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Interactive comment on “Continental-scale controls on soil organic carbon across sub-Saharan 

Africa” by Sophie F. von Fromm et al. 

Note: The line numbers in our answers are referring to the updated manuscript. 

Anonymous Referee #2 

Received and published: 23 November 2020 

General comments: 

REVIEWER_02: The manuscript “Continental-scale controls on soil organic carbon across sub-Saharan 

Africa” describes a continental-scale analysis of associations between soil organic carbon and soil physico-

chemical properties across Africa. The manuscript outlines a novel soil dataset collected at the Afsis 

“sentinel sites”, and then steps through several statistical analyses that tease apart associations between 

carbon, extractable metals, and soil exchange pools across different domains of climate, soil pH, and soil 

weathering status. The authors conclude that short-range order (oxalate extractable Al) and to an extent 

Fe explain much of the variation in carbon stocks in wet/acid soils, whereas exchangeable calcium explains 

much of the variation in dry/alkaline soils. soil texture and land use appear largely irrelevant at this scale. 

I think this manuscript is excellent and will be a very useful contribution to the study of soil geography. While 

the primary result has been identified in earlier studies (particularly Rasmussen et al.’s 2018 study), this 

manuscript applies to a different geographic domain (tropical and subtropical Africa) and with a more 

systematic data collection effort. It also considers soil weathering status using total elemental inventories 

and chemical weathering indices, which adds novelty. The results provide clear confirmation of the patterns 

hinted at in the Rasmussen study, and also point to some new complexities (particularly in relation to Fe). 

Furthermore, this study applies to data that were collected in a systematic sampling effort–hence these 

results should be considered more conclusive than those in earlier studies. The manuscript does a good 

job of balancing different statistical approaches, and stands as an example of how data-driven modelling 

tools (i.e. random forests) can be used responsibly in a processoriented way to compliment more traditional 

statistical approaches. While at points the interpretation slides into a more descriptive “data-mining” 

posture, it is also punctuated with insightful process-based insights. In short: overall this is a strong 

manuscript! 

ANSWER: We highly appreciate this very thoughtful and appreciative review. Thank you for taking the 

time to carefully comment on our manuscript. We will address the suggestions in detail in the following 

response.  

R_02: My main criticisms apply to the way the methods are presente–I think some details are left out or 

insufficiently documented. I also think that the methods and discussion sections could use more of a “road 

map” at the start–particularly the discussion, which dives into a description of the correlations between 

different variables where it could start with some pithy statements summarizing the high level process-

based interpretation. 

A: We really appreciate these comments. We will address them in detail under the corresponding 

Specific comments. 

R_02: I also would appreciate a bit more discussion of the underlying geographic patterns in the context of 

African geology (perhaps just a paragraph). I realize that the existing geospatial products don’t allow for a 

thorough quantitative analysis of geologic state factors, but some limited qualitative might be good. More 

specifically the authors might address how parent material, soil age, and erosion rates vary (or do not vary) 
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across the sampling locations, and how these might exert some influence on the results independent of 

climate. 

A: Thank you for this comment. We agree that there seems to be no appropriate geospatial product for 

lithology that allows for a thorough quantitative analysis. We added a paragraph called Geographic patterns 

in the discussion section where we did a qualitative interpretation of some geographical patterns, such as 

lithology and soil age. In terms of erosion we added some details in the paragraph Land cover in the 

discussion section (those details are also based on a comment and some references from the Reviewer#1). 

Line 465: “ 

Geographic patterns 

All soils result globally from the same soil-forming factors (climate, organisms, topography, parent 

material and time) and are formed by similar processes (e.g. oxidation, reduction, leaching, transport and 

accumulation). This might explain to some extent, why similar soil and climate parameters are important to 

explain SOC content variation in sub-Saharan Africa as compared to other regions. However, significant 

differences are still visible in subtropical and tropical soils, especially in terms of mineralogy, weathering 

and soil formation, which are related to important differences in climate, soil age, parent material and 

vegetation (Buringh 1970). Such differences do occur between soils from sub-Saharan Africa, which do not 

only differ greatly in their soil properties and climate (Table 1), but also in vegetation, parent material, soil 

age and their vulnerability to degradation (Jones et al. 2013). However, due to the lack of precise geospatial 

products for those parameters for sub-Saharan Africa, we can only discuss them here qualitatively.  

