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Abstract

Soil organic carbon (SOC) stabilization and destabilization has been studied intensively, yet the factors which control SOC

content across scales remain unclear. Earlier studies demonstrated that soil texture and geochemistry strongly affect soil

organic carbon (SOC) content. However, those findings primarily rely on data from temperate regions with soil mineralogy,
weathering status and climatic conditions that generally differ from tropical and sub-tropical regions. We investigated soil
properties and climate variables influencing SOC concentrations across sub-Saharan Africa. A total of 1,601 samples were
analyzed, collected from two depths (0-20 cm and 20-50 cm) at-45-sentinel-sites-from 17 countries as part of the Africa Soil
Information Service (AfSIS)-project. The data set spans arid to humid climates and includes soils with a wide range of pH

values, weathering status, soil texture, exchangeable cations, extractable metals and land cover types. The most important SOC

predictors were identified by linear mixed-effects models, regression trees and random forest models. Our results indicate that

geochemical properties, mainly oxalate-extractable metals (Al and Fe) and exchangeable Ca, are equally important compared

to climatic variables (mean annual temperature and aridity index). Together, they explain approximately two thirds of SOC

variation across sub-Saharan Africa. Oxalate-extractable metals were most important in wet regions with acidic and highly

weathered soils, whereas exchangeable Ca was more important in alkaline and less weathered soils in drier regions. In contrast,

land cover and soil texture were not significant SOC predictors on this large scale. Our findings indicate that key factors

controlling SOC across sub-Saharan Africa are similar to those reported for temperate regions — except for soil texture and

land cover. The similarities between the two regions suggest that SOC content in highly weathered soils is not primarily related

to long-term soil development, but to common geochemical and climatic properties.

Keywords: biogeochemistry, land-use, soil organic matter, clay mineralogy, subtropical soils
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1. Introduction

Soil conservation and sustainable management are crucial to address some of the main challenges humanity is facing, such as

climate change, food security, environmental degradation, and loss of soil biodiversity. Assessing the state of soils and their

potential responses to climate and land-use change requires carefully designed sampling strategies, combined with systematic

analytical and statistical analyses across locations_and scale (IPCC 2019). One key component is soil organic carbon (SOC).

Due to its variety of sources, transformations and stabilization mechanisms, SOC is chemically very complex and spatially
heterogeneous. This_complexity causes significant uncertainties in global climate models (Friedlingstein et al. 2014). It also
complicates the extrapolation of SOC to a global scale; using statistical relationships to build robust global SOC products, such
as SoilGrids and the Harmonized World Soil Database (Tifafi et al. 2018). To improve our understanding of global C dynamics,
it is important to better understand the factors that control SOC stabilization and destabilization in soils from regional to global
scales (Blankinship et al. 2018; Heimann and Reichstein 2008).

SOC-stabilizing drivers and processes have been intensively studied over the past several decades. Dokuchaev (1883) and

Jenny (1941) shaped the understanding that soil properties are correlated with (independent) variables — the so-called soil-
forming factors (eg. 1):

s=f(cl o,rpt) @
where s stands for any type of soil property, such as pH, carbon content, mineralogy, etc., and is determined by the function f”

of soil-forming factors: cl — climate, 0 — organisms, r — topography, p — parent material, and t — time. This concept is still

relevant and forms the basis for many experiments and research_attempting to understand SOC storage. However, the

importance of the individual factors of equation (1) at different spatiotemporal scales remains unclear (Doetterl et al. 2015;
Rasmussen et al. 2018; Wiesmeier et al. 2019). This uncertainty hinders implementation of equation (1) in Earth System
models, resulting in a gap between the theoretical understanding of SOM dynamics and our ability to improve terrestrial
biogeochemical projections that rely on existing models (Blankinship et al. 2018; Rasmussen et al. 2018; Schmidt et al. 2011).
Despite the long history of studying SOC stabilization (Greenland 1965; Oades 1988), there still is increasing demand for data
on SOC dynamics at landscape to global scales (Blankinship et al. 2018), especially from sub-tropical and tropical ecosystems.
SOC stabilization is commonly conceptualized as competition between accessibility for microorganisms versus chemical

associations with minerals (Oades 1988; Schmidt et al. 2011). These processes are often only considered implicitly by models

(Blankinship et al. 2018; Schmidt et al. 2011). Instead, models commonly rely on broader variables such as clay content, which

is used as a proxy for sorption and other organo-mineral interactions (Rasmussen et al. 2018; Schmidt et al. 2011). These more

generic variables integrate a variety of stabilization processes which can be difficult to disentangle. They can differ in their

relative importance and may not adequately capture soil mineralogy and chemistry across different ecosystems and climate

zones. Hence, improving the predictive capacity of such models requires not only a better understanding of the factors that

control SOC dynamics, but also verification (or falsification) of those new findings in regions that are underrepresented in

field studies and models.
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For example, Rasmussen et al. (2018) found that exchangeable Ca was correlated with the quantity of SOC in water-limited
soils, while Al was a better predictor of SOC in wet, acidic soils. However, those findings may not be directly transferable
to sub-tropical and tropical soils, since they differ greatly in climate, parent material and vegetation (Six et al. 2002b), which

usually results in more weathered and older soils compared to those in temperate regions (Feller and Beare 1997). This was

illustrated recently in Quesada et al. (2020), where SOC variation in highly weathered forest soils from across the Amazon
basin was best explained by clay content, whereas the best explanatory variables for less-weathered soils were Al species, pH
and litter quality. Feller and Beare (1997) also found that tropical soils, dominated by low-activity clays (i.e. 1:1 clays), show
a strong relationship between SOC and clay + silt content. In addition, Barthés et al. (2008) found that sesquioxides (Al and

Fe) play an important role in SOC stabilization for various tropical soils. However, the relationship for high activity clays (i.e.

2:1 clays) is less clear and contrasting trends between SOC and clay + silt content have been reported (Feller and Beare 1997;
Six et al. 2002a). In terms of SOC distribution across sub-Saharan Africa, Vagen et al. (2016) showed, by using a data set
similar to this paper, that SOC content was highest in equatorial and warm temperate climates, where sand content, sum of
base concentrations and pH values were low. With regard to land cover, it has been shown for several sites across Africa that

forests usually contained the highest amount of SOC, whereas differences between cropland, grassland and shrubland were

less distinct (Abegaz et al. 2016; Olorunfemi et al. 2020; Winowiecki et al. 2016a). Cropland cultivation decreased carbon
content by 50% compared to forested and semi-natural plots for sites in Tanzania, regardless of sand content and topographic
position (Winowiecki et al. 2016b). However, land degradation (i.e. erosion) resulted in SOC concentration decreases in those

ecosystems; independent of vegetation cover (Winowiecki et al. 2016a).

To address these diverging explanations of SOC variations on regional scales, we analyzed a comprehensive soil data set
collected across the African continent using the Land Degradation Surveillance Framework (Vagen et al. 2010). This data set
covers a wide range of climatic and mineralogical conditions — from very arid to humid regions, with different pHu20 values,

soil texture, weathering status, exchangeable cations and extractable metals —allowing us to test different parameters to explain

the variation in SOC content in subtropical and tropical soils across sub-Saharan Africa for two distinctive depth layers (topsoil:

0-20 cm and subsoil: 20-50 cm). Here, we use this continental-scale data set to address the following research questions:

1. Which soil properties and climate parameters best explain SOC content variation across sub-Saharan Africa?

We explored the importance of soil texture, exchangeable Ca, oxalate-extractable Al and Fe, soil pHu20, mean

annual temperature, aridity index (PET/MAP), land cover and weathering status to explain variation in SOC content

on a continental scale. We expect that oxalate-extractable metals, soil texture and climate will be among the most

important predictors of SOC concentration.

2. How do geochemical SOC-controlling factors vary between environmentally distinct sub-regions?

Due to the heterogeneity of climate and soil conditions across sub-Saharan Africa, we expect to see different

geochemical controls explaining variations in SOC content between regions. For example, we expect exchangeable
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Ca will be most important in regions that are drier with less weathered and alkaline soils, while oxalate-extractable

Al and Fe will mainly be important in humid regions with highly weathered and acidic soils.

2. Methods

2.1. Study area and data collection

Soil data used in this study were collected during the AfSIS (Africa Soil Information Service) project. In total, 18,257 soil
samples were taken from 60 sentinel sites and from two different depths (topsoil: 0-20 cm and subsoil: 20-50 cm). Samples
stem from 19 countries across sub-Saharan Africa and were collected between 2009 and 2012, following the well-established
Land Degradation Surveillance Framework (Vagen et al. 2010). The sixty sentinel sites (each 100 km2) were stratified across
sub-Saharan Africa according to Koeppen-Geiger zones (Vagen et al. 2016). Ten 1000 m2 plots were randomized within
sixteen spatially stratified 1 km? clusters per site (Figure 1). This hierarchical sampling design allows process identification at
a continental scale without losing the ability to understand and quantify local heterogeneity (Nave et al. 2021; Vagen et al.
2010). For more details about sampling design and field survey, see Towett et al. (2015), Vagen et al. (2013a), and Winowiecki
et al. (2016a).

