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Abstract 
 15 
Land degradation negatively impacts water, food and nutrition security and is leading to increased 
competition for resources. While landscape restoration has the opportunity to restore ecosystem 
function, understanding the drivers of degradation is critical for prioritizing and tracking interventions.  
We sampled 300-1000m2 plots using the Land Degradation Surveillance Framework across Nyagatare 
and Kayonza districts in Rwanda to assess key soil and land health indicators, including soil organic 20 
carbon (SOC),  erosion prevalence, vegetation structure and infiltration capacity and their interactions.  
SOC content decreased with increasing sand content across both sites and sampling depths and was 
lowest in croplands and grasslands compared to shrublands and woodlands. Stable carbon isotope 
values (d13C ) ranged from -15.35 to  -21.34 ‰ indicating a wide range of plant communities with both 
C3 and C4 photosynthetic pathways. Field-saturated hydraulic conductivity (Kfs) was modeled, with a 25 
median of 76 mm h-1 in Kayonza and  62 mm h-1 in Nyagatare, respectively. Topsoil OC had a positive 
effect on Kfs, whereas pH, sand and erosion had negative effects. Soil erosion was highest in plots 
classified as woodland and shrubland. Maps of soil erosion and SOC at 30-m resolution were produced 
with high accuracy and showed high variability across the region. These data demonstrate the inherent 
and anthropogenic controls of SOC, and the additive impact on critical ecosystem functions and 30 
services, including soil hydrological functioning. By understanding these relationships we can better 
prioritize interventions that result in multiple benefits, as well as assess the impact of restoration 
options. 

1. Introduction 

 35 
Land degradation is inextricably linked to livelihoods and negatively impacts over 3.2 billion people 
each year globally (IPBES, 2018). Land degradation also adversely affects the resilience of social-
ecological systems to climate change by reducing their adaptive capacity. Therefore, the combined 
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impacts of land degradation and climate change represent a significant risk to global food security 
(Webb et al., 2017), particularly when considering positive feedback effects between processes such as 95 
more erratic and intense rainfall  events and soil erosion. Similarly, land degradation strongly impacts 
the loss of biodiversity globally, further reducing the adaptive capacity of ecosystems in the face of 
climate change (Gisladottir and Stocking, 2005), which means that we cannot tackle any of these global 
challenges in isolation. 
 100 
Efforts to avoid, reduce and reverse land degradation are therefore critical if the Sustainable 
Development Goals (SDGs) are to be achieved (IPBES, 2018).  SDG 15.3, Life of Land has set 
ambitious targets for land degradation neutrality (LDN), combining belowground indicators, i.e., soil 
organic carbon (SOC), and aboveground measures (net primary productivity and land use) (Cowie et al., 
2018). In line with this thinking, forest and landscape restoration aims to regain ecological functions, 105 
including biodiversity and soil function, and enhance human well-being across landscapes (Chazdon, 
2008; Chazdon et al., 2016). The UN Decade on Ecosystem Restoration (2021-2030) offers promising 
opportunities to bring together the global community to scale efforts across the globe. However, 
ecosystems are complex and multiple biophysical and socio-economic factors need to be considered 
when targeting, planning, implementing and tracking restoration on the ground. This includes 110 
understanding the spatial and biogeochemical variations of the soil ecosystem, which is the foundation 
for biophysical land restoration efforts given its role in global net primary productivity.  
 
The global community acknowledges the need for long-term monitoring networks across diverse 
environments (Navarro et al., 2017; Sachs et al., 2010), including those focused on soil monitoring 115 
(Guerra et al., 2021; Lehmann et al., 2020; Vermeulen et al., 2019), in order to better understand drivers 
and interactions as well as track progress of interventions.  However, many assessments of land 
degradation and restoration suffer from (i) disagreements about the definition of land degradation, (ii) a 
conundrum of indicators that are often not feasible to measure and hence operationalize, and (iii) a lack 
of rigorous science-based analytical frameworks (Vågen, 2015). Indicators are critical when assessing 120 
ecosystem health and tracking progress toward restoration targets or climate actions, and can be 
important communication tools for decision makers. Indicators should be readily measurable, 
quantifiable and encompass the complexity of various drivers. The call for soil degradation and 
resilience indicators is not new (Lal, 1997), however, scientific research around the concept of  soil 
health continues (Lehmann et al., 2020). Despite this, SOC is widely accepted as a key indicator of soil 125 
health, due to its influence on multiple indicators and its response to aboveground processes, including 
land management (Deb et al., 2015; Paustian et al., 2019; Shikuku et al., 2017). In addition, SOC is seen 
as a key indicator to monitor progress on a number of SDGs (Lorenz et al., 2019).  
 
Accelerated soil erosion is arguably the most important indicator of land degradation and also one of the 130 
most widespread forms of degradation worldwide (Bennett, 1939; Lal, 2003; Pimentel, 2006; Vågen 
and Winowiecki, 2019). Given the heterogeneity of landscapes, spatial information on the distribution 
of these indicators needs to be made at relevant spatial scales (i.e. at the farm, landscape, and regional 
levels). Furthermore, interactions between these indicators need to be considered explicitly. Recent 
advancements in spatially explicit assessment of soil and land health that combine field-based 135 
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campaigns with data analytics and earth observation are now paving the way for improved methods of 160 
biophysical characterization of multiple indicators (Vågen et al., 2016) while providing an opportunity 
to enable science-based monitoring approaches that can be applied in restoration prioritization 
(Winowiecki et al., 2018) as well as for communication with decision makers (Vågen et al., 2018a). 
 