The AfSIS sites (Figure 1) are mainly derived from two parent material types: i) metamorphic rocks and 

ii) volcanic rocks (Hartmann and Moosdorf 2012; Jones et al. 2013; Schlüter 2008). Metamorphic rocks are 

most commonly found in West Africa, Southern Africa and Madagascar. These regions are characterized 

by old cratons, except for Madagascar, which is influenced by Mesozoic volcanism (Schlüter 2008). Most 

of these soils are classified as Ferralsols according to the WRB soil classification system (Jones et al. 

2013). This partly explains, why the AfSIS soils from those regions are usually highly weathered with low 

pHH2O values. In contrast, soils derived from volcanic rocks are mainly found in East in the Great Rift Valley. 

These soils are usually younger and less weathered (Buringh 1970), which is also mirrored in soil properties 

within the AfSIS data set. These soils are characterized by lower CIA values and higher Alox and Feox 

concentrations compared to other soils in the AfSIS data set. Outside of the influence of volcanic rocks, 

Ca2+ rich soils are frequent in East Africa and are dominated by a high concentration of Caex and high pHH2O 

values. Since Alox, Feox, and Caex were important predictors of SOC in our analyses, the SOC content is 

usually also higher at AfSIS sites in East Africa compared to sites in West Africa and Southern Africa.  

Although certain soil properties, in combination with climate variables, are important to explain SOC 

concentration variation, different soil forming factors, such as parent material and soil age, are important to 

understand, which soil properties will dominate – at least at this large-scale approach. To link those two 

aspects more quantitatively on continental-scales might be a direction for future studies.” 

Line 451: “This might be due to the high variation of SOC content within the different land cover classes 

at this large spatial scale (“Figure 1a). For example, the class cropland contains a wide variety of cultivated 

plots – we did not have more detailed information about land management practices. Fujisaki et al. (2018b) 

showed that SOC stock changes in tropical cropland soils are mainly driven by C inputs.  

On the other hand, it is also known that land use changes and their impact on soil physico-chemical 

properties are scale-dependent and are likely to be more distinct at smaller scales (Holmes et al. 2005; 

Holmes et al. 2004). For example, land management and land degradation (i.e. erosion) are known to 

impact SOC stocks on regional scales in sub-Saharan Africa (Winowiecki et al. 2016a). However, we lacked 

the detailed data necessary to disentangle the impacts of different practices. Additionally, since the focus 
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of our work was on natural soil physico-chemical and climate properties, we did not further investigate those 

anthropogenic factors at this large spatial scale. Future studies are needed to better understand the impacts 

of land management and carbon storage potential in soils across sub-Saharan Africa at different scales 

(Fujisaki et al. 2018a; Vanlauwe et al. 2015). Overall, our data for sub-Saharan Africa suggests that SOC 

content on a continental scale is better explained by stabilization potential in soils (climate, geochemistry) 

than by different aboveground C inputs (vegetation).” 

Specific comments: 

R_02: Lines 39-40: The phrase “complex analytical approaches with a large number of parameters” is 

somewhat opaque. Perhaps substitute something more specific? 

A: Line 40: “Assessing the state of soils and their potential response to climate and land-use change 

requires carefully designed sampling strategies, combined with systematic analytical and statistical 

analyses across locations and scale (IPCC 2019).” 

R_02: Lines 62-63: To be fair here: there is an implicit representation of competition between microbes and 

minerals in Earth System models via clay content. There are two issues in this case: (1) competition 

between minerals and microbes is not represented in an explicit, mechanistic way; and (2) clay content 

doesn’t capture the relevant aspects of soil mineralogy or chemistry. I think this manuscript addresses the 

latter issue more than the former. 

