

1 **Combining colour parameters and geochemical tracers to improve sediment source discrimination**
2 **in a mining catchment (New Caledonia, South Pacific Islands)**

3 Virginie Sellier¹ • Oldrich Navratil² • John Patrick Laceby³ • Cédric Legout⁴ • Anthony Foucher¹ •
4 Michel Allenbach⁵ • Irène Lefèvre¹ • Olivier Evrard¹

5 ¹Laboratoire des Sciences du Climat et de l'Environnement (LSCE), UMR 8212 (CEA/CNRS/UVSQ-IPSL),
6 Université Paris-Saclay, Gif-sur-Yvette (France)

7 ² Laboratoire Environnement Ville Société (EVS), Université Lumière Lyon 2, UMR 5600 (CNRS), Lyon
8 (France)

9 ³ Alberta Environment and Parks, Calgary, Alberta (Canada)

10 ⁴Institut des Géosciences de l'Environnement (IGE), UMR 5001, Grenoble (France)

11 ⁵LIVE-EA 4243, Université de Nouvelle-Calédonie & LABEX Corail, Nouméa (Nouvelle-Calédonie,
12 France)

13 **Corresponding author:** selliervirg@free.fr ; Tel: (33)673910072

14 **Abstract**

15 Tracing the origin of sediment is needed to improve our knowledge of hydro-sedimentary
16 dynamics at the catchment scale. Several fingerprinting approaches have been developed to provide
17 this crucial information. In particular, spectroscopy provides a rapid, inexpensive and non-destructive
18 alternative technique to the conventional analysis of the geochemical properties. Here, we
19 investigated the performance of four multi-proxy approaches based on (1) colour parameters, (2)
20 geochemical properties, (3) colour parameters coupled with geochemical properties and (4) the
21 entire visible spectrum to discriminate sediment source contributions in a mining catchment of New
22 Caledonia. This French archipelago located in the south-west Pacific Ocean is the world's sixth-largest
23 producer of nickel. Open-cast nickel mining increases soil degradation and the downstream transfer
24 of sediments in river systems, leading to the river system siltation. The sediment sources considered
25 in the current research were therefore sediment eroded from mining sub-catchments and non-
26 mining sub-catchments. To this end, sediment deposited during two cyclonic events (i.e. 2015 and
27 2017) was collected following a tributary design approach in one of the first areas exploited for nickel
28 mining on the archipelago, the Thio River catchment (397 km²). Source (n= 24) and river sediment
29 (n= 19) samples were analyzed by X-ray fluorescence and spectroscopy in the visible spectra (i.e. 365-
30 735 nm). The results demonstrated that the individual sediment tracing methods based on
31 spectroscopy measurements (i.e. (1) and (4)) were not able to discriminate sources. On the contrary,
32 the geochemical approach (2) did discriminate sources with 83.1 % of variance in sources explained.
33 However, it is the inclusion of colour properties in addition to geochemical parameters (3) which
34 provides the strongest discrimination between sources with 92.6 % of source variance explained. For
35 each of these approaches (2) and (3), the associated fingerprinting properties were used in an
36 optimized mixing model. The predictive performance of the models was validated through tests with
37 artificial mixture samples, i.e. where the proportions of the sources were known beforehand.
38 Although with a slightly lower discrimination potential, the 'geochemistry' model (2) provided similar
39 predictions of sediment contributions to those obtained with the coupled 'colour + geochemistry'

40 model (3). Indeed, the 'geochemistry' model (2) showed that mining tributary contributions
41 dominated the sediments inputs with a mean contribution of $68 \pm 25\%$ for the 2015 flood event
42 whereas the 'colour + geochemistry' model (3) estimated that the mining tributaries contributed $65 \pm 27\%$. In a similar way, the contributions of mining tributaries were evaluated to $83 \pm 8\%$ by the
43 'geochemistry' model (2) versus $88 \pm 8\%$ by the 'colour + geochemistry' model (3) for the 2017 flood
44 event. Therefore, the use of these approaches based on geochemical properties only (2) or those
45 coupled to colour parameters (3) were shown to improve source discrimination and to reduce
46 uncertainties associated with sediment source apportionment. These techniques could be extended
47 to other mining catchments of New Caledonia but also to other similar nickel mining areas around
48 the world.

50

51 **Keywords:** Nickel mining • Sediment source fingerprinting • Soil erosion • Modeling

52

53 **1. Introduction**

54 At the dawn of a fourth industrial revolution, demand for metalliferous minerals continues to
55 increase and impact the world market (Prior et al., 2013; Highley et al., 2004). Currently, open-cast
56 mining generates more than three-quarters of the world's metal ores. However, the extraction of
57 these minerals is associated with deleterious impacts on the environment. In particular, these mines
58 are responsible for the increase in soil erosion and the accelerated transfer of sediment in the river
59 systems. Indeed, bare soil areas generated by mining activities including exploitation sites,
60 prospection areas and access roads significantly increase runoff production (Yellishetty et al.,
61 2013; Dumas et al., 2010; Abel et al., 2000). Moreover, the extraction of mineral ore is accompanied
62 by a sharp production of mining wastes. Until the 1980s, no environmental regulation had been
63 implemented to store this mining waste, and it was dumped directly onto the mountain slopes
64 (Valette-Silver, 1993). Currently, this legacy mining waste provides an active source of sediment as it
65 can progressively be remobilized (Coulthard and Macklin, 2003; James, 2013).

66 New Caledonia, an island located in the south-western Pacific Ocean and currently the world's sixth-
67 largest producer of nickel, is in particular challenged with the problems of siltation of its river
68 systems. Several studies outline how mining activities, which started in 1875, are generally
69 responsible for these river morphological changes (Bird et al., 1984; Iltis, 1992; Garcin et al., 2017). In
70 this case, excessive inputs of fine and coarse sediment triggered mainly during extreme rainfall
71 events (e.g. cyclones and tropical depressions) have led to the disturbance of the sediment cascade
72 in the river systems. A raising and widening of the riverbed has in particular been observed in the
73 New Caledonian river systems by Garcin et al. (2017), leading to the increased occurrence of flooding
74 events in these tropical regions. Owing to the occurrence of major cyclones in New Caledonia (i.e. on
75 average one cyclone every 2.7 years (Garcin, 2010)), the local population regularly has to deal with
76 the damage generated by these flood events: damage to human settlements, public infrastructure,
77 agricultural land and human casualties. Moreover, suspended sediment is known to transport large

78 quantities of contaminants in river systems (Kumar and Maiti, 2015; Priadi et al., 2011; Varol, 2011).
79 Hedouin et al. (2007), and more recently Baudrimont et al. (2019), observed high concentrations of
80 trace metals, including Ni and Cr, in marine and freshwater organisms in New Caledonia. These
81 observations raise many questions about the health impact of mining activities on the populations
82 who eat a lot of fish. On a more global level, this anthropogenic activity also threatens the second
83 largest coral reef in the world, listed as a UNESCO World Heritage site (Davis and Fox, 2009). In
84 particular, the increased turbidity associated with sediment supply could disrupt coral metabolism
85 (i.e. photosynthetic processes) (Juillot, 2019). These coral reefs provide an exceptional biological
86 diversity and deliver several essential ecosystem services to the local population including fisheries,
87 coastal protection and tourism (Pascal, 2010). The implementation of effective and long-term
88 sediment control measures on mining sites (e.g. sediment retention basin, revegetation) is therefore
89 required to reduce sediment inputs into the lagoon. At this end, quantifying the sediment source
90 contributions from mining activities becomes particularly important as the mining industries are
91 subject to the "polluter pays" principle applied since 1975, i.e. the obligation to fund remediation
92 according to the extent of the damage generated by mining activity on the environment (Clarke and
93 David, 2010). Discriminating between sediment sources generated by mining activities and other
94 potential sediment sources is therefore a real social, environmental, political and financial challenge
95 in New Caledonia.

96 Indeed, other sediment sources that are not associated with mining activities as deforestation,
97 farming, pasture may contribute to sediment inputs in river systems. The use of fires to clear
98 landscapes also increases the area of bare soils (Dumas et al., 2010). Moreover, several invasive
99 species such as deers or wild pigs threaten soil stability through trampling and overgrazing (Shellberg
100 et al., 2010). Soils that are left uncovered with vegetation are more sensitive to erosion and they
101 may be exposed to landslides (Blake et al., 2009; Smith et al., 2011).

102 Sediment fingerprinting techniques have been developed since the 1970s to determine the
103 spatial origin of sediment sources and quantify their contributions (Klages and Hsieh, 1975; Walling et
104 al., 1979; Brown, 1985). These techniques are based on the analysis of multiple conservative
105 properties both in the sediments and their potential sources. The properties must necessarily be
106 conservative, i.e. the ranges of variation of these properties in the river material have to be
107 predictable based on those measured in the sediment sources. The ability of one or more of these
108 properties to discriminate between sources then allows to estimate the relative contribution of each
109 source through the use of a mixing model (Collins and Walling, 2002). Fallout radionuclides
110 (Wallbrink, 2004; Evrard et al., 2015; Wallbrink et al., 1998; Evrard et al., 2020), geochemical (Laceby
111 and Olley, 2015; Batista et al., 2018) and mineral properties (Gruszowski et al., 2003; Motha et al.,
112 2004) are the most frequently used tracers to quantify sediment source contributions. The use of
113 fallout radionuclides and geochemical properties as potential tracers was investigated to quantify the
114 sources of suspended sediment in the Thio River catchment (397 km²), one of the first catchments in
115 New Caledonia to be mined for nickel. Fallout radionuclides proved to be unsuitable (i.e. non-
116 discriminatory) while geochemical properties provided promising results, i.e. 83.1 % of variance
117 explained in sources (Sellier et al., 2019). The discrimination offered by geochemical properties was
118 particularly explained by the differences in geochemical composition outlined by Sevin (2014)
119 between the two dominant lithologies found in the archipelago: volcano-sedimentary formations
120 covering two thirds of the archipelago and peridotite massifs covering the remaining third where
121 mining activities are located. Mining erosion dominates 95% of eroded areas identified on peridotite
122 massifs of the Thio River catchment according to the remote sensing study carried out by Garcin et
123 al. (2017). As a result, using geochemical properties is effective to indirectly quantify the sediment
124 contributions from mining activities and from areas devoid of mining activities. In this case, K
125 provides a straightforward tracer to discriminate the sediment sources (Sellier et al., 2019). Indeed,
126 volcano-sedimentary rock formations naturally contain high K elemental contents whereas peridotite
127 massifs are depleted in this element in New Caledonia (Sevin, 2014). Although these initial study

128 results were very promising, other less expensive, faster and possibly more efficient techniques than
129 the more conventional methods previously tested could be envisaged. For example, spectroscopy in
130 the mid-infrared (MIR) (Poulenard et al., 2009), the visible near-infrared (VNIR) and the shortwave-
131 infrared (SWIR) (Brosinsky et al., 2014) spectra have been used to quantify the sediment source
132 contributions. Spectroscopy is also non-destructive and requires low quantities of sample material.
133 Spectroscopy could therefore meet both the need for a simple, inexpensive, fast and portable
134 sediment tracing method in a context where flood events are frequent. This analysis technique could
135 also be more easily transferred to local populations so that they can carry out long-term
136 environmental monitoring of sedimentary contributions themselves.

137 Moreover, the geological specificity of the archipelago provides a strong contrast in terms of
138 soil colours observed either on the peridotite massifs or on the volcano-sedimentary formation rocks
139 and by extension, on the eroded sediments derived from these soils. On the one hand, the
140 weathering of peridotite massifs naturally enriched in Fe and transition metals such as Mn, Ni, Cr and
141 Co results in the formation of laterite profile composed of peridotites, saprolites, yellow laterites and
142 red laterites (from the bottom to the top). Hypermagnesian and ferrallitic ferritic soils that are rich in
143 goethite and hematite and that formed on the surface provide a particularly reddish-orange colour to
144 sediment derived from these exploited soils (i.e. mining sources, Figure 1) (Quantin et al.,
145 1997; Trescases, 1973). On the other hand, the weathering of volcano-sedimentary formation rocks
146 generates the formation of altered horizons rich in goethite and clay horizons rich in kaolinite (from
147 the bottom to the top) (Denis, 1988). The eroded sediment derived from fersiallitic soils formed on
148 the surface is characterized by a yellow-grey colour (Figure 1). The differences made visually between
149 the two sources further encourage the analysis of sources by spectroscopy and especially
150 spectroscopy in the visible region of the spectrum (i.e. 365-735 nm). In particular, the colorimetric
151 parameters derived from the visible spectrum have been shown to be effective in discriminating
152 sediment sources. Their discrimination power has been tested both individually (Evrard et al.,
153 2019; Martínez-Carreras et al., 2010; Uber et al., 2019) and in combination with other tracers (e.g.

