25 m) of the stand age, tree biomass, tree 140 

height and stem volume produced for the year 2010 were used in the present study. Auffret et al. (2017) digitized 

some historical map series (Ekonomiska kartan) which were initially published in 1935 - 1978. The digitized 

versions of these maps (1 x 1 m) were only produced for the southern part of Sweden and present past major land 

use, settlements and infrastructure. These maps were available per counties but were merged into a single raster 

file in ArcMap 10.7. For the present study, we consider two variants of these maps: (1) areas which were cropland 145 

and are now forest lands, and (2) areas which were grasslands and are now forest lands.  

 

The records of site characteristics (Table 1) are also carried out during the NFSI. Site description include soil 

types, soil moisture class, soil texture class, vegetation type and parent material class. The soil classification was 

based on the World Reference Base (WRB) for soil resources. The position of the water table was the main 150 

criterion for defining classes of soil moisture. The texture index was made by manual assessment in the field, e.g. 

through rolling and washing test.  The vegetation type as reported in Table 1 was defined by combining the 

descriptions of the field layers. Field layers consisted of four main types which are categorized from fertile  to 

poor,  namely  herb  types (tall or low),  grounds  without field layer,  grass  types and dwarf-shrub types.  

 155 
2.3 Prediction models: Random Forest and quantile regression forests 
 
The Random Forest (RFR) algorithm was selected for SOC stock prediction. Additionally, the quantile regression 

forest (QRF) was used to estimate the standard deviation related to the predictions.  

 160 
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RFR is a classification and regression method that builds multiple decision trees. For regression, the tree predictors 

provide numerical output instead of class labels for classification (Breiman, 2001). The RFR is able to model 

complex and nonlinear relationships between input predictors and response variables. The RFR is characterized 

by double randomness in the construction of the decisions trees. An ensemble of growing decision trees is 

generated by combining bagging (bootstrap aggregating) along with random feature selection. Bagging consists in 165 

producing training datasets (bootstrap sample) by drawing randomly with replacement from the original training 

dataset generated. A regression tree is fitted to each of the bootstrap samples from a random subset of the input 

predictors when deciding to split a node. For any new given input 𝑋 = 𝑥, RFR provides the prediction of a single 

tree as a weighted average of the original observations 𝑌 , (𝑖 = 1, … , 𝑛) in each node. 

 170 
�̂�(𝑥) =  ∑ 𝑤(𝑥, 𝜃)𝑌


ୀଵ                             (1) 

 
where 𝑤  is the weight vector which results either in a positive constant when the observation (𝑌 , 𝑋) is inherent 

to the leaf generated from the random vector of variables or is 0 if otherwise. The weight vector 𝑤  is defined as 

follows: 175 

 

𝑤(𝑥, 𝜃) =  
൛௫ ఢ ோ(ೣ,ഇ)ൟ

భ

൛:௫ೕ ఢ ோ(ೣ,ഇ)ൟ
                             (2) 

 
𝑅(௫,ఏ) is the rectangular subspace defined by the leaf 𝑙(𝑥, 𝜃) of the tree built from the random vector of variables 

𝜃.  The conditional mean E(Y|X = x) is computed by averaging the predictions of 𝑘 single trees which are 180 

individually built with independent vectors having similar distributions. The weighted average of trees is computed 

as follows: 

𝑤(𝑥) =  𝑘ିଵ ∑ 𝑤(𝑥, 𝜃௧)
௧ୀଵ                        (3) 

 
The final prediction of the RFR regression is given by: 185 
 

�̂�(𝑥) =  ∑ 𝑤(𝑥)𝑌

ୀଵ                                     (4) 

 
The number of trees to grow in the RFR model (ntree) and the number of randomly selected predictor variables at 

each node (mtry) are the two key parameters to be tuned for RFR modelling.  To reduce computational load, the 190 

ntree was set at 500 while the mtry was tuned using the grid search method in the R “caret” package (Kuhn, 2015) 

with fiftyfold cross validation. The importance of each input predictor can be assessed by the RFR based on the 

mean decrease accuracy (MDA). The MDA is computed by (i) randomly permuting the values of each predictor 

within the OOB set, and (ii) measuring the reduction in model accuracy resulting from that permutation. The 

hypothesis is that this permutation would result in little to no effect on model accuracy for less important 195 

covariates, while significant drop will follow the permutation of important covariates. 

 
2.4 Covariate layers processing for subareas  

We considered three subareas in Sweden (Figure 1) which are hereafter reported as northern (North), central 

(center) and southern (South) Sweden areas in the remaining of the paper. These areas were defined by merging 200 

the northern, central and southern climatic regions which were considered in Ortiz et al. (2013). A buffer of 10 m 

was considered for the shape files of each subarea to create overlapping zones which ensured smooth transition 

while merging by averaging the SOC stock values within these shared units. The covariates were delimited for 
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each subarea. They were resampled to 10 m resolution using the bilinear method for continuous variables and the 

nearest neighbor method for categorical covariates. A value to point extraction was carried out by overlaying the 205 

coordinates of the sampling points of each subareas over the stacked raster files in R (Kuhn, 2015). The pixel 

values of each subarea were compiled to form the database of the humus layer, mineral and total SOC stock. 

 
2.5 Modelling with different category of covariates: global and local models 

For modelling, three categories of covariates were considered: (1) only the plot level site specific variables (SSV), 210 

(2) all the covariates without the SSV, namely those based whether directly or indirectly on remote sensing 

variables (RSV) and (3) both the SSV and RSV  (allV). Modelling with RFR was carried out with each category 

of covariate related to its subareas as well as for the compiled dataset for the whole Sweden. Moreover, to reduce 

computation time while keeping relatively the same level of accuracy, we (1) used feature pre-processing 

capabilities implemented in the caret package (Kuhn, 2017) of R to remove highly correlated expressions using a 215 

cutoff point of 0.80 and (2) the recursive feature elimination (RFE) to select the optimal set of covariates for each 

RFR model. The RFE functions by carrying out variable importance classification then proceeds by eliminating 

iteratively the least important features (Gomes et al., 2019;Hounkpatin et al., 2018). For each RFR model, the RFE 

was carried out and therefore model-specific optimal set of covariates were identified for both whole Sweden and 

subareas. 220 

 

The RFR models were calibrated and validated for the whole area of Sweden and were therefore called “global 

models”. Each of the datasets of the humus layer, mineral soil, total SOC stock, were divided into two sets. The 

first set (80%) was used for calibration while the second (20%) was considered for independent validation. We 

trained the models based on tenfold cross validation with 5 repetitions using the R “caret” package (Kuhn, 2015).  225 

 

The models created for each of these subareas are hereafter reported as “local models”. The local models were 

build following the same procedure as for the global models by splitting the local datasets into training (80%) and 

validation (20%) set. Also, tenfold cross validation with 5 repetitions were considered for calibrating the local 

models. Table 2 presents the details about the specific sampling distribution for the calibration and validation 230 

datasets over subareas and whole Sweden. It should be noted that the same validation set of each subarea was also 

considered by the global model for assessing the model performances. 