Our analyses built upon a subset of samples (11% of total, n = 2,002) which were originally selected as reference samples for

laboratory measurements. These samples were used to calibrate mid-infrared spectroscopy models (Terhoeven-Urselmans et

al. 2010) and to predict properties in the remaining 16,255 soil samples (Vagen et al. 2016; Winowiecki et al. 2017). The

calibration subset was chosen to maximize the variation of the spectral data using the Kennard-Stone algorithm (Kennard and

Stone 1969). More information about this approach can be found in Terhoeven-Urselmans et al. (2010). This selection strategy

results in unequally distributed samples across 51 of the 60 sentinel sites, yet captures the variation of the original data set.
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Figure 1: a) Aridity Index map and sampling scheme (ntwtal = 1,601). Grey triangles represent individual sentinel sites where sample
clusters were collected. The top-right inset (b) shows the exact sampling points within one of the sentinel sites (Didy, Madagascar)
as an example.

2.2. Sample and data processing

Soil material was air-dried and sieved to a particle size <2 mm in the Soil-Plant Spectroscopy Laboratory at the World
Agroforestry Centre (ICRAF) in Nairobi, Kenya. All soil properties (except for soil texture, which was measured at ICRAF),
were analyzed at Rothamsted Research in Harpenden, U.K.

Data for soil organic carbon (SOC; wt-%), pHw20, amorphous oxalate-extractable aluminum (Alox, Wt-%) and iron (Fegx, Wt-%),

exchangeable calcium (Caex, cmol* kg1), clay + fine silt content (<8 um, %), and total element concentrations (in wt-%) of Al,

Ca, K, and Na, were selected in order to cover a wide range of soil properties that have been identified to relate to SOC

stabilization mechanisms (Oades 1988; Rasmussen et al. 2018), while maximizing the number of samples and minimizing the
correlation among variables included in our analysis.

SOC was calculated from the difference of total C and inorganic C. The latter was directly measured with a Primacs AIC100
analyzer (Skalar Analytical B.V., Breda, Netherlands) by treating the sample with phosphoric acid and heating it to 135 °C in
a closed system. Inorganic C in the sample was converted to CO; and then measured by Non-Dispersive Infrared Detection
(NDIR). Total C was determined with the TruMac Total N and C combustion analyzer (Leco, St. Joseph, Michigan, USA).
Soil pHu20 was performed in a 1:2.5 soil:water suspension. The extraction of Al and Fe with oxalic acid and ammonium oxalate

solution was done by shaking the solution for 4 h at 25 °C in the dark. Carbonate-rich samples were pre-treated with ammonium

6
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acetate at pH 5.5 to remove any CaCOs. Acid-oxalate extraction in particular dissolves short range-order minerals such as

ferrihydrite (Fe), allophane and imogolite (Al), as well as other amorphous and organic Fe and Al minerals (Parfitt and Childs

1988). Hexamine-cobalt trichloride solution was used as extractant to determine Caex. Aqua regia acid digestion was applied

for major and trace elements, including Al, Ca, K and Na. Although this method does not give absolute total contents, it does

give results sufficiently close to accepted values for different soils (McGrath and Cunliffe 1985). Samples were digested in

tubes in time and temperature-controlled heating blocks. All elements were measured with ICP-OES (Optima 7300 DV, Perkin

Elmer, Waltham, Massachusetts, USA). Particle size distribution was measured using a Laser Diffraction Particle Size
Analyzer (LDPSA) Model LA 950 (Horiba, Kyoto, Japan). Each sample was shaken for 4 min in a 1% sodium

hexametaphosphate (calgon) solution with ultrasonic energy before measuring-_to disperse aggregates. We used 8 pm as cut-

off to capture all clay and fine silt particles. Results were comparable to <20 um (see S| material Figure A1), but <8 um was

selected because it is more relevant to our interest in studying the influence of smaller particles with large surface area on SOC

concentration. In addition, particles <8 um resulted in a reproducible fraction across soil types, unlike using only clay particles

<2 um (Figure Al). Aluminum, Ca, K and Na concentrations were used to calculate the chemical index of alteration (CIA)

after Nesbit and Young (1982), using the following equation:

CIA = AlLO3 / (ALLOs + Ca0 + K,0 + Na,0) * 100  (2)

where CaO is the amount incorporated in the silicate fraction. Correction is necessary for samples that contain carbonates and

apatite (Nesbit and Young 1982). We adopted an approach introduced by McLennan (1993): The correction assumes that Ca
is typically lost more rapidly than Na during weathering. If a soil sample contained inorganic C (Ciotal — Corg; USed as a proxy
for carbonates and apatite) and the CaO content was greater than that of Na,O in the same sample (n = 476), then the CaO

concentration was set to that of Na>O from the same sample (Malick and Ishiga 2016). After applying the correction, no

obvious correlation remained between CIA and inorganic C (Figure A2). The index increases (i.e. more highly-weathered soil)
with the loss of Ca?*, K*, and Na*.

Samples were removed that contained missing or negative values for one or more of the above-mentioned parameters. In
addition, a single sample with extraordinarily high SOC content (>22 wt-%) was excluded. This resulted in a total of 1,601 soil

samples_(out of the original 2,002 samples) at 45 sentinel sites across 17 countries. Note that due to the sample selection, not

all profiles had data from both topsoil and subsoil layers (Table B1).

The remaining soil samples (n = 1,601) were paired (based on longitude and latitude at the profile level) with mean annual
temperature (MAT, °C) and mean annual precipitation (MAP, mm) from the WorldClim data set at 30 sec resolution (Fick and
Hijmans 2017). Potential annual evapotranspiration (PET, mm) was added from Trabucco and Zomer (2019), who calculated
it after the Penman-Monteith method, based on the WorldClim data. Mean annual precipitation and PET were used to calculate

an annual aridity index, defined as PET/MAP (Budyko 1974). Values >1 indicate water-limited (dry) regions and ratios <1
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point to energy-limited (wet) regions. For the monthly aridity index, we used monthly climate data at the same spatial resolution
and from the same data sources.

Land-cover data was used from the collected field data. The land-cover groups were re-classified into four major groups:
a) Cropland (including all cultivated plots), b) Forest, ¢) Grassland and d) Other (including mainly woodland, shrubland, and
bushland, but also samples classified as other). Ten missing values were gap-filled from a prototype high resolution Africa
land-cover map at 20 m resolution based on one-year of Sentinel-2A observations from December 2015 to December 2016

(http://2016africalandcover20m.esrin.esa.int/).

Due to the lack of precise data products for lithology and soil types in sub-Saharan Africa, we did not include these variables

in our analyses. Soils at AfSIS sites (Figure 1) developed mainly from two parent material types: i) metamorphic and ii)

volcanic rocks (Hartmann and Moosdorf 2012; Jones et al. 2013; Schliter 2008), likely modified throughout the Quaternary.

i) Metamorphic rocks are most commonly found in West Africa, Southern Africa and Madagascar. These regions are

characterized by old cratons, except for Madagascar, which is influenced by Mesozoic volcanism (Schliiter 2008). Most of

these soils are classified as Ferralsols (WRB soil classification system; Jones et al. 2013). Related AfSIS soils from those

regions are usually highly weathered with low pHuz0 Values. In contrast, soils derived from ii) volcanic rocks are mainly found

in the East African Rift System. They are usually younger and less weathered (Buringh 1970). Beyond the influence of volcanic

rocks, Ca?* rich soils are frequent in East Africa.

2.3. Statistical analyses

We used three different statistical approaches, including linear mixed-effects models, regression trees and random forests to

determine geochemical and climatic parameters that best explain SOC variation across sub-Saharan Africa. In brief, we used

linear mixed-effects models to handle the hierarchal sampling design of the AfSIS data set, whereas regression trees and

random forests enabled us to account for non-linearities within the data. More precisely, we used regression trees as a

qualitative tool to explore and understand the structure of the data, whereas random forests offered more generalizable models.

All statistical analyses were performed within the R computing environment (Version 4.0.0, R Core Team 2020). The R

Markdown file in the S| provides the code to reproduce all our analyses.