A: A similar comment was brought up by the Reviewer #1. We agree that the paragraph about model 

approaches was not that accurate and have now updated it. Since this is not the main focus of our 

manuscript we would like to keep this paragraph rather short. However, we think it is an important aspect 

worth mentioning in the introduction. We have revised the paragraph as follows: 

Line 61: “SOC stabilization is commonly conceptualized as competition between accessibility for 

microorganisms versus chemical associations with minerals (Oades 1988; Schmidt et al. 2011). These 

processes are often only considered implicitly by models (Blankinship et al. 2018; Schmidt et al. 2011). 

Instead, models commonly rely on broader variables such as clay content, which is used as a proxy for 

sorption and other organo-mineral interactions (Rasmussen et al. 2018; Schmidt et al. 2011). These more 

generic variables integrate a variety of stabilization processes which can be difficult to disentangle. They 

might even differ in their relative importance and may not adequately capture soil mineralogy and chemistry 

across different ecosystems and climate zones. Hence, improving the predictive capacity of such models 

requires not only a better understanding of the factors that control SOC dynamics, but also verification (or 

falsification) of those new findings in regions that are underrepresented in field studies and models.” 

R_02: Lines 129-131: Was this digestion quantitative? I believe some silicates are resistant to aqua regia. 

Perhaps clarify whether these should be considered total elemental pools or simply aqua-regia-digestible 

pools, as this may influence the interpretation of the CIA (though probably not much I imagine). 

A: Line 142: “Aqua regia acid digestion was applied for major and trace elements, including Al, Ca, K 

and Na. Although this method does not give absolute total contents, it does give results sufficiently close 

to accepted values for different soils (McGrath and Cunliffe 1985).” 

R_02: Line 160: It would be good to include a short overview paragraph at the start of the statistical analysis 

section explaining the overall strategy. It seems that several approaches were applied to the same data: 

linear mixed effects models, regression trees, and random forests. I can see how the approaches 

complement each other (the mixed effects models seem more conservative and permit statistical 

hypothesis testing while accounting for non-independence of the data, but the CART based approaches 

can handle non-linearity). This is explained later, but the readers will benefit from a quick signpost at the 

start. Similarly, the discussion section is hard to follow at the start. I strongly recommend adding a concise 
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paragraph at the beginning of the discussion that identifies the major results. As it stands now the discussion 

dives right into the details and I can only identify an emergent narrative at the end. 

A: Statistical analyses section: Line 179: “We used several statistical approaches to analyze our data 

set, including linear mixed effects models, regression trees and random forests. We compared the results 

of these three different methods to confirm key findings and derive complementary insights. In brief, we 

used linear mixed effects model to handle the clustered and dependent sampling design of the AfSIS data 

set, whereas regression trees and random forests enabled us to account for non-linearities within the data. 

More precisely, we used regression trees as a qualitative tool to explore and understand the structure of 

the data, whereas random forests offered more generalizable models. All statistical analyses were 

performed within the R computing environment (Version 4.0.0, R Core Team 2020). The R Markdown file 

in the SI provides the code to reproduce all our analyses.” 

A: Discussion section: Line 349 (We moved the last paragraph to the beginning of this section and 

summarized our main findings at the beginning of the discussion): “Here, we focus on those variables that 

showed the most explanatory power in terms of SOC content across all models. We then compare their 

explanatory power with those reported in other studies for different regions. Short-range order minerals 

(Alox) and to some extent Feox explained much of the variation in SOC concentration in wet regions with 

acidic and highly weathered soils. In contrast, Caex explained much of the variation in dry regions, 

dominated by alkaline and less weathered soils. In addition, we discuss the role of clay and fine silt content, 

and of land cover, since they were important in other studies. However, in our study, the latter did not 

explain much of the variation in SOC content, which may be due to the large spatial scale. At the end of 

this section, we discuss the underlying geographic patterns that emerged in the data. 