154 geochemical properties (Tiecher et al., 2015)) according to the conventional fingerprinting approach
155 (i.e. statistical analysis and use of a mixing model) (Collins et al., 1996). A more alternative approach
156 based on the entire visible spectrum with the partial least square regression (PLSR) models has also
157 been developed to trace origin of sediment sources in the literature (Legout et al., 2013; Tiecher et
158 al., 2015).

159

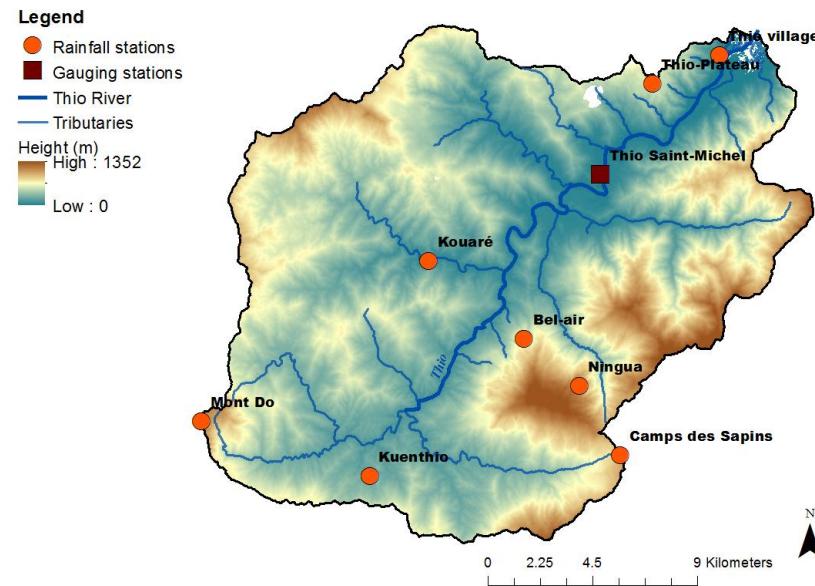
160 **Figure 1** Photographs of river material deposited on the channel banks of a mining tributary (left) and a
161 non-mining tributary (right) in the Thio River catchment

162 As part of this study, four sediment fingerprinting methods based on (1) colour parameters, (2)
163 geochemical properties, (3) colour parameters coupled with geochemical properties and (4) PLSR
164 models based on the whole visible spectrum were tested in the Thio River catchment. A tributary
165 design approach was implemented to trace the origin of sediments, i.e. sediment samples collected
166 on different tributaries were used as potential sources of the river sediment collected further
167 downstream on the Thio River (Laceby et al., 2017). Source (n=24) and river sediment (n=19) samples
168 were collected and analyzed by X-ray fluorescence and spectroscopy in the visible spectra (i.e. 365-
169 735 nm). For each of these sediment fingerprinting methods, the associated potential tracing
170 properties were used in an optimized mixing model. Tests with artificial mixture samples, i.e. where
171 the proportions of the sources were known beforehand were carried out to evaluate the predictive
172 performance of each model in order to select the best technique to be applied in the Thio River
173 catchment and possibly in other mining catchments of New Caledonia.

2.1 Study area

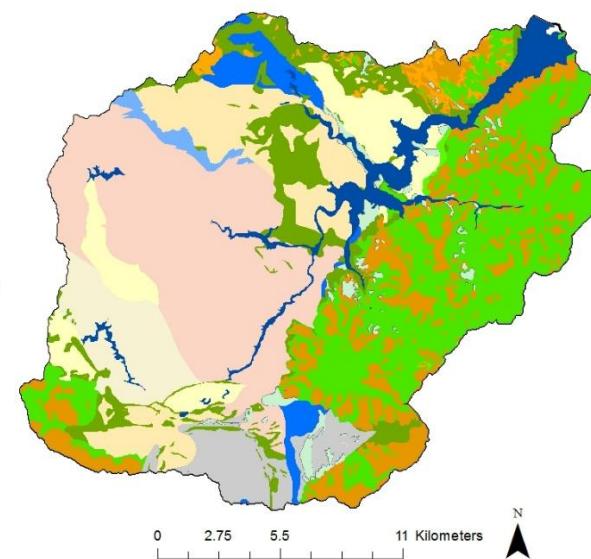
176 Located in the southwestern Pacific Ocean, New Caledonia (18 500 km²) is made up of
177 several islands, the largest of which is *La Grande Terre* (17 000 km²). The Thio River catchment (397
178 km²) is located on the east coast of this island (Figure 2-a). It has a mountainous relief, with an
179 average altitude of 416 m above sea level (i.e. minimum: 0 m, maximum: 1392 m, Figure 2-a) and an
180 average slope of 45%. Two dominant lithologies are present in the catchment: volcano-sedimentary
181 formations mainly located on the western part of the catchment and peridotite massifs concentrated
182 in the eastern part of the catchment. Cherts (22 %), sandstone (9 %), a mix of basalt, dolerite and
183 gabbro (6 %), polymetamorphic rocks (6 %) mainly constitute volcano-sedimentary formations
184 whereas peridotite massifs are composed of laterites (18 %), peridotites (17 %), serpentines (10 %)
185 and hazburgites (1 %) (Garcin et al., 2017) (Figure 2-b). The rock formation of these lithologies plays a
186 key role in determining their degree of soil erodibility. In this case, Dumas (2010) described that
187 volcano-sedimentary formations are less sensitive to soil erosion than peridotite massifs. Indeed,
188 rocks from volcano-sedimentary formations such as basalts and cherts provide a certain resistance to
189 erosion whereas laterites at the top of the profile are extremely sensitive to erosion processes, which
190 explains why most forms of concentrated erosion (e.g. gullies, rills) and mass movements are mainly
191 observed on peridotite massifs (Figure 3). However, the permanent vegetation covering 96% of the
192 Thio River catchment surface offers a relative protection against soil erosion across the catchment.
193 Peridotite massifs naturally enriched in heavy metals have a low soil fertility, which explains why
194 farming or pasture activities are not implemented on these soils (Quantin et al., 1997). Peridotite
195 massifs have been exploited exclusively for their nickel resources since 1875. According to the mining
196 registry, active and abandoned mining sites and exploration cover 21 % of the catchment area (Figure
197 2-c).
198

199 The Thio River catchment is subject to a tropical climate characterized by the alternation of a
200 hot wet season (November-April; mean temperature of 27 °C) and a cooler dry season (May-October;
201 mean temperature of 20 °C). The mean annual rainfall in the Thio River catchment is 1620 mm
202 despite strong seasonal fluctuations with the highest levels of precipitation recorded during the
203 cyclonic season between January and March (700 mm, 1981-2008; Alric (2009)). Although they only
204 occur on average once every 2.7 years, cyclones or tropical depressions may supply more than 20 %
205 of the annual rainfall in only one day according to local meteorological records (Météo France).

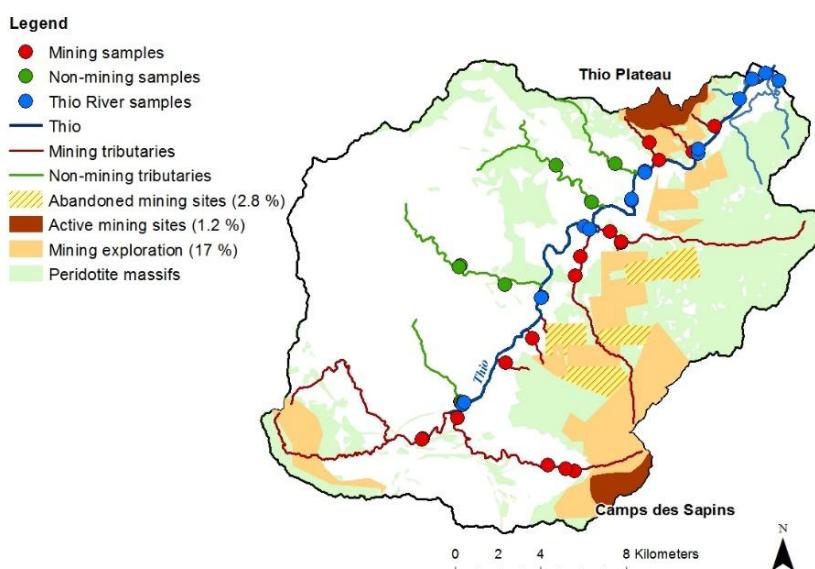

206

207 Twelve major tributaries flow into the main stem of the Thio River (28 km long) (Figure 2-a).
208 Ninety-two percent of the river channel length are characterized with slopes lower than 5 %.
209 According to Surell's classification (1841), the Thio River can be considered as torrential except in its
210 estuarine section. In addition, the longitudinal connectivity is exacerbated by the 8 km² of bare soils
211 associated with past mining activities (~10 sites), ongoing mining operations (e.g. 2 sites: Thio
212 Plateau, Camps des Sapins, Figure 2-c) and the occurrence of 6 km² of mining roads. Bare soil areas
213 increase soil erosion processes on peridotites massifs, which once initiated, are difficult to contain
214 (Figure 3). Heavy rainfall and the associated runoff exacerbate the widespread occurrence of rills,
215 gullies, landslides (Danloux and Laganier, 1991), thus contributing to connect the sediment sources
216 to the tributaries and consequently to the main river (Figure 3). For low intensity floods (i.e. <200
217 m³.s⁻¹), a strong remobilization of sediments in New Caledonian river systems has been observed
218 (Allenbach et al., 2020), thereby indicating that a lateral connectivity occurs in the Thio River
219 catchment through the occurrence of channel bank erosion.

220


221

a.



222

b.

c.

Figure 2 Location of the rainfall and river monitoring stations (a), main lithologies (b) and location of the sediment samples collected along with tributary source classifications (c) conducted in the Thio River catchment, New Caledonia

223

224

225 **Figure 3** Photographs of concentrated erosion and mass movement processes observed on peridotite
226 massifs of the Thio River catchment

227 **2.2 Hydro-sedimentary monitoring**

228 Three rainfall stations (Thio Plateau, Thio village, Camps des Sapins; Figure 2-a) are operated
229 by Météo France and five others are managed by the DAVAR (Direction des Affaires Vétérinaires
230 Alimentaires et Rurales; i.e. Kouaré, Bel-Air, Ningua, Kuenthio, Mont Do), with daily records available
231 since 1952 for some stations (e.g. Thio village). Daily discharge has been monitored at a river gauging
232 station located on the main stem of the Thio River (at Saint-Michel) since 1981 by the DAVAR (Figure
233 2-a).

234 **2.3 Sources and river sediment sampling**

235 In this study, two extreme events were investigated: Cyclone Murcia on February 25, 2015 and
236 Cyclone Cook on April 10, 2017. These cyclones respectively contributed to 7 % of annual rainfall in
237 2015 and 25 % in 2017. They generated floods with a return period of 10 years (i.e. $3500 \text{ m}^3 \cdot \text{s}^{-1}$). To
238 trace the origin of sediment, lag deposits were collected as an alternative of suspended sediment
239 sampling on channel bars of mining tributaries (n= 16), non-mining tributaries (n= 8) and the Thio

240 River (n= 19) according to the tributary design approach recommended by Laceby et al. (2017)
241 (Figure 2-c). Lag deposits were sampled after the two major floods generated by Cyclone Murcia (n= 31)
242 and Cyclone Cook (n= 12). These two sample sets were respectively sampled between April 30
243 and May 5, 2015 and between May 16 and 17, 2017. At each sampling site, five to ten subsamples of
244 fine sediment were collected depending on the amount of observed sedimentary material. They
245 were sampled across a 10 m² surface with a plastic trowel at exposed subaerial sites free of
246 vegetation on channel bars. The subsamples were composited into one sample representative of the
247 fine sediment deposited on the channel bars. The samples were oven-dried at 40 °C for ~48 hours.
248 Particle size selectivity may occur during the erosion, transport and deposition processes inducing an
249 overall finer particle size distribution in the river material compared to the sources. This selectivity
250 can lead to a non-conservation of the fingerprinting properties. For example, certain properties are
251 preferentially contained in a given particle size fraction which can create a relative enrichment or
252 conversely a relative depletion of these properties in the river material according to the particle size
253 fraction analyzed. In order to avoid this particle size effect, river sediment and source samples were
254 sieved to 63 µm, which is the most commonly used fraction in sediment tracing research (Owens and
255 Walling, 2002; Navratil et al., 2012).

256 **2.4 Preparation of artificial mixture samples**

257 Equal quantities of all mining tributary samples (0.4 g for each sample, n= 16) were mixed
258 together to create a composite sample which would have an overall geochemical and colour
259 signature of the mining sources in the Thio River catchment (i.e. 'Mining source' pole). The same
260 process was carried out with non-mining tributary samples (0.4 g for each sample, n= 8, 'Non-mining
261 source' pole). 'Mining source' and 'Non-mining source' pole samples were then mixed in known
262 proportions to create artificial mixture samples (n= 21, 0-100 % with a 5 % step, Table 1).

