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Abstract. Soil infiltration is one of the key factors that has an influence on soil erosion caused by rainfall. Therefore, a well-
represented infiltration process is a necessary precondition for successful soil erosion modelling. Complex natural conditions

do not allow the full mathematical description of the infiltration process and additional calibration parameters are required. The

Green-Ampt based infiltration module in the EROSION-2D/3D model is-adjusted-by-calibration-of-the-skinfactorparameter

introduces a calibration parameter skinfactor to adjust saturated hydraulic conductivity. Previous studies provide skinfactor val-
ues for several combinations of soil and vegetation conditions. However, their accuracies are questionable and estimating the

skinfactors for other than the measured conditions yields significant uncertainties in the model results. This study presentsnew

brings together an extensive database of rainfall simulation experiments, the state-of-the-art model parametrisation method
and linear mixed effect models to statistically analyse relationshis between soil and vegetation conditions and the model

calibration parameter skinfactor. New empirically based transfer functions for skinfactor estimation thatsignificantly-impreve
significantly improving the accuracy of the infiltration module and thus the overall EROSION-2D/3D model performance —Fhe

s—are_provided in this study. Soil moisture and bulk
density were identified as the most significant predictors explaining 7982% of the skinfactor variability, followed by the soil

texture, vegetation cover and the impact of previous rainfall events. The mear-median absolute percentage error of the skin-
factor prediction was improved from +9271% using the currently available method, to 6630-34% using the presented transfer

functions—E

signifieant-improvementin-, which lead to significant decrease of error propagation into the model results compare to_the
present method. The strong logarithmic relationship observed between the calibration parameter and soil moisture however
indicates high overestimation of inifltration for dry soils by the algorithms implemented in EROSION-2D/3D and puts the
state-of-the-art parametrisation method under question. An alternative parameter optimisation method including calibration




of two Green-Ampt parameters saturated hydraulic conductivity and water potential at the wetting front was tested and
compared with the state-of-the-art mehod, which paves a new direction of future EROSION-2D/3D resutts—Afrst—validation

of real-rainfall-runoff-events-indicates-good-model performancefor events-with-a-highertotal-preeipttation-and-intensitymodel
arametrisation.

1 Introduction

Soil erosion modelling is a common and efficient approach to analyse and understand the soil erosion process and propose
solutions to minimize its impact. Therefore, development and improvement of soil erosion modelling tools are of crucial
interest among soil scientists, state land offices, or landscape architects. EROSION-2D and EROSION-3D are soil erosion
modelling tools based on the same physical descriptions of soil erosion processes on hillslopes (2D) or in catchment areas (3D)
for single rainfall events. In this paper EROSION-2D/3D shall refer to both versions, where shared algorithms are discussed.
These tools are able to predict erosion patterns, as well as deposition areas, on agricultural fields, infrastructure, and settlement
areas (von Werner, 2007). The physical based algorithms allow to apply EROSION-2D/3D under various circumstances, from
long term simulations, covering catchments of several square kilometres (Routschek et al., 2014), to short term reconstructive
simulations of small catchments (Hénsel et al., 2019).

EROSION-2D/3D includes two submodules. The first submodule is an infiltration module used to calculate infiltration
rates over time. The second submodule uses the infiltration rates to calculate excess water, surface runoff, and detachment, as
well as the transport and deposition of particles. The infiltration submodule is based on the Green-Ampt approach (Schmidt,
1996). This approach assumes a rigid, homogenous, and permanent submerged soil column, which does not usually allow the
simulation of natural conditions without additional calibration parameters or advanced algorithms. The infiltration submodule
in EROSION-2D/3D requires input parameters that can be measured or predicted with common methods (i.e., bulk density,
initial soil moisture, grain size distribution, and organic bound carbon) and the skinfactor calibration parameter, which scales
saturated hydraulic conductivity. The skinfactor can be determined from rainfall-runoff er-infiltration-experiments with the
hillslope simulation tool EROSION-2D (Michael et al., 1996). This process requires extended time and demands manual
labour, limiting the skinfactor determination to a relatively small number of combinations of soil and vegetation conditions.