Linear mixed-effects modeling was performed by using the nime R package (Pinheiro et al. 2020) to account for the nested

sampling scheme (clusters within sites and two sampling depths within one profile). This allows the intercept of the regression

to vary for each site, for each cluster within the same site, and for each sample within the same profile (Harrison et al. 2018).
The variance inflation factor was used to check for multi-collinearity among predictor variables with a threshold of <3.0 (Zuur

et al. 2010). To meet linear mixed-effects model assumptions and to standardize variation among variables, all continuous

parameters were transformed to a normal distribution using Box-Cox transformation, followed by standardization to a mean
of 0 and standard deviation of 1 by using the R package bestNormalize (Peterson and Cavanaugh 2019). The relationship
between SOC and the predictors of the original data may not be linear.
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To answer our 1% research question, which soil properties and climate parameters best explain SOC content, we started from

a constant null model with sitelD/clusterID/plotID as random effects and then extended the model step-wise by fitting the

following sequence of fixed effects: MAT, PET/MAP, depth, land cover, clay and fine silt, pHu20, CIA, Moy (Alox + Y2Feoy),

Caex, PHH20*Mox. The order and selection of fixed effects was pre-defined based on a-priori knowledge out of a larger set of

variables (Burnham and Anderson 2002), starting with large-scale climate variables and ending with fine scale physiochemical

soil properties. The oxalate-extractable metals Alqx and Feox were summed to Moy (Alox + “2Feoy) to normalize the atomic mass

difference between Al and Fe (Wagai et al. 2020) and to account for their similar behavior over their concentration range

(Figure 5b). The maximum likelihood method and likelihood ratio tests (L.ratio) were applied to evaluate model performance

and the statistical significance of the added fixed effects (Table B4-B9). The variation explained by each fixed effect was

obtained by calculating the marginal R? (excluding the variation explained by the random effects sitelD/clusterlD/plotID) for

each model and subtracting the R2 from the previous fitted model using the function r.squaredGLMM from the MuMIn R

package (Barton 2020; Nakagawa and Schielzeth 2013). To identify how much SOC variation is explained by climate and

geochemistry only (Legendre and Legendre 2012), we built one model with climate parameters (MAT, PET/MAP) only, and

one model with geochemistry variables (clay and fine silt, pHu20, CIA, Moy, Caex, PHH20*Mox) Only. In addition, we analyzed

the two sampling depths (0—20 and 30-50 cm) separately to determine whether the same factors are important for topsoil

versus the deeper soil layer (Table 1). For this model, we did not include plotID as a random effect since each profile only

contained one sample in each depth model.

For the 2™ research question, how geochemical controls on SOC content vary between environmentally distinct sub-regions,

we grouped the data based on a) pHu20, b) wetness, ¢) weathering, and d) land cover (Table 1). Soil pHu20 and weathering

data were grouped with the number of categories chosen to maximize and equalize the number of samples in each category

and to correspond with common pHuzo and weathering groups (Nesbit and Young 1982). In order to take seasonality of the

sites into account separately, the data were divided into three categories based on the number of wet months (i.e. months with

P/PET > 1). Land cover was grouped based on the four pre-defined categories. For each category within each sub-group, we

built a linear mixed-effects model as previously described, yet only included the geochemical properties (clay + fine silt,

PH20, CIA, Moy, Caex, PHH20*Mox) as fixed effects, since we intended to test if the importance of these predictors changed

between environmentally distinct sub-regions (Table 1). When CIA or pHu20 Were used to create the categories, they were not

included as a fixed effect in the corresponding sub-models.
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Table 1: Grouping variables, sub-groups, number of samples and fixed effects used for the linear mixed-effects models

Groups Categories n Fixed effects
All samples None 1,601 All, Climate, Geochemistry
Topsoil (020 cm) 791 )
Depth Subsoil (30-50 cm) 810 Geochemistry
Strongly acidic (3.9-5.2 pHy20) 404
Moderately acidic (5.2-6.1 pHp20) 399 )
D20 Neutral (6.1-7.5 pHu20) 398 Geachemistry
Alkaline (7.5-9.9 pHu20) 400
0 wet months 572
%r of wet months (P/PET > 1)) 1-3 wet months 367 Geochemistry
47 wet months 662
Weathering (CIA) Moderate (10-88% CIA) 801 Geochemistry
High (88-100% CIA) 800
Cropland 429
Forest 228 .
Land cover Grassland 242 Geochemistry
Other 702

P: Monthly precipitation [mm]; PET: Monthly potential evapotranspiration [mm]; CIA: Chemical Index of Alteration [%]; Fixed effects:
All (Mean annual precipitation (MAT), Aridity index (PET/MAP), depth, land cover, clay and fine silt, pHH20, CIA, oxalate-extractable
metals (Mox), exchangeable Ca (Caex), pHH20*Mox), Climate (MAT, PET/MAP), Geochemistry (clay and fine silt, pHH20, CIA, Mox, Caex

PHH20*Mox)

Regression tree (R packages: rpart and rpart.plot; Milborrow 2019; Therneau and Atkinson 2019) and random forest analyses
(R packages: ranger; Wright and Ziegler 2017) were conducted to identify non-linear relationships between SOC and any
explanatory variable. This also enabled the identification of pedogenic thresholds within the data. Each analysis was conducted
with the same explanatory variables as for the linear mixed-effects models. However, no data transformation was needed due
to the non-linearity of the models.

Regression tree analysis was applied to obtain an easily interpretable and non-linear model for the entire data set and for both
depth layers (topsoil vs subsoil) that best describes the existing data (Breiman et al. 1984). Since regression trees are known
to easily overfit data, we used a grid search to prune the model (Boehmke and Greenwell 2020) according to the minimum
number of data points required to attempt a split, and the maximum number of internal nodes between the root node and
terminal nodes in order to minimize the cross-validation error (Breiman et al. 1984). The overall performance of the regression
tree analysis was tested using five-fold spatial cross-validation (R package: mlr; Bischl et al. 2016). Spatial partitioning was

used to split the data into five disjoint subsets, using the coordinates from each sample, and repeating the partitioning 100

10
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times (Figure A3). This results in a bias-reduced assessment of model performance (Brenning 2012; Lovelace et al. 2019).

Absolute values at the bottom of each node indicate the predicted SOC content [wt-%] and the percentage corresponds to the

relative number of samples in this node (Figure A5).

Random forest was used to build more generalized models since it is an ensemble of multiple decorrelated trees. Tuning of the
model hyperparameters was done based on spatial tuning (R package: mir; Bischl et al. 2016; Lovelace et al. 2019). These
hyperparameters included the number of predictors used at each split, the minimum number of observations in a terminal node
and the fraction of samples used in each tree (Probst et al. 2019). The best hyperparameter combination search was done for

the complete data set via a five-fold spatial cross-validation with one repetition. In each of these five spatial partitions, we ran

50 models to find the optimal hyperparameter combination (Lovelace et al. 2019).

Partial dependence plots were used to further explore the relationship between the predicted SOC content and the explanatory
variables of the tuned random forest models (R package: pdp; Greenwell 2017). These plots were used to investigate the
marginal effect of individual explanatory variables (such as Alox, Caex, etc) on the predicted SOC content (Friedman 2001).

This allowed us to identify thresholds within the data and provided an indication of how important each explanatory variable

was to predict SOC concentration across specific value ranges.

11



260 3. Results

3.1. Datadistribution across sub-Saharan Africa

All soil and climate variables spanned at least one order of magnitude (except MAT and PET), demonstrating the diversity of
this continent-wide data set. Based on skewness, kurtosis, histograms, and Shapiro-Wilk-tests (data not shown for the latter

two), no variable was normally distributed (Table 2).

265 Table 2: Summary statistics of all numerical soil and climate variables for the entire data set (Ntotal = 1,601; NTopsoil = 791; Nsubsoil = 810)

Variable Mean SD PO P25 P50 P75 P100  Skewness  Kurtosis
SOC [Wt-%] 184 151 0.07 0.65 1.42 2.54 9.19 1.42 2.23
MAT [°C] 21.7 3.2 13.7 19.8 215 23.0 29.8 0.17 -0.12
MAP [mm] 1070 487 255 648 1057 1432 2708 0.29 -0.63
PET [mm] 1810 310 1350 1571 1759 1933 2949 1.19 1.96
PET/MAP 235 173 0.71 1.2 1.54 3.16 9.54 1.46 131
Clay + finesilt [%6] 554 226 0.1 37.7 57.9 747 100.0 -0.26 -1.00
Aloy [Wt-%] 0.28 0.36 0.01 0.12 0.20 0.29 3.71 4.52 25.29
Feox [Wi-%] 0.38 0.56 0.01 0.10 0.21 0.40 4.46 3.60 14.96
Cae[cmol*kgl] 1029 1101 003 1.34 586 1649  75.66 1.28 132
pHHz0 6.3 1.3 3.9 5.2 6.1 7.5 9.9 0.27 -1.11
CIA [%] 87.7 9.3 10.3 81.7 88.1 96.0 99.9 -1.04 3.88