 
2.6 Assessment of model performance and mapping 

To compare model performance, we computed several assessment metrics : R2, Lin’s concordance (Lawrence and 235 

Lin, 1989) correlation (𝝆𝒄), root mean square error (RMSE), and mean absolute error (MAE). 

𝑅𝑀𝑆𝐸 = 
1

𝑛
   (𝑃 −  𝑂)ଶ



ୀଵ
  ൨

ଵ
ଶൗ

 
(6) 

 
 
 

𝑅ଶ  =
∑ (𝑃 −  𝜇௦)ଶ

ୀଵ

∑ (𝑂 −  𝜇௦)ଶ
ୀଵ

 
(7) 

 
 

𝜌 =
2𝜌𝜎ௗ𝜎௦

𝜎ௗ
ଶ + 𝜎௦

ଶ + ൫𝜇ௗ −  𝜇௦൯
ଶ 

(8) 
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𝑀𝐴𝐸 =
1

𝑛
    |𝑃  − 𝑂|



ୀଵ
 

(9) 

 
where “P” is the predicted value,  “O” is the observed/true value,  “ 𝜇௦” and “ 𝜇ௗ” the means of the observed 

and predicted values respectively, “𝜎௦
ଶ  ” and  “𝜎ௗ

ଶ ”  are the associated variances, 𝜌 is the correlation between 

the observed and the predicted values. 240 

 

Though these error metrics are widely used for assessing models, they cannot inform about the uncertainty related 

to the prediction. Therefore, we additionally considered the density distribution of the predicted versus actual SOC 

stock and the 90% confidence interval (CI). Further, the scattergram  of the prediction interval coverage probability 

(PICP) was also considered (Vaysse and Lagacherie, 2017). The latter is the graphical representation of the 245 

proportion of time the actual values of SOC stock fall within a series of p-probability of prediction intervals (PI) 

limited by (1-p)/2 and (1+p)/2 quantiles.  

The SOC stock maps were computed only for the models based on the remote sensing variables (RSV models) 

because of their availability as maps. A qualitative assessment of the spatial distribution of the humus layer, 

mineral soil and total SOC stock from the produced maps was carried out and compared to literature.  250 
 
3. Results  

 
3.1 Validation performance of global models over whole Sweden  

The performance metrics of the cross and independent validation of the RFR models over Sweden are presented 255 

in Table 3. The internal accuracy statistics showed that modelling with all variables resulted generally in 

marginally lower RMSE and higher R2 for all SOC stock. Modelling with allV reduced the cross-validation RMSE 

by 2%, 1% and 6% compared to SSV models and by 7.9%, 10%, 6% compared to RSV models respectively for 

the humus layer, mineral soil and total SOC stock. Though modelling with allV resulted in higher cross-validation 

R2 compared to the remaining models, only 30%, 29% and 28% of the total variance were explained respectively 260 

for the total SOC stock, mineral soil and the humus layer SOC stock.  

   

The independent validation showed similar trends as observed for the cross-validation. The Lin’s correlation 

concordance coefficient (CCC) confirmed that the predictive performance of RFR for the different SOC stock 

were enhanced either by using only SSV or allV. The similarity between the RMSE values of both training and 265 

validation data shows that the global models over Sweden did no overfit. However, the explained variances are as 

lower as for the cross-validation varying from 15% to 27% for the SSV models, 10% to 18% for the RSV models 

and from 26% to 30% for the allV models. For both cross and independent validation, the RMSE increased with 

depth with the lowest values recorded for the humus layer.  

 270 
 

3.2 Validation performance of local models versus global models 

As observed for the global models, better accuracy were recorded for the local models based on allV and SSV 

which present in general lower RMSE as well as  higher CCC and R2 when compared to the local RSV models for 

both cross and independent validation (Table 4).  275 
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The cross-validation with the local models resulted in lower RMSE compared to the values recorded for the global 

models (Table 3) except for the southern Sweden models which recorded higher values no matter the category of 

variables. Local models with allV reduced the RMSE of cross-validation in relation to the global models (Table 

3) by 18% for both North and Central Sweden  for the humus layer SOC stock, by 21% (North) and 20% (center) 280 

for the mineral soil SOC stock, and by 9% (North) and 24% (central) for the total SOC stock. The variances 

explained by the local models after cross validation vary from 15% to 32% for allV models, 15% to 25% for the 

SSV models and from 6% to 20% for the RSV models. In addition, the RMSE of the local models increased in 

general from the humus layer to the mineral soil for both cross and independent validation as previously observed 

for the global models no matter the validation type and category of factors. 285 

 

The global models were also used to make prediction with the same independent validation set used for the local 

models. Though the local models outperformed the global models, the results were different based on the subareas 

and category of variables (Figure 2). However, the local SSV models were more consistent at outperforming the 

global SSV models compared to RSV and allV models when tested with an independent dataset. For the humus 290 

layer (Fig. 2A), the local models associated with all variables performed better than the remaining models except 

for northern Sweden where global model recorded the lowest RMSE. For the mineral and total soil layers (Fig. 

2B-C), only local models showed better performance compared to global models with lowest RMSE. The best 

local model were mostly associated with all variables or site specific variables especially for central and southern 

Sweden. Only with the local model of mineral SOC stock for Northern Sweden that remote sensing variables gave 295 

a better accuracy as compared to other models.   

 

The local and global models showed similar trend for the density distribution of actual versus predicted SOC stock 

(Fig. 3). For Fig.3 and Fig.4, only global and local models with the lowest RMSE were reported to avoid 

redundancies. All RFR models presented an underestimation of lower and higher values of SOC stock while an 300 

overestimation was observed for the values centred around the means. However, underestimation of high values 

was less pronounced with the global models over the entire Sweden and also with the predictions for the humus 

layer. The local model associated with the remotely sensed variables of the mineral soil SOC stock in northern 

Sweden also presented a pronounced overestimation of the lower values. 

  305 

The PICP estimates seem to correspond quite well with the respective confidence level (Fig. 4) except for the 

humus and mineral SOC stock of southern Sweden. For southern Sweden, it appears that at higher level of 

confidence the corresponding PICP is higher for the humus layer and lower for the mineral SOC stock. Considering 

a 90% confidence interval, most of the validation observations (80% - 95%) were located within the prediction 

interval especially for models based on specific site variables or all variables (Supplementary information SI 1).   310 

 
3.3 Variable importance 

The global RFR models using only site factors shows that (Table 5) the latitude (Northing) was the most important 

variable influencing the distribution the humus layer and the total SOC stock though it ranked second for the 

mineral soil. A consistent negative but significant correlation was observed between the different SOC stocks and 315 

the latitude suggesting lower stock northwards no matter the depth. 
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The site specific variables took pre-eminence over remote sensing variables both at global and local scales when 

considering models using all variables (Table 5). The occurrences of soil moisture or soil type among the top two 

most influential variables are higher compared to the remaining variables. For the humus layer SOC stock, the key 320 

covariate involved in the prediction was the soil moisture reported both for global and local models except in 

southern Sweden where it came as the third key variable. The most prominent covariate in predicting the mineral 

soil SOC stock with the global allV model was the soil type as also recorded for southern Sweden while remaining 

local models indicated Texture for northern and central Sweden. The global model revealed soil moisture and soil 

type as the main variables affecting the prediction of the total SOC stock over Sweden. A similar trend is observed 325 

in northern Sweden while the remaining models recorded 40k as second key variable in addition to soil moisture 

and soil type for the central and southern Sweden respectively.  