In Rwanda, land degradation continues to be a critical challenge. To combat this, Rwanda set a goal to 165 
achieve land degradation neutrality by 2030 and, in 2011, Rwanda was the first country in Africa to 
commit to a restoration target of degraded lands and forests under the Bonn Challenge, pledging to 
restore 2 million ha, corresponding to 76% of the country. Underlying causes of land degradation in the 
country include unsustainable farming and grazing practices, overexploitation of forests and woodlands, 
settlements and urbanization (Bizimana, 2018). One of the major processes of land degradation in 170 
Rwanda is accelerated soil erosion, which is driven by unsustainable agricultural practices, particularly 
in steeply sloping lands (Karamage et al., 2016). This is further exacerbated by intense rainfall events, 
resulting in increased rainfall erosivity (Rutebuka et al., 2020) and the increasing energy demands of a 
growing population resulting in deforestation and loss of vegetation cover in general (Mukuralinda et 
al., 2016). Soil erosion is severe with mean national rates of 250 Mg ha-1 yr-1, and studies showing as 175 
much as 421 Mg ha-1 yr-1 in croplands (Karamage et al., 2016).   
 
Considering that the agricultural sector contributes significantly to the national economy and that 90% 
of the population depends on agriculture for their livelihoods, tackling land degradation and restoring 
degraded land is of critical importance for Rwanda. Studies suggest that investments in soil 180 
conversation and land productivity are contributing to reduced land degradation and increased 
agricultural productivity in Rwanda (Bidogeza et al., 2015; Byiringiro and Reardon, 1996; Fleskens, 
2007; Bizoza and De Graaff, 2012; Karamage et al., 2016). For example, various forms of terracing 
have been implemented across Rwanda to specifically curb the negative effects of intensive farming on 
steep slopes on soil fertility and soil loss (Kagabo et al., 2013). Studies also show that terracing coupled 185 
with building organic matter has the potential to be financially profitable when access to labour and 
manure is  facilitated (Bizoza and de Graaff, 2012). Furthermore, there is a real need for a systems 
approach to sustainable agricultural intensification that spans from appropriate technologies to 
institutional and policy-level support (Schut et al., 2016; Vanlauwe et al., 2014). In addition, 
agroforestry approaches have also been suggested to meet the multiple demands of farming households, 190 
including in Rwanda (Liyama et al., 2018).  
 
 
 
 195 
In this paper, we applied a systematic approach to collecting data on soil health and land degradation 
indicators, including the use of soil spectroscopy, using the Land Degradation Surveillance Framework 
(LDSF) (Vågen and Winowiecki, 2020) across agricultural-dominated landscapes in eastern Rwanda. 
Specific objectives of this study were to: 1) Assess soil and land health indicators across two 
landscapes; 2) Understand the drivers of SOC dynamics; 3) Develop hot-spot maps of soil erosion and 200 
soil organic carbon for restoration interventions. We assessed the relationship between inherent soil 
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properties such as texture and SOC, as well as the influence of various soil properties on field-saturated 
hydraulic conductivity, in addition to human-induced processes such as soil erosion.  We also assess the 
current status of vegetation structures across the landscape, including tree densities and tree species 290 
diversity. We present spatially-explicit assessments and maps of SOC for eastern Rwanda and explore 
key inherent and human-induced drivers of SOC across landscapes in the eastern part of the country. 

2. Methods 

2.1. Site Description 

The LDSF was conducted in two districts in eastern Rwanda, Nyagatare and Kayonza. Nyagatare is the 295 
largest dairy district in Rwanda and is characterised by two main seasons: one long dry season and a 
short rainy season. Its annual average temperature varies between 25.3 and 27.7 °C, and it receives an 
annual rainfall of 827 mm, however rainfall patterns have become increasingly unpredictable and 
variable. The average altitude is 1,513m.  It consists of gently sloping hills separated by low granitic 
valleys. The vegetation type was originally savannah vegetation and some gallery forests. From 2009 to 300 
2019, there was a net loss of forest cover with deforestation and afforestation rates at 34% and 18%, 
respectively (MoE, 2019). The major economic activity is subsistence farming while the main source of 
cooking energy is fuel wood. Multiple crops are cultivated in Nyagatare including, maize, beans, 
groundnut, cassava, irish potatoes, banana, and yams, among others. Some areas have been cultivated 
for 100 years, but the majority of the agricultural expansion in the district took place between 1973 and 305 
1995. The dominant soil types in Nyagatare wereFerralsols (Oxisols) with shallow Leptosols on 
hillsides, according to data from the Ministry of Agriculture (MINAGRI). 
 