SD: Standard deviation; P: Percentile; SOC: Soil organic carbon; MAT: Mean annual temperature; MAP: Mean annual precipitation; PET:
Potential evapotranspiration; Alox: Oxalate-extractable Al; Feox: Oxalate-extractable Fe; Caex: Exchangeable Ca; CIA: Chemical Index of
Alteration
In total, 429 samples were classified as cropland, 228 as forest, 242 as grassland and 702 as other land covers, including mainly
270 shrubland, bushland and woodland. The SOC content decreased among those groups in the following sequence: Forest
(2.69 £ 1.15 wt-%) > Cropland (2.21 + 1.68 wt-%) > Grassland (1.77 £ 1.55 wt-%) > Other (1.35 + 1.28 wt-%; Figure 2a).
Clay + fine silt content and SOC showed a positive relationship across the entire data set, yet with a large spread (Figure 2b).
However, individual sites showed contrasting correlations between SOC and clay + fine silt content — including, none, positive,

and negative values (Figure 2c; Figure A4 for all individual sites).
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Figure 2: a) Soil organic carbon (SOC) content [wt-%] for the different land-covers (cropland, forest, grassland, other (bushland,
shrubland, woodland) by depth (topsoil: 0—20 cm, subsoil: 20-50 cm); b) SOC [wt-%] and clay + fine silt content (<8 um) [%] by
depth; c) SOC [wt-%] and clay + fine silt content_ (<8 pum) [%] by depth for three example sites that show contrasting trends. Gray
area around fitted linear regressions (y~x, for illustration only) in b) and c¢) show the 95% confidence interval. For the relationship
between SOC [wt-%] and clay + fine silt content (<8 um) [%] for all individual sites, see Figure A4.

3.2.  Predictors of soil organic carbon

Linear mixed-effects modelling

The full linear-mixed effects model for the entire data set had a marginal R? of 0.72. The two climate parameters (MAT,

PET/MAP), depth, Moy and Cacx Were the most important predictors of SOC content, based on their marginal R2. Land cover,

clay + fine silt, pHu20, CIA and pHu20*Mox contributed little or not at all to the overall explanatory power of the model. Clay

+ fine silt, Mox and Caex were positively correlated with SOC, whereas all other fixed effects showed negative relationships

with SOC concentration. The negative coefficient for depth indicates that the SOC content in the subsoil layers is on average

lower as compared with the topsoil samples (Figure 3a).
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Figure 3: a) Marginal R2 for each predictor based on sequential
fitting of the linear mixed-effects models of all samples
(nTota = 1,601) for the full, geochemistry-only and climate-only
model. Sign in parentheses refers to the correlation between the
predictors and soil organic carbon. Bold values have a p-value
<0.05 based on likelihood-ratio test; b) Venn-Diagram
illustrating the independent-explained and shared-explained
variations by the geochemistry-only and the climate-only linear
mixed-effects models.

19%

Geochemistry + Climate: 67%

290 The marginal R2 for the geochemistry model was 0.46; almost the same as for the climate model (R? = 0.48). For the

geochemistry model, the contribution of Mo and Caex to explain SOC content was much higher than in the full model

(Figure 3a). Based on variation partitioning, 27% of the explained variation is shared between the geochemistry model and the

climate model, whereas the variation explained by the geochemical or climate variables alone is 19% and 21%, respectively

(Figure 3b).

295 Differences between the predictors were negligible for the two depth models (topsoil vs subsoil). However, the explained

variation by clay + fine silt was larger in the subsoil layers compared with the topsoil layers. For Caey, the opposite was true
(Figure 4a).
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Figure 4: Explained variation (based on marginal R?) for each fixed effect, based on sequential fitting of the linear mixed-effects
models grouped by a) Depth (topsoil: 0—20 cm; subsoil: 20-50 cm); b) pH classes (strongly acidic: 3.9-5.2 pH, moderately acidic:
5.2-6.1, neutral: 6.1-7.5, alkaline: 7.5-9.9); c) Wetness (number of wet months (P/PET > 0); 0, 1-3, 4-7); d) Weathering (CIA:
Chemical Index of alteration: moderate: 10-88% CIA, high: 88-100%) d) land cover.

Within the pHu20 sub-models, Mox was most important in the strongly acidic model. The opposite was observed for Caex

(Figure 4b), which corresponds to higher concentrations of Caey in neutral and alkaline soils compared with moderately and

strongly acidic soils. However, Caex was also found to have a positive relationship with SOC in acidic soils (Figure 5; Table

B2). The direction of the correlation between clay + fine silt and SOC concentration was not consistent across the four pH

groups, in contrast to the other fixed effects (Table B2). The alkaline sub-model had the lowest marginal R? of all pHn20 Sub-

models, which suggests that important predictors were missing (Figure 4b).
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Figure 5: a) Soil organic carbon (SOC) [wt-%] and exchangeable Ca (Caex) [cmol*_kg] content colored by pH classes (strongly
acidic: 3.9-5.2 pH, moderately acidic: 5.2-6.1, neutral: 6.1-7.5, alkaline: 7.5-9.9) with a moving average (bold squares; n = 20). Note
that x-axis is truncated for improved visualization, which removes 3 data points (Caex = 53.91, 54.58, and 75.66 cmol* kg); b) Alox,
Feox [g kg1] (which were combined to Mox (Alox + Y%Feox) for the linear mixed effects models) and Caex [cmol* kg'] averaged content
(n = 20) across pHH20 and mean annual precipitation (MAP) [mm].

Grouping by the number of wet months (wetness) showed that Mo explained most of the variation in wet regions, whereas

Caex Was most important in drier regions (Figure 4c). This corresponds to the overall distribution of Mo and Caey across MAP

and pHuzo (Figure 5b). The chemical index of alteration (CIA) explained most of the variation in the intermediate wet regions

(Figure 4c).
The high weathering model was dominated by Moy, whereas the importance of Moy and Caey in the moderate weathering model

was similar. The other fixed effects did not explain much of the variation of the two weathering models (Figure 4d).

Within the land cover models, the Cropland and grassland models had the highest marginal R2 and were both dominated by

Mox. The variation explained by Caex Was smallest for the forest model, whereas it did not change much for the other three

models (Figure 4¢e).

In summary, in the linear mixed-effects models, Mox was more important in wetter regions, acidic and highly weathered soils,

whereas Caex Was more important in drier regions, alkaline and less weathered soils. The other fixed effects usually did not

explain much of the SOC variation.

Regression tree and random forest

The root mean squared error (RMSE) for the topsoil regression tree was 1.47 wt-% (range: 0.80-3.11 wt-%) and for the subsoil
regression tree was 0.67 wt-% (range: 0.44-2.26 wt-%); the relative RMSEs were 0.65% and 0.48%, respectively. In the

topsoil regression tree (Figure A5a) Feox, MAT and PET/MAP were the most important predictors to split and explain variation
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in SOC concentration. About 23% of the SOC data could be explained by Feox and MAT alone. In general, higher Feqx, Alox

and Caey values resulted in higher SOC content. This was equally true for the subsoil tree (Figure A5b). While much of the

SOC variation was explained by climate parameters in topsoils, the subsoil regression tree was more dominated by geochemical

variables, namely Feox and Alox. About 40% of the subsoil SOC variation could be explained by Feqx only. In both trees, clay

+ fine silt content and land cover poorly predicted SOC.

In summary, topsoil and subsoil regression trees contained the same predictors, yet with climate variables playing a larger role

in the topsoil regression tree and geochemistry having a larger influence in the subsoil regression tree. Overall, the results

showed that the explanatory variables did not differ much between the depth intervals (topsoil vs subsoil), while their

magnitude did.
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Figure 6: Partial dependence plot for each explanatory variable of the random forest models (topsoil and subsoil). X-axes always
correspond to the range of the explanatory variable. Arrows indicate splitting points in the regression tree (Figure A5). Each colored
tick mark along the x-axes represents one sample.
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The random forest models had a RMSE of 1.31 wt-% and a R2 of 0.70 for the topsoil samples, and for the subsoil samples a
RMSE of 0.87 wt-% and a R2 of 0.72. Based on the partial dependence plots (Figure 6), Al and Caex were important in

predicting SOC over the entire range of each variable (Figure 6a and b). However, in subsoils, the predictive power of Caex
was reduced (Figure 6b). We observed a decrease in predicted SOC with increasing soil weathering status (CIA). However,
due to the low number of samples with CIA values below 60%, the relationship should be interpreted with caution in this range
(Figure 6¢). Clay + fine silt content had almost no effect on SOC, with only a weak positive trend in subsoil samples (Figure
6d). The relationship between Feox concentration and predicted SOC content varied with Feox concentration. At low
concentrations (< 0.25 wt-%), there was a strong positive relationship between predicted SOC content and Feox. For higher
concentrations, the predicted SOC content was relatively constant (Figure 6e). MAT correlated negatively over the entire range
with predicted SOC concentration (Figure 6f). For PET/MAP, the predicted SOC content declined sharply as PET/MAP
increased from 1 to 2 (transition from wet to dry water regimes; Figure 6g). The relationship between pHu20 and predicted
SOC content was not strong (Figure 6h). For land cover, there was almost no difference between the classes within the same
depth layer; however, topsoils had higher SOC content (2.2 wt-%) compared with the subsoil samples across all land covers
(1.5 wt-%; Figure 6i).