 

The cumulative contribution of each category of variables to model accuracy based on their contribution to the 

MDA using all variables is presented in Fig.5. Topography variables greatly influence model accuracy in the 330 

northern part of Sweden contributing to about 30% - 40% of the model MDA especially for the humus layer and 

mineral soil SOC stock. This is further corroborated by a high correlation of these variables with the SOC stock 

in northern Sweden (Table 10). For the humus and mineral SOC stock, the importance of topography decreased 

from the north to the south of Sweden with the gamma-ray, site specific and climate variables gaining more 

prominence (contributing together up to 60% of MDA) in central Sweden while site factors were the most 335 

influential variable with a share of 40% of MDA in southern Sweden (Fig4.). These categories of variables which 

ranked first in central and southern Sweden were also classified among the top three variables - site specific 

variables, climate and gamma-ray data for the global humus layer model.  

 
As observed for the humus layer, topography was less prominent for central and southern Sweden for both mineral 340 

soil and total SOC stock (Fig. 5). Site specific variables, climate and geochemical data which provided the highest 

contribution to MDA mineral soil for the global model over Sweden where also the most influential over central 

and Southern Sweden  contributing together up to 60% and 70% to the MDA. Gamma ray data seemed to play a 

key role in the distribution of the total SOC stock especially in southern Sweden together with the site specific 

variables and climate. It is important to note that for the global model of the total SOC layer, the different category 345 

of variables contributed almost equally to the MDA with the gamma-ray and climate taking pre-eminence over the 

site specific variables. The forest variables had very low contributions as compared to the remaining (Fig.5) 

category of variables and they were mostly absent from the top 10 (Table 5) while those ranked have very low 

correlation with the different SOC stock.   

                                                                                 350 
3.4 Maps of SOC stock  

Fig. 6 show the SOC stock maps from the RSV global and local models. Though the global RSV models generally 

outperformed the local RSV models (Table 4), their predictive maps follow generally the same pattern. Broadly, 

there is an increasing gradient of SOC stock from North to South for the humus layer, mineral soil and total SOC 

stock. The local models tend to present lower values of SOC stock in northern and central Sweden for the humus 355 

layer while global model displays higher values over the whole country. For the mineral soil, there seems to be no 

distinct difference in the spatial prediction of SOC stock which resulted in similar pattern from the North to the 
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South for both local and global model maps. Since the total SOC stock is the sum between the humus layer and 

mineral SOC stock, its spatial distribution follows the same trend with lowest SOC recorded in northern and central 

Sweden while higher stock are located in the south. No matter the type of SOC stock, the standard deviation tends 360 

to follow the same fashion, with higher uncertainties attached to the prediction of SOC stock in southern Sweden 

compared to the remaining areas independently of the type of models. 

 

Figure 6: Maps of the spatial distribution of the humus layer, mineral soil and total SOC stock based on the RSV 

models 365 

 
4 Discussion 

 
4.1 Prediction with global and local models 

This study examined how global and local models differ in predicting the humus layer, mineral soil and total SOC 370 

stock in Sweden forests. The local models recorded lower RMSE at modelling stage with the cross-validation 

compared to the global models except for the Southern area. When prediction were carried out on the same 

validation set, local models including those of southern Sweden generally outperformed the global models. This 

suggests on the one hand that global models with higher sample size might not necessarily result in a more accurate 

model compared to models built from a reduced dataset corresponding to a subarea of a bigger region. On the 375 

other hand, the particular case for southern Sweden suggests that though a global model might present a 

comparative advantage at modelling stage, they might not necessarily have a better predictive power when 

confronted with a new set of samples.   

The findings of this study are in line with those of Somarathna et al. (2016) for predicting SOC content who also 

found locally calibrated models to perform better than global models. However, the results of the present study 380 

differed from the latter in that, the comparative advantage was dependent of the category of variables used. 

 

 Findings (Figure 2) showed that local models which outperformed global models were either associated with all 

variables or site specific variables. For example, local models in central Sweden required all variables to 

outperformed global models for the humus layer, mineral soil and total SOC stock. The same pattern was observed 385 

for Southern Sweden except for the mineral SOC stock for which the local model was associated with the SSV. 

The local model for the total SOC stock in Northern Sweden was also associated with SSV. The higher occurrences 

of SSV and allV with the best local models showed that modelling with RSV alone is not the optimal choice. On 

the one hand, forest SSV are more relevant for capturing local variability of the sampling plots than the other 

variables which are remote sensing products. When both SSV and RSV are used as covariates, the locally specific 390 

information at plot scale are complemented by higher scale covariates which cover a larger range of the feature 

space resulting in model improvement especially for the humus layer.  

 

In addition, using both site characteristics and remotely sensed products for predicting SOC stock generally 

increased the variance explained with both cross-validation and independent validation methods for the humus 395 

layer, mineral soil and total SOC stock. However, despite the combination of these two category of covariates, the 

accuracy of the SOC stock prediction remain low for both the global models (maximum R2 is 0.30) and local 

models (maximum R2 is 0.33). There seems to be no study comparable in scope and methodology targeting the 
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prediction of SOC stock in forest soils. The closest is the digital mapping of SOC stock for the humus layer and 

mineral stock using machine learning models such as RFR and the k-nearest neighbour (kNN) based on dataset 400 

from the US national forest inventory (Cao et al., 2019). The authors also found lower fit between predicted and 

observed SOC stock after the independent validation and reported an R2 of 0.20 and 0.11 for the humus layer while 

recording an R2 of 0.33 and 0.28 for the mineral soil respectively for the RFR and kNN models. The second relevant 

finding for comparison is the study carried out by Nussbaum et al. (2012) using the Swiss National Forest Inventory 

data to map the mineral soil (0–30 cm) using a linear regression model. They also recorded an R2 of 0.30 for the 405 

forest mineral soil. Other studies conducted in temperate forests for predicting SOC stock, showed also poor 

goodness of fit values with a cross validation R2 of 0.22 (1 m depth) with the boosted regression trees (Ottoy et 

al., 2017). For other soil properties, Mansuy et al. (2014) reported for some Canadian managed forest an R2 of 

0.04 and 0.05 for SOC content in the humus layer and mineral soil respectively with the kNN while Beguin et al. 