 
Kayonza district has a mean altitude of 1,428 m and a mean annual rainfall of 919 mm (NISR, 2012). It 310 
is prone to long drought events with two principal seasons, a long dry period and a short rainy season.  .  
Crops cultivated in Kayonza include beans, banana, cassava, maize, irish potato, sorghum, cocoa yams, 
among others. Most of the area has been cultivated for over 50 years, with mining activities also taking 
place. Dominant soil types in the Kayonza site were Ferralsols and Leptosols, with Histosols in lower-
lying areas.   315 
 

2.2. Field Sampling using the Land Degradation Surveillance Framework  

The LDSF was developed by the World Agroforestry (ICRAF) in response to the need for a consistent 
field method and indicator framework to assess soil and land health at the landscape-scale. The 
framework has been applied in several projects across the global tropics (Vågen et al., 2016; Vågen and 320 
Winowiecki, 2020, 2019) and is currently one of the largest ecosystem health databases globally, with 
data from more than 30,000 plots in over 40 countries. The LDSF uses a hierarchical sampling design to 
simultaneously measure and assess several land and soil health indicators. An LDSF site is a 100 km2 
area stratified into 16-1 km2 clusters, each containing 10-1000 m2 plots and 4-100 m2 subplots (L. 
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Winowiecki et al., 2016). The hierarchical sampling design enables robust analysis of drivers of 370 
degradation as well as the production of predictive maps of soil health indicators, for example soil 
organic carbon (Vågen et al., 2018b). The two LDSF sites in this study were randomized within each of 
the districts. The field team navigated to the randomized plots and set up the four circular subplots 
within the plot. 
 375 
Measurements took place at the plot and subplot levels. All plots were geo-referenced to better than 5m 
accuracy. Vegetation structure was classified at the plot level using the FAO Land Cover Classification 
System (LCCS), which was developed in the context of the FAO-AFRICOVER project (Di Gregorio, 
A., and Jansen, 2000). Specifically, plots were classified as either annual cropland, grassland, 
shrubland, woodland or forest vegetation structure. In the LDSF, trees are classified as woody 380 
vegetation above 3 m tall, whereas woody plants 1.5-3 m height are classified as shrubs. All trees were 
counted and identified to species level in each of the four subplots per plot. Soil erosion was scored and 
classified in each subplot (n=4) per plot. Specifically, each subplot was visibly assessed for erosion (i.e., 
rill, sheet or gully), otherwise the plot was marked as having no erosion.  Erosion scores (presence (1) 
or absence (0)) were used in the statistical analysis. Soil samples were collected using a soil auger at the 385 
center of each subplot at two depths (0-20 cm (topsoil) and 20-50 cm (subsoil)).  Soil samples were 
combined from the four subplots into one composite sample per LDSF plot and depth increment. 
 
Infiltration capacity was measured at three plots per cluster in each site using single ring infiltrometers 
(Bouwer, 1986) to assess variation across land uses and soil types. Soil infiltration capacity into dry 390 
soils follows a predictable temporal pattern: it is high in the early stages of infiltration and tends to 
decline gradually as the soil moisture content increases until it eventually approaches a nearly constant 
rate known as steady-state infiltration capacity (Horton, 1940). This steady-state rate is independent of 
the initial soil water content and approximates the soil’s saturated hydraulic conductivity. Infiltration 
measurements were carried out at the center of each plot using a metal cylinder with an inner diameter 395 
of 15.6 cm and 20 cm in height for two hours and a half to ensure capturing steady-state conditions.   
 
Field-saturated hydraulic conductivity (Kfs) (Reynolds and Elrick, 1990) was calculated from the 
infiltration data using the analytical formula proposed by Nimmo et al. (2009). First, infiltration rates 
were corrected for non-constant falling head and subsurface lateral spreading effects. For each plot, an 400 
asymptotic function was then fitted to its corrected infiltration curve using the nls.multstart package in 
R (Padfield and Matheson, 2018) to obtain the asymptote, which represents Kfs.  
 
The effects of soil and land use and land cover variables on Kfs were assessed with linear mixed effects 
models using the lme4 package (Bates et al., 2015) in R. Random effects intercept models were fitted 405 
using the lmer function, with random intercept for each level of site and for each level of cluster within 
site (nested grouping factors). To assess statistical significance of fixed effects, we used the lmerTest 
package in R (Kuznetsova et al., 2017). 
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2.3. Laboratory Methods 

Upon collection, all soil samples were processed locally in Rwanda, air-dried and ground to pass 
through a 2-mm sieve. Air-dried and ground samples were packed and shipped to the ICRAF Soil-Plant 
Spectral Diagnostics Laboratory in Nairobi, Kenya. Further grinding was then conducted on a 440 
subsample using a Retsch motor grinder to attain a particle size between 20 and 53 microns. This 
subsample was analyzed in triplicate for MIR absorbance using a Tensor 27 HTS-XT from Bruker 
Optics in the ICRAF Soil-Plant Spectral Diagnostics Laboratory in Nairobi, Kenya. The measured 
wavebands ranged from 4000 to 601 cm-1 with a resolution of 4 cm-1. Processing of the MIR spectra 
included computing the first derivatives using a Savitsky-Golay polynomial smoothing filter 445 
implemented in the locpoly function of the KernSmooth R package  (Wand, 2015) as outlined in  
Terhoeven-urselmans et al., (2010). 
 