4. Discussion

Climate and geochemical variables are similarly important in explaining SOC variations across sub-Saharan Africa (Figure 3);

in line with findings from a global study (Luo et al. 2021). However, the explanatory power of climate and geochemical

variables is not independent of each other, reflecting the overall strong interaction between climate and geochemistry (Doetterl

et al. 2015). Since it is likely that, in the long term, climate variables have predominantly indirect effects on SOC dynamics

through their influence on soil geochemistry, we focus our discussion on those geochemical variables (Caex, Alox and Feoy) that

showed the highest explanatory power with respect to SOC content across all models. In addition, we discuss the role of depth,

clay + fine silt content, and land cover in explaining SOC variations on a continental scale, since these were identified by other

studies to play an important role in SOC dynamics.

Exchangeable Calcium

Strong and positive relationships emerged between Caex and SOC concentration across all models, even though Caex
concentration showed strong pHuzo and precipitation dependence (Figure 5). Typical Ca?* sources in soils are from
a) weathering of bedrock or surface rock formations, b) decomposition of Ca?*-rich organic materials, c) lateral movement of
Ca?*-rich water, d) atmospheric dust and rain deposition or e) anthropogenic inputs (Likens et al. 1998; Rowley et al. 2018).
Characteristically, Ca?* is weathered easily from both primary and secondary minerals (Likens et al. 1998). This usually leads
to its accumulation in semi-arid to arid environments that are characterized by low rates of water flow through the soil profile

that drives slow weathering rates and high pHu2o values (Figure 4b-d). In such environments, Ca?* plays an important role as
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a cation bridge that facilitates aggregate formation (Rimmer and Greenland 1976; Tisdall and Oades 1982) and bonding of
clay minerals to organic matter functional groups because of their divalent charge, relative abundance and modest hydration
radius (Likens et al. 1998; Muneer and Oades 1989). However, we found that Caex was not only important in alkaline and less-
weathered soils in dry regions, but also in acidic and more-weathered soils under wetter conditions (Figure 5). It is likely that
the main Ca?* source in those regions derives from atmospheric deposition (Albani et al. 2015; Goudie and Middleton 2001)
and/or biological cycling by plants (Likens et al. 1998). This is supported by the fact that Caex showed a stronger relationship
with SOC in topsoil than subsoil layers (Figure 4a and 6b). Since land cover, which is a major driver of C inputs into the soil,
did not show a strong relationship with SOC in the models, we speculate that biological cycling of Ca?* does not play a major
role in explaining the observed differences in SOC content. Yet, further analysis with better proxies for biological Ca?* inputs
is needed to test this hypothesis. High Ca?* concentrations in acidic soils can also be derived from the development of those
soils from Ca?*-rich parent material which are out-of-equilibrium with modern climate conditions (Slessarev et al. 2016).

In conclusion, the important role of Caey in our data set was most pronounced in dry regions, dominated by alkaline and less

weathered soils. However, it also played a role in explaining the SOC variation in wetter regions and more acidic soils, which

is supporting the overall importance of Caex in stabilizing SOC.

Oxalate extractable Al and Fe

Similar to Caex, short range-order minerals (Mo, Alox and Feox) showed a positive and strong correlation with SOC content

across all models. The relationship was strongest in wet regimes, acidic and highly weathered soils (Figure 4b-d and 5b).
Hydrous oxides of Al and Fe are usually highly reactive because of their large specific areas with a high proportion of reactive
sites (Parfitt and Childs 1988). This results in the adsorption of organic matter to Fe and Al oxides and the formation of stable
soil aggregates (Tisdall and Oades 1982). In humid regions, high rates of mineral weathering may release Fe, Al and Si faster
than crystalline minerals can precipitate (Rasmussen et al. 2018). Therefore, Feox and Aloy are usually found to be important
in SOC stabilization in humid and acidic soils (Eusterhues et al. 2003; Kramer and Chadwick 2018).

In our study, short range-order minerals were also identified to play an important role for SOC stabilization in soils of sub-

Saharan Africa. However, even though Alo and Feox showed similar trends in their concentrations (Figure 5b), we observed

diverging behavior in their predictive power of SOC in the regression trees (Figure A5) and the random forests (Figure 6a and

6e). For example, Feox was one of the most important explanatory variables in the regression tree and partial dependence plots,

although only within a very narrow range and at low Feqx concentrations (Figure 6e), whereas Alox was important over the

entire range (Figure 6a). Inagaki et al. (2020) showed that higher amounts of soil organic matter were co-localized with Fe in
drier regions compared to sites with higher rainfall, whereas the content of Aly co-localized with organic matter was not
affected by precipitation changes. This may be linked to the different oxidation levels of Fe. At higher precipitation levels, Fe
oxides can be reduced, resulting in a release of associated SOC to the aqueous phase (Berhe et al. 2012; Chen et al. 2020;

Thompson et al. 2011). This mechanism is probably responsible for the low correlation between SOC and high Feo
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concentrations in our data (Figure 6e), pointing to the fact that Feoy can act as pedogenic threshold, depending on its oxidation
level in the soil system.

In summary, short range order minerals also play an important role in SOC stabilization across sub-Saharan Africa, similar to

other regions. However, Alox and Feqx do behave differently in explaining SOC content, even though they showed covariance

in terms of their concentrations. Since we only have data for acid-oxalate extraction, we cannot speculate further about their

diverging behavior in the models.

Depth
For the depth models, predictor differences were small between topsoil (0—20 cm) and subsoil (20-50 cm) samples (Figure 4a

and 6). This may reflect the large depth increments for each of the two sampling depths, which may also explain the overall

small explanatory power of depth in the linear-mixed effects model (Figure 3a). Since the identified SOC-controlling factors

were similar for both depth layers (Figure 4a), differences in SOC content were likely driven by the fact that subsoil samples

usually contain less SOC due to lower C inputs at greater depth (Jobbagy and Jackson 2000). Soil erosion at some sites (data

not shown) might also dilute differences between the two depth layers, since water and wind can permanently remove surface

soil.

Clay + fine silt content

Clay + fine silt content (<8 um) did not emerge as an important predictor of SOC concentration within our different models

(Figure 3, 4 and 5e). This is in contrast to some earlier studies that indicated that total clay content explains a large proportion

of SOC storage and stabilization due to the sorption of soil organic matter to surfaces of clay minerals and building of
aggregates (Amelung et al. 1998; Kahle et al. 2002). The relationship between SOC and total clay content is used in various
models to describe turnover and storage of SOC. However, this simplified correlation may not account for the different
stabilization mechanisms related to various clay minerals, e.g. 1:1 vs 2:1 clay minerals (Oades 1988). Past research has yielded
contradictory results on whether clay content explains SOC variation in subtropical and tropical soils or not. For example,
Bruun et al. (2010) showed for various tropical soils that clay mineralogy, Fe.x and Alo are better explanatory variables for
SOC content than clay content alone_(<2 um). In contrast, Quesada et al. (2020) found a strong relationship between clay and
SOC content for highly weathered soils in the Amazon Basin that are dominated by 1:1 clay minerals such as kaolinite, whereas
soils in the same system, dominated by 2:1 clay minerals, showed stronger relationship between SOC and Al species. In a
comparison between tropical and temperate soils, Six et al. (2002b) found that less C was associated with the clay and silt

fraction (<20 um) in tropical soils than in temperate soils. Even though these studies used various cut-offs to define the clay

(<2 um), clay and fine silt (<8 um), and clay and silt fraction (<20 um), they all illustrate that the relationship with SOC can

be complex in subtropical and tropical soils.

Due to the broad spatial scale, soils in the AfSIS data set contain different clay minerals (Butler et al. 2020). No clear

relationship between clay + fine silt content (<8 um) and SOC concentration was observed in the models, although the raw
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data indicate an overall positive trend between clay + fine silt content (<8 yum) and SOC concentration (Figure 2b). This

positive relationship does not hold across all sites (Figure 2c_.and A4). Variable relationships with SOC (Table B2) may explain

the low predictive power of clay + fine silt content in this data set. Instead, variables that better capture the different behavior
of clay-sized minerals, e.g. Caex, Feox and Aloy, are likely more suitable soil parameters to explain the variation of SOC content
— even in highly weathered soils across sub-Saharan Africa. This is supported by the fact that a clay + fine silt-only model

resulted in a very small R2 (linear mixed-effects model: 0.01; random forest: 0.12; Table B3).