263

264 **Table 1** Proportions of mining and non-mining sources (%) in artificial mixture samples (M_i). $M6$ was
 265 withdrawn from this study because an error occurred at the time of its completion (not consider in the study).

M_i	Proportions of 'mining source' pole (%)	Proportions of 'non-mining source' pole (%)
M1	0	100
M2	5	95
M3	10	90
M4	15	85
M5	20	80
M6	25	75
	<i>(not consider in the study)</i>	
M7	30	70
M8	35	65
M9	40	60
M10	45	55
M11	50	50
M12	55	45
M13	60	40
M14	65	35
M15	70	30
M16	75	25
M17	80	20
M18	85	15
M19	90	10
M20	95	5
M21	100	0

266

267 **2.5 Source, river sediment and artificial mixture sample analyses**

268 Spectroscopy measurement in the visible (i.e. 365-735 nm) were carried out with a portable
 269 diffuse reflectance spectrophotometer (Konica Minolta 2600d) at the Institut des Géosciences de
 270 l'Environnement (IGE, Grenoble, France). To this end, between 0.1 g and 4 g of Thio River sediment
 271 (n= 19), source (n= 16) and artificial mixture samples (n= 20) were stored in 60 mL polystyrene tubes.
 272 In order to perform the analyses, the spectrophotometer was installed on a flat surface with the
 273 measuring window facing upwards. The tubes were then placed on the 3-mm radius circle measuring
 274 cell. Because of the rather small measuring area, and to take into account the possible heterogeneity
 275 within the samples, three measurements were carried out on river sediment and sources samples for
 276 each tube. For artificial mixture samples, the experimenter who conducted the analyses performed

277 four measurements. Spectral reflectances were measured between 365 nm and 735 nm with a 10-
278 nm resolution. Several parameters were applied for each measurement: D65 illuminant, 10° angle
279 observer and specular component excluded. Raw data collected corresponds to the spectral
280 reflectance percentage for each of the 39-wavelength classes. From these raw data, 15 variables of
281 various colorimetry models were derived. Among these components, XYZ tri-stimulus values were
282 calculated based on the colour-matching functions defined by the International Commission on
283 Illumination (CIE 1931). The standardized tri-stimuli were then converted into CIELab and CIELu'v'
284 cartesian coordinate systems using the equations provided by CIE (1976) and then into CIELch,
285 CIEL*a*b* cartesian coordinate systems using the equations provided by CIE (1994) (Rossel et al.,
286 2006). First Derivative reflectance of the Visible Spectra (FDVS) of each sample was also derived from
287 the initial reflectance spectrum. According to Tiecher et al. (2015), the use of FDVS avoids differences
288 in baseline positions and allows to get rid of the small differences due to uncontrolled sources of
289 variation, as sample packaging. A zero and a white calibration were performed before each set of
290 measurements. In addition, and in order to evaluate a potential drift of the device's signal, control
291 measurements were carried with red, green, yellow panels and three contrasted sediment samples
292 before and after each set of measurements.

293 Measurements of 11 geochemical elements (i.e. Mg, Al, Si, K, Ca, Ti, Cr, Mn, Fe, Ni and Zn) on
294 the samples were conducted by pre-calibrated energy dispersive X-ray fluorescence spectrometry
295 (Epsilon 3, Malvern PANalytical) with certified reference samples including Internal Atomic Energy
296 Agency (IAEA) standards. Correlations between the determined and the standard elemental contents
297 were comprised between 0.90 and 0.99. The associated mean relative error was 9 % (SD 8 %).
298 Between 0.2 and 0.5 g of the samples were packed in small mass holder (SMH) cells with an air
299 double X-ray Mylar film and analyzed at the Laboratoire des Sciences du Climat et de
300 l'Environnement (LSCE, Gif-sur-Yvette, France). Samples were irradiated with a primary beam
301 generated by an Rh anode X-ray tube emitting electromagnetic waves between 100 eV and 1 MeV
302 with a maximum power, typical current and voltage fixed to 15 W, 3 mA and 50 kV respectively. The

303 associated Si-drift detector had a Be window thickness of 8 μm and recorded the sample spectrum in
304 a 2D optical geometry configuration. X-ray intensities were converted into concentrations using the
305 Epsilon 3 software program through the application of the fundamental parameters method.

306 **2.6 Statistical analysis and sediment tracing**

307 **2.6.1. Conventional mixing model**

308 In general, the sediment source fingerprinting approach is composed of four main steps: (1)
309 range test, (2) the Mann-Whitney U test, (3) a stepwise discriminant function analysis and (4) a
310 mixing model (Collins et al., 1996; Laceby and Olley, 2015). For the range test, all variables exhibiting
311 values in the river sediment samples that were outside of the range found in the potential sources
312 (i.e. between the minimum and maximum values found in source samples) were excluded from the
313 analysis. It is important to restrict the tracing parameters to those that show a conservative behavior
314 to avoid incorrect source prediction and consequently inaccurate estimations of source contributions
315 (Sherriff et al., 2015). Thereafter, the Mann-Whitney U test ($\alpha= 0.05$, p-value <0.01) was performed
316 to evaluate whether conservative variables could discriminate mining tributary samples versus non-
317 mining tributary samples. A stepwise discriminant function analysis (DFA) was independently run on
318 three sets of potential tracing properties: (1) colour parameters (i.e. 'colour'), (2) geochemical
319 properties (i.e. 'geochemistry') and (3) colour parameters and geochemical properties (i.e. 'colour +
320 geochemistry'). For the last set, the raw values of the variables were normalized in order to make
321 them comparable. Indeed, several colour parameters were within an order of magnitude of around
322 0.01 whereas for the geochemical parameters the difference was around 10^6 mg kg^{-1} which resulted
323 in a poorly conditioned matrix for the DFA.

324 The following calculation was therefore applied on the variable values to normalize them: $x_i -$
325 $x_{\min} / x_{\max} - x_{\min}$ where x_i was value found in source sample (i), x_{\min} and x_{\max} were respectively the
326 minimum and maximum values found in the source samples. The DFA was carried out to select the

327 optimal number of potential tracers to discriminate the sources for each modelling approach with
328 the optimal number of potential tracers which must provide the lowest Wilks' lambda value from
329 analysis of variance. Indeed, the closer the Wilks' lambda value is to 1, the lower the variability within
330 the sources compared to the total variability. The DFA was performed in the backward mode with a p
331 >0.01 used to select a tracer and p <0.01 used to remove a tracer. The *Statistica* software was used
332 to carry out the DFA because it has the advantage of automatically identifying and eliminating
333 collinear variables.

334 Finally, a classical solver-based mixing model was used to model the source contributions from
335 the mining and non-mining tributaries to target sediment through simultaneously minimizing the
336 mixing model difference (MMD) (Evrard et al., 2019):

$$MMD = \sum_{i=1}^n ((C_i - (A_i x + B_i(1 - x))/C_i)) \quad \text{Equation 1}$$

337 where n is the number of parameters in the model chosen by the selection process (i.e. steps 1, 2, 3);
338 C_i is the Thio River sediment sample parameter (i); x and (1-x) were respectively the contributions of
339 source A and B (i.e. mining and non-mining tributaries); A_i is the mean of parameter (i) in source A
340 and B_i is the mean of parameter (i) in source B. The proportional contribution from each source (x)
341 was modelled by solving Equation 1 with the Solver Function in Microsoft Excel with x being between
342 0 and 1 and the sum of source contributions (i.e. x and 1-x) equaling 1. The GRG Non-Linear solving
343 method was used with automatic scaling in Solver, ignoring integer constraints, with a maximum run
344 time of 5000 and allowing for 2500 iterations. For each of the 2500 iterations, the values of the
345 variables were determined randomly with respect to their initially fixed ranges of values. A constraint
346 precision and convergence of $1.0 \cdot 10^{-6}$ were selected for each of the model runs. To test the reliability
347 of the 'colour', 'geochemistry' and 'colour + geochemistry' models, these latter were tested on
348 artificial mixture samples.

349 2.6.2.FDVS- PLSR model

350 FDVS-PLSR models were built following the methodology described in Poulenard et al. (2012).
351 The first step consisted in applying a principal component analysis (PCA) to evaluate the overall
352 variability between FDVS (i.e. 38-wavelength class) of source samples. Subsequently, a discriminant
353 analysis (DA) was conducted based on the PCA scores. The purpose of this analysis was to compare
354 the Mahalanobis distance between sources samples and to determine if FDVS of source samples
355 could discriminate the sources. Relationships between FDVS (x variate) and the corresponding weight
356 contribution of the sediment source data sets (y variate) were analyzed using PLSR. The PLSR models
357 were carried out based on the component set providing the lowest predictive error (PRESS, option on
358 XLStat software). Two independent PLSR models were built to estimate the two sediment source
359 contributions. As the artificial mixtures were measured four times by spectroscopy, 84 FDVS of
360 artificial mixture samples were generated including 50 values that were randomly selected to build
361 the models (training set (ST)) and 34 to validate the models (validation set (SV)). The SV:ST ratio used
362 was approximately 1:2, which is in agreement with recommendations provided in the literature
363 (Daszykowski et al., 2002). To evaluate the performance of PLSR models, several indicators such as
364 coefficient of linear regression (r^2), root mean square error of calibration (RMSEC) and root mean
365 square error of prediction (RMSEP) values were calculated. Unlike the conventional fingerprinting
366 approach, the estimated contributions of sources were not limited to be in the range of 0 % and 100
367 %. In a similar way, the sum of source contributions was not constrained to be equal to 100 %. As a
368 result, another way to control the reliability of predictions was to sum the prediction proportions of
369 both models (Legout et al., 2013). FDVS of river sediment samples were then introduced into these
370 PLSR models to estimate the contribution of sediment sources.

371

3. Results

372

3.1 Source description

373

The ranges of values of all colour parameters measured in the Thio River sediment samples

374

systematically plotted within the range of values observed in the two potential sources (i.e. mining

375

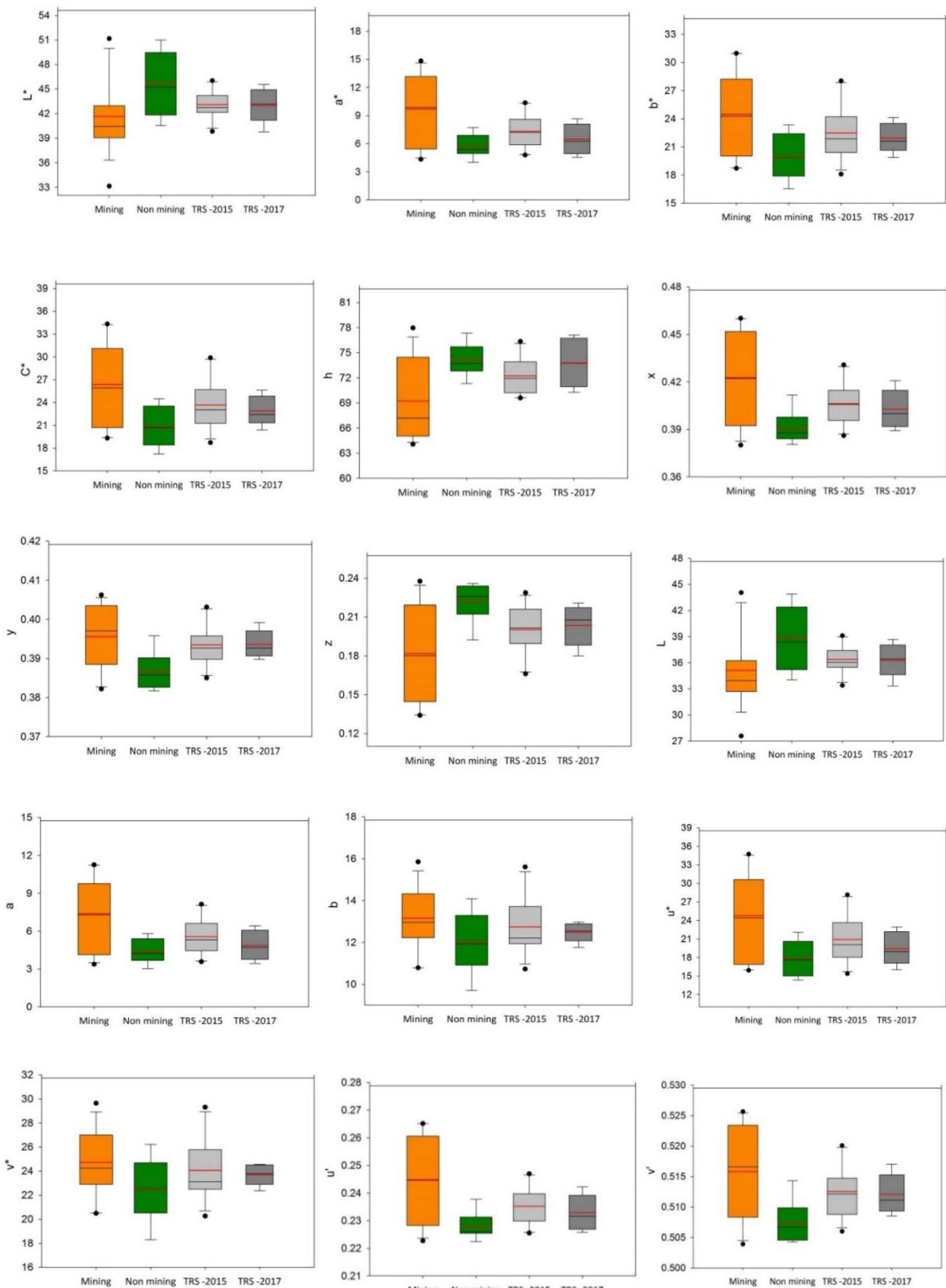
and non-mining tributaries; Figure 4 and Table 2). The range test results confirmed the conservative

376

character of these parameters. For geochemical properties, elemental concentrations measured in

377

the river sediment also plotted within the range of concentrations found in sources (Sellier et al.,


378

2019). In similar way, the range tests applied on geochemical properties showed that all these

379

properties were also conservative.