Previous studies have focused on estimating skinfactors for those other than measured conditions. The studies are based on
116 rainfall experiments conducted in Saxony (Germany) between 1992 and 1995, which are published in the EROSION-3D
Catalogue of Input Parameters (Parameter Catalogue) (Michael et al., 1996). Michael et al. (1996) and von Werner (2009)
estimated the skinfactors using information on German KAS5 soil textural classes (Sponagel and Ad-hoc-Arbeitsgruppe Boden,
2005), initial soil saturation (dry or wet conditions), plant development stages, management practices, and field conditions.
All of the predictors were factorial-categorical variables. The resulting matrix of skinfactor values provides guidance for
a limited number of vegetation and soil condition combinations, which is available in the Parameter Catalogue for model
users. However, the statistical background of the matrix and the selection of the predictors were not published and are not

traceable. For other conditions, users must estimate values by themselves from the limited and incomplete matrix. Another



approach (Michael, 2000; Schlegel, 2012) was to predict skinfactors from the numeric soil input parameters of the infiltration
module (i.e., clay, silt, sand, organic carbon, bulk density, and soil moisture). Both studies used regression models to analyse
the strongest predictors for different groups of experiments according to the soil types, management practices, and moisture
conditions. The entire dataset shows the strongest correlation between the skinfactor and the bulk density, soil moisture, and
silt content, but with a low statistical significance and small correlation coefficient. Analysis of specific groups of experiments
(e.g., sandy soils and conservational management practices) exhibits better results, but are based on an insufficient number of
experiments.

For this study, an R package toolbox.e3d was developed to enable automatic and batch determination of the skinfactors
for multiple rainfall-runoff infiltration experiments. An extensive rainfall-runoff experiment database was processed by the

package, creating a sufficient amount of data to statistically analyse the relationships between the skinfactor and other param-

eters describing the soil and vegetation conditions of the experiments. The aim of this study is to improve the performance

of EROSION-2D/3D by providing easy to use transfer functions to calibrate the infiltration module of the model. This-paper

2 Data and methods
2.1 SkinfaetorInfiltration module

The infiltration submedule-model used in EROSION-2D/3D was developed by Sehmidt-(1996)-Schmidt (1996) based on the
Green- Ampt infiltration approach (Green and Ampt 1911)—wmekrmehides—&s&frphﬁeaﬂfﬁre%&1&fnﬁkf&&eﬂjafeees%b§f
e-. The following equations
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This value can be divided by density of infiltrating fluid to obtain infiltration rate as volume flow rate.

i = in o @

The penetration depth of the wetting front is the integral function of the infiltration rate divided by the fillable pore space.




Table 1. List of symbols used in infiltration model equations.

symbol  meaning unit

im infiltration rate as mass flux kgm s
iv infiltration rate as volume flow ms”!

Ksat saturated hydraulic conductivity kgm ™57
ke saturated hydraulic conductivity, adjusted by skinfactor ~ kgm™*s~"
Ying ‘matrix potential Jkg™!

Y atrix potential hPa

t time S

g gravitational constant 9.81ms"
P density of infiltrating fluid 1000 kg m ™~
oo bulk density of dry soil kgm ™
0o initial soil moisture V=%

Or residual soil moisture V=%

0s saturated soil moisture_ V=%

Af fillable pore space (Or — 6s) V=%

a,n Pparameters in Vereecken equations S
CL,SL,SA  grain size fractions of clay, silt and sand M—%
Corg content of organic carbon M-%
b,D,op  parameters in Campbell equations :

=Y &

knownas-the-skinfactor-Thisfactorisused-to-adjust-the-An approximation of this integral function is used in EROSION-2D/3D:
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Schmidt (1996) divided the wetting front in two independent fractions to derive Eq.

& 5

3)

gravitational forces and is independent from time, whereas an instationary fraction is driven by matrix potential and is reduced
Parameters matrix potential and fillable pore space in Eq. (3) are determined from soil input parameters grain size distribution,
bulk density, organic carbon content and initial water content using an estimation model by Van Genuchten (1980) in combination
with pedo-transfer-functions by Vereecken (1989).
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Because Eq.s 3 and 4 use different units for matrix potential a conversion is applied:

1
v, = Ym, - 100 (10)

0 pq

According to Schindewolf (2012) the parameters o and n were determined in model versions prior 3.14 of EROSION-2D
by,

log(a) =—2.486 +0.025 - SA — 0.351 - Copg — 2.617- 1072 - p, — 0.023 - CL (11)
logyo(n) =0.053 — 0.009: SA — 0.013: CL +0.00015 - SA2 (12)

In case the input value of soil moisture fy is higher 65 or lower 6 this value gets adjusted by EROSION-2D/3D to be in
between fr and fs.