Land cover

The effect of land cover on SOC content was generally small in our models, even in topsoils (Figure 6i). Similar findings were

recently encountered in a global study (Luo et al. 2021). One possibility may be that the relatively large 0-20 cm depth interval

might dilute differences that could be more marked in the top few centimeters. However, we did observe differences in SOC
content across land cover classes, with forests containing the highest amount of SOC — especially in topsoils (Figure 2a).
Croplands had higher SOC content than grasslands, opposite of what is commonly observed in temperate regions (Prout et al.
2020).

Another possible explanation for the absence of land cover as an important predictor in our models, is that we lacked the

detailed data necessary to disentangle impacts of different practices and land-use history. The land cover class cropland

contained a wide variety of cultivated plots while more detailed information about land management practices were missing.

This is particularly important since prior research in other regions showed that SOC stock changes in tropical cropland soils

may be driven by C inputs (Fujisaki et al. 2018b). Additionally, historical land use may even play a more important role in

explaining current stocks compared to recent land use (Vagen et al. 2006).

Furthermore, land cover may covary with other parameters (temperature, precipitation, geochemistry) to such a degree that it

is not an explanatory variable. This might be the reason why the sub-models grouped by land cover did not show a clear pattern

(Figure 4e). However, the land cover-only models resulted in small R2 (linear mixed-effects models: 0.01; random forest: 0.10—

0.16) which suggests that land cover is a poor predictor for our SOC data at this large spatial scale (Table B3). This may be

due to the high variation of SOC content within the different land cover classes (Figure 2a). Land use changes and their impact

on soil physico-chemical properties are scale-dependent and likely to be more distinct at smaller scales (Holmes et al. 2004,

2005). For example, land management and land degradation (i.e. erosion) are known to impact SOC stocks in regionals scales
in sub-Saharan Africa (WinowiecKi et al. 2016a).

Future studies are needed to better understand the impacts of land management and carbon storage potential in soils across

sub-Saharan Africa at different scales (Fujisaki et al. 2018a; Vanlauwe et al. 2015). Overall, our data for sub-Saharan Africa

suggests that SOC content on a continental scale is better explained by stabilization potential in soils (climate, geochemistry)

than by different aboveground C inputs (vegetation).
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5. Conclusions

We _used a continental-scale data set from sub-Saharan Africa to test relationships between SOC content, various soil properties

and climate variables in order to address our core research questions:

Which soil properties and climate parameters best explain SOC content variation across sub-Saharan Africa?

Parameters similar to temperate regions are important to explain SOC variation for tropical and subtropical soils under various

climate conditions across sub-Saharan Africa; namely Caex, Mox (Alox and Fee), and PET/MAP. At this large spatial scale,

climate and geochemical parameters are equally important and share some of the explained SOC variation. However, land

cover and clay + fine silt content did not explain much of the variation in SOC content, in contrast to some findings from other
regions and studies.

The selected climatic and geochemical parameters, which can be seen as proxies for most of the soil forming factors, explain

about two thirds of SOC variation across sub-Saharan Africa. The remaining third likely reflects those soil forming factors

that were not or only poorly represented within our selected variables, namely organisms, relief and time. Given the large

spatial scale targeted, it appears unlikely to be able to explain all of the SOC variation measured.

How do geochemical SOC-controlling factors vary between environmentally-distinct sub-regions?

In dry regions with alkaline and less-weathered soils, Caex explained most of the SOC concentration_variation, whereas Mox
was more important in wetter regions with acidic and highly weathered soils. Still, Ca.x remained important in acidic and more
weathered soils and in wetter regions. Feox as predictor of SOC content was only important at low concentrations in moderately
weathered and wet soils. This observed trend leads to the assumption that Fe.x can play an important role in pedogenic
thresholds in various soils across sub-Saharan Africa.

Overall, a combination of PET/MAP, Caex and Moy Seems to be an appropriate set of variables to explain SOC-content variation
on a continental scale across sub-Saharan Africa. This does not imply that other variables, such as clay + fine silt content and

land cover are no good predictors on a regional scale as shown by previous studies. However, the variables identified by this

study showed a consistent predictive power of SOC content across various climate regions.
Future studies on large-scale SOC stabilization should consider measuring those soil properties to include them in models.

This would likely improve the predictive capacity of these models and contribute to closing the gap between our theoretical

understanding of SOC concentration across large scales and our ability to improve terrestrial biogeochemical projections that

rely on existing models.
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Code availability

As a R markdown file (pdf) in the supplement materials.

Data set availability

The soil properties data set used in this study is available from the authors upon reasonable request and under the following DOI:
https://doi.org/10.34725/DVN/66BFOB (Vagen et al. 2021). Field data (i.e. land cover) for the sampling locations can be received
from Vagen et al. (2013b). The climate data used (MAT, MAP and PET) can be downloaded from the sources cited: WorldClim:

Fick and Hijmans (2017) and Trabucco and Zomer (2019). Land-cover data used for gap-filling can be retrieved from

http://2016africalandcover20m.esrin.esa.int/.
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Appendix A — Figures

The figures and tables on the next two pages do all belong to the same topic. They show the results for the different cut-
offs we used to identify the best cut-off to be used for soil texture. We looked at and tested for <2 pm, <8 pm, and <20 pm.
In the end we decided to use <8 um because we wanted to stay as close as possible to <2 um. However, we could not use

<2 um due to some reproducibility issued for duplicates. The differences between <8 um and <20 um are neglectable.
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Figure Al: Scatterplot of duplicate measurements for the particle size distribution data. a) Duplicate 1 and 2 <2um; b) Duplicate 1
and 2 <8 um; c) Duplicate 1 and 2 <20 um

Table Al.1: Correlation coefficient between SOC and particle size data <8 um and <20 um for all samples (n = 1,601), topsoil (0-
20 cm; n = 791), and subsoil (20-50 cm; n = 810)

Samples

<8 um <20 pm
All 0.32 0.41
Topsoil 0.37 0.46
Subsoil 0.43 0.49
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Figure A1.2: a) Soil organic carbon (SOC) content [wt-%] and clay + fine silt content <8 um [%] by depth; b) SOC content [wt-%]
clay + fine silt content <20 pm [%] by depth.

Table A1.3: Summary table of R2 for the different models (linear mixed-effects model and random forest) for the two different
explanatory variables (<8 pm and <20 um) for all samples (n = 1,601), topsoil (0—20 cm; n = 791), and subsoil (20-50 cm; n = 810)

Model Linear mixed-effects model = Random forest (topsoil)  Random forest (subsoil)
Clay + fine silt <8 pm 0.01 0.12 0.12
Clay +silt <20 um 0.03 0.17 0.19
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Figure A2: Scatterplot of inorganic carbon (Ctotal — Corg [Wt-%]), the uncorrected chemical index of alteration (CIA [%0]; left) and
the CIA [%] correct for carbonates and apatite after Nesbit and Young (1982) (right). See methods for more details.
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Figure A3: Spatial visualization of selected training (blue) and test (orange) observations for spatial cross-validation of two
750 repetitions from the topsoil samples. Note: Each dot may represent multiple samples.
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Figure A4: Soil organic carbon (SOC) [wt-%] and clay + fine silt content [%0] by depth for each sampling site that contained more

than one sample per depth layer (topsoil: 0-20 cm, subsoil: 20-50 cm). Gray area around fitted linear regressions represent the 95%
confidence interval.
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Figure A5: Regression tree for a) Topsoil (0-20 cm) and b) Subsoil (20-50 cm). Splitting values are always in the units of the
parameter used for the split (for units see Table 1). Absolute values in the boxes indicate the predicted soil organic carbon (SOC)
content [wt-%]. The percentage corresponds to the relative number of samples.
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Appendix B — Tables

Table B1: Overview of sample distribution used in this study across geographical region, countries, sites, depths and land cover

) ) Depth Land cover
Region Country Site ) ]
Topsoil Subsoil Forest Cropland Grassland Other
TZA 5 61 54 6 16 13 80
ETH 4 179 165 3 153 56 132
East KEN 3 131 153 5 4 55 220
UGA 2 99 101 0 90 29 81
MDG 2 161 175 206 86 20 24
NGA 5 16 19 1 15 5 14
MLI 3 11 14 1 9 6 9
CMR 1 8 2 10 2 0
West
GIN 2 12 8 1 9 1 9
NER 1 13 11 0 12 0 12
GHA 1 1 0 1 0 0 0
ZAF 3 11 11 0 0 7 15
MOZ 2 7 6 0 4 3 6
BWA 3 29 26 0 2 11 42
South
ZMB 2 10 9 1 2 13 3
AGO 4 36 44 1 14 17 48
ZWE 2 6 8 0 3 4 7

TZA: Tanzania; ETH: Ethiopia; KEN: Kenya; UGA: Uganda; MDG: Madagascar; NGA: Nigeria; MLI: Mali; CMR:
Cameroon; GIN: Guinea; NER: Niger; GHA: Ghana; ZAF: South Africa; MOZ: Mozambique; BWA: Botswana; ZMB:
765 Zambia; AGO: Angola; ZWE: Zimbabwe