380

381 | **Figure 4** Box-plots of colour parameter values in the $<63\text{ }\mu\text{m}$ fraction of sediment collected on the mining
 382 tributaries (Mining), non-mining tributaries (Non-mining) and the main Thio River (Thio River sediment (TRS)-
 383 flood events of 2015 and 2017). The box indicates the location of the first and third quartiles; the black line
 384 indicates the median value; the red line indicates the mean value

385 **Table 2** Mean values of geochemical element contents and colour parameters in the <63 µm fraction of
 386 sediment sources and Thio River sediment (SD: standard deviation); results of Mann-Whitney U test and
 387 individual DA used to identify the potential tracers to differentiate sources supplying sediment to the Thio River

Fingerprinting property	Mann-Whitney U test <i>Mining tributaries versus non-mining tributaries</i>		DA- correctly classified samples (%)	Mean ± SD			
	U-value	p-value		Mining tributaries (n= 16)	Non-mining tributaries (n= 8)	Thio River sediment 2015 (n= 11)	Thio River sediment 2017 (n= 8)
<i>Geochemical tracers</i>							
Al (g kg ⁻¹)	8	0.000	87.5	21 ± 21	67 ± 8	43 ± 15	29 ± 6
Ca (mg kg ⁻¹)	21	0.007	62.5	3731 ± 470	9286 ± 5194	5281 ± 1201	3945 ± 666
Cr (mg kg ⁻¹)	124	< 0.0001	83.3	7480 ± 4606	706 ± 967	4359 ± 2185	5715 ± 1786
Fe (g kg ⁻¹)	121	0.000	91.6	144 ± 70	62 ± 24	43 ± 15	29 ± 6
K (mg kg ⁻¹)	2	< 0.0001	95.8	1657 ± 2160	14019 ± 3702	5944 ± 3294	3750 ± 974
Mg (g kg ⁻¹)	119	0.000	83.3	99 ± 59	16 ± 13	88 ± 33	117 ± 21
Mn (mg kg ⁻¹)	108	0.006	83.3	2531 ± 1317	1439 ± 606	2068 ± 667	1786 ± 516
Ni (mg kg ⁻¹)	125	< 0.0001	91.6	6576 ± 5075	358 ± 339	4218 ± 1938	4341 ± 1239
Si (g kg ⁻¹)	6	< 0.0001	91.6	178 ± 42	254 ± 28	221 ± 15	204 ± 7
Ti (mg kg ⁻¹)	13	0.001	87.5	1409 ± 2077	5446 ± 835	2771 ± 1197	1663 ± 457
Zn (mg kg ⁻¹)	68	0.834	-	146 ± 47	125 ± 4	134 ± 17	125 ± 8
<i>Colour parameters</i>							
L*	24	0.013	-	41.6 ± 4.6	45.7 ± 3.9	43.1 ± 1.7	43.0 ± 2.0
a*	104	0.013	-	9.7 ± 3.8	5.7 ± 1.2	7.3 ± 1.9	6.5 ± 1.7
b*	106	0.009	70.8	24.5 ± 4.5	20.0 ± 2.5	22.5 ± 3.0	21.9 ± 1.6
C*	108	0.006	66.6	26.4 ± 5.5	20.8 ± 2.7	23.7 ± 3.5	22.9 ± 2.0
h	26	0.019	-	69.2 ± 4.8	74.2 ± 1.9	72.2 ± 2.2	73.8 ± 2.9
x	107	0.007	75	0.42 ± 0.03	0.39 ± 0.01	0.41 ± 0.01	0.40 ± 0.01
y	111	0.003	79.2	0.396 ± 0.008	0.387 ± 0.005	0.393 ± 0.005	0.394 ± 0.004
z	19	0.005	75	0.18 ± 0.04	0.22 ± 0.01	0.20 ± 0.02	0.20 ± 0.02
L	27	0.013	-	35.1 ± 4.2	38.9 ± 3.7	36.4 ± 1.6	36.3 ± 1.9
a	103	0.016	-	7.3 ± 2.9	4.4 ± 1.0	5.6 ± 1.5	4.9 ± 1.2
b	91	0.106	-	13.1 ± 1.5	12.0 ± 1.5	12.7 ± 1.4	12.5 ± 0.4
u*	101	0.023	-	24.8 ± 6.9	17.8 ± 2.8	20.9 ± 4.0	19.4 ± 2.7
v*	93	0.081	-	24.7 ± 2.8	22.5 ± 2.7	24.1 ± 2.6	23.7 ± 0.8
u'	105	0.011	-	0.245 ± 0.016	0.228 ± 0.005	0.235 ± 0.007	0.233 ± 0.007
v'	111	0.003	79.2	0.516 ± 0.008	0.507 ± 0.004	0.513 ± 0.004	0.512 ± 0.003

389 **3.2 Selection of parameters/properties for modelling**

390 3.2.1. ‘Colour’ model

391 According to the Mann-Whitney U test results, six colour parameters (*i.e.* b^* , C^* , x , y , z , v')
392 provided significant discrimination between the two sediment sources (*i.e.* p -value < 0.01, Table 2).
393 The backward DFA selected only v' as the optimal tracer of mining and non-mining source sediments
394 (Figure 4, Table 3). Although this parameter correctly classified 79.2 % of sources, the high Wilk’s
395 lambda value obtained (*i.e.* 0.7209, Table 3) induced that only 27.9 % of variance was explained by v' .
396 The low Mahalanobis distance value obtained (*i.e.* 1.6) confirmed that sediment sources were not
397 well separated. Accordingly, and owing to the high error percentage of the source discrimination
398 provided by this approach (*i.e.* 72.1 %), source contributions were not modeled with the ‘colour’
399 model.

400 3.2.2. ‘Geochemistry’ model

401 When considering the two potential sediment sources, all geochemical properties (except Zn)
402 were selected as potentially discriminant by the Mann-Whitney U test (*i.e.* p -value < 0.01, Table 2).
403 Among the 10 potential tracers, K was selected by the backward DFA to model sediment source
404 contributions from mining and non-mining tributaries with 95.3 % of sources correctly classified and
405 83.1 % of variance explained by K. This percentage of variance explained was deduced from the final
406 Wilk’s lambda value obtained (*i.e.* 0.1691). Moreover, the Mahalanobis distance value showed that
407 the sediment sources were well separated from each other with a significant distance of 20.3 (Table
408 3) (Sellier et al., 2019).

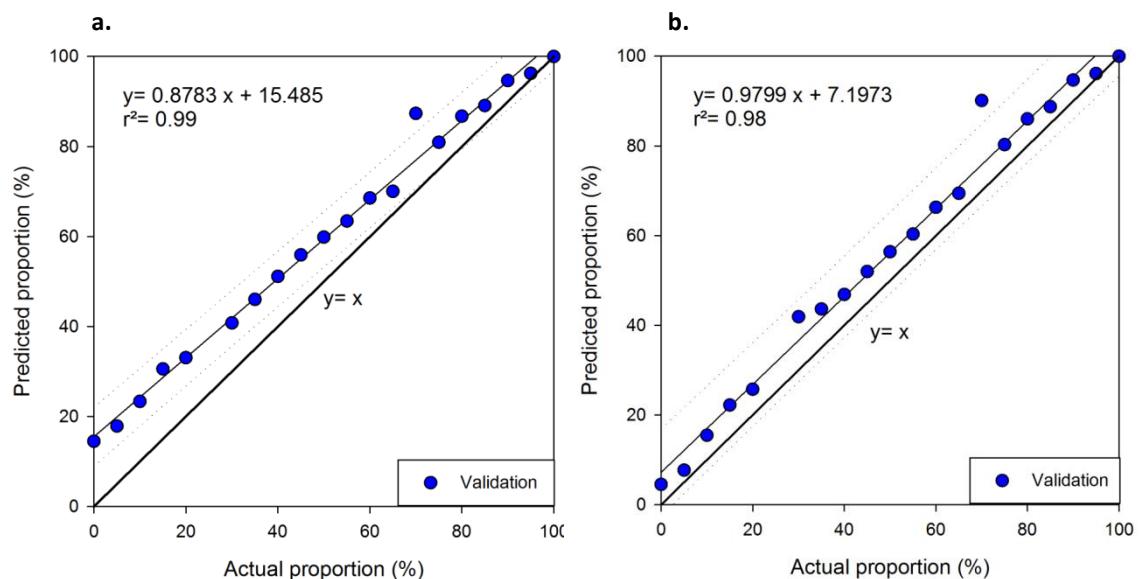
409 3.2.3. ‘Colour + geochemistry’ model

410 When combining colour parameters and geochemical properties, the DFA selected five optimal
411 tracers (*i.e.* K, Ca, Ti, b^* , C^*) able to correctly classify 100 % of the sources. A significant improvement
412 in the source discrimination was observed with the lowest Wilk’s lambda value obtained (*i.e.* 0.0734)

413 and the highest percentage of variance explained (i.e. 92.6 %). Moreover, the Mahalanobis distance
414 value obtained (i.e. 52.1) was more than 2.5 times higher than that estimated with the
415 'geochemistry' model (Table 3), thus resulting in a better separation between sediment sources than
416 the previous approach (i.e. 'geochemistry').

417 **Table 3** Results of DFA used to identify the optimum tracer combination to differentiate sources supplying
418 sediment to the Thio River

Fingerprint property selected	Wilks'Lambda	Variance explained by the variables (%)	Squared Mahalanobis distance	Correctly classified samples (%)
'Colour'				
v'	0.7209	27.9	1.6	79.2
'Geochemistry'				
K	0.1691	83.1	20.3	95.3
'Colour + Geochemistry'				
K, Ca, Ti, b*, C*	0.0734	92.6	52.1	100

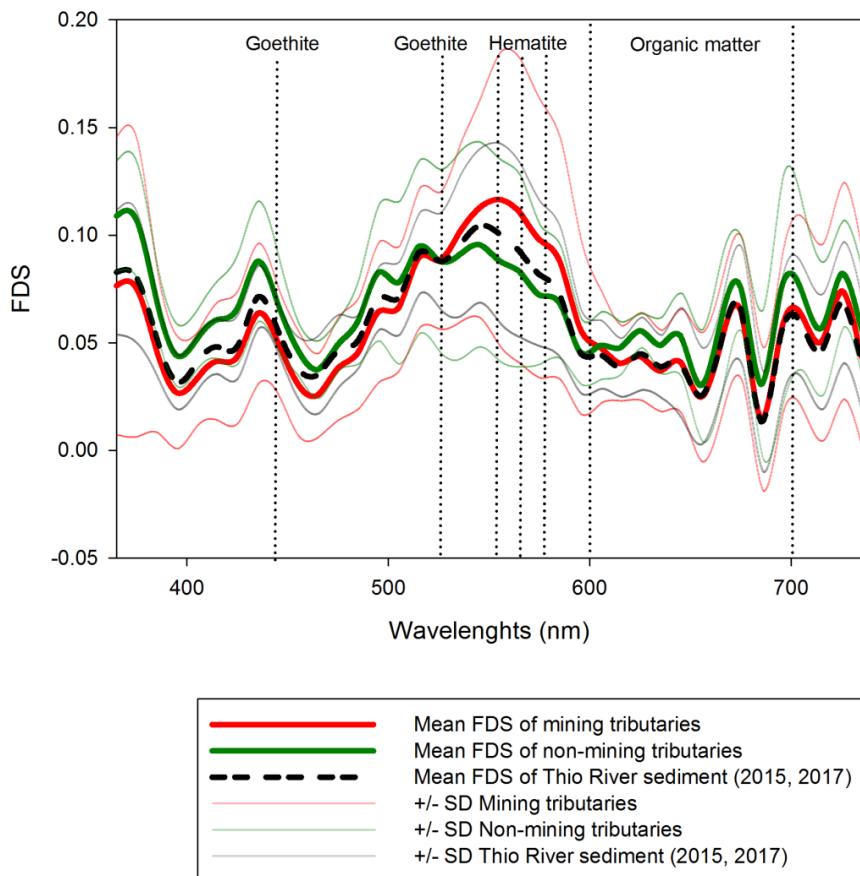

419

420 **3.3 Assessment of model performance on artificial mixture samples**

421 Prior to applying mixing models to river sediments, preliminary tests were conducted to
422 control the validity of the models (i.e. 'geochemistry' and 'colour + geochemistry') and the associated
423 estimations of source contribution errors. When applying these models on the artificial mixture
424 samples, actual and predicted proportions were well correlated for both models (i.e. $r^2 = 0.99$ and $r^2 =$
425 0.98 respectively for 'geochemistry' and 'colour + geochemistry' models, $SD_{max} = 3\%$) (Figure 5).

