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Abstract 15 
 
Land degradation negatively impacts water, food and nutrition security and is leading to increased 
competition for resources. While landscape restoration has the potential to restore ecosystem function, 
understanding the drivers of degradation is critical for prioritizing and tracking interventions.  We 
sampled 300-1000m2 plots using the Land Degradation Surveillance Framework across Nyagatare and 20 
Kayonza districts in Rwanda to assess key soil and land health indicators, including soil organic carbon 
(SOC), erosion prevalence, vegetation structure and infiltration capacity, and their interactions.  SOC 
content decreased with increasing sand content across both sites and sampling depths and was lowest in 
croplands and grasslands, compared to shrublands and woodlands. Stable carbon isotope values (d13C ) 
ranged from -15.35 to  -21.34 ‰ indicating a wide range of historic and current plant communities with 25 
both C3 and C4 photosynthetic pathways. Field-saturated hydraulic conductivity (Kfs) was modeled, 
with a median of 76 mm h-1 in Kayonza and  62 mm h-1 in Nyagatare, respectively. Topsoil OC had a 
positive effect on Kfs, whereas pH, sand and erosion had negative effects. Soil erosion was highest in 
plots classified as woodland and shrubland. Maps of soil erosion and SOC at 30m resolution were 
produced with high accuracy and showed strong variability across the study landscapes. These data 30 
demonstrate the importance of assessing multiple biophysical properties in order to assess land 
degradation across the landscape, including the spatial patterns of soil and land health indicators across 
the landscaoe. By understanding the dynamics of land degradation and interactions between biophysical 
indicators, we can better prioritize interventions that result in multiple benefits, as well as assess the 
impacts of restoration options. 35 

1. Introduction 

 

Formatted: Font: 17 pt, Bold

Formatted: Font: 17 pt

Deleted: Assessing inherent and human-induced drivers of soil 
organic carbon 

Deleted: in Rwanda 40 

Deleted:  

Deleted: Chomba1

Formatted: Superscript

Deleted: opportunity 

Deleted:  

Deleted: -45 
Deleted: high

Deleted: region

Deleted: the inherent and anthropogenic controls of SOC, and the 
additive impact on critical ecosystem functions and services, 
including soil hydrological functioning. 50 
Deleted: se

Deleted: relationships 



2 
 

Land degradation is inextricably linked to livelihoods and negatively impacts over 3.2 billion people 
each year globally (IPBES, 2018). Land degradation also adversely affects the resilience of social-
ecological systems to climate change by reducing their adaptive capacity. Therefore, the combined 55 
impacts of land degradation and climate change represent a significant risk to global food security 
(Webb et al., 2017), particularly when considering positive feedback effects between processes such as 
more erratic and intense rainfall events and soil erosion. Similarly, land degradation strongly impacts 
the loss of biodiversity globally, further reducing the adaptive capacity of ecosystems in the face of 
climate change (Gisladottir and Stocking, 2005), which means that we cannot tackle any of these global 60 
challenges in isolation. 
 
Efforts to avoid, reduce and reverse land degradation are therefore critical if the Sustainable 
Development Goals (SDGs) are to be achieved (IPBES, 2018).  SDG 15.3, Life of Land, has set 
ambitious targets for land degradation neutrality (LDN), combining belowground indicators, i.e., soil 65 
organic carbon (SOC), and aboveground measures (net primary productivity and land use) (Cowie et al., 
2018). In line with this thinking, forest and landscape restoration aims to regain ecological functions, 
including biodiversity and soil function, and enhance human well-being across landscapes (Chazdon, 
2008; Chazdon et al., 2016). The UN Decade on Ecosystem Restoration (2021-2030) offers promising 
opportunities to bring together the global community to scale efforts across the globe. These efforts 70 
highlight the complexity of ecosystems and that multiple biophysical and socio-economic factors need 
to be considered when targeting, planning, implementing and tracking restoration on the ground. This 
includes understanding the spatial and biogeochemical variations of the soil ecosystem, which is the 
foundation for biophysical land restoration efforts, given its role in global net primary productivity.  
 75 
The global community acknowledges the need for long-term monitoring networks across diverse 
environments (Navarro et al., 2017; Sachs et al., 2010), including those focused on soil monitoring 
(Guerra et al., 2021; Lehmann et al., 2020; Vermeulen et al., 2019), in order to better understand drivers 
and interactions as well as track progress of interventions.  However, many assessments of land 
degradation and restoration suffer from (i) disagreements about the definition of land degradation, (ii) a 80 
conundrum of indicators that are often not feasible to measure and hence operationalize, and (iii) a lack 
of rigorous science-based analytical frameworks (Vågen, 2015). Indicators are critical when assessing 
ecosystem health and tracking progress toward restoration targets or climate actions and can be 
important communication tools for decision-makers. Indicators should be readily measurable, 
quantifiable and encompass the complexity of various drivers.  85 
 