The equations used for estimation of saturated hydraulic conductivity aceerding—to-Schindewol-and-Sehmidt2042)-as



are (compare Campbell, 1985):

ko = 0.004- <0'0p?)13> o cap(—0.069 - CL — 0.037- S1) (13)
logio(D) = % -10g(0.001) + % -10g(0.026) + % -log(1.025) (15)

whereis-
22 Skinfactor

Skinfactor in EROSION-2D/3D is a calibration factor to_the saturated hydraulic conductivity as-ealeulated-by-Campbelt

ation, is-saturated-hydraulic conductivity-adjusted by-skinfactor-and-is-skinfactor-calculated by Eq. 13.
Values
ks = Ksat - skin a7

According to (Michael, 2000) values of the skinfactor <1 reduce the infiltration rate to consider the effects of soil slaking and
crusting, as well as anthropogenic compaction. Values of the skinfactor >1 cause a positive correction of the infiltration rate,
e.g., to consider increased infiltration in macropores due to soil shrinking, biological activity, or tillage impact. Two methods of
deriving the skinfactors from rainfall-runoff experiments were established in previous studies, both yielding slightly different
values, resulting in different surface runoff rates. The first-first established method uses the skinfactor to adjust the amount of
cumulative runoff from the plot area (skinfactornor) (Michael, 2000). The second established method uses the skinfactor to
adjust a certain infiltration rate, usually the final infiltration rate at the end of the experiment (skinfactor;,s) (Schindewolf and

Schmidt, 2012).

e-We used both methods

to derive the skinfactors for the analysis. Transfer functions for the skinfactor;,s showed a better fit to the validation datasets

and are therefore presented in this study. To derive the skinfactor for each experiment, surface runoff curve is simulated b
the EROSION-3D model. Infiltration module input parameters clay, silt, sand content, bulk density, initial soil moisture and
organic carbon content measured during the experiment are entered in the model and skinfactor value is iteratively changed

until the end infiltration in case of skinfactor;,s or cumulative runoff in case of skinfactor, .. match the measured data. Fig. 1
shows the infiltration curves calculated with EROSION-2D/3D_

2.3 Rainfall-runoff data

An open database for storing, maintaining, and sharing protocols from rainfall-runoff experiments is being developed in par-

allel to this study (Devaty et al., 2020). Currently, the database contains protocols from three working groups: The Technical
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Figure 1. Modeled infiltration rates resulting from different methods of skinfactor determination. Calculated infiltration rate is limited b
rainfall intensity [0.933mm/min].

University of Freiberg, Germany (TUBAF); the Research Institute for Soil and Water Conservation, Czech Republic (RISWC);
and the Czech Technical University in Prague, Czech Republic (CTU). The database contains 464 experiments (126 from
TUBATF, including the original 116 experiments used in previous studies, 191 from RISWC, and 147 from CTU), mainly from
the central Czech Republic and the German state of Saxony. Experiments contained in the database were conducted for dif-
ferent projects and purposes. Not all experiments contain all input parameters required for skinfactor calibration, where the
methodology of data acquisition and analysis can differ between working groups. The €FU-data-denotcontain-organic-carbon
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eroston-proeess«{(Table-2?)—The-complete and consolidated dataset for statistical analysis contains 273 RISWC and TUBAF
experiments. Parameters included in the statistical analysis and respective data acquisition methods used by the working groups

are listed in Table 2.
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Table 2. Parameters included in statistical analysis for skinfactor prediction.
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2.4 Skinfactor prediction

The skinfactor-has-anearlylogarithmie distribution;with-valuesranging-determined skinfactor values range from 0.001 to 100

in the dataset. The assumption of normally distributed residuals in the linear mixed effects models used in this study is violated
when using untransformed skinfactors. Logarithmic transformation of skinfactors produces a near normal distribution for the

residuals. Therefore, this transformation was used for all skinfactor values in the statistical analysis.