(2017) recorded for the Canadian forest an R2 of 0.05 for SOC content for the mineral soil with RFR model.  410 

 

It is well established that some disparity occurs between observed and predicted values of DSM models. This is 

due to different sources of errors leading to low explained variances (Nelson et al., 2011). Sources of errors might 

be related to omitting key variables with greater explanatory power or conversely using not essential covariates 

with very low explanatory power which only increase the prediction error variance. Not using the key covariates 415 

in relation to SOC stock for forest ecosystem in the present study is less likely since variables considered in this 

study well represent the surrogates for soil forming factors considered in the SCORPAN equation defined by 

McBratney et al. (2003). In addition, dimension reduction with the removal of highly correlated variables and 

exclusion of some others via recursive feature elimination participated in eliminating redundant and non-

informative covariates. On the other hand, correlations (min = 0, max = 0.28) between covariates and the different 420 

SOC stock were found to be poor though significant for most of the predictors (Table 5, SI 2-4). This could be 

expected because the data cover a wide range of different site conditions, soil types and parent materials.  

 

Another source of errors could be inherent to the model with prediction accuracy varying with different type of 

model. Many studies have already compared different machine learning models and concluded that RFR has 425 

generally a strong predictive ability in different ecosystems (Cao et al., 2019;Forkuor et al., 2017;Wang et al., 

2018). Preliminary steps in the present study also tested extreme gradient boosting and the Cubist models (results 

not shown) alongside the RFR with the latter displaying higher predictive capabilities. On the other hand, applying 

geostatistical approaches (SI 5) for the humus layer, mineral soil and total SOC stock revealed very low spatial 

autocorrelation for the different SOC stock and their regression residuals, suggesting that the structure of these 430 

SOC data is having a shorter range than the sampling interval. For soil properties which vary over short distance 

such as SOC stock, data driven models such as RFR might capture better the inherent variability of the data when 

the data itself are a good representative of the phenomenon the SOC stock is subject to in the landscape, including 

small scale variation. Beguin et al. (2017) recorded poor performance of different models including RFR for 

predicting C:N because the sampling scheme failed to capture the distance variation (< 20 km) at which better 435 

accuracy would have occurred. Model accuracy would likely improve if more samples covering the spatial 

variability of each inventory plot were taken. The increase in RMSE with depth recorded for some models is 

consistent with previous studies where prediction of lower soil layers resulted in lower accuracy (Henderson et al., 
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2005;Yam et al., 2019). This may be due to a higher sensitivity of the humus layer which is directly exposed to 

the influence of environment variables.  440 

 

The estimates of SOC stocks are slightly biased towards the extreme values with an underestimation of the lowest 

and highest values for both local and global models (Fig. 3). This tends to confirm earlier findings which reported 

issues related to the underestimation or overestimation of small / higher values from the RFR model (Čeh et al., 

2018;Hu et al., 2020;Horning, 2010). On the one hand, this seems to be typical for regression models with RFR 445 

because predictions are the average values of all of the trees.  On the other hand, this may also be related to an 

under representation of the lower and higher values compared to those centred around the mean in the training 

dataset. However, though underestimation of the lowest and highest values could be recorded for all models, the 

90% PICP shows in general that the 90% prediction interval covers adequately the observed values of the humus, 

mineral and total SOC stock layers (Fig. 4). This is an indication that the prediction intervals are accurate 450 

representative of the prediction uncertainties for each of these SOC stocks for both local and global models. 

However, for southern Sweden, the PICP presented higher values for the humus layer and lower values for the 

mineral SOC stock with increasing level of confidence, suggesting a higher level of uncertainties in the predictions. 

This could be attributed to southern Sweden being characterized by a longer management history and more 

intensive forestry compared to northern Sweden (Angelstam, 1997), leading to a diversity of forest management 455 

patterns with potential feedback on SOC stock distribution.   

 
4.2 Variable importance and modelling accuracy 

SOC stocks in forest soils are the product of the dynamic equilibrium between input flux of plant-derived materials 

and output flux of carbon as a result of decomposition. Classical soil forming factors - climate, organisms 460 

(vegetation, fauna, human activities), topography parent material and time are known to govern the amount and 

distribution of SOC stock. Though covariates used as proxy for these soil forming factors were considered 

separately for the sake of analysis in this study, they are actually involved in dynamic interactions leading to 

complex soil processes in the landscape.  

 465 

With the global RFR models using only site specific variables, the latitude (northing) was the main variable driving 

the distribution of the SOC stock with a negative correlation suggesting lower stock northwards (Table 5). The 

latitudinal gradient (Millberg et al., 2015) in Sweden results also in climatic gradient (Jungqvist et al., 2014) which 

in turn interact with topography (Johansson and Chen, 2003) to determine the heterogeneity in net primary 

production in relation to the spatial variability of precipitation and temperature. Even at regional level, the latitude 470 

was still critical and was mostly present among the top ten variables being selected by the local RFR models using 

all variables (Table 5). However, climate and topographical variables were overshadowed consistently by SSV 

when all the variables were used for modelling both at a national and regional scale. Though precipitation regulates 

net primary productivity (NPP) and temperature controls microbial decomposition of organic matter, their local 

variability is generally small (Wiesmeier et al., 2019). This makes them less relevant in contrast to SSV taken at 475 

plot level which describe more closely factors controlling the decomposition and stabilization of organic matters.  
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Among the site characteristics the soil moisture was the key site factor affecting the humus layer SOC stock 

especially in the northern and central Sweden while vegetation type was ranked first in southern part of Sweden 

(Table 5). The box plots of these two variables showed that they have clearly different distribution of SOC stock 480 

in the humus layer, although some of the inter-quantile ranges overlap (SI 6). As observed for the humus layer, 

soil moisture was the most important variable associated with total SOC stock along with the soil type. For a 

sequence from dry to moist soils, there was an increase of SOC stock in the humus layer as well as for the mineral 

and total stock (box-plot of soil moisture SI 6-8). This might be explained by higher productivity in litter supply 

as water is more available in the tree root zone of fresh and moist sites. On the other hand, these latter soils are 485 

subject to a longer period of saturation (reducing conditions) slowing down decomposition. The impact of soil 

moisture could also be noted when considering the partial dependence plot of the RFR global model of the humus 

layer showing the interaction between the soil moisture class and vegetation type (SI 9A). Each vegetation type 

tends consistently towards higher values of SOC stock for moist sites compared to dry and fresh sites.  