The call for soil degradation and resilience indicators is not new (Lal, 1997); however, scientific 
research around the concept of soil health continues (Lehmann et al., 2020). We argue that a coherent 
set of indicators collected using consistent measurement methods is needed to address the completely of 
ecosystem function. SOC is widely accepted as a key indicator of soil health due to its influence on 90 
multiple indicators and its response to aboveground processes, including land management (Deb et al., 
2015; Paustian et al., 2019; Shikuku et al., 2017). In addition, SOC is seen as a key indicator to monitor 
progress on a number of SDGs (Lorenz et al., 2019). Soil erosion is arguably the most important 
indicator of land degradation and also one of the most widespread forms of degradation worldwide 
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(Bennett, 1939; Lal, 2003; Pimentel, 2006; Vågen and Winowiecki, 2019). In addition exchangeable 
base cations provide a measure of available nutrients and soil pH provides a measurement of potential 
constraints such as acidity. Land cover and vegetation structure play a key role in terms of driving soil 110 
organic carbon dynamics in landscapes while also influencing land degradation processes such as soil 
erosion. Therefore, indicators such as tree density within various vegetation structure classes and overall 
tree diversity provide useful information for informing restoration interventions around reforestation (Di 
Sacco et al., 2020). The use of carbon isotopes provides further insights on vegetation shifts as δ13C 
values in the soil reflect the photosynthetic pathway of the aboveground vegetation (Boutton et al. 115 
1998). Soil infiltration capacity is another well-established indicator of soil health, in particular of the 
soil's physical status and its hydrological functioning (Allen et al., 2011). Soil infiltration capacity 
influences the recharge of soil and groundwater stores and the generation of surface runoff, with 
implications for erosion and flooding occurrence (Hillel, 1998). 
 120 
Given the heterogeneity of landscapes, spatial information on the distribution of these indicators needs 
to be made at relevant spatial scales (i.e., at the farm, landscape, and regional levels). Furthermore, 
interactions between these indicators need to be considered explicitly. Recent advancements in spatially 
explicit assessment of soil and land health that combine field-based campaigns with data analytics and 
earth observation are now paving the way for improved methods of biophysical characterization of 125 
multiple indicators (Vågen et al., 2016) while providing an opportunity to enable science-based 
monitoring approaches that can be applied in restoration prioritization (Winowiecki et al., 2018) as well 
as for communication with decision-makers (Vågen et al., 2018a). 
 
In Rwanda, land degradation continues to be a critical challenge. To combat this, Rwanda set a goal to 130 
achieve land degradation neutrality by 2030 and, in 2011, Rwanda was the first country in Africa to 
commit to a restoration target of degraded lands and forests under the Bonn Challenge, pledging to 
restore 2 million ha, corresponding to 76% of the country. Underlying causes of land degradation in the 
country include unsustainable farming and grazing practices, overexploitation of forests and woodlands, 
settlements and urbanization (Bizimana, 2018). One of the major processes of land degradation in 135 
Rwanda is accelerated soil erosion, which is driven by unsustainable agricultural practices, particularly 
in steeply sloping lands (Karamage et al., 2016). This is further exacerbated by intense rainfall events, 
resulting in increased rainfall erosivity (Rutebuka et al., 2020) and the increasing energy demands of a 
growing population resulting in deforestation and loss of vegetation cover in general (Mukuralinda et 
al., 2016). Soil erosion is severe with mean national rates of 250 Mg ha-1 yr-1, and studies showing as 140 
much as 421 Mg ha-1 yr-1 in croplands (Karamage et al., 2016).   
 
Considering that the agricultural sector contributes significantly to the national economy and that 90% 
of the population depends on agriculture for their livelihoods, tackling land degradation and restoring 
degraded land is of critical importance for Rwanda. Studies suggest that investments in soil 145 
conservation and land productivity are contributing to reduced land degradation and increased 
agricultural productivity in Rwanda (Bidogeza et al., 2015; Byiringiro and Reardon, 1996; Fleskens, 
2007; Bizoza and De Graaff, 2012; Karamage et al., 2016). For example, various forms of terracing 
have been implemented across Rwanda to specifically curb the negative effects of intensive farming on 
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steep slopes on soil fertility and soil loss (Kagabo et al., 2013). Studies also show that terracing coupled 
with building organic matter has the potential to be financially profitable when access to labour and 
manure is facilitated (Bizoza and de Graaff, 2012). Furthermore, there is a real need for a systems 155 
approach to sustainable agricultural intensification that spans from appropriate technologies to 
institutional and policy-level support (Schut et al., 2016; Vanlauwe et al., 2014). In addition, 
agroforestry approaches have also been suggested to meet the multiple demands of farming households, 
including in Rwanda (Liyama et al., 2018). However, improved targeting of interventions and tracking 
of progress overtime could both improve not only the success of restoration efforts but demonstrate 160 
which options works best under the various condictions. 
 
In this study, we applied a systematic approach to collecting data on soil health and land degradation 
indicators, including the use of soil spectroscopy, using the Land Degradation Surveillance Framework 
(LDSF) (Vågen and Winowiecki, 2020) across agricultural-dominated landscapes in eastern Rwanda. 165 
Studied indicators included SOC, erosion prevalence, vegetation structure, tree density and species 
diversity, topsoil field-saturated hydraulic conductivity (a proxy for steady-state infiltration capacity), 
soil texture, pH and exchangeable bases.  Specific objectives of this study were to: 1) Assess soil and 
land health indicators across two landscapes; 2) Identify biophysical constraints; 3) Develop maps of 
soil erosion hotspots and variations in SOC for restoration interventions, based on the hypothesis that 170 
remote sensing (spectral) data can be used to predict erosion and SOC. We also assessed the 
relationship between inherent soil properties, such as texture, and SOC, the hypothesis being that factors 
such as sand content create constraint envelopes in terms of variations in SOC. Another hypothesis 
addressed in the study was related to whether there is a positive effect of SOC on field-saturated 
hydraulic conductivity when we consider data from across diverse landscapes. We also assesses the 175 
influence of other soil properties on field-saturated hydraulic conductivity, in addition to human-
induced processes such as soil erosion. Finally, we assessed the current status of vegetation structure 
across the landscape, in addition to tree density and tree species diversity, and conducted spatially-
explicit assessments of SOC for eastern Rwanda.  