To determine the transfer functions for the skinfactor, linear mixed-effect models (Galecky and Burzykowski, 2013) were

applied. All numerical soil input parameters and categorical variables used in previous studies were included in the analysis
as fixed effects. Furthermore, two nested random effects were included in the model to account for the interdependency and
hierarchy of the data. The first random effect is the working group. Results of the experiments can be affected by the use of
a specific rainfall-runoff simulator. The rainfall parameters and methodology for data acquisition differ between the working
groups (Table 2). The second random effect is the plot ID, which is nested in the working group. Both working groups usually
repeat their measurements twice on an identical plot to obtain data under the dry and wet conditions. Measurements with the

same plot ID are thus interdependent.

2.5 Model selection

s-Various models were fitted using the training-subsetexperimental
dataset. Model ORIG, with factorial predictors originally used in the Parameter Catalogue ;—(crop, management practice,

dry/wet experiment, soil texture class, plant development), was fitted to statistically evaluate the current skinfactor prediction



method available for model users (Michael et al., 1996). The dataset structures used in the Parameter Catalogue and presented
in this study are not identical; therefore, the equivalents of the predictors were used to remain as close to the Parameter Cat-
alogue approach as possible (e.g., factorial predictor plant development is not available for RISWC data; therefore, it was
substituted by the numerical variable, vegetation cover). STEPH-STEP3-represent-the-group-of- STEP1, STEP2 and STRONG
represent the models manually selected using the stepwise method from the initial model containing all factorial predictors in
the interactions with all numerical predictors. The manually controlled backward elimination approach was followed. Single
predictors with the lowest significance were continuously removed from the model while controlling for the significance of

the remaining predictors and interactions s-and the Akaike Information Criterion (AIC) (Akaike, 1987)and-the-environmentat
sensitivity-of-the—selectedpredictors. STEP1 was the most complex model, whereas STEP2 and STEP3—wereselected-by

simplifying-STRONG was selected by further elimination of least significant predictors and interactions from model STEP1 to
provide a-stitable-modet-more simple models for EROSION-2D/3D users according to their information on the study area and

available predictors. The simplest model, i.e., STRONG, contains only the two most significant predictors.

2.6 Prediction validation

Statistical-To examine statistical reliability of the fitted models was-measured-based-on-the-validation-dataset; consisting-of-the
remaining-25a 10-fold cross validation approach was followed. The experimental dataset was divided into the training subset
containing 90% of the randomly selected experiments, and validation subset, containing the remaining 10% of the experimental

used-indieators-experiments. For the training subset coefficients of the functions were determined. The validation subset was
then used to predict skinfactors. This procedure was repeated ten times assuring that each experiment was used for validation
once. For each repetition model performance was evaluated by commonly used indicators. The overall quality of the transfer

functions was calculated as average values of the indicators plus minus standard deviation. The indicators are: coefficient of
determination (R?), root mean square error (RMSE), mean and median absolute percent error (MAPE and MDAPE), and

the ratio of the RMSE and the standard deviation of the measured data STDEV s (RSR). MAPE works best if there are
no extremes or zeros in the dataset, MDAPE is independent from those values . According to (Moriasi et al., 2007), model
performance is satisfactory if RSR <0.7, good if RSR <0.6, and very good if RSR <0.5.

In the second step, an error propagation of the predicted skinfactors for surface runoff and sediment mass was analysed. Soil
and vegetation conditions from the experiments were applied on a hypothetical 400 m long and 9% steep slope. Surface runoff
and sediment mass simulated with the experimentally derived skinfactor was compared to those simulated with the skinfactors
predicted by presented models. The results were evaluated by the same indicators as in the first validaton step.
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The last step of the validation was performed on real data collected on three 40 cm * 50 cm plots equipped with rainfall
gauges, runoff trap devices, and soil moisture meters. The experimental site is situated in central Czechia (N 50° 24,41’ E
14° 39,31"). The plots were placed in a field of oilseed rape, two in the middle of the slope, one in the upper part of the
slope. During the 2017 vegetation season, six rainfall events produced runoff. However, runoff was never recorded in all three
plots, which shows high variability in the rainfall-runoff processes even within a very small area. The parameters of the events
are presented in Table 3. Each rainfall event was modelled by Erosion-3D with the skinfactor predicted by transfer functions
STEPH-3-STEP1, STEP2 and STRONG; for each function, the skinfactor was corrected by the positive and negative MAPE

error to account for the uncertainties in the predictions.