 490 

Generally, soil type and texture were ranked by the allV global models as the top variables influencing the SOC 

stock in the mineral soil (Table 5). The link between these two variables could be related to the soil moisture 

content of their classes. On the one hand, soil types (Histosols, Gleysols) with fine texture (fine silt, clay) having 

high moisture content are more subject to reducing conditions with higher SOC stock compared to soils (Leptosols, 

Arenosols) with coarse (stone, boulder, coarse sand) texture.  495 

 

The addition of the remote sensing products to the site specific variables resulted in limited improvement for both 

global and local models (Table 3-4). This suggests that their level of distinct complementarity in the feature space 

is low as the remote sensing products might be carrying redundant information with the site specific variables in 

relation to the humus layer, mineral soil and total stock. For example, the prominence of site specific variables 500 

over topographical variables (Table 5, allV) might be due to the fact they are indirectly incorporated into the 

definition of the site specific variables. For this study, wetness index, distance to groundwater and depth to water 

are indexes to characterize soil moisture while gamma ray data describe parent material. Similar  observation was 

shared by Wiesmeier et al. (2011) who also recorded land use and soil type as key variables affecting SOC stock 

while topographic variables contributed very weakly to model accuracy using Random Forest. However, though 505 

lowly ranked among all variables (Table 5, allV), the cumulated variable importance analysis showed that 

topographical variables stood out in contributing to model accuracy in northern Sweden (Fig. 5) but were less 

relevant southward. Obviously, higher elevation and derivatives in northern Sweden explains such influence on 

the SOC stock.  

 510 

Next to site characteristics and climate, the cumulative gamma-ray data was more consistent in contributing to 

model accuracy of the total SOC stock compared to geochemical data with the individual ranking further revealing 

higher occurrence of radioactive K both at global and regional level (Table 5, Fig. 5). This suggests that K-bearing 

minerals of the parent material has greater explanatory power over total SOC stock than U and Th, the nature of 

which might require further studies. Malone et al. (2009) also recorded gamma K as the key covariate for mapping 515 

SOC stock in an agriculture dominated land use in Australia.  
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The geochemical data revealed to be key variables in the distribution of SOC stock in southern Sweden especially 

for the humus layer (Na) and mineral stock (Ca, Na) though of much lower magnitude compared to site specific 

variables. However, base cations seemed not to primarily affect SOC distribution but rather environmental 520 

variables that regulate their dynamics. The low ranking of forest parameters may be related to (1) their low 

correlations with the SOC stock data and (2) the fact that the data set cut across different data forest types without 

any specific stratification which could have created a homogeneous strata for modelling. However, the focus of 

the present study was not on a specific forest type which could have reduced further the training dataset while 

machine learning models require high data samples to learn pattern and accurately predict target values on 525 

independent dataset.  

 

4.3 Spatial prediction of SOC stock 

The maps of the humus layer, mineral soil and total stock presents a pattern of increasing accumulation of SOC 

stock from south to north with the highest uncertainties in the southern part of Sweden no matter the predicting 530 

models (Fig. 6). In general, it is expected that the global latitudinal trend will result in increasing stock in higher 

latitude which correspond to colder and humid regions. Possible explanations are associated with slower microbial 

decomposition rates while other studies suggested non conducive soil conditions such as water logging, low pH 

values, high aluminium concentration as the main constraints (Dieleman et al., 2013;Hobbie et al., 2000;Wiesmeier 

et al., 2019).  535 

 

The contrary configuration observed in the maps with decreasing South-North distribution in SOC stock for humus 

layer and mineral (SI 10) are consistent with findings from different studies (Kleja et al., 2008;Fröberg et al., 

2011;Hyvonen et al., 2008). These studies advocate that the high SOC stocks in the south could be related to a 

higher deposition of nitrogen (N) compared to the center and northern Sweden. It has been suggested that N 540 

deposition results in both increasing litter inputs and increasing mean residence time. Also, high concentrations of 

inorganic N inhibit the activities of lignin-degrading phenol oxidase released by microorganisms (Zak, 

2017;Carreiro et al., 2000). However, warmer climate makes trees grow faster along with a higher litter input in 

the south than in the north. With co-occurring north-south gradient of temperature (lower), pH (higher), soil carbon 

(lower) (Iwald, 2016;Framstad, 2013), N deposition might have contributed to strengthen the North-South SOC 545 

stock gradient. As southern Sweden (Figure 6) recorded higher range in SOC stocks, the associated average 

variation around the mean was also larger.  

 
4.4 Implication and limitations of the study 

DSM relies on existing maps for building regression models and ultimately prediction for mapping. The quality 550 

and accuracy of predictions depend as discussed earlier on choosing the most relevant covariates in relation to the 

target to be predicted. The present study revealed that variables which were available as maps did contribute to the 

MDA, but site characteristics were more prominent in relation to the SOC stocks in Sweden. Consequently, having 

high resolution maps of these site characteristics would increase the accuracy of both models and resulting maps. 

In situations where additional site data are available, a preliminary study such as carried out in this study would 555 

help identify the most relevant site characteristics which are worth considering for mapping in the purpose of 

increasing the accuracy of the target variable to which they correlate most. For the present study, it appears from 
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the variable importance that having a map format of the soil moisture class, vegetation type, soil type and soil 

texture has potential in improving the output maps and reduce the prediction uncertainties.  

 560 

The present study compared a local and a global modelling approach for DSM. To the question which approach 

to use while confronted with a big area, our research showed that it is dependent on the type of covariates available. 

In general, building local models for subareas of the study region will require having covariates which correlate 

most with the sampling sites thereby offering a better description at a smaller scale. In this study, the site 

characteristics were a better representative of the sampling locations and their local models generally performed 565 

better than global models. In situation where such site characteristics data are not available, it would be preferable 

to use a global model for the whole area.  

However, machine learning models such as RFR are data driven, and therefore results will vary according to the 

specificity of a given area. Therefore, there is no silver bullet in the approach to use for any specific area and it 

will be necessary to draw conclusions from the modelling results. However, it is very likely that the combination 570 

of site characteristic with remote sensing data would result in higher accuracy at both local and global scale than 

using remote sensing data alone.  

 

The maps produced with the RSV global and local models for the humus layer, mineral soil and total SOC stock 

present accurately the distribution of SOC stock observed for Sweden in many studies. Given that the underlying 575 

models were not the most accurate in the present study, such maps should be treated with caution for decision 

especially with the associated high standard deviation. However, they could serve as a high resolution indicator of 

the spatial trend in SOC stock at different depth for the landscape of the Swedish forest. In addition, the use of a 

DSM approach in the present study allows: flexibility in future improvement upon acquisition of new covariates 

or data point, repeatability in modelling with the application of the same modelling principles using open access 580 

software (e.g. R) and capitalizing on multi-source information (topography, site characteristics, forest data, gamma 

radiometry and geochemical data). Therefore, smaller counties could evaluate this approach on their own dataset 

for mapping other soil properties (pH, texture, Fe, Al etc.) and SOC stock for local applications.  

 

Conclusion 585 
 
This study has shown that: 

 Local models have a comparative advantage over global models when using either site characteristics 

alone or the combination of the latter with remotely sensed variables for modelling.  

 Using remotely sensed variables with soil inventory data indicates that such covariates have limited 590 

predictive compared to site specific variables.  

 The most important covariates that influence the humus layer, mineral soil and total SOC stock were 

related to the site characteristic covariates and include the soil moisture class, vegetation type, soil type 

and soil texture. These variables could potentially improve the spatial accuracy of the final SOC stock 

maps when available in a map format as covariates.  595 
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Code  
 600 
As a R file (pdf) in the supplement materials. 
 