Wet chemistry reference analysis was conducted on 10% of the collected soil samples (n=32 samples 
per site, 16 topsoil and 16 subsoil samples). Soil pH and exchangeable bases were measured at Crop 450 
Nutrition Laboratory Services in Nairobi, Kenya. Soil pH was analyzed in a 1:2 H2O mixture that was 
shaken for 30 min at moderate speed on a horizontal shaker then let stand for 20 min before reading on 
a Eutech Cyberscan 1100 pH meter. Exchangeable bases were extracted using the Mehlich-3 method 
after five minutes on a reciprocating shaker. The filtrate was analyzed for base cations: potassium (K), 
calcium (Ca), magnesium (Mg) and sodium (Na) using an ICP OES (Model-Thermo iCAP6000 Series). 455 
Total nitrogen, organic carbon and stable carbon isotopes (d13C) were measured by dry combustion 
using an Elemental Analyzer Isotope Ratio Mass Spectrometry (EA-IRMS) from Europa Scientific after 
removing inorganic C with 0.1 N HCl, at the IsoAnalytical Laboratory located in the United Kingdom. 
Stable carbon isotopes were expressed as δ13C in parts per mile (‰) relative to the V-PDB (Pee Dee 
Belemnite) standard. Sand content was measured using a Laser Diffraction Particle Size Analyzer 460 
(LDPSA) from HORIBA (LA 950) after shaking each soil sample for four minutes in a 1% sodium 
hexametaphosphate (calgon) solution, at the World Agroforestry Centre (ICRAF) Soil-Plant Spectral 
Diagnostics Laboratory in Nairobi, Kenya. 
 
 465 

2.4. Prediction of soil properties from MIR soil spectroscopy 

Soil samples with both MIR spectra and associated wet chemistry data were used to train (calibrate) 
predictive models in order to simultaneously predict multiple soil properties using random forest (RF) 
regression models (Vågen et al., 2016). In the RF algorithm, many decision trees are built, each on a 
bootstrap sample, based on a random subset of the input MIR spectra and these trees are combined to 470 
predict the different soil properties. The total number of reference samples used for model development 
and testing were 10,820 for SOC, 7,305 for soil pH, 4,322 for soil texture and 1,657 for d13C. In 
training the prediction models, we randomly selected 70% of the samples for each soil property, 
keeping the remaining 30% out for testing of the models. We then calculated R2 and Root Mean Square 
Error of Prediction (RMSEP) values for the training and test dataset to assess model performance. 475 
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2.5. Landscape level mapping of soil erosion and SOC 

We used LDSF soil and field data from a total of 30,853 sites in 40 countries, including the two sites 
from this study, to generate prediction models and map SOC and soil erosion based on Landsat 8 
reflectance data. The approach we followed in this study is described in Vågen et al. (2013), but we 505 
applied Landsat 8 rather than Landsat 7 and a larger database of LDSF sites. A Landsat 8 spectral 
library was built for all of the LDSF plots by extracting surface reflectance values for each band, 
matching remote sensing data acquisition to within six months of field survey dates. Cloud masking was 
conducted prior to surface reflectance extraction. We then used the annual median reflectance values for 
each band as input into the prediction models for SOC and erosion in order to map SOC concentrations 510 
(gC kg-1) and the probability of erosion (in %) for each 30m Landsat pixel.  
 
We assessed the performance of the prediction models in a similar manner as for the soil MIR 
predictions, by using 70% of the plots to train the models and the remaining 30% to test performance. 
For erosion, we assessed model performance by calculating the percentage of correctly classified test 515 
instances relative to observed instances, expressed as a confusion matrix and by calculating the 
Receiver Operating Characteristic curve (ROC) (Bradley, 1997), which evaluates the accuracy of a 
model by considering errors that are either false positives or false negatives. 

3. Results 

3.1. Vegetation structure and diversity in the LDSF plots sampled 520 

LDSF field surveys took place between October and November 2018. In total, 151 plots were sampled 
in Kayonza and 149 plots were sampled in Nyagatare.  Both sites were dominated by annual cropping 
systems, with 68% of the sampled plots in Kayonza classified as cultivated and 89% in Nyagatare. 
Other vegetation structure classes included shrubland (19% in Kayonza, 3.4% in Nyagatare), woodland 
(9.3% in Kayonza and 7.4% in Nyagatare) and grassland (3.3% in Kayonza). Mean tree density  was 525 
higher  in Nyagatare (120 tree ha-1) compared to Kayonza (68 tree ha-1). Overall this level of tree 
density is low, and the higher tree densities only occurred in woodlots of Eucalyptus spp. (Figure 1). 
Mean tree density in croplands were 57 tree ha-1 in Kayonza and 35 tree ha-1 in Nyagatare. The plots 
with higher tree density in croplands were dominated by Eucalyptus spp. In total 62 unique tree species 
were identified in the two LDSF sites. The most common species was: Eucalyptus spp.,  followed by 530 
Grevillea robusta, Euphorbia tirucalli, Ricinus communis, Mangifera indica, Carica papaya and Senna 
spectabillis (Figure 2). Differences were observed between the two LDSF sites, most notably that 
Jatropha curcas was only found in Kayonza and Senna singueana was only found in Nyagatare. (Figure 
2). In summary, 48 unique species were observed in Kayonza and 39 species in Nyagatare. This level of 
tree diversity is considered quite low, with a low occurrence of most species and low occurrence of only 535 
a few indigenous species, and a dominance of Eucalyptus spp. For example, 171 (56%) of the sampled 
plots had Eucalyptus spp., including 125 of the cropland plots (53%). 
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3.2. MIR prediction results for soil properties 