426 However, the 'geochemistry' model described in Figure 5-a showed that the contributions of
427 mining tributaries were overestimated. With 100 % of actual mining contributions, 100 % of mining
428 contribution was predicted by the model. However, instead of 0 % of actual mining contributions, a
429 mining contribution of 15.5% was predicted by the model. It means that the more the estimated
430 mining source contributions tends towards 0 %, the greater the associated overestimation (i.e.

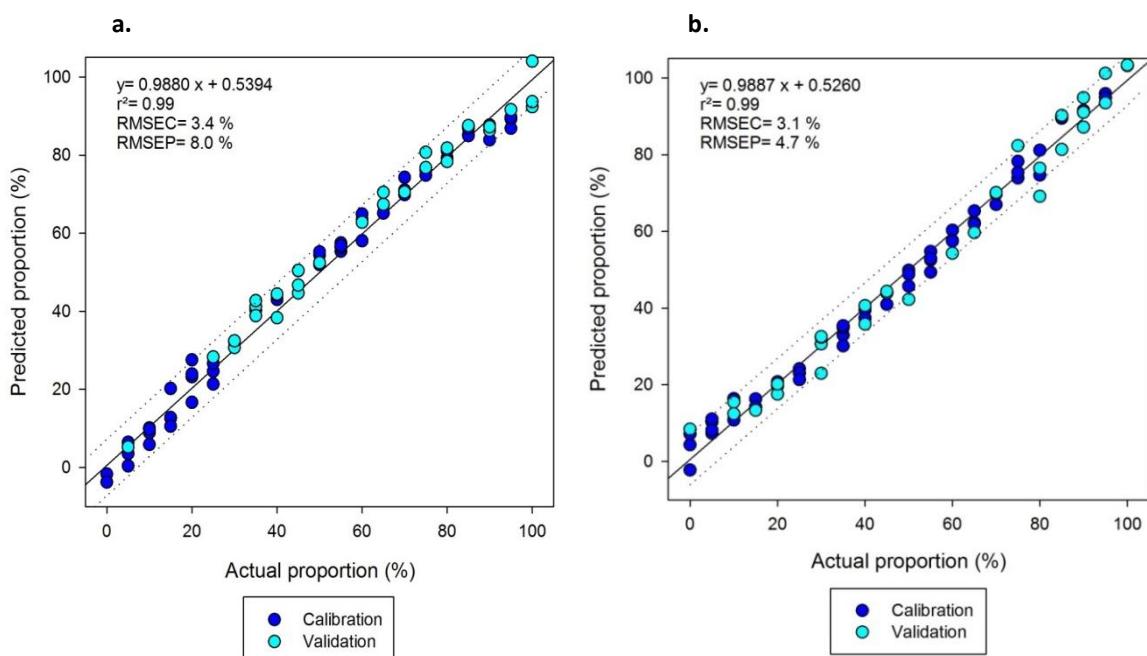
431 maximum 15.5 %) (Figure 5-a). The 'colour + geochemistry' model also provided a slight
 432 overestimation of the contribution of mining tributaries (i.e. 7 % intercept of the regression line,
 433 Figure 5-b). Given the slope of the regression line calculated is close to 1 (i.e. 0.98), this 7%
 434 overestimation remains constant over the entire range of potential contributions.



435 **Figure 5** Comparison between actual mining source proportions prepared in artificial mixtures and the mining
 436 source proportions predicted by the 'geochemistry' (a) and 'colour + geochemistry' (b) models

437 **3.4 Building partial least-squares models based on FDVS**

438 Mining sources are characterized by a red-orange color while sediments originating from
 439 non-mining sources are yellow-grey colour (Figure 1). The colour contrasts may be explained by the
 440 distinct geochemical composition of these sources. Mean FDVS indicated the presence of goethite
 441 (i.e. at 445 and 525 nm), hematite (i.e. at 555, 565 and 575 nm), and organic matter (i.e. between
 442 600-700 nm) (Debret et al., 2011) in both mining and non-mining sources (Figure 6). In similar way,
 443 the Thio River sediment samples (2015, 2017) showed similar characteristics since the variations of
 444 the mean FDVS remained between those found in the sources (Figure 6). Nevertheless, some
 445 differences can be observed between the sources. The spectral signature of goethite is slightly
 446 stronger at 445 nm in non-mining tributaries compared to mining tributaries. No difference between
 447 sources was observed at 525 nm, the second wavelengths characterizing the presence of goethite. In


448 contrast, the spectral signature of hematite (*i.e.* at 555, 565 and 575 nm) was stronger in mining
449 tributaries than in non-mining tributaries.

450 **Figure 6** FDVS measured in the <63 µm fraction of sources and Thio River sediment samples

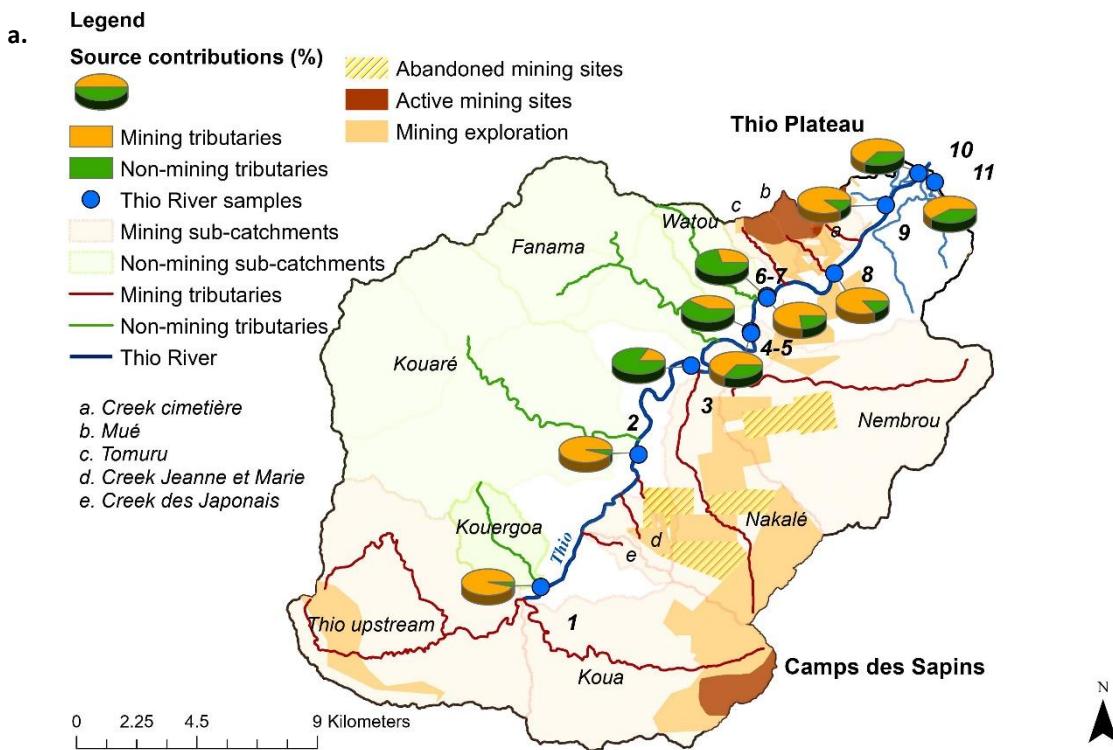
451 To test the potential discrimination offered by FDVS, a PCA was applied on the source data set.
452 The first ten principal components from PCA explained 99 % of the total variation in the spectra. The
453 DFA performed on these components resulted in a final Wilks' lambda value of 0.1585. In other
454 words, 84.1 % of variance is explained by these ten components. Moreover, 100 % of the source
455 samples were correctly classified. The performances of FDVS-PLSR models are presented in Figure 7.
456 The mining and non-mining tributary FDVS-PLSR models provided an excellent correlation between
457 actual and predicted proportions with r^2 and slopes close to 1 and intercepts of linear regression
458 close to 0. The root mean square error of calibration (RMSEC) values estimated for both models were
459 low, *i.e.* 3.4 % and 3.1 % respectively for mining (Figure 7-a) and non-mining tributary models (Figure

460 7-b). These models also provided a good predictability of source contributions with low root mean
 461 square error of prediction (RMSEP) values (i.e. 8.0 % and 4.7 % respectively for mining and non-
 462 mining tributary models). Another way to control the reliability of predictions was to sum the
 463 predicted proportions of both models (Legout et al., 2013). Considering the whole data set used in
 464 the construction of the partial least-squares regression models (i.e. calibration and validation) led to
 465 a mean sum of the predicted source proportions of 102 % (SD 3 %, range: 98-114 %), thus
 466 highlighting the effective prediction performance of FDVS-PLSR models.

467 **Figure 7** Building of FDVS-PLSR models for mining sources (a) and non-mining sources (b)

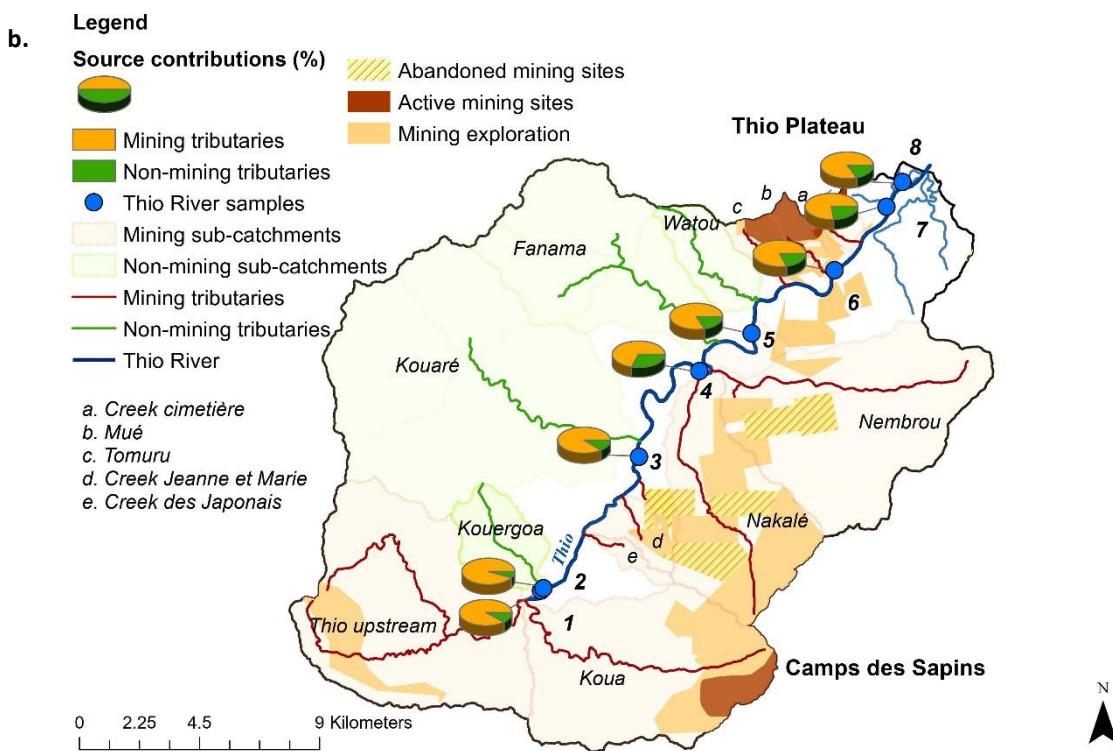
468 **3.5 Source apportionment modelling**

469 **3.5.1. 'Geochemistry' model**


470 The 'geochemistry' model estimated that the mining tributaries contributed an average of 65
 471 $\pm 27\%$ of the Thio River sediment during the 2015 flood event; they therefore dominated sediment
 472 inputs overall during this event. Nevertheless, non-mining tributaries mainly contributed to the
 473 sediment inputs at three sampling points along the Thio River (Figure 8-a, Table 4, sampling points [3,
 474 5, 7]). These contributions did not, however, compensate for those provided by mining tributaries in

475 the estuary (63-89 %). Indeed, the dominant mining contributions found in upstream river reaches
476 (96 %, Figure 8-a, Table 4, sampling point [1]) gradually decreased along the Thio River, fluctuating
477 between 17-77 % before increasing again at the confluence between the Thio River and the mining
478 tributaries draining the Thio Plateau mining area (i.e. 85 %, Figure 8-a, Table 4, sampling point [8])
479 and reaching 60-64 %.