2. Methods 180 

2.1. Site Description 

The LDSF was implemented in two districts in eastern Rwanda, Nyagatare and Kayonza. Nyagatare is 
the largest dairy district in Rwanda and is characterised by two main seasons: one long dry season and a 
short rainy season. Its annual average temperature varies between 25.3 and 27.7 °C, and it receives an 
annual rainfall of 827 mm. However, rainfall patterns have become increasingly unpredictable and 185 
variable. The average altitude is 1,513 m.  It consists of gently sloping hills separated by low granitic 
valleys. The vegetation type was originally savannah vegetation and some gallery forests. From 2009 to 
2019, there was a net loss of forest cover with deforestation and afforestation rates at 34% and 18%, 
respectively (MoE, 2019). The major economic activity is subsistence farming, while the main source of 
cooking energy is fuelwood. Multiple crops are cultivated in Nyagatare including, maize, beans, 190 
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groundnut, cassava, irish potatoes, banana, and yams, among others. Some areas have been cultivated 
for 100 years, but the majority of the agricultural expansion in the district took place between 1973 and 
1995. The dominant soil types in Nyagatare are Ferralsols (Oxisols) with shallow Leptosols on hillsides, 225 
according to data from the Ministry of Agriculture (MINAGRI). 
 
 
Kayonza district has a mean altitude of 1,428 m and a mean annual rainfall of 919 mm (NISR, 2012). It 
is prone to long drought events with two principal seasons, a long dry period and a short rainy season. 230 
Crops cultivated in Kayonza include beans, banana, cassava, maize, irish potato, sorghum, cocoa yams, 
among others. Most of the area has been cultivated for over 50 years, with mining activities also taking 
place. Dominant soil types in the Kayonza site are Ferralsols and Leptosols, with Histosols in lower-
lying areas.   
 235 

2.2. Field Sampling using the Land Degradation Surveillance Framework  

The LDSF is a systematic methodology to conduct landscape-level assessments of soil and land health 
based on a consistent set of indicators and field protocols. The framework was developed by the World 
Agroforestry (ICRAF) in response to the need for a consistent field method and indicator framework to 
assess soil and land health at the landscape scale. The LDSF has been applied in several projects across 240 
the global tropics (Vågen et al., 2016; Vågen and Winowiecki, 2020, 2019) and is currently one of the 
largest ecosystem health databases globally, with data from more than 30,000 plots in over 40 countries. 
The LDSF uses a hierarchical sampling design to simultaneously measure and assess several land and 
soil health indicators, including vegetation cover and structure, current and historical land use, erosion 
prevalence, soil infiltration capacity, soil texture, soil pH and SOC. An LDSF site is a 100 km2 area 245 
stratified into 16-1 km2 clusters, each containing 10-1000 m2 plots and 4-100 m2 subplots (L. 
Winowiecki et al., 2016). The hierarchical sampling design enables robust analysis of drivers of 
degradation as well as the production of predictive maps of soil health indicators, for example, SOC 
(Vågen et al., 2018b). The two LDSF sites in this study were randomized within each of the districts. 
The field team navigated to the randomized plots and set up the four circular subplots within the plot. 250 
 
Measurements took place at the plot and subplot levels. All plots were geo-referenced to better than 5m 
accuracy. Vegetation structure was classified at the plot level using the FAO Land Cover Classification 
System (LCCS), which was developed in the context of the FAO-AFRICOVER project (Di Gregorio, 
A., and Jansen, 2000). Specifically, plots were classified as either annual cropland, grassland, 255 
shrubland, woodland, or forest vegetation structure. In the LDSF, trees are classified as woody 
vegetation above 3 m tall, whereas woody plants 1.5-3 m in height are classified as shrubs. All trees 
were counted and identified to species level in each of the four subplots per plot. Soil erosion was 
scored and classified in each subplot (n=4) per plot. Specifically, each subplot was visibly assessed for 
erosion (i.e., rill, sheet or gully), otherwise the plot was marked as having no erosion.  Erosion scores 260 
(presence (1) or absence (0)) were used in the statistical analysis. Soil samples were collected using a 
soil auger at the center of each subplot at two depths (0-20 cm (topsoil) and 20-50 cm (subsoil)).  Soil 
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samples were combined from the four subplots into one composite sample per LDSF plot and depth 
increment. 
 
Infiltration capacity was measured at three plots per cluster in each site using single ring infiltrometers 275 
(Bouwer, 1986) to assess variation across land uses and soil types. Soil infiltration capacity into dry 
soils follows a predictable temporal pattern: it is high in the early stages of infiltration and tends to 
decline gradually as the soil moisture content increases until it eventually approaches a nearly constant 
rate known as steady-state infiltration capacity (Horton, 1940). This steady-state rate is independent of 
the initial soil water content and approximates the soil’s saturated hydraulic conductivity. Infiltration 280 
measurements were carried out at the center of each plot using a metal cylinder with an inner diameter 
of 15.6 cm and 20 cm in height for two hours and a half to ensure capturing steady-state conditions.   
 
Field-saturated hydraulic conductivity (Kfs) (Reynolds and Elrick, 1990) was calculated from the 
infiltration data using the analytical formula proposed by Nimmo et al. (2009). First, infiltration rates 285 
were corrected for non-constant falling head and subsurface lateral spreading effects. For each plot, an 
asymptotic function was then fitted to its corrected infiltration curve using the nls.multstart package in 
R (Padfield and Matheson, 2018) to obtain the asymptote, which represents Kfs.  
 