Table 3. Rainfall events used for the skinfactor validation.

date initial moisture runoff volume  precipitation max intensity  length saturation comment
[%] [ml] [mm)] [mm/5 min] [min]

05.05. 28 0-20 4.4 0.6 50 dry

14.05 27 0-100 12.8 7.4 390 dry

29.06. 24 0-160 19 1 320 dry crust

02.07. 38 0-40 32 0.4 190 wet crust + wet

11.07. 28 0-30 32 0.2 180 dry crust

15.07. 30 0-120 14 5.8 245 wet crust

Saturation dry or wet was decided according to antecedent precipitation.

3 Results
3.1 Skinfactor prediction

Five-Four models were fitted to evaluate the skinfactor estimation method given in the Parameter Catalogue and determine
new transfer functions for predicting skinfactors using the most significant predictors (Fig. 2). Table-4ists-the-Overview of the

models is presented in Table 4. For each model predictors and coefficients of the pedotransfer function are provided, together

with an evaluation of the model performance based on the validation datasetand-the-model-predictors-with-the-coefficientsfor
transferfunetion—eonstruetion. The ORIG model, fitted to the predictor equivalents from the Parameter Catalogue, has low

explanatory significance (variance explained by fixed effects R? = 6-+20.14). Only soil saturation (dry or wet experiment) is a
highly significant predictor. The new transfer functions provide significant improvement to the accuracy of skinfactor predic-
tion. Soil moisture and bulk density were determined as by far the most significant predictors (model STRONG), explaining
together 7982% of the skinfactor variability. The skinfactor increased with an increase in both of the predictors (Fig. 3). Other
significant predictors, e.g., silt content, vegetation cover, soil texture group, and soil saturation, slightly improved the model fit.
The most complex STEP1 model containing all of the significant predictors, including the interactions (see Table 4), explains
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only an additional 43% of the skinfactor variability. AH-four-STEP2 was simplified by removing factorial predictor soil texture

class, numerical predictor vegetation cover and all interactions from STEP1, STRONG contains only initial soil moisture and

bulk density.
All the new transfer functions performed well according to the interpretation of the RSR indicator by (Meriasi-et-al;-2007)-The

mean-Moriasi (2007). The median absolute percent error was between 66%-and-7230% and 34% for the new transfer functions
while it was +9271% for the ORIG function. Except MAPE which is highly prone to extremes, all indicators showed the most
are, however very small.

3.2 Errorproepagation

3.2 Error propagation

Error propagation of the predicted skinfactorfor-skinfactors to the surface runoff and sediment velume-mass simulated by
EROSION-3D was evaluated on the hypothetical 400 m long slope. Fhe-skinfactors-inputinto-Table 5 statistically compares

the model performance. Simulations with the skinfactors predicted by ORIG model produced no runoff for 24-71 out of the 64
validation-273 datasets while the skinfactors-inputinto-thenew transfer functions produced no runoff only for 1—3-datasets(Fig-

4 hara ic not-alarce-d aranca 1m tha qreear aranagation hatvwwaan oaada 3 EP and RON 1o 6 hic 1nd
N a—Targ W o—a O = :

i-moistare-and-bulk-density—3-9 datasets. The median error of

the surface runoff was 44—4634-40% while that of the sediment vetume-was52—56mass was 41-49% (for the ORIG model
these were 93-and—10078 and 95%, respectively). Errors below 100% characterised 7886% of the datasets for surface runoff
and 7082% of the datasets for sediment velumemass, whereas, for the ORIG model, these values were 50-and-4262 and
55%, respectively. Table-S-statistically-compares-the-model-performanee—STEP1 was the best performing model for both the
surface runoff and sediment volume-mass prediction (as compared with ORIG in Figs. 4 and 5). Fhe-simplest-modelError
indicates major impact of the two strongest predictors, i.e., STRONG;produced-better resultsfor-certain-metries-than-more
eomplex-modelsinitial soil moisture and bulk density and significant improvement of the model performance when interaction
with soil texture and impact of previous rainfall is considered. In general, all of the new transfer functions showed similar
error-propagation—valuessignificantly better performance than the original approach, such that they can be used to predict the

skinfactor. Theresultssuegest-thatthe simplestfunction-deesnotnecessarly-lead-to-the poores