Prediction performance was good for the soil properties included in the study, including for the 
prediction of d13C, as summarised in Table 1. The prediction model performance for d13C  is similar to 
that reported by (Winowiecki et al., 2017) when predicting d13C   based on near-infrared (NIR) 565 
spectroscopy. Figure 3 shows predicted versus measured SOC and d13C, respectively, for Nyagatare and 
Kayonza, showing good model performance across a wide range of SOC and d13C, respectively.  

3.3. Soil properties and erosion prevalence 

Soil properties for top and sub soil samples for Kayonza (n= 151, 136) and Nyagatare (n= 149, 145) 
LDSF sites are presented in Table 2. Density plots for the soil variables demonstrate the variability 570 
between and within the sites (Figure 3). Overall, pH values were low across the two sites, with 
statististical differences in topsoil pH values between sites (P<0.001), mean topsoil pH in Kayonza was 
5.65 and 5.89 in Nyagatare . This level of pH can potentially limit agricultural production. Both sites 
had low overall exchangeable bases (Ca, K, Mg, Na), as 8 cmolc kg-1 is considered critically low for 
agricultural productivity. Kayonza had significantly higher clay content and lower sand content 575 
compared to Nyagatare (P<0.001). Kayonza had statistically higher topsoil OC content (20.9 g kg-1) 
compared to Nyagatare (17.3 g kg-1) (P<0.001). Figure 5 shows the relationship between sand content 
and SOC content, with SOC increasing with decreased sand content for both sites and both depths 
(Figure 4). This demonstrates the important control of inherent soil properties, i.e., sand content, on 
SOC. The same pattern was observed in each vegetation structure. However, SOC was lowest in the 580 
cropland and grassland plots compared to shrublands and woodlands (P<0.001). Average d13C was -
18.9 ‰ in Kayonza and -19.2 ‰, in Nyagatare, which indicates that these are mixed C3-C4 systems. 
We also assess the variation of stable carbon isotopes within and between the vegetation structure 
classes (Figure 6). While there are some distinctions between vegetation classes, namey more negeative 
isotope values in woodlands compared to croplands, the overlap is due to the high occurrence of 585 
Eucalyptus spp., even in cropland plots and that woodland plots were previously cultivated, resulting in 
the mixed C3-C4 signal. 
 
Kayonza had higher soil erosion prevalence with 45% of the plots considered severely eroded, 
compared to 27% of the sampled plots in Nyagatare. The dominant erosion categories were rill and 590 
sheet. Severe erosion was more prevalent in woodland (91%), shrubland and grassland (77%), 
compared to cropland (25%). This is most likely given the high prevalence of terracing in the region as 
well as the location of the cropping fields compared to woodland and bushland. For example, the 
average slope for the plots classified as cultivated was seven degrees compared to 19 degrees for the 
other vegetation classes. There was no statistical difference in SOC in severely eroded and non-severely 595 
eroded plots, however cropland plots were the dominant category across the landscape and only 24% of 
cropland plots were classified as severely eroded. 
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3.4. Saturated hydraulic conductivity  

Median topsoil field-saturated hydraulic conductivity (Kfs) in Kayonza was 76 mm h-1, whereas in 
Nyagatare it was 62 mm h-1 (Figure 7). In Kayonza, Kfs was not only higher but also more variable than 630 
in Nyagatare, with an interquartile range (upper quartile – lower quartile) of 77 mm h-1 and 42 mm h-1, 
respectively.  
 
Results from the linear mixed effects (lme) models showed that the presence of erosion and pH had both 
a significant negative effect on Kfs (P < 0.025 and P < 0.016, respectively). Topsoil OC had a nearly 635 
significant (P <0.082) positive effect on Kfs, whereas sand content had a significant negative effect (P 
<0.033).We could not assess the effect of vegetation structure on Kfs, as most of the plots where 
infiltration was measured were on cropland.  
 

3.5. Soil mapping 640 

Soil erosion prevalence was predicted with a high degree of accuracy using Landsat 8 satellite data, 
with an out-of-bag prediction (OOB) error of 14%. The OOB prediction error-rate is based on a 
bootstrap sample of about 37% of unused test observations and represents a robust assessment of 
accuracy. Further to the calculation of the OOB error-rate, the receiver operator characteristics (ROC) 
curve also indicates good model performance with the area under the ROC curve (AUC) calculated at 645 
0.86. These results are consistent with previous studies using remote sensing to predict erosion (Vågen 
et al., 2013; Vågen and Winowiecki, 2019). Given the level of accuracy, we applied the random forest 
model to Landsat 8 imagery for 2018, generating a map of soil erosion at 30-m resolution for the study 
area. Hotspots of erosion are shown in red and yellow in the map in Figure 8, representing areas where 
erosion prevalence is predicted to be over 60% in 2018, some areas also having extreme erosion 650 
(>75%). As we can see from this map, there is high spatial variability of erosion across eastern Rwanda. 
 