Data availability 
 
The data used in this study is available upon reasonable request sent to Johan Stendahl (Johan.Stendahl@slu.se). 605 

The high-resolution digital elevation models (DEM) should be requested by contacting the Swedish national 

mapping agency (Lantmäteriet, https://www.lantmateriet.se). The climate data used (MAT, MAP) can be 

downloaded from the source: WorldClim, (Fick and Hijmans, 2017). The geochemical and gamma-ray data can 

be obtained from the Geological Survey of Sweden (SGU, https://www.sgu.se). Requests for forest maps should 

be directed to the Swedish Forest Agency (Skogsstyrelsen, https://www.skogsstyrelsen.se). The dataset related to 610 

the historical map series can be freely downloaded from the figshare repository using the following 

link:  https://doi.org/10.17045/sthlmuni.4649854.  
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Table 1: List of explanatory variables for predicting SOC stock 
  
 Type  Variables Abbreviation   
Topography Elevation (m) DEM   

Slope (%) Slope   
cos(Aspect) cosAsp   
sin(Aspect) sinAsp   
Plan curvature (°m−1) PLCur   
Profile curvature (°m−1) PRCurv   
Terrain ruggedness index TRI   
Saga wetness index SWI   
Distance to streams (mm) strDist   
Depth to water (m) DTW   
Distance to Groundwater (mm) DTG  

Climate Temperature (°C) Temp   
Precipitation (mm) Prep  

Geochemical data Ca, Mg, K,  
Na, Mn (ppm) 

GeoCa, GeoMg, GeoK,  
GeoNa, GeoMn  

Gamma-ray data 40K (ppm), 232Th (ppm), 238U (%) GamK, GamTh, GamU  
Forest Stand age (years) For.Age   

Biomass (kg) For.Biom   
Height (m) For.Height   
Stem volume (m3) For.Vol  

Historical land use map* Former Cropland histCL   
Former Grassland histGL  

Site characteristics Soil types SoilTyp 
 

Levels 1 Histosol; 2 Leptosol; 3 Gleysol; 4 Podzol; 5 Umbrisol; 7 Arenosol; 6 Cambisol;  
8 Regosol; 9 Unclassified   
Soil moisture class SoilMst 

 

Levels 1 Dry; 2 Fresh; 3 Fresh/moist; 4 Moist; 5 Wet 
 

 
Soil texture class Texture 

 

Levels 0 Boulders in the profile; 1 Stone/Boulder/Bedrock; 2 Gravel/Gravely till; 3 Coarse 
sand/Sandy till; 4 Sand/Sandy silty till;5 Fine sand/Silty sandy till;  6 Coarse 
silt/Coarse silty till; 7 Fine silt/Fine silty till; 8 Clay/Clayish till/Gyttja; 9 Peat 

 

 
Parent material ParMat 

 

Levels 1 Well sorted sediments; 2 Poorly sorted sediments; 3 Till; 4 Bedrock; 5 Peat  
Vegetation type VegTyp 

 

Levels 1 tall herbs without shrubs; 2 tall herbs with shrubs/bilberry; 3 tall herb  with shrubs /vitis 
idea ; 4 low herbs without shrubs; 5 low herbs with shrubs /bilberry; 6 low herbs with shrubs 
/vitis idea ; 7 without field layer; 8 broad leaved grass; 9 narrow leaved grass; 10 tall sedge; 
11 low sedge; 12 horse tail type; 13 bilberry type; 14 vitis idaea/whortleberry, marsh 
rosemary;15 crowberry/heather type; 16 poor shrubs type 

Coordinates northern    NorthC 

 Eastern EastC 

*: used only for the southern part of Sweden 810 
 
 
 
 
 815 
 
 
 
 
 820 
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Table 2: Descriptive statistics for the training and validation datasets  
   

Training 
 

Validation 
  

n min max median mean sd cv skewness   n min max median mean sd cv skewness 

Humus 
layer  
(t C/ha) 

North 1008 0 246.00 18.10 23.57 21.78 0.92 4.25   252 0 128.00 18.05 23.05 18.28 0.79 2.57 

Center 1708 0 299.52 18.42 23.87 21.49 0.90 3.61 
 

424 0 143.77 18.42 23.54 19.31 0.82 2.33 

South 1763 0 418.80 23.05 30.07 34.79 1.16 3.36 
 

440 0 418.80 23.06 30.59 39.75 1.30 4.42 

All 4479 0 418.80 19.52 26.24 27.72 1.06 3.88 
 

1116 0 418.80 19.63 26.21 29.18 1.11 5.07 

Mineral         
(t C/ha) 

North 478 2.36 305.59 41.46 46.85 25.96 0.55 3.44 
 

116 16.21 136.47 41.34 47.73 23.07 0.48 116 

Center 785 0 224.24 48.31 53.28 26.46 0.50 1.60 
 

196 0 143.14 48.27 52.49 23.51 0.45 196 

South 875 0 386.70 62.43 68.32 40.49 0.59 1.93 
 

216 0 206.00 63.09 68.34 37.91 0.55 216 

All 2138 0 386.70 51.44 58.22 33.73 0.58 2.15 
 

528 0 206.00 51.81 57.93 31.39 0.54 528 

Total               
(t C/ha) 

North 478 16.11 360.18 62.93 72.46 39.62 0.55 2.94 
 

116 20.02 331.56 63.00 75.12 45.76 0.61 2.90 

Center 784 12.88 229.87 71.80 77.33 31.34 0.41 1.32 
 

196 15.92 254.69 71.69 78.67 37.20 0.47 1.78 

South 870 0 487.37 89.19 99.34 50.63 0.51 2.37 
 

216 16.78 357.23 88.99 97.61 44.47 0.46 2.01 

All 2132 0 487.37 76.26 85.22 43.57 0.51 2.47   528 15.92 357.23 76.46 85.64 43.32 0.51 2.11 

 
 825 
Table 3: Cross-validation and independent validation of the global random forest models 
   

Cross-Validation Independant Validation 

    RMSE 
(t C/ha) 

R2 

 
RMSE 
(t C/ha) 

MAE 
(t C/ha) 

Bias 
(t C/ha) 

CCC R2 

Site specific 
variables (SSV) 

Humus layer  23.9 (±2.74) 0.26 (±0.06) 20.8 13.7 0.45 0.43 0.26 

Mineral soil  28.6 (±3.34) 0.27 (±0.06) 27.9 19.8 0.45 0.43 0.27 
 

Total  38.9 (±4.28) 0.21 (±0.06) 38.9 27.8 1.81 0.34 0.15 

Remote sensing 
variables (RSV) 