Some common predictors of SOC and dependencies between predictors (MAP/PET, pHH20, CIA) 

emerged across all modeling approaches. Number of wet months, soil pHH2O and weathering status 

(Figures 3 and 4) occurred as key parameters in the linear mixed effects models that influence how other 

parameters, such as Caex, Alox and Feox, explain SOC content variation across sub-Saharan Africa. In 

contrast, predictor differences were much smaller between topsoil (0–20 cm) and subsoil (20–50 cm) 

samples. This may partly be due to the large depth increments for each of the two sampling depths. 

However, since the identified SOC-controlling factors were similar for both depth layers, any differences 

were probably mostly driven by the fact that subsoil samples usually contain less SOC due to lower C inputs 

at depth (Jobbágy and Jackson 2000). Soil erosion at some sites might also dilute differences between the 

two depth layers, since water and wind can permanently remove surface soil.  

These findings were supported by the regression trees (Figure A6) and partial dependence plots 

(Figure 5), where Caex, Alox and Feox seemed to be more important in explaining the variation of SOC 

concentration compared to pHH2O, PET/MAP and CIA. For example, soil pHH2O was important in the full 

linear mixed effects model, yet it mainly influenced Caex, Alox, and Feox concentrations in correlation with 

MAP (Figure 3d); the same was true for weathering (Figure 4b). Similar relationships have been found for 

temperate regions, where the importance of Caex increased with increasing pHH2O and decreasing 

precipitation, whereas the opposite was true for Alox (Oades 1988; Rasmussen et al. 2018). However, 

Rasmussen et al. (2018) did not identify Feox as an important predictor of SOC content.“ 

R_02: Lines 167-171: I understand that the transformation is necessary for comparing different predictors 

on the same scale. However, what does the transformation mean with respect to the functional relationships 

in the data? Are the models linear with respect to the original scale? I suspect not: a linear model fit to 

transformed data is not necessarily a linear model with respect to the original data. This is worth noting, 

even if the analysis stays the way it is. 

A: It is correct that transformation and standardization of the data prior to linear mixed effects modelling 

does not mean that the original relationship between SOC and the predictors is always linear. We have 
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clarified this in the text. This is one of the reasons why we also used regression trees and random forests. 

Feox, for example, nicely demonstrates this point – it is not important in the linear mixed effects models, yet, 

it is really important in regression trees and random forests. This is because it does not have a linear 

relationship with SOC across its entire range – it only shows a strong correlation with SOC at low 

concentrations (see Figure 5e in the manuscript).  

Line 198: ”This only holds for the transformed and standardized data and the relationship between SOC 

and the predictors of the original data may not be linear.” 

R_02: Line 183: How was the hierarchical clustering done? 

A: Thank you for the critical question. We realized that ‘hierarchal clustering’ is not the appropriate term 

here and apologize for any confusion that was caused by that. We used a built-in function called cut_number 

from the ggplot2 package in R which allows to control for the number of groups, whereas the cut-offs are 

determined by the function internally to approximately equalize the number of samples in each group. We 

tried different numbers of groups to match common pH and CIA classes while trying to maximize the number 

of samples in each group (i.e. keeping the numbers of groups as small as possible) at the same time. The 

exact approach can be found in the R Markdown file in the SI (p 11-12). We have clarified this in the text. 

Line 210: “Soil pHH2O and CIA data were grouped using hierarchical clustering, with the number of 

classes chosen to maximize and equalize the number of samples in each class and to correspond with 

common pHH2O and weathering categories (Nesbit and Young 1982).” 

R_02: Line 204: The spatial partitioning is really laudable. It is surprising how infrequently this is done, and 

it really should be a community standard. Thank you for being rigorous! 

A: Thank you very much for this really positive feedback. We agree that this should become a standard 

when working with geospatial data.  

R_02: Line 242: Please introduce the marginal/conditional R-squared values before mentioning here. To 

many readers this distinction might not be obvious. 