34



Table B2: Marginal R2 for each fixed effect based on sequential fitting of the linear mixed-effects models for the different sub-models
(depth, pH classes, number of wet months, weathering, land cover). Sign in brackets refers to the correlation between the fixed effect
and soil organic carbon, respectively. Bold values have a p-value < 0.0001 based on likelihood-ratio test

Clay +

Sub-model fine silt pHH20 CIA Mox Caex pHH20*Mox
Topsoil 0.02 (-) 0.04 (-) 0.01(-) 0.29 (+) 0.09 (+) 0.05 ()
Depth
Subsoil 0.08 (+) 0.01(-) 0.00 (-) 0.27 (+) 0.03 (+) 0.05 (-)
Strongly acid 0.00 (-) - 0.00 (-) 0.54 (+) 0.02 (+) -
Moderately acid 0.04 (-) - 0.04 (-) 0.37 (+) 0.06 (+) -
pH classes
Neutral 0.05 (+) - 0.16 (-) 0.19 (+) 0.13 (+) -
Alkaline 0.02 (-) - 0.00 (-) 0.07 (+) 0.10 (+) -
0 0.04 (-) 0.00 (-) 0.02 (-) 0.10 (+) 0.18 (+) 0.01(-)
Number of
wet months 1-3 0.07 () 0.01(-) 0.25 (-) 0.18 (+) 0.14 (+) 0.00 ()
4-7 0.00 (-) 0.00 (-) 0.00 (-) 0.32 (+) 0.14 (+) 0.01 (-)
Moderate 0.05 (-) 0.01(-) - 0.19 (+) 0.17 (+) 0.02 (-)
Weathering
High 0.00 (-) 0.01(-) - 0.40 (+) 0.05 (+) 0.01 (+)
Cropland 0.00 (-) 0.00 (-) 0.09 (-) 0.31 (+) 0.11 (+) 0.03 ()
Forest 0.01(-) 0.06 (-) 0.00 (-) 0.19 (+) 0.01 (+) 0.07 (-)
Land cover
Grassland 0.05 (-) 0.09 (-) 0.06 (-) 0.22 (+) 0.11 (+) 0.04 (-)
Other 0.03 (-) 0.00 (-) 0.02 (-) 0.20 (+) 0.09 (+) 0.03 (-)

770 CIA: Chemical Index of Alteration, Moy: Oxalate-extractable metals (Alox + ¥%2Feoy)
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Table B3: Summary table of R2 for the different models (linear mixed-effects model and random forest) with different explanatory

variables (clay and fine silt, land-cover, clay and fine silt + land-cover, full) included for the entire data set. The R2 in brackets for

the linear-mixed-effects models refer to the conditional R? which include the variation explained by the random effects
775 (sitelD/cluster1D/plotID).

Model Linear-mixed model Random forest (topsoil) Random forest (subsoil)
Clay + fine silt 0.01 (0.72) 0.12 0.12
Land cover 0.01 (0.75) 0.10 0.16
Clay + fine silt and land cover 0.02 (0.72) 0.22 0.26
full 0.71 (0.94) 0.70 0.72
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Table B4: Anova summary for linear mixed-effects analyses with the entire data set (n = 1,601) including all predictors,
geochemistry-only and climate-only predictors. Fixed effects were step-wise added. The first entry (~1) refers to the constant null
780 model, respectively.

df AlC BIC logLik Test L.Ratio p-value
All predictors
~1 5 2,993.22 3,020.11 -1,491.61 NA NA NA
MAT 6 2,969.00 3,001.27 -1,478.50 1vs2 26.23 <0.0001
...+ PET/MAP 7 2,932.50 2,970.15 -1,459.25 2vs3 38.50 <0.0001
... + Depth 8 2,414.21 2,457.24 -1,199.11 3vs4 520.29 <0.0001
... T Land cover 11 2,416.06 2,475.22 -1,197.03 4vs5 4.15 0.2454
...+ Clay + fine silt 12 2,340.40 2,404.94 -1,158.20 5vs6 77.65 <0.0001
... + pHu2o 13 2,342.00 2,411.92 -1,158.00 6vs7 0.40 0.5281
...+ CIA 14 2,248.88 2,324.18 -1,110.44 7vs8 95.13 <0.0001
...+ Mo 15 1,915.32 1,995.99 -942.66 8vs9 335.56 <0.0001
...+ Cae 16 1,678.09 1,764.14 -823.04 9vs 10 239.23 <0.0001
... T pHu20*Mox 17 1,599.15 1,690.59 -782.58 10vs 11 80.93 <0.0001
Geochemistry-only
~1 5 2,993.22 3,020.11 -1,491.61 NA NA NA
Clay + fine silt 6 2,979.20 3,011.47 -1,483.60 1vs2 16.03 0.0001
... + pHuzo 7 2,980.12 3,017.77 -1,483.06 2vs3 1.07 0.3000
...+ CIA 8 2,882.13 2,925.16 -1,433.07 3vs4 99.99 <0.0001
...+ Mox 9 2,515.81 2,564.22 -1,248.91 4vs5 368.32 <0.0001
...+ Caex 10 2,249.95 2,303.73 -1,114.97 5vs6 267.86 <0.0001
... T pHH20*Mox 11 2,170.66 2,229.82 -1,074.33 6vs7 81.29 <0.0001
Climate-only
~1 5 2,993.22 3,020.11 -1,491.61 NA NA NA
MAT 6 2,969.00 3,001.27 -1,478.50 1vs2 26.23 <0.0001
... T PET/MAP 7 2,932.50 2,970.15 -1,459.25 2vs 3 38.50 <0.0001

MAT: Mean annual temperature; PET: Potential evapotranspiration; MAP: Mean annual precipitation; CIA: Chemical index
of alteration; Mox: Oxalate-extractable metals (Alox + Y2Feqx); Caex: Exchangeable calcium.
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Table B5: Anova summary for linear mixed-effects grouped by depth (nTopsoit = 791, Nsubsoit = 810). Fixed effects were step-wise added.
785 The first entry (~1) refers to the constant null model, respectively.

df AIC BIC logLik Test L.Ratio p-value
Topsoil
~1 4 1,440.72 1,459.42 -716.36 NA NA NA
Clay + fine silt 5 1,418.88 1,442.25 -704.44 lvs2 23.84 <0.0001
... ¥ pHuzo 6 1,408.74 1,436.78 -698.37 2vs3 12.14 0.0005
... +CIA 7 1,350.41 1,383.12 -668.20 3vs4 60.33 <0.0001
oo+ Mox 8 1,148.87 1,186.26 -566.44 4vs5 203.54 <0.0001
...+ Caex 9 1,016.14 1,058.20 -499.07 5vs 6 134.73 <0.0001
... T pHH20*Mox 10 967.11 1,013.84 -473.55 6vs7 51.03 <0.0001
Subsoil
~1 4 1,460.72 1,479.51 -726.36 NA NA NA
Clay + fine silt 5 1,373.42 1,396.91 -681.71 lvs2 89.30 <0.0001
... ¥ pHuzo 6 1,372.98 1,401.16 -680.49 2vs 3 244 0.1180
...+ CIA 7 1,373.42 1,406.30 -679.71 3vs4 1.56 0.2123
oo+ Mox 8 1,188.60 1,226.18 -586.30 4vs5 186.82 <0.0001
...+ Cax 9 1,135.71 1,177.99 -558.86 5vs 6 54.89 <0.0001
... T pHH20*Mox 10 1,106.11 1,153.09 -543.06 6vs7 31.60 <0.0001

MAT: Mean annual temperature; PET: Potential evapotranspiration; MAP: Mean annual precipitation; CIA: Chemical index
of alteration; Moy: Oxalate-extractable metals (Alox + Y2Feox); Caex: Exchangeable calcium.
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Table B6: Anova summary for linear mixed-effects grouped by pHn2o (Nstrongly acidic = 404, Nmoderatly acidic = 399, Nneutral = 398,
Naikatine = 400). Fixed effects were step-wise added. The first entry (~1) refers to the constant null model, respectively.