The effects of soil and land use and land cover variables on Kfs were assessed with linear mixed effects 290 
models using the lme4 package (Bates et al., 2015) in R. Random effects intercept models were fitted 
using the lmer function, with a random intercept for each level of site and for each level of cluster 
within site (nested grouping factors). To assess statistical significance of fixed effects, we used the 
lmerTest package in R (Kuznetsova et al., 2017). 
 295 
The rationale behind the use of the LDSF in the current study was that it has been applied across a wide 
range of landscapes in the global tropics and has been shown to be robust in terms of assessing soil and 
land health in landscapes. It uses a standardized set of indicators that are consistently sampled and 
quantified, allowing for comparative studies between sites or landscapes. Also, the LDSF has been 
successfully applied in other studies for the mapping of indicators of soil and land health when used in 300 
combination with remote sensing satellite data (Vågen and Winowiecki, 2019, Vågen et al., 2013b). 
 

2.3. Laboratory Methods 

Upon collection, all soil samples were processed locally in Rwanda, air-dried and ground to pass 
through a 2-mm sieve. Air-dried and ground samples were packed and shipped to the ICRAF Soil-Plant 305 
Spectral Diagnostics Laboratory in Nairobi, Kenya. Further grinding was then conducted on a 
subsample using a Retsch motor grinder to attain a particle size between 20 and 53 microns. This 
subsample was analyzed in triplicate for MIR absorbance using a Tensor 27 HTS-XT from Bruker 
Optics in the ICRAF Soil-Plant Spectral Diagnostics Laboratory in Nairobi, Kenya. The measured 
wavebands ranged from 4000 to 601 cm-1 with a resolution of 4 cm-1. Processing of the MIR spectra 310 
included computing the first derivatives using a Savitsky-Golay polynomial smoothing filter 
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implemented in the locpoly function of the KernSmooth R package  (Wand, 2015) as outlined in  
Terhoeven-urselmans et al. (2010). 
 
Wet chemistry reference analysis was conducted on 10% of the collected soil samples (n=32 samples 315 
per site, 16 topsoil and 16 subsoil samples). Soil pH and exchangeable bases were measured at Crop 
Nutrition Laboratory Services in Nairobi, Kenya. Soil pH was analyzed in a 1:2 H2O mixture that was 
shaken for 30 min at moderate speed on a horizontal shaker then let stand for 20 min before reading on 
a Eutech Cyberscan 1100 pH meter. Exchangeable bases were extracted using the Mehlich-3 method 
after five minutes on a reciprocating shaker. The filtrate was analyzed for base cations: potassium (K), 320 
calcium (Ca), magnesium (Mg) and sodium (Na) using an ICP OES (Model-Thermo iCAP6000 Series). 
Total nitrogen, organic carbon and stable carbon isotopes (δ13C) were measured by dry combustion 
using an Elemental Analyzer Isotope Ratio Mass Spectrometry (EA-IRMS) from Europa Scientific after 
removing inorganic C with 0.1 N HCl, at the IsoAnalytical Laboratory located in the United Kingdom. 
Stable carbon isotopes were expressed as δ13C in parts per mile (‰) relative to the V-PDB (Pee Dee 325 
Belemnite) standard. Sand content was measured using a Laser Diffraction Particle Size Analyzer 
(LDPSA) from HORIBA (LA 950) after shaking each soil sample for four minutes in a 1% sodium 
hexametaphosphate (calgon) solution at the World Agroforestry Centre (ICRAF) Soil-Plant Spectral 
Diagnostics Laboratory in Nairobi, Kenya. 
 330 
 

2.4. Prediction of soil properties from MIR soil spectroscopy 

Soil samples with both MIR spectra and associated wet chemistry data were used to train (calibrate) 
predictive models in order to simultaneously predict multiple soil properties using random forest (RF) 
regression models (Vågen et al., 2016). In the RF algorithm, many decision trees are built, each on a 335 
bootstrap sample, based on a random subset of the input MIR spectra and these trees are combined to 
predict the different soil properties. The total number of reference samples used for model development 
and testing were 10,820 for SOC, 7,305 for soil pH, 4,322 for soil texture and 1,657 for δ13C. In training 
the prediction models, we randomly selected 70% of the samples for each soil property, keeping the 
remaining 30% out for testing of the models. We then calculated R2 and Root Mean Square Error of 340 
Prediction (RMSEP) values for the training and test dataset to assess model performance. 

2.5. Landscape-level mapping of soil erosion and SOC 

We used LDSF soil and field data from a total of 30,853 sites in 40 countries, including the two sites 
from this study, to generate prediction models and map SOC and soil erosion based on Landsat 8 
reflectance data. The approach we followed in this study is described in Vågen et al. (2013), but we 345 
applied Landsat 8 rather than Landsat 7 and a larger database of LDSF sites. A Landsat 8 spectral 
library was built for all of the LDSF plots by extracting surface reflectance values for each band, 
matching remote sensing data acquisition to within six months of field survey dates. Cloud masking was 
conducted prior to surface reflectance extraction. We then used the annual median reflectance values for 
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each band as input into the prediction models for SOC and erosion in order to map SOC concentrations 
(gC kg-1) and the probability of erosion (in %) for each 30m Landsat pixel.  
 355 
We assessed the performance of the prediction models in a similar manner as for the soil MIR 
predictions by using 70% of the plots to train the models and the remaining 30% to test performance. 
For erosion, we assessed model performance by calculating the percentage of correctly classified test 
instances relative to observed instances, expressed as a confusion matrix, and by calculating the 
Receiver Operating Characteristic curve (ROC) (Bradley, 1997), which evaluates the accuracy of a 360 
model by considering errors that are either false positives or false negatives. 