The prediction model performance for SOC was also good, with an R2 of 0.82 based on the OOB 
prediction results from the random forest model and testing of the prediction model on an independent 
test dataset (Figure 9). The map of SOC (Figure 10) shows high levels of variation in SOC across the 655 
study area with particularly low SOC in Nyagatare district, with the exception of wetlands along rivers 
and in forested areas in the west of the district. The map shows higher SOC in protected areas and in 
lower lying areas, including in wetlands in the eastern part of the study area.  
 

4. Discussion 660 

The LDSF was used to assess soil and land health indicators across two landscapes in eastern Rwanda. 
Both sites (Kayonza and Nyagatare). Both sites were dominated by annual cropping systems, and both 
sites had overall low tree densities and low tree diversity. Eucaltypus spp dominated both the woodland 
and cropland systems in both sites, followed by Grevillea robusta. Jatropha curcas was observed only 
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in Kayonza and Senna singueana was only observed in Kayonza. These data have important 695 
implications for restoration activities. For example tree planting is in the global spotlight as a restoration 
activity that has high potential for climate change mitigation, while providing multiple other ecosystem 
services (Bastin et al., 2019). However, the global community acknowledges that tree planting and 
reforestation must do down taking into account multiple environmental and socio-economic 
considerations. For example, prioritize appropriate areas to restore, use of natural regeneration, 700 
maximize biodiversity, among other principles (Di Sacco et al., 2021). In Rwanda, there are multiple 
tree planting campaigns funded by the government as well as within the development sector. These data 
demonstrate a real opportunity to improve tree biodiversity across the landscape, including on cultivated 
fields. While woodlands reportedly had higher SOC content compared to the other vegetation structure 
classes, woodlands also had mixed land use history, from native vegetation, to being cultivated, leading 705 
to the high variation in SOC values. These findings of low diversity are similar to those of other studies 
from other regions of Rwanda (Bucagu et al., 2013; Liyama et al., 2018), highlighting the opportunity 
for the strategic inclusion of useful and appropriate tree species that fulfill multiple ecosystem benefits, 
including the inclusion of indigenous tree species on farm. 
 710 
This paper highlights the importance of assessing key soil and land  health indicators, most notably 
SOC and soil erosion. The concept of soil health goes beyond individual indicators, and is more about 
building and maintaining a functioning soil ecosystem to provide and support multiple ecosystem 
services and functions. Lehman et al., (2020) discussed the shift of focus of soil assessments from crop 
productivity to human health, climate change adaptation and mitigation and water quality and quantity. 715 
This shift acknowledges the linkages across multiple indicators, and this information can be used to 
prioritize interventions to maximize benefits and minimize tradeoffs. 
 
For example, inherent soil properties, such as soil texture, is influenced by parent material, and while 
sand content is not sensitive to management, it does limit the ability of the soil to store or sequester 720 
carbon. In Figure 5, we show the relationship between sand content and SOC in the two LDSF sites 
included in the study. The trend of decreasing SOC with increasing sand content in these data is well 
established and has been reported in other studies using the LDSF from Tanzania (Winowiecki et al., 
2016). This relationship is related to factors such as surface area of soil mineral particles, which 
decreases with increasing sand content leaving less area that SOC can be absorbed onto. 725 
Acknowledging this influence on SOC and other key properties is important for understanding 
restoration potential in terms of soil health as well as climate change mitigation potential. 
 
The boxplots in Figure 6 show both predicted δ13C  and SOC across vegetation structure classes in the 
two LDSF sites. Generally, we see the lowest SOC contents and also higher δ13C  values in cropland, 730 
indicating SOC derived from C4 vegetation such as maize (Zea mais). In areas where SOC is derived 
from vegetation with a C3 photosynthetic pathway, such as woodlands and shrublands we also have 
higher SOC values. These results showed lowest SOC in croplands, despite wide variation, which 
indicates and opportunity to increase SOC through management practices. This is especially apparent 
when assessing the effect of soil erosion on SOC. Soil erosion prevalence was more prominent in 735 
woodland, shrubland and grassland LDSF plots in the two sites, compared to cropland plots. Indicating 
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that farmers are already managing for erosion, which is an essential first step in building soil health, 810 
including maintaining and building SOC. Seventy-six percent of cropland plots were scored as not 
having severe erosion, with 24% having severe erosion. While SOC variation in both categories 
(severely eroded and not severely eroded, there was now statistical difference in SOc content, which 
differs from other studies that found erosion to have a strong effect of SOC content and stocks (Vågen 
and Winowiecki, 2013; Leigh Winowiecki et al., 2016). Both Nyagatare and Kayonza sites had low 815 
overall soil pH and exchangeable bases. However, these data are in line with what Vågen et al. (2016) 
reported using data from 114 LDSF sites across sub-Saharan Africa (SSA), e.g., their results showed an 
overall mean of topsoil OC of 22 g kg-1, a mean pH value of 6.1 and mean sum of bases of 15 cmolckg-

1.Since very few plots were sampled under naturally vegetated, undisturbed, sites, our analysis is limited 
in terms of extending this into semi-natural systems. This was also reflected in the C3-C4 signal in the 820 
δ13C data, which mostly reflected mixed C3-C4 systems.  
This highlights the need to use multiple indicators to understand drivers of SOC dynamics, including 
interactions between plant communities, management, and inherent soil properties. 
 