480


481 The 'geochemistry' model also demonstrated that mining tributaries dominated sediment inputs
482 with a mean contribution of $83 \pm 8\%$ during the 2017 flood event (Table 5). The lowest mining
483 tributary contributions estimated (i.e. 69 %) was found after the confluence with the Kouaré non-
484 mining tributary (Figure 8-b, Table 5, sampling point [4]). Nevertheless, further downstream, the
485 proportions of the mining sources increased again to reach 77-83 % in the estuary (Figure 6-b, Table
486 5, sampling points [7, 8]).

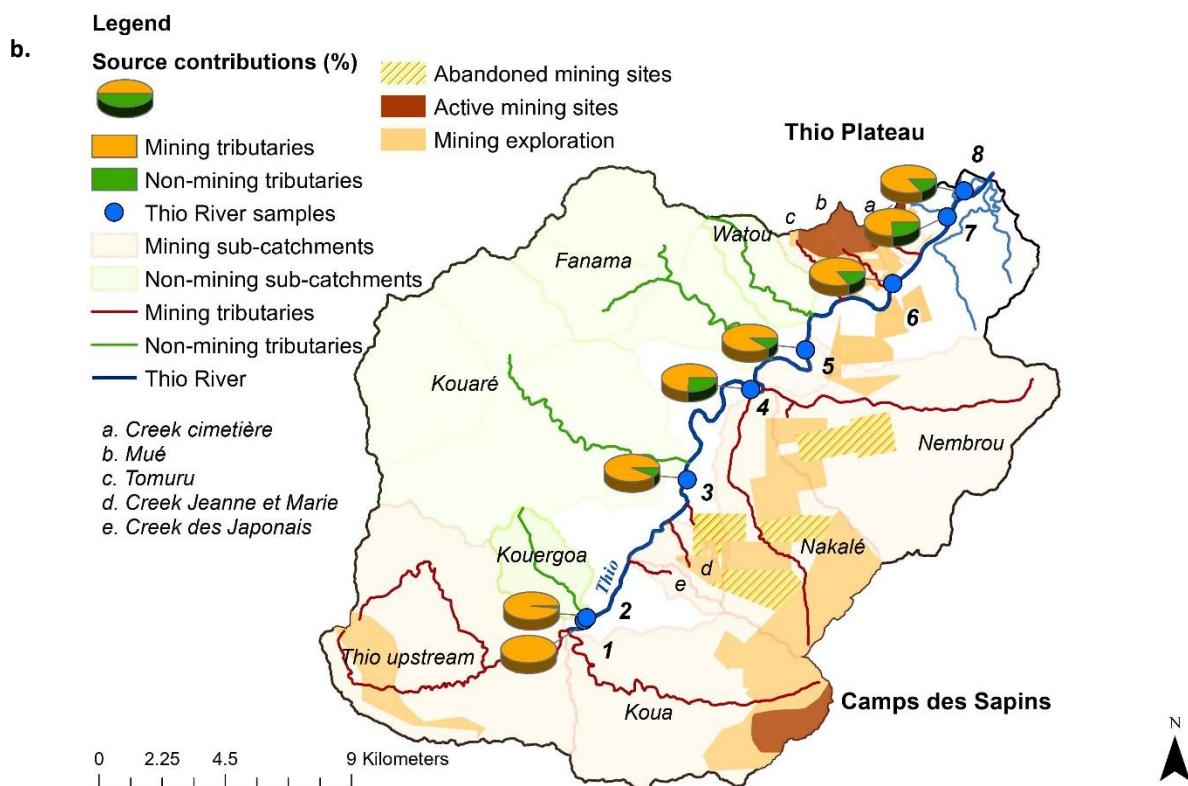
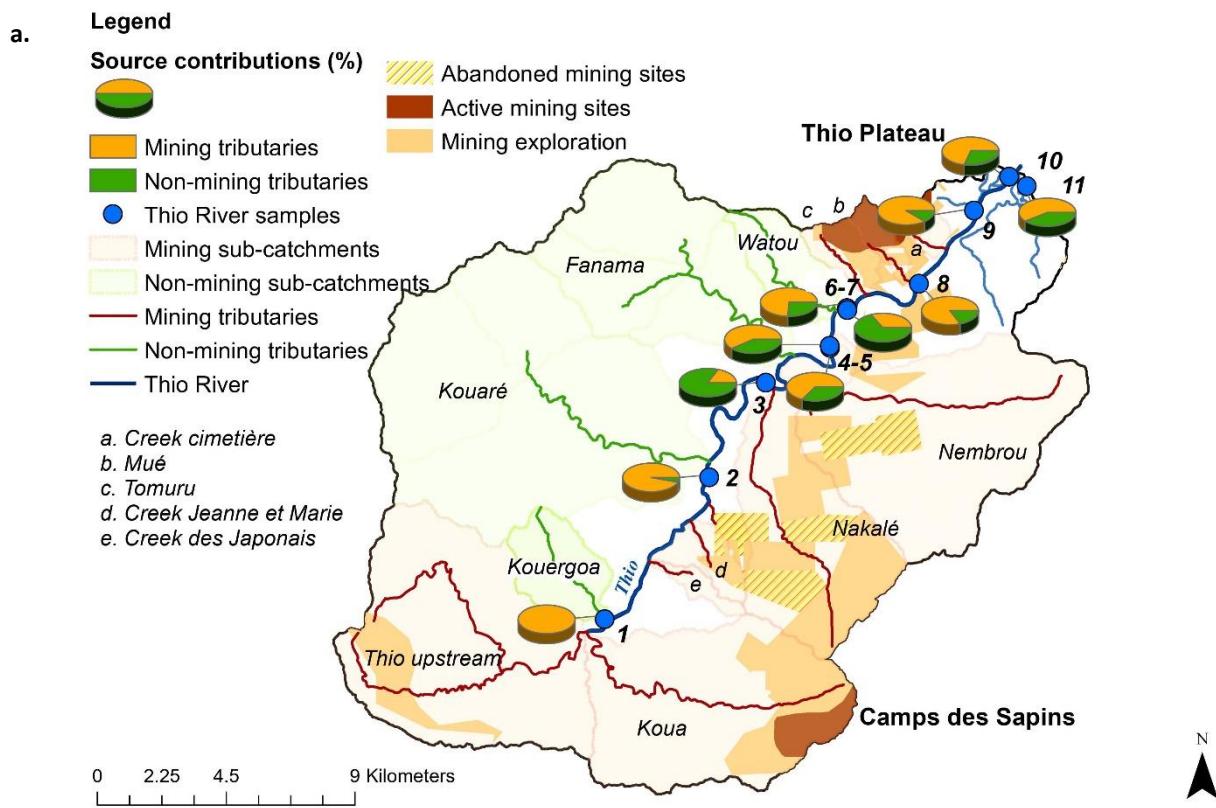
487

488

489

490

491 **Figure 8** Relative contributions of mining and non-mining tributaries to the sediment collected in the Thio River
492 during the 2015 (a) and 2017 (b) flood events using the 'geochemistry' model



493

494 3.5.2. ‘Colour + geochemistry’ model

495 Similar results were obtained with the ‘colour + geochemistry’ model. The contributions of
496 mining tributaries were estimated to an average of $68 \pm 25\%$ for the 2015 flood event. Mining
497 tributary contributions provided almost all the sediment transiting the uppermost reach of the Thio
498 River (i.e. 99 %, Figure 9-a, Table 4, sampling point [1]). However, after the confluence with the
499 Kouaré tributary, non-mining tributaries dominated with a contribution of 83 % (Figure 9-a, Table 4,
500 sampling point [3]). Further downstream, the contribution of mining tributaries increased again with
501 supplies varying between 34- 89 % to reach 58- 70 % in the estuary (Figure 9-a, Table 4). The largest
502 difference between ‘geochemistry’ and ‘colour + geochemistry’ model outputs was 18 % for the 2015
503 flood event.

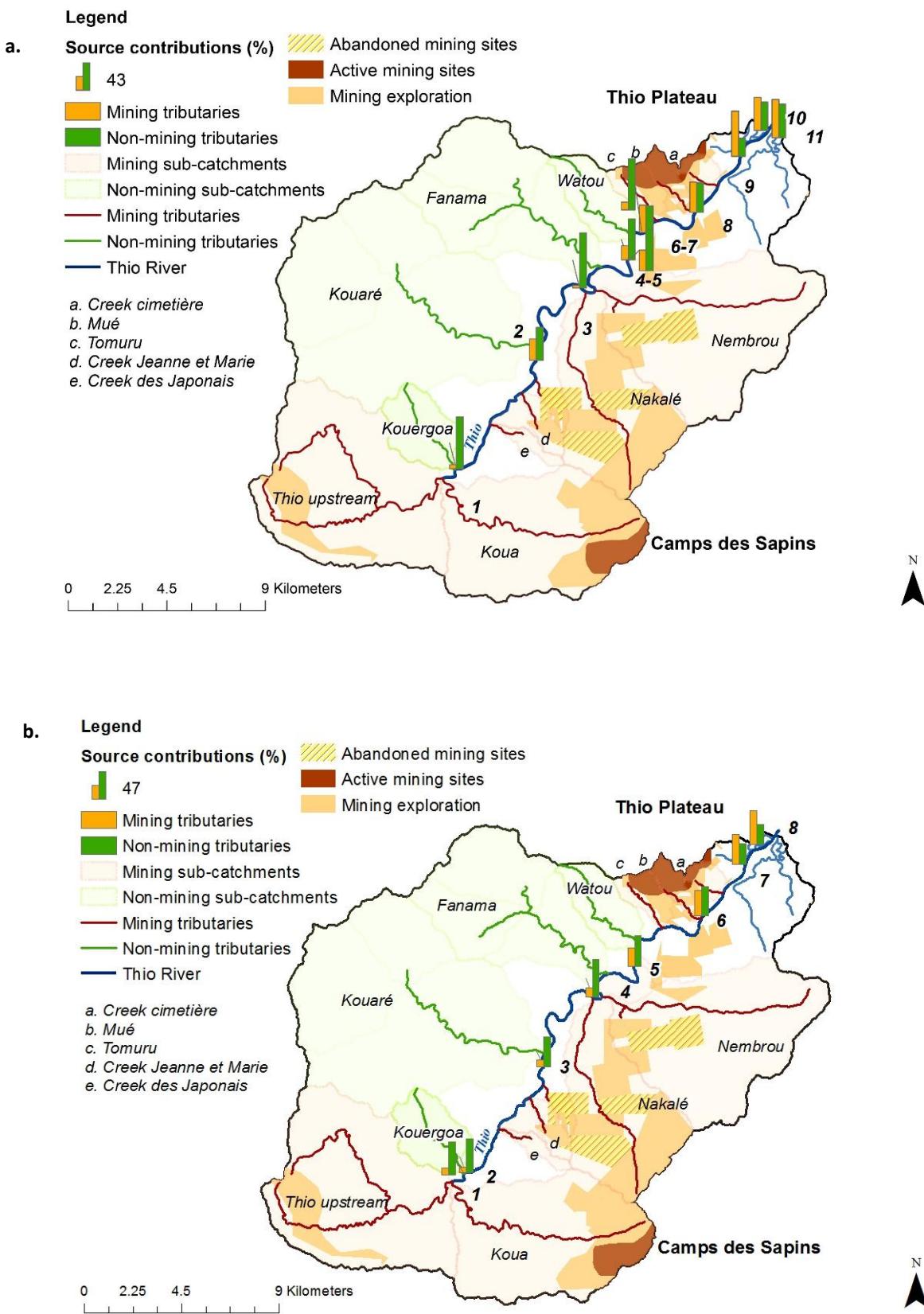
504 The ‘colour + geochemistry’ model also demonstrated that $88 \pm 8\%$ of the sediment supply
505 originated from mining tributaries during the 2017 flood event. Along the Thio River, mining tributary
506 contributions varied between 100 % in the uppermost reach, 74% after the Kouaré river confluence
507 and 83-85% in the estuary (Figure 9-b, Table 5). The largest difference between ‘geochemistry’ and
508 ‘colour + geochemistry’ model outputs was 10 % for the 2017 flood event (Table 5).