3. Results 

3.1. Vegetation structure and diversity in the LDSF plots sampled 

LDSF field surveys took place between October and November 2018. In total, 151 plots were sampled 
in Kayonza and 149 plots were sampled in Nyagatare. Both sites were dominated by annual cropping 365 
systems, with 68% of the sampled plots in Kayonza classified as cultivated and 89% in Nyagatare. 
Other vegetation structure classes included shrubland (19% in Kayonza, 3.4% in Nyagatare), woodland 
(9.3% in Kayonza and 7.4% in Nyagatare) and grassland (3.3% in Kayonza). Mean tree density was 
higher in Nyagatare (120 tree ha-1) compared to Kayonza (68 tree ha-1). Overall, this level of tree 
density is low, and the higher tree densities only occurred in woodlots of Eucalyptus spp. (Figure 1). 370 
Mean tree density in croplands was 57 tree ha-1 in Kayonza and 35 tree ha-1 in Nyagatare. The plots 
with higher tree density in croplands were dominated by Eucalyptus spp. In total, 62 unique tree species 
were identified in the two LDSF sites. The most common species was Eucalyptus spp., followed by 
Grevillea robusta, Euphorbia tirucalli, Ricinus communis, Mangifera indica, Carica papaya and Senna 
spectabillis (Figure 2). Differences were observed between the two LDSF sites, most notably that 375 
Jatropha curcas was only found in Kayonza and Senna singueana was only found in Nyagatare. (Figure 
2). In summary, 48 unique tree species were observed in Kayonza and 39 species in Nyagatare. This 
level of tree diversity is considered quite low, with a low occurrence of most species, low occurrence of 
only a few indigenous species, and dominance of Eucalyptus spp. For example, 171 (56%) of the 
sampled plots had Eucalyptus spp., including 125 of the cropland plots (53%). 380 
 

3.2. MIR prediction results for soil properties 

Prediction performance was good for the soil properties included in the study, including for the 
prediction of d13C, as summarised in Table 1. The prediction model performance for d13C  is similar to 
that reported by (Winowiecki et al., 2017) when predicting d13C based on near-infrared (NIR) 385 
spectroscopy. Figure 3 shows predicted versus measured SOC and d13C, respectively, for Nyagatare and 
Kayonza, showing good model performance across a wide range of SOC and d13C values, respectively.  
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3.3. Soil properties and erosion prevalence 400 

Soil properties for top- and sub-soil samples for Kayonza (n= 151, 136) and Nyagatare (n= 149, 145) 
LDSF sites are presented in Table 2. Density plots for the soil variables demonstrate the variability 
between and within the sites (Figure 4). Overall, pH values were low across the two sites, with 
statistical differences in topsoil pH values between sites (P<0.001); mean topsoil pH was 5.65 in 
Kayonza and 5.89 in Nyagatare. This level of pH can potentially limit agricultural production. Both 405 
sites had low overall exchangeable bases (Ca, K, Mg, Na), as 8 cmolc kg-1 is considered critically low 
for agricultural productivity. Kayonza had significantly higher clay content and lower sand content 
compared to Nyagatare (P<0.001). Kayonza had statistically higher topsoil OC content (20.9 g kg-1) 
compared to Nyagatare (17.3 g kg-1) (P<0.001). Figure 5 shows the relationship between sand content 
and SOC content, with SOC increasing with decreased sand content for both sites and depth intervals. 410 
This demonstrates the important control of inherent soil properties, i.e., sand content, on SOC. The 
same pattern was observed in each vegetation structure class. However, SOC was lowest in the cropland 
and grassland plots compared to shrublands and woodlands (P<0.001). Average d13C was 18.9 ‰ in 
Kayonza and -19.2 ‰ in Nyagatare, which indicates that these are mixed C3-C4 systems. We also 
assessed the variation of stable carbon isotopes within and between the vegetation structure classes 415 
(Figure 6). While there were some distinctions between classes, namely more negative isotope values in 
woodlands compared to croplands, overall d13C values were relatively similar. The observed overlap is 
likely due to the high occurrence of Eucalyptus spp. (even in cropland plots) and the fact that woodland 
plots were previously cultivated, resulting in the mixed C3-C4 signal. 
 420 
Kayonza had a higher soil erosion prevalence, with 45% of the plots considered severely eroded, 
compared to 27% of the sampled plots in Nyagatare. The dominant erosion categories were rill and 
sheet. Severe erosion was more prevalent in woodland (91%), shrubland and grassland (77%) compared 
to cropland (25%). This is most likely given the high prevalence of terracing in the region as well as the 
location of the cropping fields compared to woodland and bushland. For example, the average slope for 425 
the plots classified as cultivated was seven degrees compared to 19 degrees for the other vegetation 
structure classes. There was no statistical difference in SOC in severely eroded and non-severely eroded 
plots; however, cropland plots were the dominant category across the landscape and only 24% of 
cropland plots were classified as severely eroded. 

3.4. Saturated hydraulic conductivity  430 

Median topsoil field-saturated hydraulic conductivity (Kfs) in Kayonza was 76 mm h-1, whereas in 
Nyagatare it was 62 mm h-1 (Figure 7). In Kayonza, Kfs was not only higher but also more variable than 
in Nyagatare, with an interquartile range (upper quartile – lower quartile) of 77 mm h-1 and 42 mm h-1, 
respectively.  
 435 
Results from the linear mixed effects (lme) models showed that the presence of erosion and pH had both 
a significant negative effect on Kfs (P < 0.025 and P < 0.016, respectively). Topsoil OC had a nearly 
significant (P <0.082) positive effect on Kfs, whereas sand content had a significant negative effect (P 
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<0.033).We could not assess the effect of vegetation structure on Kfs, as most of the plots where 
infiltration was measured were on cropland.  
 