(X}

3.3 Validation with real events

Real rainfall-runoff events were modelled using the new transfer functions. To account for the potential error in the func-
tions, each event was simulated with the predicted skinfactor and the skinfactor corrected by +MAPE error and -MAPE error.
EROSION-3D simulated no runoff for four out of six-the-the six events using all of the transfer functions. Simulations with the

skinfactor corrected by -MAPE-MAPE to increase the infiltration rate, produced no runoff for all events. Only events 14.5. and

12



Table 4. Linear mixed effects models for skinfactor prediction: model evaluation based on the validation dataset using common statistical

indicators, model variables, and their coefficients.

STEP3
ORIG STEP1 STEP2
STRONG
R 0.14£0.07 0.85£0.08
T e 0.8240.09
RMSE 2095022 088£028  +097£032  101£031
RSR 0.93+0.03 0.39+0.11 0.43+0.11
AT RS R 50
+92-14+0.52 6720.740.25
MAPE R U 0624021 0.65£024
—7678
Intercept —16-6319
—2.7909 —35.7264 —17.4628
R TR o 166
Initial soil moisture — 0:2845-0.3195  618570.1819
R T oamig
bulk density — 6:6426-0.012 6:6672-0.0072  0.0074 6:6674-
silt — 6:68470.1499  6:64580.0174  6:6495—
BTt
vegetation cover 4 —0.01 — _—
—5x 10"
—864
soil saturation- wet +5319-1.5767  —2.0971 —_
S ~0.2851
soil texture class- sandy — N
—0.9513 24.4281
04296
13-679
soil texture class- silty —0.4632 — —_——
178491
—0-+79
type of management practice- conventional tillage —0.2381 — — —_—
—0:0256
type of management practice- no tillage — — —_
ypP g8 p g QA(M
type of crop- cereals +8503-1.6397 — — —_

type of crop- erosion permitting crop
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Figure 2. Experimentally derived versus predicted skinfactors (log values) for the-selected validation dataset.
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Figure 3. The dependency of the skinfactor on the bulk density and soil moisture. Point data represent whole dataset with experimentally
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Figure 4. Surface runoff simulated with the derived skinfactor versus the ORIG skinfactor (left) and STEP1 skinfactor (right).
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Figure 5. Sediment velume-mass simulated by EROSION-3D with the experimentally derived skinfactor versus the-ORIG-skinfactor
redicted by ORIG model (left) and STEP1 skinfactor-model (right).

15.7. produced runoff (Table 3). For all of the transfer functions, the modelled runoff was within the range or close to the runoff
value recorded by the trap devices. The STRONG model simulated less runoff than the other models and only the simulations
with +MAPE-eerreetion-skinfactor decreased by MAPE produced runoff. The recorded runoff values for events 5.5., 2.7., and
11.7. are questionable, because the rainfall data had very low volume and intensity, significantly lower than the erosion causing
rainfall, as defined by (Janecek et al., 2012) (12.5 mm volume or 6 mm/15 min intensity). Event 29.6. had one of the highest
volumes, but had a relatively long duration and low intensity. While this event produced the largest runoff, as recorded by a trap
device, EROSION-3D simulated no runoff. Crust on the topsoil was recorded by field workers for the last four events, which
likely initiated runoff from the low-volume and low-intensity rainfall events. The fact that runoff was never recorded in three
trap devices during the same event shows the high natural variability of the rainfall-runoff process within a small area. More

validation datasets for testing EROSION-3D under variable soil and vegetation conditions are required to properly validate
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Figure 6. Error propagation fer-of skinfactor prediction in the surface runoff (left) and sediment vetume-mass (right), a density plot of the

percent error. Outlying experiments (error > 200%) create 6-9% of the validation experiments. Experiments with no simulated runoff is

evaluated as 100% error, which explains the significant peak in ORIG model.

the transfer functions. Validation at the field or the catchment scale is appropriate because the measured runoff data represent

average conditions, where site-to-site changes, as recorded using the trap device, are blurred.
3.4 Discussion

The joint rainfall simulation dataset of TUBAF and RISWC provides a sufficient amount of data to statistically analyse-analyze

the relationships between the skinfactor calibration parameter and commonly measured soil and vegetation parametersconditions,

as well as to derive the transfer functions for the skinfactor. It is however important to consider the spatial limitation of the
German Seibert et al. (2011
Rahmati et al. (2018)), however, all of the experiments except those made by model developers are lacking at least one of the
required input parameters.