Field-saturated hydraulic conductivity (Kfs) is highly variable in the two study sites, as shown in Figure 825 
7, with Nyagatare having slightly lower Kfs rates than Kayonza. SOC positively influenced Kfs, which 
is in agreement with previous findings highlighting the importance of soil organic matter for soil 
aggregation and water infiltration (Franzluebbers, 2002).Our results indicate that sand content 
influences Kfs negatively, which is counterintuitive, as coarse-textured soils tend to have higher Kfs 
compared to more fine-grained soils (Hillel, 1980; García Gutiérrez et al. 2017). However, soil 830 
hydraulic properties of soils with finer textures have been shown to be less dependent on particle size 
distribution (García Gutiérrez et al. 2017), which could partially explain our results considering that 
sand content in the plots where infiltration was measured was relatively low. It is also likely that the 
negative relationship between sand content and Kfs we have found reflects the positive effect of SOC 
on Kfs, as SOC and sand content had a strong negative relationship. On the other hand, soil pH and the 835 
presence of erosion had a negative effect on Kfs. Erosion and land degradation often lead to reduced 
soil infiltration capacity due to a decline in SOC and subsequent deterioration of soil structure (Valentin 
& Bresson,1997), which in turn can result in increased infiltration-excess overland flow and further 
erosion (Blake et al., 2018). Our findings indicate the complexity in determining hydrologic controls 
across landscapes, which is something that will need to be studied in more detail in the future. 840 
Maintaining and promoting soil hydrological functioning is critical for food and water security and to 
build resilience to climate change (Bossio et al., 2010)  (Bossio et al., 2009, Falkenmark & Rockström 
2008, Cole et al. 2008), but this is often overlooked in the discussions around restoration. Findings from 
this study highlight the importance of human-induced drivers on Kfs and, therefore, the potential to 
actively maintain and restore soil hydrological functioning.  845 
 
 
 
 
By applying a consistent indicator framework such as the LDSF, which combines systematic field 850 
measurements with innovative laboratory methods, advanced data analytics and remote sensing, we are 
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able to conduct spatial assessments of SOC, erosion and other land health indicators with high levels of 
accuracy. Such assessments and maps have applications not only for targeting of land restoration 
interventions, but also for tracking of changes overtime. For example, by mapping SOC at 30-m 
resolution, we can pick up spatial patterns related to both land management and inherent soil properties 
to identify both drivers of land degradation and land restoration potential, including SOC sequestration. 910 
 

In a case study from the Lake Kivu area of Rwanda (Akayezu et al., 2020) showed the utility of erosion 
hotspot mapping for spatial targeting of soil and water conservation measures. The results of the study 
presented here can be used in a similar manner to identify hotspots (Figure 8) within the study area 
where erosion is occurring. These hotspots can in turn be combined with spatial assessments of SOC 915 
(Figure 10) to more effectively target areas for land restoration, particularly where there is high erosion 
prevalence and low SOC. This is critically important, particularly if we consider the often high 
economic costs of restoring degraded land (Quillérou and Thomas, 2012) and the importance of land 
restoration for achieving the Sustainable Development Goals (Herrick et al., 2019). Furthermore, by 
combining spatially explicit indicators of land and soil health spatial prioritization of restoration 920 
potential based on biophysical characteristics can enable decision making (Winowiecki et al., 2018) 

 

5. Conclusions 

We demonstrate the utility of systematic, multi-scale assessments of soil and land health across 
landscapes to target and monitor ecosystem restoration interventions, including the importance of 925 
understanding the interactions between indicators. By using a robust set of soil and land health 
indicators that are consistently sampled and characterized, we are able to provide analysis and spatial 
assessments at scales relevant to smallholder farmers across. In the current study we illustrate the 
approach with examples for SOC and erosion, although additional indicators may be included to address 
the complexity of land degradation and tailor land restoration interventions that consider interactions of 930 
multiple indicators in a spatially explicit way. We  also demonstrate the importance of understanding 
both inherent and human-induced drivers of indicators such as SOC, which is critical for landscape 
restoration. We highlight the link between SOC, erosion, and hydrologic function. Using these data, we 
suggest land managers implement restoration options that reduce erosion, increase soil organic carbon 
and increase aboveground biodiversity. Doing so have the potential to reach multiple goals, includie 935 
food and nutrition security, climate change mitigation and adaption and biodiversity. We argue that 
there is an urgent need for systematic assessments of SOC, as well as aboveground biodiversity (e.g., 
tree diversity), combined with hydrologic properties and other indicators of land degradation such as 
soil erosion to effectively target interventions across landscapes. This will not only ensure that 
appropriate interventions for land restoration are implemented, but also provide the evidence base to 940 
assess their effectiveness. 
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Rwanda is one of the most progressive countries in the region in terms of acknowledging the 
importance of landscape restoration for sustainable livelihoods. It has set ambitious targets over the next 950 
decade, aiming to restore more than 76% of its land area. Given the importance of the agricultural sector 
in the country and widespread land degradation due to a combination of deforestation and unsustainable 
agricultural practices, there is a need for evidence to support the targeting of land restoration efforts, as 
well as for tracking of the effectiveness of such interventions over time. By combining systematic field 
based surveys with advances in soil spectroscopy and earth observation data, we can model and map 955 
SOC concentrations with high accuracy, allowing us to identify areas for restoration and track 
interventions over time. 
  