df AlC BIC logLik Test L.Ratio p-value
Strongly acidic (3.9-5.2 pH)
~1 5 909.23 929.23 -449.61 NA NA NA
Clay + fine silt 6 909.32 933.33 -448.66 1vs2 1.91 0.1673
...+CIA 7 911.31 939.32 -448.65 2vs3 0.01 0.9293
...+ Mox 8 712.18 744.19 -348.09 3vs4 201.13 <0.0001
... T Caex 9 690.68 726.69 -336.34 4vs5 23.51 <0.0001
Moderately acidic (5.2-6.1 pH)
~1 5 876.39 896.34 -433.20 NA NA NA
Clay + fine silt 6 864.42 888.36 -426.21 1vs2 13.97 0.0002
... +CIA 7 849.82 877.74 -417.91 2vs 3 16.60 <0.0001
...+ Mox 8 734.60 766.51 -359.30 3vs4 117.22 <0.0001
...+ Cae 9 679.03 714.93 -330.51 4vs5 57.57 <0.0001
Neutral (6.1-7.5 pH)
~1 5 785.87 805.80 -387.93 NA NA NA
Clay + fine silt 6 772.22 796.14 -380.11 1vs2 15.65 0.0001
... +CIA 7 686.06 713.97 -336.03 2vs 3 88.16 <0.0001
...+ Mo 8 620.16 652.06 -302.08 3vs4 67.90 <0.0001
...+ Cae 9 581.03 616.91 -281.52 4vs5 41.13 <0.0001
Alkaline (7.5-9.9 pH)
~1 5 688.71 708.67 -339.36 NA NA NA
Clay + fine silt 6 679.07 703.02 -333.53 1vs2 11.64 0.0006
..+ CIA 7 681.04 708.98 -333.52 2vs 3 0.02 0.8765
..+ Mox 8 651.45 683.38 -317.72 3vs4 31.59 <0.0001
.. + Caex 9 592.58 628.51 -287.29 4vs5 60.87 <0.0001

MAT: Mean annual temperature; PET: Potential evapotranspiration; MAP: Mean annual precipitation; CIA: Chemical index
of alteration; Mox: Oxalate-extractable metals (Alox + Y2Feq); Caex: Exchangeable calcium.
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Table B7: Anova summary for linear mixed-effects grouped by number of wet months (P/PET > 1; no =572, n1.3 = 367, n4.7 = 662).
Fixed effects were step-wise added. The first entry (~1) refers to the constant null model, respectively.

df AIC BIC logLik Test L.Ratio p-value
0 number of wet months
~1 5 1,016.28 1,038.03 -503.14 NA NA NA
Clay + fine silt 6 989.89 1,015.98 -488.94 lvs?2 28.40 <0.0001
... + pHuzo 7 990.41 1,020.85 -488.20 2vs3 1.48 0.2245
... +CIA 8 980.65 1,015.44 -482.32 3vs4 11.76 0.0006
...+ Mox 9 934.82 973.96 -458.41 4vs5 47.82 <0.0001
... + Caex 10 840.40 883.89 -410.20 5vs 6 96.42 <0.0001
... T pHH20*Mox 11 840.08 887.92 -409.04 Bvs7 2.33 0.1272
1-3 number of wet months
~1 5 933.01 952.53 -461.50 NA NA NA
Clay + fine silt 6 912.86 936.29 -450.43 lvs?2 22.15 <0.0001
... + pHuzo 7 910.07 937.41 -448.04 2vs3 4.79 0.0287
... +CIA 8 811.91 843.16 -397.96 3vs4 100.16 <0.0001
... T Mox 9 708.70 743.85 -345.35 4vs5 105.21 <0.0001
... + Caex 10 618.44 657.49 -299.22 5vs 6 92.26 <0.0001
... T pHH20*Mox 11 599.70 642.66 -288.85 6vs7 20.74 <0.0001
4-7 number of wet months
~1 5 1,489.12 1,511.60 -739.56 NA NA NA
Clay + fine silt 6 1,487.46 1,514.44 -737.73 lvs?2 3.66 0.0558
... + pHh2o 7 1,488.86 1,520.32 -737.43 2vs3 0.61 0.4355
...+CIA 8 1,486.23 1,522.19 -735.11 3vs4 4.63 0.0315
oo+ Mox 9 1,339.02 1,379.48 -660.51 4vsh 149.21 <0.0001
... + Caex 10 1,256.20 1,301.15 -618.10 5vs6 84.82 <0.0001
... T pHH20*Mox 11 1,237.14 1,286.58 -607.57 6vs7 21.06 <0.0001

MAT: Mean annual temperature; PET: Potential evapotranspiration; MAP: Mean annual precipitation; CIA: Chemical index
of alteration; Mox: Oxalate-extractable metals (Alox + Y2Feqx); Caex: Exchangeable calcium.
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Table B8: Anova summary for linear mixed-effects grouped by weathering (Nmoderate = 801, Nnigh = 800). Fixed effects were step-wise
800 added. The first entry (~1) refers to the constant null model, respectively.

df AIC BIC logLik Test L.Ratio p-value
Moderate weathering (10-88% CIA)
~1 5 1,535.35 1,558.78 -762.67 NA NA NA
Clay + fine silt 6 1,495.43 1,523.54 -741.71 1vs2 41.92 <0.0001
... + pHuzo 7 1,487.13 1,519.93 -736.56 2vs3 10.30 0.0013
...+ Mox 8 1,352.69 1,390.18 -668.35 3vs4 136.44 <0.0001
... + Caex 9 1,169.17 1,211.35 -575.59 4vs5 185.52 <0.0001
... T pHH20*Mox 10 1,151.67 1,198.53 -565.84 5vs6 19.50 <0.0001
High weathering (88-100% CIA)
~1 5 1,536.25 1,559.67 -763.13 NA NA NA
Clay + fine silt 6 1,538.15 1,566.26 -763.07 lvs?2 0.10 0.7483
... + pHuo 7 1,535.93 1,568.72 -760.96 2vs 3 4.22 0.0400
...+ Mox 8 1,343.70 1,381.17 -663.85 3vs4 194.23 <0.0001
... T Cae 9 1,248.82 1,290.99 -615.41 4vs5 96.87 <0.0001
... T pHH20*Mox 10 1,215.27 1,262.12 -597.64 5vs6 35.55 <0.0001

MAT: Mean annual temperature; PET: Potential evapotranspiration; MAP: Mean annual precipitation; CIA: Chemical index
of alteration; Mox: Oxalate-extractable metals (Alox + Y2Feq); Caex: Exchangeable calcium.
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Table B9: Anova summary for linear mixed-effects grouped by land cover (Ncropland = 429, Nrorest = 228, NGrasstand = 242, Nother = 702).
805 Fixed effects were step-wise added. The first entry (~1) refers to the constant null model, respectively.

df AlC BIC logLik Test L.Ratio p-value
Cropland
~1 5 942.57 962.88 -466.28 NA NA NA
Clay + fine silt 6 942.77 967.13 -465.38 lvs2 1.80 0.1794
... +pHh20 7 943.73 972.16 -464.86 2vs3 1.04 0.3085
...+ CIA 8 911.72 944.21 -447.86 3vs4 34.01 <0.0001
... + Mox 9 817.96 854.51 -399.98 4vs5 95.77 <0.0001
... T Caex 10 755.49 796.11 -367.75 5vs 6 64.46 <0.0001
... + pHH20*Mox 11 736.80 781.48 -357.40 6vs7 20.69 <0.0001
Forest
~1 5 627.98 645.13 -308.99 NA NA NA
Clay + fine silt 6 626.06 646.64 -307.03 lvs2 3.92 0.0477
...+ pHh20 7 615.79 639.79 -300.89 2vs3 12.27 0.0005
...+ CIA 8 614.94 642.38 -299.47 3vs4 2.85 0.0915
... + Mox 9 556.77 587.64 -269.39 4vs5 60.17 <0.0001
... T Caex 10 538.35 572.64 -259.17 5vs 6 20.42 <0.0001
... + pHH20*Mox 11 532.33 570.05 -255.16 6vs7 8.02 0.0046
Grassland
~1 5 570.23 587.68 -280.12 NA NA NA
Clay + fine silt 6 561.06 581.99 -274.53 lvs2 11.18 0.0008
... + pHH20 7 542.45 566.88 -264.23 2vs3 20.60 <0.0001
...+t CIA 8 484.66 512.57 -234.33 3vs4 59.79 <0.0001
... T Mox 9 430.95 462.35 -206.47 4vs5 55.71 <0.0001
... T Caex 10 381.49 416.38 -180.75 5vs6 51.45 <0.0001
... + pHH20*Mox 11 352.66 391.04 -165.33 6vs7 30.83 <0.0001
Other
~1 5 1,313.24 1,336.01 -651.62 NA NA NA
Clay + fine silt 6 1,291.22 1,318.54 -639.61 1vs2 24.02 <0.0001
... +pHh20 7 1,293.10 1,324.98 -639.55 2vs3 0.12 0.7294
...t CIA 8 1,277.31 1,313.75 -630.66 3vs4 17.79 <0.0001
... T Mox 9 1,146.62 1,187.60 -564.31 4vs5 132.70 <0.0001
... T Caex 10 1,020.27 1,065.81 -500.13 5vs6 128.35 <0.0001
... + pHH20*Mox 11 1,011.66 1,061.75 -494.83 6vs7 10.61 0.0011

MAT: Mean annual temperature; PET: Potential evapotranspiration; MAP: Mean annual precipitation; CIA: Chemical index of alteration;
Mox: Oxalate-extractable metals (Alox + ¥2Feox); Caex: Exchangeable calcium.
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