The current skinfactor prediction method published in the Parameter Catalogue is based on easily and accurately measurable

er spatial variability exist (e.

. Other open databases of rainfall-runoff experiments covering bi

factorial variables, i.e., crop, management practice, soil saturation, development stage of vegetation, and soil texture class.

The results of
ORIG show that out of these variables only soil saturation had statistically evident influence on the skinfactor. Fhe-meost

model
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Table S. Error propagation of the skinfactor prediction models for the surface runoff and sediment velame-mass evaluated by commonly

used statistical indicators.

ORIG STEP1 STEP2 STEP3-STRONG
surface runoff prediction
no runoff simulated 2471 +3 28 39
outliers (error > 200%) 4-14 520 624 6522
R? 8470.19 6:230.3 0:22-0.2 6:230.2
RSR +6+1.58 6:98-0.92 +63-1.04 +654+67%1.09
MDAPE* 6:93-0.78 0-45-0.34 6-44-0.39 0-46-0-450.4
sediment mass prediction
RMSE 288283 +74-161 +84-181 487196
RSR +24-1.16 8-75-0.66 6-79-0.74 0.81 68
MDAPE* +0.95 8:52-0.41 6-52-0.48 8:53-6-560.49

MDAPE: median absolute percent error. The median, instead of the mean, was used because of zero runoffs and outliers.

Table 6. Runoff volume [mL] from real rainfall events, measured versus simulated with the skinfactors predicted by the new transfer func-

tions.

STEP3——sumQ
date measured sumQ STEP1 sumQ STEP2 sumQ

STRONG sumQ

0/33+4450/ 6+
14.05 0-100 0/13/122 0/13/115 -
15.07. 0-120 0/108/271 0/0/148 0/0/+43-0+40+422

Measured sumQ: min - max value measured in three trap devices. Predicted sumQ: predicted - MAPE error / predicted / predicted + MAPE error.
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This parameter distinguishes only two categories of soil saturation — dry soils (no

antecedent precipitation) and wet soils (shortly after precipitation), indicating rather impact of previous rainfall, than the soil

3

moisture itself. The relationship was explained by stability of aggregates (Michael, 2000). Dry aggregates are prone to de-

struction by enclosed air, which becomes compressed by water infiltrating into the aggregates. The smaller particles from the

destroyed aggregates then cause surface sealing and smaller skinfactors. Wet-aggregates-are-more-stable-because-theirmatrix

OVE d o 2 N-O—\\ o acnotn o h hich da e—pre a1n-the COrao o

Further studies using numerical variable initial soil moisture observed relationship of skinfactor and soil moisture correspondin

with our results. It was however again explained by state of the soil before and after rainfall. Schindewolf and Schmidt (2012)
used air trapping on a larger scale as explanation. Air trapping occurs when the wetting front enters the soil. The enclosed

soil air then hinders, to a certain extent, the infiltration. A further theoretical explanation is-was hydrophobicity, which re-

sults from hydrophobic particles (mainly organic matter) in the soil matrix. Once dried, particles are harder to rewet than

hydrophilic particles (Hallett, 2007; Seidel, 2008; Kuhnert, 2008; Schindewolf, M.; Schmidt, 2009). All of these effects would

decrease the infiltration rates for dry soils

. Our study indicates, that these theories explain

only smaller part of the skinfactor variability as the categorical soil saturation is only a weak predictor (compare models STEP1

and STRONG) and the relationship with initial soil moisture seems to be independent from dry or wet experiment conditions.