509

Figure 9 Relative contributions of mining and non-mining tributaries to the sediment collected in the Thio River during the 2015 (a) and 2017 (b) flood events using the 'colour + geochemistry' model

515 3.5.3. FDVS-PLSR model

516 Unlike the conventional fingerprinting approach, the estimated contributions of sources were
517 not limited to vary in the range between 0 % and 100 %. In a similar way, the sum of source
518 contributions was not constrained to be equal to 100 %. As a result, another method to control the
519 reliability of predictions was to sum the predicted proportions of both models and to verify that this
520 sum was close to 100% with an acceptable error of ± 20 %. If this point is not verified, it is likely that a
521 potential source has not been sampled and considered in the study or that the behaviour of the
522 fingerprinting properties is not conservative (Legout et al., 2013). When applying the FDVS-PLSR
523 models (i.e. mining and non-mining tributary contributions) to the river sediment samples (2015,
524 2017), the mean sums of the source contributions were 92 ± 8 % and 80 ± 13 %, respectively, for the
525 2015 and 2017 flood events (Tables 4 and 5) which are satisfactory results. However, for the 2017
526 flood events, three river sediment samples collected on sampling points n°1, 2 and 3 showed sums of
527 source contributions below 70 %, indicating a lack of reliability of the model. The results obtained on
528 these three points must therefore be interpreted with great caution. Moreover, and owing that
529 predicted sums were slightly different from the expected 100 %, a bar plot display of the source
530 contributions has been chosen to facilitate the interpretation of the results (Figure 10).


531 According to the FDVS-PLSR model results, 34 ± 22 % of sediment supply originated from
532 mining tributaries while non-mining tributary contribution provided 58 ± 18 % of the sediment input
533 for the 2015 flood event (Figure 10-a, Table 4). In the upper part of the Thio River catchment, non-
534 mining tributaries largely dominated with a contribution of 80 % versus 6 % for mining tributaries.
535 Along the Thio River, mining tributary contributions gradually increased to reach 70 % after the Mué
536 tributary confluence (i.e. one of tributaries draining the Thio Plateau Mine, Figure 8-a, Table 4,
537 sampling point [9]). The non-mining tributary contributions fluctuated along the Thio River between
538 41-85 % (Figure 8-a, Table 4, sampling points [2-8]) and reached a minimum to 28 % (Figure 10-a,
539 Table 4, sampling point [9]) after the Mué tributary confluence. In the estuary, sediment supply was

540 originated from 51-70 % of mining tributaries and 28-52 % of non-mining tributaries (Figure 10-a,
541 Table 4, sampling points [9, 10, 11]).

542 The FDVS-PLSR models also indicated that mining and non-mining tributaries respectively
543 contributed a mean of 29 ± 20 % and 51 ± 11 % of sediment (Figure 10-b, Table 5) during the 2017
544 flood event. In a similar way, mining contributions gradually increased along the Thio River from 11 %
545 in upper parts to reach 52-58 % in the estuary. On the contrary, non-mining contributions gradually
546 decreased from 56 % in uppermost parts to reach 35-36 % in the estuary (Figure 10-b, Table 5).

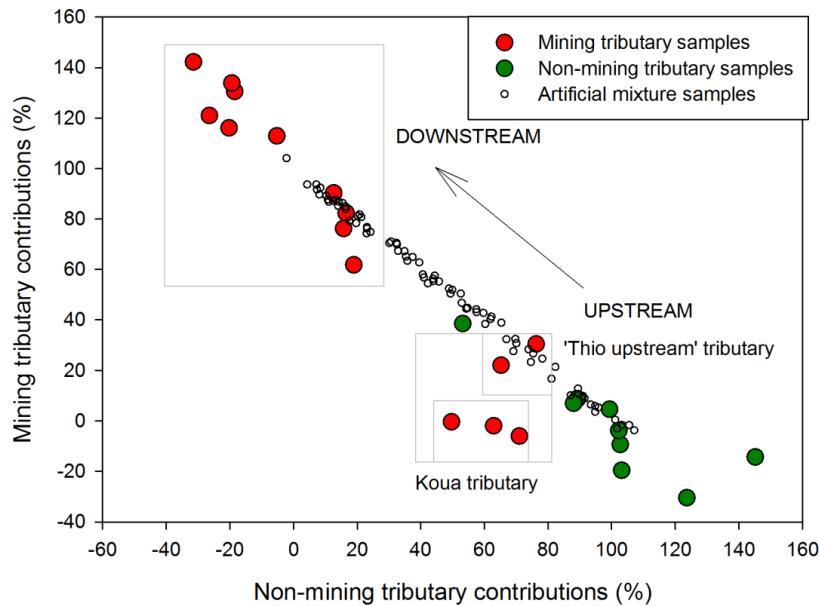
547 In summary, the FDVS-PLSR models provided opposite results to those of the conventional
548 sediment fingerprinting approach (i.e. 'geochemistry' and 'colour + geochemistry' models). According
549 to the FDVS-PLSR models, non-mining tributaries contributed the majority of the sediment supply for
550 the 2015 (58 ± 18 %) and 2017 (51 ± 11 %) flood events. On the contrary, the 'geochemistry' and
551 'colour + geochemistry' models demonstrated that mining tributary contributions dominated
552 sediment supply for the 2015 (i.e. respectively 65 ± 27 % and 68 ± 28 %) and 2017 flood events (i.e.
553 respectively 83 ± 8 % and 88 ± 8 %).

554

558 **Figure 10** Relative contributions of mining and non-mining tributaries to the sediment collected in the Thio
559 River during the 2015 (a) and 2017 (b) flood events using the FDVS-PLSR models

560 **Table 4** Source contributions calculated by FDVS-PLSR, 'geochemistry', 'colour + geochemistry' approaches for sediment deposited during the flood of February 25,2015

561 (Mean, SD: standard deviation, minimum, maximum)

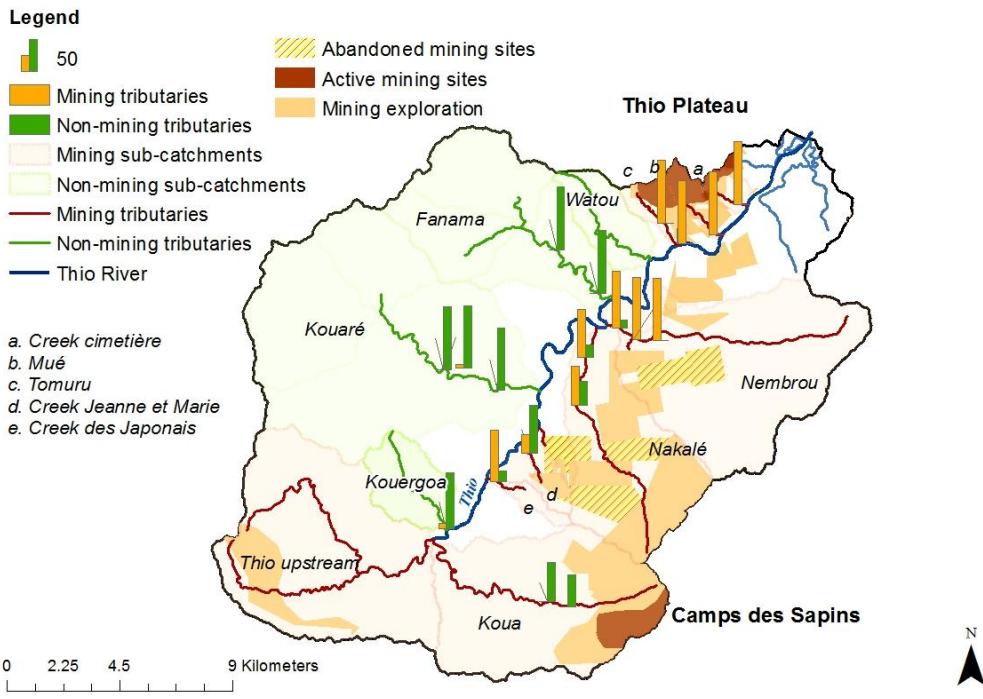

Sampling point	Mining tributary contributions (%)			Non-mining tributary contributions (%)			Sum of source contributions (%)		
	FDS- PLSR	Geochemistry	Colour + Geochemistry	FDS- PLSR	Geochemistry	Colour + geochemistry	FDS- PLSR	Geochemistry	Colour + geochemistry
1	6	96	99	80	4	1	86	100	100
2	33	95	96	51	5	4	84	100	100
3	4	17	17	85	83	83	90	100	100
4	32	65	65	64	35	35	96	100	100
5	22	41	59	63	59	41	85	100	100
6	42	77	74	41	23	26	83	100	100
7	12	29	34	79	71	66	91	100	100
8	47	85	83	46	15	17	93	100	100
9	70	88	89	28	12	11	98	100	100
10	51	64	70	44	36	30	94	100	100
11	59	60	58	52	40	42	111	100	100
Mean (%)	34	65	68	58	35	32	92	100	100
SD (%)	22	27	25	18	27	25	8	-	-
Minimum (%)	4	17	17	28	4	1	84	-	-
Maximum (%)	70	96	99	85	83	83	111	-	-

565 **Table 5** Source contributions calculated by FDVS-PLSR, 'geochemistry', 'colour + geochemistry' approaches for sediment deposited during the flood of April 10,2017 (Mean,
 566 SD: standard deviation, minimum, maximum)

Sampling point	Mining tributary contributions (%)			Non-mining tributary contributions (%)			Sum of source contributions (%)	
	FDS- PLSR	Geochemistry	Colour + Geochemistry	FDS- PLSR	Geochemistry	Colour + geochemistry	FDS- PLSR	Geochemistry
1	11	90	100	56	10	0	66	100
2	9	94	98	58	6	2	68	100
3	11	89	92	52	11	8	63	100
4	16	69	74	66	31	26	82	100
5	32	82	89	54	18	11	86	100
6	44	81	84	51	19	16	95	100
7	52	77	83	36	23	17	88	100
8	58	83	85	35	17	15	92	100
Mean (%)	29	83	88	51	17	12	80	100
SD (%)	20	8	8	11	8	8	13	-
Minimum (%)	9	69	74	35	6	0	63	-
Maximum (%)	58	94	100	66	31	26	95	-

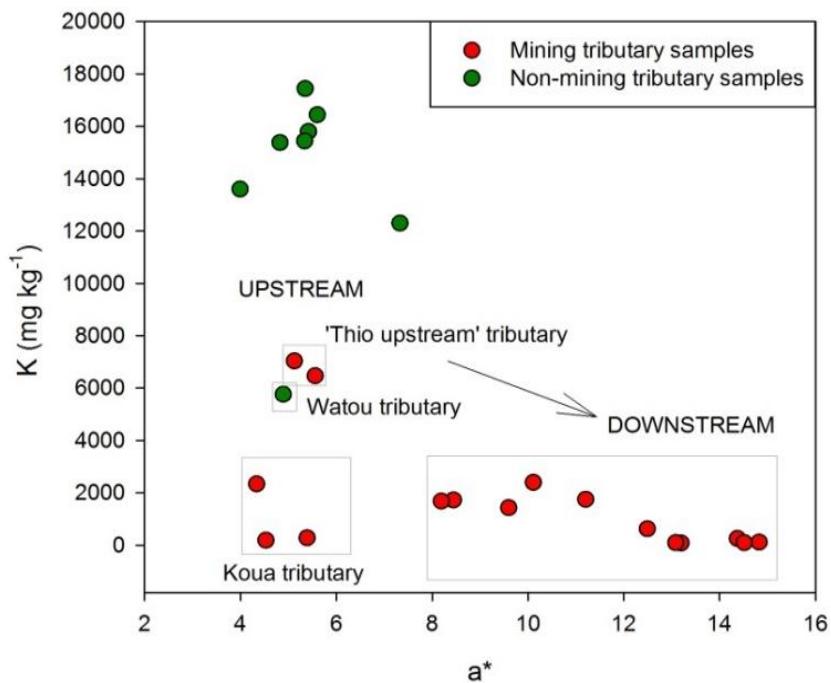
567 **3.6 Complementary tests: representativeness of artificial mixture samples used for**
568 **the FDVS-PLSR models compared to source samples**

569 The FDVS-PLSR models provided contradictory results compared to those obtained with the
570 ‘geochemistry’ and ‘colour + geochemistry’ models. In order to explain these results, complementary
571 analyses were carried out with this model. This model was built from the mining and non-mining
572 tributary samples (i.e. mixture of source samples > source poles > artificial mixture samples > FDVS-
573 PLSR models). The objective of these analyses was to check whether the model is ‘well built’, in other
574 words whether it is representative of the sources identified and whether it is capable of correctly
575 ‘classifying’ the sources. To this end, we applied the FDVS-PLSR models on source samples to
576 estimate their composition in terms of source contributions with FDVS-PLSR models. In the same way
577 as we did above for the river sediment samples, we assessed the reliability of predictions by
578 summing the source contributions predicted by both models (Legout et al., 2013). A mean sum of the
579 predicted source proportions of $94 \pm 17\%$ was calculated from the source sample data set which
580 again is an excellent result. However, for the three mining tributary samples collected on the Koua
581 tributary, the corresponding sums remained below 65 % with a minimum of 49% whereas for one of
582 the non-mining tributary sample collected on the Kouaré tributary, the sum reached 131% (Figure
583 11). These results indicate that the FDVS-PLSR models provide unreliable predictions when dealing
584 with river sediment samples with a colour signature partly due to these four samples. The
585 colorimetric signature of the mining tributary samples collected on the Koua tributary in particular is
586 not fully recognized by the models. The compositions of mining and non-mining tributary samples in
587 Figures 11 and 12 also show that artificial mixture samples built from a mix between the composite
588 mining source sample and the composite non-mining source sample did not cover entirely the range
589 of values found in all the sources samples which may explain why some source samples showed
590 mining and non-mining tributary composition lower than 0 and/or higher than 100 %.