3.5. Soil mapping 460 

Soil erosion prevalence was predicted with a high degree of accuracy using Landsat 8 satellite data, 
with an out-of-bag prediction (OOB) error of 14%. The OOB prediction error-rate is based on a 
bootstrap sample of about 37% of unused test observations and represents a robust assessment of 
accuracy. Further to the calculation of the OOB error-rate, the receiver operator characteristics (ROC) 
curve also indicates good model performance with the area under the ROC curve (AUC) calculated at 465 
0.86. These results are consistent with previous studies using remote sensing to predict erosion (Vågen 
et al., 2013; Vågen and Winowiecki, 2019). Given the level of accuracy, we applied the random forest 
model to Landsat 8 imagery for 2018, generating a map of soil erosion at 30-m resolution for the study 
area. Hot spots of erosion are shown in red and yellow in the map in Figure 8, representing areas where 
erosion prevalence is predicted to be over 75% in 2018, some areas also having extreme erosion 470 
(>75%). As we can see from this map, there is high spatial variability of erosion across eastern Rwanda. 
 
The prediction model performance for SOC was also good, with an R2 of 0.82 based on the OOB 
prediction results from the random forest model and testing of the prediction model on an independent 
test dataset (Figure 9). The map of SOC (Figure 10) shows high levels of variation in SOC across the 475 
study area with particularly low SOC in Nyagatare district, except for wetlands along rivers and in 
forested areas in the west of the district. Similarly, in Kayonza ditrict, the map shows higher SOC in 
protected areas and in lower lying areas, including in wetlands in the eastern part of the district.  
 

4. Discussion 480 

The LDSF was used to assess soil and land health indicators across two landscapes in eastern Rwanda. 
Both sites (Kayonza and Nyagatare) were dominated by annual cropping systems, and both sites had 
overall low tree densities and low tree diversity. Eucaltypus spp dominated both the woodland and 
cropland systems in both sites, followed by Grevillea robusta. Jatropha curcas was observed only in 
Kayonza and Senna singueana was only observed in Nyagatare. These data have important implications 485 
for restoration activities. For example, tree planting is in the global spotlight as a restoration activity 
with high potential for climate change mitigation, while providing multiple other ecosystem services 
(Bastin et al., 2019). However, the global community acknowledges that tree planting and reforestation 
must do down taking into account multiple environmental and socio-economic considerations. For 
example, prioritize appropriate areas to restore, use natural regeneration, maximize biodiversity, among 490 
other principles (Di Sacco et al., 2021). In Rwanda, there are multiple tree planting campaigns funded 
by the government as well as within the development sector. These data demonstrate a real opportunity 
to improve tree biodiversity across the landscape, including on cultivated fields. While woodlands 
reportedly had higher SOC content compared to the other vegetation structure classes, woodlands also 
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had mixed land use history, from native vegetation to being cultivated, leading to the high variation in 
SOC values. Our findings of low tree species diversity are similar to those of other studies from other 
regions of Rwanda (Bucagu et al., 2013; Liyama et al., 2018), highlighting the opportunity for the 505 
strategic inclusion of useful and appropriate species that fulfill multiple ecosystem benefits, including 
the inclusion of indigenous tree species on farms. 
 
This paper highlights the importance of assessing key soil and land health indicators, most notably SOC 
and soil erosion. The concept of soil health goes beyond individual indicators and is more about 510 
building and maintaining a functioning soil ecosystem to provide and support multiple ecosystem 
services and functions. Lehman et al. (2020) discussed the shift of focus of soil assessments from crop 
productivity to human health, climate change adaptation and mitigation and water quality and quantity. 
This shift acknowledges the linkages across multiple indicators, and this information can be used to 
prioritize interventions to maximize benefits and minimize tradeoffs. 515 
 
For example, inherent soil properties, such as soil texture, are influenced by parent material, yet, they 
can impact dynamic soil properties. For instance, while sand content is not sensitive to management, it 
does limit the ability of the soil to store or sequester carbon. In Figure 5, we show the relationship 
between sand content and SOC in the two LDSF sites included in the study. The trend of decreasing 520 
SOC with increasing sand content in these data is well established and has been reported in other studies 
using the LDSF from Tanzania (Winowiecki et al., 2016). This relationship is related to factors such as 
the surface area of soil mineral particles, which decreases with increasing sand content leaving less area 
that SOC can be absorbed onto. Acknowledging this influence on SOC and other key properties is 
important for understanding restoration potential in terms of soil health as well as climate change 525 
mitigation potential. 
 
The boxplots in Figure 6 show both predicted δ13C and SOC across vegetation structure classes in the 
two LDSF sites. Generally, we found the lowest SOC contents and also higher δ13C values in cropland, 
indicating SOC derived from C4 vegetation such as maize (Zea mais). In contrast, in areas where SOC 530 
is derived from vegetation with a C3 photosynthetic pathway, such as woodlands and shrublands, we 
found higher SOC values. These results indicate an opportunity to increase SOC through management 
practices. This is especially apparent when assessing the effect of soil erosion on SOC. Soil erosion 
prevalence was more prominent in woodland, shrubland and grassland LDSF plots in the two sites as 
compared to cropland plots. This might indicate that farmers are already managing for erosion, which is 535 
an essential first step in building soil health, including maintaining and building SOC. Seventy-six 
percent of cropland plots were scored as not having severe erosion, with 24% having severe erosion. 
Despite SOC variation in both categories (severely eroded and not severely eroded), there was no 
statistical difference in SOC content between these two. This finding differs from other studies that 
found erosion to have a strong effect on SOC content and stocks (Vågen and Winowiecki, 2013; Leigh 540 
Winowiecki et al., 2016). Both Nyagatare and Kayonza sites had low overall soil pH and exchangeable 
bases. However, these data are in line with what Vågen et al. (2016) reported using data from 114 LDSF 
sites across sub-Saharan Africa (SSA), e.g., their results showed an overall mean topsoil OC of 22 g kg-
1, a mean pH value of 6.1 and a mean sum of bases of 15 cmolckg-1. Since very few plots were sampled 
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under naturally vegetated, undisturbed sites, our analysis is limited in terms of extending this into semi-570 
natural systems. This was also reflected in the C3-C4 signal in the δ13C data, which mostly indicated 
mixed C3-C4 systems. This highlights the need to use multiple indicators to understand drivers of SOC 
dynamics, including interactions between plant communities, management, and inherent soil properties. 
 