A: Since this is the only time we use the term marginal, we decided to remove it and added in brackets 

what the R² in this case means. 

Line 272: “The final linear mixed effects model for the entire data set (n = 1,601) had a marginal R² of 

0.71 (excluding the proportion variance explained by the fixed effects Site/Cluster/Profile).” 

R_02: Figure 2: The univariate linear regression fits in this figure are purely for illustration? Perhaps mention 

them briefly in the statistical analysis section. 

A: It is correct that we added those regression lines in Figure 2 for illustrative reasons. The regression 

line follows the simple linear equation y ~ x. Since the linear regression line in the figure is not used in 

further analysis and not important for the discussion, we have now included the formula and clarifying 

information in the caption of Figure 2, rather than in the methods section: 

Line 264: “Figure 1: a) Soil organic carbon (SOC) content [wt-%] for the different land-covers (cropland, 

forest, grassland, other (bushland, shrubland, woodland) by depth (topsoil: 0–20 cm, subsoil: 20–50 cm); 

b) SOC [wt-%] and clay and fine silt content [%] by depth; c) SOC [wt-%] and clay and fine silt content [%] 

by depth for three example sites that show contrasting trends. Gray area around fitted linear regressions 

(y ~ x, for illustration only) in b) and c) show the 95% confidence interval. For the relationship between SOC 

and clay and fine silt content for all individual sites, see Figure A4.” 

R_02: Figure 3 (and throughout): How were confidence intervals obtained? They are reported throughout 

the paper, but unless I missed something the method used to obtain them is not reported. 
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A: It is correct that we did not specify the method how we obtained the confidence intervals – this has 

now been corrected. To visualize and report the linear mixed effects models (including the confidence 

intervals) in Figure 3a,b, 4a, and A5 and in Table B2 to Table B7 we used the sjPlot package in R (Lüdecke 

2020). Within the package we used the Wald-test approximation to calculate the 95% confidence interval 

(https://easystats.github.io/parameters/reference/p_value_wald.html). Based on this method the 

confidence interval is calculated the follow for each explanatory variable:  

Confidence interval (95%) = Coefficient ± 1.96 * SE 

Where Coefficient is the coefficient of each explanatory variable from the linear mixed effects model and 

SE is the standard error of the maximum likelihood of the same explanatory variable.  

Line 192: “The 95% confidence intervals were obtained by using the Wald-test approximation within the 

sjPlot and parameters R packages (Lüdecke 2020; Lüdecke et al. 2020).” 

R_02: Line 289: How was the % variation explained obtained here? Is this an R-squared value for a reduced 

model? Or is it some sort of variable importance metric? Perhaps something is missing from the methods 

description? 

A: We replaced the word variation with data and added an explanation in the method section. The 

percentage is referring to the relative number of observations in this particular node of the regression tree. 

In this particular case, the SOC content of 23% of the samples was predicted by using Feox and MAT only.  

Line 236: “Absolute values at the bottom of each node indicate the predicted SOC content [wt-%] and 

the percentage corresponds to the relative number of samples in this node (Figure A6).” 

Line 320: “About 23% of the SOC data could be explained by Feox and MAT alone.” 

R_02: Line 446: I hope that the data presented in this study are eventually made available in some easy-

to-access way. A database of this size and completeness could be extremely valuable to other researchers 

and would be best archived on some sort of data repository rather than only available on request from the 

author. 

A: Thank you very much for bringing up this important aspect of Open Science. We fully agree that the 

analyzed data set should be open and easily accessible to everyone. In parallel to this review process we 

are already working on this. We are planning to archive the dataset on the following repository were already 

other data from the same project has been archived: https://data.worldagroforestry.org/dataverse/icraf_soils. 

However, we still need to solve some legal issues.  

Line 501: “The soil properties data set used in this study is available from the corresponding author upon 

reasonable request and will be available on https://data.worldagroforestry.org/dataverse/icraf_soils in mid-

2021.” 
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