Humus layer  25.4 (±3.20) 0.15 (±0.04) 22.1 15.2 1.27 0.28 0.17 

Mineral soil  31.5 (±3.33) 0.13 (±0.05) 30.7 21.8 0.95 0.23 0.10 
 

Total  38.9 (±4.40) 0.20 (±0.05) 38.4 27.7 0.87 0.32 0.18 

All variables 
(allV) 

Humus layer  23.4 (±2.90) 0.28 (±0.06) 20.3 13.7 1.35 0.47 0.30 

Mineral soil  28.3 (±3.46) 0.29 (±0.07) 28.2 20.2 1.17 0.41 0.26 

  Total  36.5 (±4.35) 0.30 (±0.06) 35.5 25.6 1.42 0.41 0.27 

RMSE: root mean square error, MAE: mean absolute error, CCC∶ Lin’s correlation concordance coefficient 
 
 830 
 

 

 

 

 835 

 

 

 

 

 840 
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Table 4: Cross-validation and independent validation of the local 

 845 

 

RMSE: root mean square error, MAE: mean absolute error, CCC: Lin’s correlation concordance coefficient 
 
 
 850 

 

 

 

 

 855 

   
Cross-Validation Independant Validation 

   
RMSE (t C/ha) R2 RMSE (t C/ha) MAE (t C/ha) Bias (t C/ha) CCC R2 

Site specific 
variables 

Humus layer  North 19.4 (±4.33) 0.19 (±0.11) 18.7 11.8 -0.85 0.35 0.22 

  
center 19.3 (±3.84) 0.19 (±0.07) 18.1 12.1 0.47 0.30 0.14 

  
South 30.1 (±4.62) 0.25 (±0.09) 25.6 17.8 1.45 0.46 0.26 

 
Mineral soil  North 23.0 (±7.25) 0.12 (±0.07) 23.5 15.6 -0.25 0.28 0.17 

  
center 23.1 (±3.37) 0.13 (±0.09) 27.0 19.0 -2.11 0.28 0.20 

  
South 35.5 (±5.48) 0.24 (±0.07) 31.8 23.0 2.55 0.42 0.24 

 
Total  North 34.7 (±8.88) 0.22 (±0.14) 25.1 19.3 2.01 0.50 0.33 

  
center 29.1 (±2.85) 0.14 (±0.07) 33.7 24.1 -1.87 0.22 0.10 

  
South 47.7 (±7.80) 0.15 (±0.08) 47.4 34.3 3.79 0.23 0.07 

Remote 
sensing 
variables 

Humus layer  North 19.4 (±4.84) 0.18 (±0.09) 19.7 13.1 -0.83 0.28 0.14 

  
center 20.4 (±4.33) 0.08 (±0.04) 18.0 12.5 1.29 0.19 0.12 

  
South 31.3 (±5.49) 0.18 (±0.08) 26.5 18.9 2.22 0.32 0.19 

 
Mineral soil  North 24.2 (±7.55) 0.08 (±0.06) 21.2 15.9 0.39 0.22 0.13 

  
center 24.1 (±3.22) 0.05 (±0.04) 28.7 20.0 -1.56 0.12 0.09 

  
South 38.6 (±5.26) 0.10 (±0.07) 36.1 26.6 4.33 0.14 0.05 

 
Total  North 35.2 (±8.51) 0.20 (±0.10) 29.6 22.8 4.83 0.37 0.16 

  
center 28.9 (±3.07) 0.16 (±0.08) 35.1 25.9 -0.08 0.11 0.03 

  
South 47.2 (±7.21) 0.12 (±0.07) 44.6 32.9 1.48 0.19 0.10 

All variables Humus layer  North 19.0 (±4.67) 0.22 (±0.08) 18.8 12.4 -0.44 0.33 0.21 
  

center 19.0 (±4.05) 0.20 (±0.07) 16.9 11.5 1.15 0.34 0.23   
South 28.5 (±5.15) 0.32 (±0.08) 23.6 16.7 2.31 0.52 0.36 

 
Mineral soil  North 22.3 (±6.51) 0.19 (±0.07) 24.5 18.1 4.00 0.25 0.12 

  
center 22.6 (±2.82) 0.17 (±0.09) 26.6 18.5 -1.76 0.28 0.25 

  
South 35.3 (±5.42) 0.25 (±0.09) 32.8 24.1 3.59 0.37 0.20 

 
Total  North 33.2 (±8.29) 0.28 (±0.13) 25.2 19.7 2.96 0.48 0.33 

  
center 27.7 (±2.90) 0.23 (±0.06) 31.9 23.4 0.23 0.28 0.20 

    South 44.9 (±7.29) 0.22 (±0.09) 42.9 31.7 2.64 0.29 0.17 
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Table 5: Top 10 variables for the global and local random models for the humus layer, mineral soil and total 

SOC stock with the Pearson´s coefficient of correlation (values in bracket, *: p  ≤ 0.05, p ≤ 0.05;**: p ≤ 

0.01;***: p ≤ 0.001) for the litter, soil and total Cstock 

    
n Most important variables1 

Site 
specific 
variables 
(N = 7) 
  

Global  Humus layer  7 Northing (-0.12***), Soil moisture, Easting (-0.09***), Vegetation type, Soil type, Parent materiel, Texture 
 

Mineral soil  7 Easting (-0.13***), Northing (-0.27***), Soil type, Vegetation type, Texture, Parent materiel, Soil moisture 
 

Total  7 Northing (-0.28***), Soil moisture, Soil type, Easting (-0.15***), Texture, Vegetation type, Parent materiel 

North Humus layer  7 Soil moisture, Soil type, Vegetation type, Northing (-0.09**), Easting (0.06), Parent materiel, Texture 
 

Mineral soil  7 Easting (-0.13**), Vegetation type, Texture, Parent materiel , Northing (-0.09*), Soil moisture, Soil type  
 

Total  7 Soil moisture, Soil type, Vegetation type, Texture, Parent materiel, Easting (0.00), Northing (-0.11*) 

Center Humus layer  4 Soil moisture, Northing (-0.08***), Easting (-0.02), Vegetation type 
 

Mineral soil  4 Parent material, Texture, Northing (-0.05), Soil type, Soil moisture, Easting (0.00)  
 

Total  7 Soil moisture, Northing (-0.13***), Easting (0.03), Parent materiel, Texture, Vegetation type, Soil type 

South Humus layer  4 Vegetation type, Soil moisture, Soil type, Easting (-0.15***) 
 

Mineral soil  7 Soil type, Easting (0.02), Northing (-0.08*),Vegetation type, Parent materiel, Texture, Soil moisture 
 

Total  4 Soil type, Easting (-0.10**), Soil moisture, Northing (-0.13***) 

Remote 
sensing 
variables           
(N = 26) 

Global  Humus layer  20 Mn (-0.08***), Precipitation (0.16***), 40K (-0.20***), 232Th (-0.15***), Na (0.03), Terrain ruggedness (-
0.11***),         K (-0.07***), Distance to groundwater (-0.14***), 238U (-0.10***), sinAsp (-0.06***)  