Field-saturated hydraulic conductivity (Kfs) was highly variable in the two study sites, as shown in 575 
Figure 7, with Nyagatare having slightly lower Kfs rates than Kayonza. SOC positively influenced Kfs, 
which is in agreement with previous findings highlighting the importance of soil organic matter for soil 
aggregation and water infiltration (Franzluebbers, 2002). Our results indicate that sand content 
influences Kfs negatively, which is counterintuitive, as coarse-textured soils tend to have higher Kfs 
compared to more fine-grained soils (Hillel, 1980; García Gutiérrez et al. 2017). However, soil 580 
hydraulic properties of soils with finer textures have been shown to be less dependent on particle size 
distribution (García Gutiérrez et al. 2017), which could partially explain our results considering that 
sand content in the plots where infiltration was measured was relatively low. It is also likely that the 
negative relationship between sand content and Kfs we have found reflects the positive effect of SOC 
on Kfs, as SOC and sand content had a strong negative relationship. On the other hand, soil pH and the 585 
presence of erosion had a negative effect on Kfs. Erosion and land degradation often lead to reduced 
soil infiltration capacity due to a decline in SOC and subsequent deterioration of soil structure (Valentin 
& Bresson,1997), which in turn can result in increased infiltration-excess overland flow and further 
erosion (Blake et al., 2018). Our findings indicate the complexity in determining hydrologic controls 
across landscapes, which is something that will need to be studied in more detail in the future. 590 
Maintaining and promoting soil hydrological functioning is critical for food and water security and to 
build resilience to climate change (Bossio et al., 2010)Falkenmark & Rockström 2008, Cole et al. 
2008), but this is often overlooked in the discussions around restoration. Findings from this study 
highlight the importance of human-induced drivers on Kfs and, therefore, the potential to actively 
maintain and restore soil hydrological functioning.  595 
 
 
Findings from this study demonstrate that by applying a consistent indicator framework such as the 
LDSF, which combines systematic field measurements with innovative laboratory methods, advanced 
data analytics and remote sensing, we are able to conduct spatial assessments of SOC, erosion and other 600 
land health indicators with high levels of accuracy. Such assessments and maps have applications not 
only for targeting land restoration interventions, but also for tracking changes in soil and land health 
over time. For example, by mapping SOC at 30-m resolution, we can pick up spatial patterns related to 
both land management and inherent soil properties to identify both drivers of land degradation and land 
restoration potential, including SOC sequestration. 605 
 

In a case study from the Lake Kivu area of Rwanda,(Akayezu et al., 2020) showed the utility of erosion 
hotspot mapping for spatial targeting of soil and water conservation measures. The results of the study 
presented here can be used in a similar manner to identify hotspots within the study area where erosion 
is occurring (Figure 8). These hotspots can in turn be combined with spatial assessments of SOC 610 
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(Figure 10) to more effectively target areas for land restoration, particularly where there is high erosion 
prevalence and low SOC. This is critically important, particularly if we consider the often high 
economic costs of restoring degraded land (Quillérou and Thomas, 2012) and the importance of land 625 
restoration for achieving the Sustainable Development Goals (Herrick et al., 2019). Furthermore, by 
combining spatially explicit indicators of land and soil health, spatial prioritization of restoration 
potential based on biophysical characteristics can enable decision making (Winowiecki et al., 2018). 

Land degradation and restoration of degraded lands are complex processes that cannot be addressed 
effectively without considering multiple factors determining soil and land health. In this study we have 630 
assessed multiple indicators that can be readily quantified, and are widely accepted as important in 
determining soil and land health. Further, we used a sampling design that allowed us to measure these 
indicators consistently. This is critical for the design of interventions that target multiple aspects of land 
restoration, including soil erosion, species diversity and SOC. Specifically, this study identified low tree 
diversity and high occurrence of exotic timber species, highlighting an opportunity to explore the 635 
inclusion of indigenous tree species in both landscapes. In addition, maps of soil erosion will be used to 
target soil water conservation measures to curb soil erosion. We argue that assessing these multiple 
indicators within a robust yet rapid sampling design will improve the effectiveness of restoration 
interventions as well as provide a baseline for tracking progress overtime.  

5. Conclusions 640 

We demonstrate the utility of systematic, multi-scale assessments of soil and land health across 
landscapes to target and monitor ecosystem restoration interventions, including the importance of 
understanding the interactions between indicators. By using a robust set of soil and land health 
indicators that are consistently sampled and characterized, we are able to provide analysis and spatial 
assessments at scales relevant to smallholder farmers. In the current study, we illustrate the approach 645 
with examples for SOC and erosion, although additional indicators may be included to address the 
complexity of land degradation and tailor land restoration interventions that consider interactions of 
multiple indicators in a spatially explicit way. We also demonstrate the importance of understanding 
both inherent and human-induced drivers of indicators such as SOC, which is critical for landscape 
restoration. We highlight the link between SOC, erosion, and hydrologic function. Using these data, we 650 
suggest land managers implement restoration options that reduce erosion, increase soil organic carbon 
and soil infiltration capacity, and increase aboveground biodiversity. Doing so has the potential to reach 
multiple goals, including food and nutrition security, climate change mitigation and adaptation, and 
biodiversity. We argue that there is an urgent need for systematic assessments of SOC, as well as 
aboveground biodiversity (e.g., tree diversity), combined with hydrologic properties and 655 
other indicators of land degradation such as soil erosion to effectively target interventions across 
landscapes. This will not only ensure that appropriate interventions for land restoration are 
implemented, but also provide the evidence base to assess their effectiveness. 
 