6. Data Availability 

 960 
All LDSF data are posted here: 
https://data.worldagroforestry.org/dataverse/icraf_soils 
 
 

7. Sample Availability 965 

All soil samples are logged and barcoded at the ICRAF Soil-Plant Spectral Diagnostics Laboratory at 
World Agroforestry (ICRAF) in Nairobi, Kenya. 
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Table 1:Prediction model performance metrics for the prediction of soil properties from MIR spectroscopy included in the study. 

Soil property R2 RMSEP 
 Training Testing Training Testing 
SOC 0.99 0.92 1.3 3.3 
d13C 0.97 0.72 0.8 1.8 
pH 0.97 0.84 0.2 0.4 
Sum of exchangeable bases 0.96 0.84 3.9 8.2 
Sand 0.98 0.84 3.1 8.9 
Clay 0.98 0.82 3.5 10.1 

 
 1195 
Table 2:  Soil properties for top and sub soil samples at the two LDSF sites (SD = standard deviation, ExBases 
is exchangeable bases) . 

Site  Depth
  

N Mean  
SOC   

SD  
SOC  

Mean 
d13C 

SD 
dC13 

Mean 
pH  

SD  
pH  

Mean 
ExBae

s 

SD 
ExBas

es 

Mean 
Sand  

SD 
Sand   

Mean 
Clay  

SD 
Clay 

 cm  g kg-1 ‰  cmolc kg-1 % 
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Kayo
nza  

0-20 151  20.9  8.83 -18.9 1.15 5.65  0.68  10.3 8.69 19.8  9.29  58.4 11.5 

  20-50  136  16.9  7.96 -18.4 1.26 5.65  0.65  10.6 9.10 19.4  9.27  60.6 11.4 

Nyaga
tare  

0-20 149  17.3  6.07  -19.2 0.92 5.89 0.54  8.74 4.80 30.0  10.2 44.5 10.5 

 20-50 145 13.3 5.49 -18.7 0.97 5.88 0.55 8.44 5.77 30.0 10.5 45.8 11.4 

 
 
 1200 

 
Figure 1: Violin plots showing the variation in tree densities across the vegetation classes at both LDSF sites. The dotted line is the 
overall median (25 tree ha-1). 
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Figure 2: Tree species across the two LDSF sites. Sixty-two different species were recorded, with low occurrence of most species, 
and few indigenous tree species. 
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 1210 
Figure 3. Predicted vs measured SOC and d13C based on MIR spectra for the two sites included in the study. 
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 1215 
Figure 4: Density plots of soil organic carbon (SOC), clay, exchangeable bases (ExBases), and pH for the top and sub soil samples 
at Kayonza and Nygatare. 
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Figure 5: Relationship between sand content and soil organic carbon (SOC) for both top and sub soil samples at Kayonza nnd 
Nyagatare LDSF sites. 1225 

 
 
 
 
 1230 
 
 
 
 
 1235 
 
 



25 
 

 
 
 1240 
 
 
 

 
 1245 
Figure 6: Boxplots of d13C values and SOC content in topsoil for each vegetation structure class. Dotted vertical lines at -22 and -
14 ‰ indicate the C3 and C4 dominated systems, respectively. The dotted line at 20 g kg-1 SOC is to indicate a threshold for 
agricultural productivity in humid areas. 
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 1255 
Figure 7: Box and violin plots of field-saturated hydraulic conductivity (Kfs) for each LDSF site. The three horizontal lines in the 
box plot show the lower quartile, the median, and the upper quartile. Whiskers extend to the outer-most data point that falls within 
1.5 box lengths. The violin plots show the distribution of the Kfs data. 
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 1265 
 
 
 
 
Figure 8: Map of soil erosion prevalence (%) predicted based on Landsat 8 satellite imagery and field data from the LDSF plots. 1270 
The two LDSF sites are also shown on map (Nyagatare in the north and Kayonza in the south), with the sampling plots shown as 
white circles.. 
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 1275 
Figure 9. Predicted vs measured SOC based on predictions made from Landsat 8 reflectance for the two study sites. The black dots 
are training data, while the red crosses show independent validation results. 
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Figure 10. Map of soil organic carbon (SOC) predicted based on Landsat 8 satellite imagery and soil data from the LDSF plots. The 1280 
two sites are also shown on map (Nyagatare in the north and Kayonza in the south), with the sampling plots shown as white circles. 
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