Mineral soil  20 Temperature (0.28***), Precipitation (0.18***), Mn (0.05**), Elevation (-0.16***), Terrain ruggedness (-
0.12***), Na (-0.05), Ca (0.22***), 40K (-0.13***), Wetness Index (0.11***), K (0.01)  

Total  21 Temperature (0.28***), K ()Distance to groundwater (-0.17***), Precipitation (0.21***), 40K (-0.24***), 
232Th (0.16***), Na (-0.01), K (-0.04), Mn (-0.02), 238U (-0.11***), Elevation (-0.18***) 

North Humus layer  8 40K (-0.23***), Distance to groundwater (-0.18***), Elevation (-0.15***), Ca (-0.06), Temperature (0.16***), 
Mn (-0.10**), Na (-0.06), K (0.00) 

 
Mineral soil  8 40K (-0.25***), Wetness index (-0.01), Ca (-0.05), Na (-0.09), Temperature (0.01), Precipitation (0.16***), K 

(0.04), Aspect (0.03), Stand Age (0.02), Elevation (0.13*) 
 

Total  8 Depth to water (-0.22***), 40K (-0.30***), K (0.04) ,Temperature (0.10*), Precipitation (0.16***), Elevation (-
0.06), Mn (-0.07), Distance to streams (-0.15***) 

Center Humus layer  16 238U (-0.05), 232Th (-0.10***), Aspect (0.04), 40K (-0.16***), Terrain ruggedness (-0.11***), Elevation (-
0.06), Precipitation (0.08**), Distance to groundwater (-0.16***), sinAsp (-0.06*), Profile curvature (-0.04) 

 
Mineral soil  19 40K (-0.11*), 232Th (-0.07*), Mn (0.04), Elevation (-0.03), Wetness index (0.09*), Stand age (0.06), 238U (-

0.02), sinus Aspect (-0.01), Height (0.07), Precipitation (0.08***)  
 

Total  16 40K (-0.21***), Depth to water (-0.11**), 232Th (-0.12***), Mn (-0.02), Elevation (-0.08*), sinAsp (-0.06), Na 
(0.02), Precipitation (0.13***), Terrain ruggedness (-0.14***), Aspect (0.03) 

(N = 28) 
South Humus layer  16 40K (-0.24***), Precipitation (0.18***), Mn (-0.11***), Na (0.13***), Distance to groundwater (-0.12***), K 

(0.11***), Stem Volume (0.05*), Slope (-0.09***), Stand age (0.05*), 238U (-0.16***) 
  

Mineral soil  20 Temperature (0.18***), Precipitation (0.02), Stand age (-0.07*), Distance to groundwater  (-0.16***), Na (0.05), 
Elevation (-0.11**), Ca (0.24***), 232Th (-0.09**), Slope (-0.09**), 40K (-0.09**)  

  
Total  21 Precipitation (0.14***), Distance to groundwater (-0.17***), Elevation (0.00), Slope (-0.11**), Temperature 

(0.12***), 238U (-0.20***), Height (-0.11**), Ca (0.12***), K (0.04), 40K (-0.22***) 

All 
variables   
(N = 33) 

Global  Humus layer  28 Soil moisture, Vegetation type, Northing, Easting, Precipitation, Profile curvature (-0.04**), Temperature 
(0.12***), 232Th, 40K, Mn 

 
Mineral soil  28 Soil type, Parent material, Texture, Temperature, Vegetation type, Easting, Northing, Elevation, Mn, Na 

 
Total  16 Soil moisture, Soil type, Precipitation, 40K, Elevation, Na, Northing, Distance to groundwater, Mn, K 

 North Humus layer  28 Soil moisture, Distance to groundwater, Mn, Elevation, Temperature, Ca, K, Northing, 40K, Na 

 
 

Mineral soil  16 Texture, Wetness index, precipitation, K, Distance to groundwater, 238U (-0.13),Vegetation type, 40K, 232Th 
(-0.13**), Elevation 

 
 

Total  8 Soil type, Soil moisture, Depth to water, Vegetation type, Texture, 40K, K, Precipitation 

 Center Humus layer  26 Soil moisture, 232Th, 40K, Northing, 238U, Easting, Elevation, Profile curvature, Precipitation, Ca  (-0.03) 

 
 

Mineral soil  26 Texture, Parent materiel, Precipitation, Northing, Mn, Elevation, Soil type, 40K, Ca (0.00), Easting 

 
 

Total  26 Soil moisture, 40K, Northing, Parent materiel, Texture, Elevation, 232Th, Depth to water, Precipitation, Na 

(N = 35) 
South Humus layer  16 Vegetation type, Soil type, Soil moisture, Easting, Na, 40K, Precipitation, Temperature (-0.03), Stem Volume, 

K 

 

 
Mineral soil  29 Soil type, Parent materiel, Texture, Vegetation type, Easting, Northing, Precipitation, Ca, Na, Temperature 

  
Total  30 Soil type, 40K, Northing, Soil moisture, Precipitation, Easting, 238U, Na (0.14***), Texture, Wetness index 

(0.03) 
1Site specific variables have no correlation values since they are categorical variables. Pearson´s coefficient of correlation are provided at first 860 
occurrence for a specific category of variables and SOC type.  N : Total number of covariates, n = number of covariates after feature selection. 
 
 
 
 865 
 
 

https://doi.org/10.5194/soil-2020-75
Preprint. Discussion started: 15 December 2020
c© Author(s) 2020. CC BY 4.0 License.

Madlene Nussbaum
What kind of test was performed? To be complete it would be good practice to  report the test statistic. 
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Figure 1: Sites from the Swedish Forest Soil Inventory for northern, central and southern Sweden 
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Figure 2: Local and global models ranked by decreasing RMSE per subareas and category of variables along with 
corresponding R2. A: litter layer, B: mineral soil layer, C: total soil layer, SSV: site specific variables, RSV: remote 
sensing variables, allV: all variables

A 
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Madlene Nussbaum
Please specify how the R2 and the RMSE were computed. Cross-validation, independent data set obtained by data splitting? 
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Figure 3: Density plots of the actual versus predicted humus layer, mineral soil and total SOC stock from the 
local and global Random Forest models (with lowest root mean square errors), line: average values, SSV: site 
specific variables, RSV: remote sensing variables, allV: all variables; lines: mean of SOC stock 
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Figure 4: Prediction interval coverage probability of the local and global random models for the humus layer 

(A), mineral soil and total SOC stock. SSV: site specific 
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Figure 5: Variable importance of the main category of variables for local and global random 
models for the humus layer, mineral soil and total SOC stock 
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Figure 6: Maps of the spatial distribution of the humus layer, mineral soil and total SOC stock based 
on the remote sensing variables 
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Madlene Nussbaum
These maps are very difficult to read. Consider either adequate generalization of the 10 m pixels for the display scale or showing but a section.

I would actually be interested if there are artefacts at the border of the subareas like sudden change in values that are hard to explain. Such artefacts  might be a reason against using local models even if their model performance is better. 