Rwanda is one of the most progressive countries in the region in terms of acknowledging the 660 
importance of landscape restoration for sustainable livelihoods. The country has set ambitious targets 
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over the next decade, aiming to restore more than 76% of its land area. Given the importance of the 
agricultural sector in the country and widespread land degradation due to a combination of deforestation 670 
and unsustainable agricultural practices, there is a need for evidence to support the targeting of land 
restoration efforts, as well as for tracking of the effectiveness of such interventions over time. By 
combining systematic field-based surveys with advances in soil spectroscopy and earth observation 
data, we can model and map SOC concentrations with high accuracy, allowing us to identify areas for 
restoration and track interventions over time. 675 
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Table 1:Prediction model performance metrics for the prediction of soil properties from MIR spectroscopy included in the study. 

Soil property R2 RMSEP 
 Training Testing Training Testing 
SOC 0.99 0.92 1.3 3.3 
d13C 0.97 0.72 0.8 1.8 
pH 0.97 0.84 0.2 0.4 
Sum of exchangeable bases 0.96 0.84 3.9 8.2 
Sand 0.98 0.84 3.1 8.9 
Clay 0.98 0.82 3.5 10.1 
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Table 2:  Soil properties for top and sub soil samples at the two LDSF sites (SD = standard deviation, ExBases 
is exchangeable bases) . 940 

Site  Depth
  

N Mean  
SOC   

SD  
SOC  

Mean 
d13C 

SD 
dC13 

Mean 
pH  

SD  
pH  

Mean 
ExBae

s 

SD 
ExBas

es 

Mean 
Sand  

SD 
Sand   

Mean 
Clay  

SD 
Clay 

 cm  g kg-1 ‰  cmolc kg-1 % 

Kayo
nza  

0-20 151  20.9  8.83 -18.9 1.15 5.65  0.68  10.3 8.69 19.8  9.29  58.4 11.5 

  20-50  136  16.9  7.96 -18.4 1.26 5.65  0.65  10.6 9.10 19.4  9.27  60.6 11.4 

Nyaga
tare  

0-20 149  17.3  6.07  -19.2 0.92 5.89 0.54  8.74 4.80 30.0  10.2 44.5 10.5 

 20-50 145 13.3 5.49 -18.7 0.97 5.88 0.55 8.44 5.77 30.0 10.5 45.8 11.4 
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Figure 1: Violin plots showing the variation in tree densities across the vegetation classes at Kayonza and Nygatare LDSF sites, 945 
Rwanda. The dotted line is the overall median (25 tree ha-1). 
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 950 
 
Figure 2: Tree species across Kayonza and Nygatare LDSF sites, Rwanda. Sixty-two different species were recorded, with low 
occurrence of most species and few indigenous tree species. 

Deleted: the two LDSF sites
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Figure 3. Predicted vs measured SOC and d13C based on MIR spectra for Kayonza and Nygatare LDSF sites, Rwanda. 
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Deleted: the two sites included in the study
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Figure 4: Density plots of soil organic carbon (SOC), clay, exchangeable bases (ExBases), and pH for the top- and sub-soil samples 
at Kayonza and Nygatare LDSF sites, Rwanda. 965 
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Figure 5: Relationship between sand content and soil organic carbon (SOC) for both top- and sub-soil samples at Kayonza and 
Nyagatare LDSF sites, Rwanda. 
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 995 
 
Figure 6: Boxplots of d13C values and soil organic carbon (SOC) content in topsoil for each vegetation structure class at Kayonza 
and Nyagatare LDSF sites, Rwanda. Dotted vertical lines at -22 and -14 ‰ d13C indicate the C3 and C4 dominated systems, 
respectively. The dotted line at 20 g kg-1 SOC is to indicate a threshold for agricultural productivity in humid areas. 
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Figure 7: Box and violin plots of field-saturated hydraulic conductivity (Kfs) for Kayonza and Nyagatare LDSF sites, Rwanda. The 
three horizontal lines in the box plot show the lower quartile, the median, and the upper quartile. Whiskers extend to the outer-most 
data point that falls within 1.5 box lengths. The violin plots show the distribution of the Kfs data. 
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 1020 
 
Figure 8: Map of soil erosion prevalence (%) across Nyagatare, Gatsibo and Kayonza districts (Eastern province, Rwanda) 
predicted based on Landsat 8 satellite imagery and field data from the LDSF plots. The two LDSF sites are also shown on the map 
(Nyagatare in the north and Kayonza in the south), with the sampling plots shown as white circles. Deleted: .1025 
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Figure 9. Predicted vs measured SOC based on predictions made from Landsat 8 reflectance for Kayonza and Nyagatare LDSF 
sites, Rwanda. The black dots are training data, while the red crosses show independent validation results. 1030 Deleted:  the two study sites
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Figure 10. Map of soil organic carbon (SOC) across Nyagatare, Gatsibo and Kayonza districts (Eastern province, Rwanda) predicted 
based on Landsat 8 satellite imagery and soil data from the LDSF plots. The two sites are also shown on the map (Nyagatare in the 1035 
north and Kayonza in the south), with the sampling plots shown as white circles. 
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