This study followed the state-of-the-art parametrisation method established with EROSION-3D and used linear mixed effect

models to find relationships between the parameter and soil and vegetation conditions. The derived pedotransfer functions
showed strong logarithmic relationship between skinfactor and soil moisture, but-nene-of-them-are—validated-in-therainfall
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overestimation of infiltration of dry soils by EROSTON-2D/3D. This arise questions regarding the used method of parametrisation.
The established approach fits infiltration curves by scaling only one of the Green-Ampt parameters - saturated hydraulic con-

ductivityand-matrix-potential—The-experimental-basis-behind-Campbell’s-modelis-unknown(Campbet;1985):, this value is

estimated by equations 13 and calibrated through skinfactor. As a consequence the parametrisation focused only to this single

parameter.

The Green-Ampt parameter water potential at the wetting front is assumed to be equal to matrix potential of the soil at

antecedent water content in EROSION-2D/3D and is calculated by equation 4. The equationsfor-the-matrixpotentialestimation

water potential at
the wetting front is however only a week function of the matrix potential when the soil is dry (Dingman, 2015). This leads to an
overestimation of the infiltration rate of dry soils, which is in turn compensated by decreasing saturated hydraulic conductivity
to extremely small values.

get better insight in the parameter fitting strategy Monte Carlo parameter optimization (Luengo et al., 2020) s tested, where
both Green-Ampt parameters saturated hydraulic conductivity and water potential at the wetting front were varied and their
optimal combination to fit measured infiltration curve were searched. Therefore 10000 randomly sampled combinations of
the parameters are modelled with EROSION-3D. The parameter combination at which the RMSE of simulated and measured
infiltration curve is the smallest represents the best found fit. The two methods are compared in Fig. 7. While the parameter
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Figure 7. Comparison of parameter fitting strategies: ks fit refers to variation of hydraulic conductivity only (state-of-art in EROSION-3D

and pf/ks fit refers to best simulation found by Monte Carlo simulation.

optimization method is able to adequately simulate the infiltration curve in its whole extent, the single parameter method

show underestimation of infiltration in whole extent in case of fitting end infiltration and underestimation at the beginning and
overestimation at the end of experiment in case of fitting cumulative runoff.

Nevertheless the parametrisation method behind this study is not optimal, the presented functions to estimate skinfactor
indicates significant improvement in the infiltration module performance in comparison with the values presented in parameter
catalog (compare results of model ORIG with the new pedotransfer functions). The validation on real data indicates good
model preformeance for rainfalls with higher intensity and volume. Model users should use the functions carefully and with
the awareness of an error introduced in the parametrisation phase. At the same time results of the study are opening a way.
for further EROSION-2D/3D development which can be approached either through the algorithms implemented in the source
code of EROSION-3D or through different method of model parametrisation. The very basic approach to optimize parameters
of the Green-Ampt approach in EROSION-3D applied in this study --which-uses-categorical-variables-ascovariables-intinear
HOac "v%- -6‘ Gcte ““S ' crenttaepenaen te O “i‘i 6‘ paramete MWW
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use of advanced parameter optimization algorithms (e.g.;
the SPOTPY package (Houska et al., 2015)).

4 Conclusion

This study aimed to increase the accuracy of the infiltration module of the EROSION-2D/3D soil erosion simulation tool by
introducing new transfer functions to estimate the skinfactor-calibration-parameter—calibration parameter adjusting saturated
hydraulic conductivity called skinfactor. The relationship of the skinfactor with soil, vegetation, and farm management param-
eters was analysed using the linear mixed effect models based on 273 rainfall-runoff experiments. The initial soil moisture and
bulk density were found to be the most important predictors, together explaining 7982% of the skinfactor variability. These
parameters are not considered in currently available prediction methods provided in (Michael et al., 1996). Other significant
predictors of-such as soil texture (i.e., the silt content and KAS soil texture group), vegetation cover and the impact of previous
rain events enly-slightly improved the skinfactor prediction. Four transfer functions with different complexities and number
of predictors to predict skinfactor were presented, such that the users can make a selection according to the available data
in their study area. The proposed transfer functions present significant irereases-increase in the skinfactor prediction accu-
racy, as compared with currently available methods (decrease in the MAPE-errorfrom192-t0-66—72MDAPE error from 71 to
30-34%). Error propagation of the estimated skinfactors indicates substantial improvements to surface runoff and soil loss sim-

ulations. f

ity—The strong logarithmic relationshi
of skinfactor with soil moisture however indicates a suboptimal method of model parametrisation and paves a direction of
further EROSION-2D/3D model development promising further improvement in the infiltration model accurac
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