591

592 **Figure 11** Relative compositions of mining and non-mining sources estimated by the FDVS-PLSR models
 593 applied to the individual source sediment samples


594 Moreover, we observed that two sub-groups of mining tributary samples can be
 595 distinguished, the first one corresponding to samples collected on the mining tributaries located in
 596 the uppermost part of the catchment and the second to samples collected on the mining tributaries
 597 located further downstream. The FDVS-PLSR differentiated rather well the second group since the
 598 mining tributary composition is dominant in these samples. On the contrary, the first group referred
 599 to as 'Upstream' merged with the non-mining tributary samples (Figure 11). Indeed, Figure 12 shows
 600 the mining tributaries located in the upper part of the catchment were defined as 'non-mining
 601 tributaries' by the FDVS-PLSR models.

602

603 **Figure 12** Relative compositions of mining and non-mining sources estimated by the FDVS-PLSR models applied
604 to the individual sediment sources in the Thio River catchment

605 The low K contents found in these samples confirmed, however, that they were mainly
606 supplied by mining sources (Figure 13). Indeed, only tributaries draining peridotite massifs (i.e.
607 mining areas) can show such low K contents in source samples (Sellier et al., 2019). Nevertheless, a
608 colour difference could be observed visually and through variations of the a^* parameter: the a^*
609 values increased from upper parts to lower, which results in an increasingly red coloration of mining
610 tributary samples in downstream direction. Figure 13 shows also that the a^* values found in samples
611 collected in the upper catchment part overlapped with those of non-mining tributary samples.

612 **Figure 13** Diagram of K contents as a function of a^* parameter values within sediment sources and artificial
 613 mixture samples

614 **4. Discussion**

615 **4.1. Advantages and limits of models**

616 **4.1.1. 'Colour' model**

617 One of the objectives of this study was to test the contribution of spectrophotometry for
 618 improving the source discrimination. Indeed, visual observations indicated that mining tributary
 619 samples were red-orange whereas non-mining tributary samples were rather yellow-grey (Figure 1).
 620 However, the results showed that the colour parameters, when used individually, did not provide
 621 sufficient discrimination between sources (Table 2) to meet this objective. Indeed, some mining
 622 tributary samples showed colour parameter values similar to those found in non-mining tributary
 623 samples (e.g. v' at Table 3, or a^* shown at Figure 13). This overlap of value ranges could explain in
 624 particular the inability of the 'colour' model to provide satisfactory source discrimination. In the case
 625 of mining sources, minerals such as hematite or goethite have a reddish-orange colour (Quantin et
 626 al., 1997). Indeed, hematite is a red coloured oxidized mineral while goethite is a yellow coloured

627 oxidized mineral (Trescases, 1973). According to Figure 6, non-mining tributary samples also have
628 high contents of goethite which could interfere with the discrimination of the colour signatures of
629 the two sources. The non-mining tributaries drain areas devoid of mining activities and they are
630 mainly located in zones with underlying on the volcano-sedimentary ~~formation~~ rocks. In these
631 zones, The soil ~~geological~~ profiles ~~within the volcano-sedimentary formation rocks~~ are characterized
632 ~~at the surface~~ by clay horizons in upper layers and ~~at depth~~ by oxidized horizons enriched in goethite
633 in depth - in particular (Denis, 1988). According to Sellier et al. (2019), subsurface erosion processes
634 were shown to dominate in the Thio River catchment. In other words, landslides provide the main
635 supply of sediment in non-mining tributaries flowing across this catchment mainly contribute to non-
636 mining sediment inputs. As a result, the oxidized horizons found in depth of these soil profiles rock
637 formations are also likely being preferentially eroded, subject to erosion processes which could may
638 explain the widespread occurrence of goethite and material with a yellow-grey color in non-mining
639 tributary samples.

640

641 RMoreover, results obtained with colour parameter analyses coupled to visual observations
642 highlighted the occurrence of two groups of mining tributary samples (i.e. 'Upstream' and
643 'Downstream'). The coloration differences (i.e. orange/ 'Upstream' and 'red/Downstream') observed
644 between these two groups could be due to the the fact that on the one hand, the reddish colour
645 does not provide a highly conservative signature as it may be altered by the oxydo-reduction of iron
646 minerals during the periods of submersion of sediments under water. On the other hand, the
647 presence of different types of laterite profiles could explain these coloration differences. Indeed, the
648 laterite profile is classically described in the literature as composed of peridotites at the bottom >
649 saprolites > yellow laterites rich in goethite > red laterites rich in hematite at the top (Trescases,
650 1973). However, certain minor features may be found in the laterite profile depending on the type of
651 parent rock found at the base of the peridotite massifs (Sevin, 2014). The mineral composition found
652 in the different layers of the laterite profile may vary depending on whether serpentines or

653 peridotites are the source rocks. Moreover, laterite profile formation depends partly on the
654 morphological context, for instance on whether nickel ores are located in a basin, on a plateau or a
655 slope. This morphological context influences the weathering level of peridotites and the formation of
656 laterite profile: the more the laterite profile is altered, the higher the thickness of red laterites. In the
657 Thio River catchment, the laterite profile from the Thio Plateau mine located in the downstream part
658 of the catchment are 'plateau nickel ores' whereas those from the Camps des Sapins mine located in
659 the upstream part of the catchment are 'slope nickel ores' (Mardhel et al., 2018). No information is
660 provided in the literature on the types of laterite profiles that were mined in abandoned mining sites
661 in the Thio River catchment (Figure 2-c). The red coloration of the 'Downstream' mining tributary
662 samples could then be associated with more altered laterite profiles with a thicker layer of red
663 laterites characteristic of 'plateau nickel ores' compared to the 'Upstream' mining tributary samples,
664 which could be associated with a laterite profile with a thinner layer of red laterites characteristic of
665 'slope nickel ores'. The red laterites are the final stage of alteration of the peridotite massifs. It
666 therefore appears likely that the less altered 'slope nickel ore' probably contains more yellow
667 laterites enriched in goethite compared to the 'plateau nickel ore'. This hypothesis could explain the
668 similar colour signature of the mining tributary samples collected on the Koua tributary draining the
669 Camps des Sapins mine and the non-mining samples.

670 4.1.2. 'Geochemistry' model

671 The 'geochemistry' model based on K provided significant discrimination between sources
672 (Table 2), regardless of the types of nickel ores that may be found in the Thio River catchment. K is a
673 lithological tracer discriminating sediments originating from the erosion of the two dominant
674 lithologies (i.e. peridotite massifs vs. volcano-sedimentary formations) in the Thio River catchment.
675 As anthropogenic erosion (i.e. due to mining activities) dominates on the peridotite massifs (Garcin
676 et al., 2017), K therefore provides an optimal discrimination between mining and non-mining
677 tributary contributions.

678 The parameter K classified the source samples rather well (i.e. 95.3 % of correct classification,
679 Table 3). Indeed, the 16 mining source samples were all correctly classified (100 %) and only one non-
680 mining source sample was not correctly classified (87.5 %); it corresponds to the Watou tributary
681 sample (Figure 13). This sample showed a K content similar to that found in mining tributary samples.
682 The Watou tributary is particular because it drains both volcano-sedimentary formations and
683 peridotite massifs that were not exploited for mining, which justifies that it was considered as a non-
684 mining tributary. The K content measured in this sample could be representative of that found in
685 sediment sources characterized by a mix between the two dominant lithologies. Again, when
686 observing Figure 13, two mining tributary samples (i.e. 'Thio upstream') showed similar K contents to
687 that found in the Watou tributary sample. The 'Thio upstream' tributary also drains both areas
688 associated with volcano-sedimentary formations and exploited peridotite massifs (i.e. mining
689 prospection), which justifies that it was considered as a mining tributary.

690 The analysis of colour parameters coupled with that of geochemical elements indicated that
691 these samples collected on the 'Thio upstream' tributary showed a less red coloration not because
692 they are associated with a different type of ore, as could be the case for the samples collected on
693 Koua tributary draining Camps des Sapins mine (Figure 13), but because they are characterized by a
694 mix of both lithologies. As a result, the 'geochemistry' model showed a certain limitation to classify
695 source samples characterized by a mix of both lithologies. The performance of the 'geochemistry'
696 model described in Table 2 remains, however, excellent. The application of this model on artificial
697 mixture samples provided very satisfactory results (Figure 5-a) with a good correlation between the
698 predicted and the actual source proportions ($r^2= 0.99$). Estimations of mining tributary contributions
699 may, however, be overestimated. This overestimation evaluated to a maximum at 15.5 % is greater
700 when the mining contributions estimated by the model tend towards 0 % (maximum: 15.5 %, Figure
701 3-a). The 'geochemistry' model has difficulties to discriminate sediment contributions from sub-
702 catchments with mixed lithologies. It classifies these types of samples as originating from mining
703 tributaries, such as the Watou River sample. As a result, as the K concentrations decrease in the

704 samples analyzed, the model will tend to overestimate the contributions of mining sources by default
705 compared to their actual contributions.

706

707 4.1.3. 'Colour + geochemistry' model

708 The 'colour + geochemistry' (i.e. K, Ca, Ti, b*, C*) model provided the best discrimination
709 between sources (Table 3). The inclusion of colour parameters in the 'colour + geochemistry'
710 approach allowed for the discrimination of source samples (i.e. 100 % of correctly classified source
711 samples) that a 'geochemistry' approach alone could not achieve. Results of the tests carried out on
712 the artificial mixture samples also showed an excellent correlation between the predicted and the
713 actual source proportions (i.e. $r^2= 0.98$). A slight overestimation of the mining tributary contributions
714 (7 %) was observed with this approach, which remains rather reasonable (Figure 3-b). In this model, K
715 is the lithological tracer which has the higher discriminant powerful (Table 2), which may explain the
716 similarity of results obtained with the 'colour + geochemistry' and the 'geochemistry' models.
717 Indeed, mining tributaries contributed an average of 65 ± 27 % for 'colour + geochemistry' model and
718 68 ± 25 % for 'geochemistry' model (Table 4). For the 2017 flood event, mining source contributions
719 largely dominated the sediment production with a mean contribution of 83 ± 8 % for the
720 'geochemistry' model and 88 ± 8 % for the 'colour + geochemistry' model.

721 4.1.4. FDVS-PLSR models

722 The FDVS-PLSR models built from artificial mixture samples showed excellent theoretical
723 predictive performances (e.g. r^2 , RMSEC, RMSEC, Figure 7). However, the application of these models
724 on river sediment samples provided questionable results. Indeed, the artificial mixture samples did
725 not cover entirely the ranges of values found in all sources samples, thus resulting in an
726 overestimation (i.e. superior to 100 %) and an underestimation (i.e. inferior to 0 %) of source
727 composition (Figure 11) in several source samples. Similarly to what was previously observed, three
728 sub-groups of mining tributary samples can be distinguished, one of which (i.e. 'Thio Upstream') is

729 partially merged with the non-mining tributary samples (Figure 11). When modelling the source
730 contributions with the FDVS-PLSR models, a bias was created because the contributions of the 'Thio
731 upstream' tributary may be mainly considered as the contributions of non-mining tributaries. As a
732 result, an overestimation of non-mining tributary contributions may be found in the entire Thio River
733 catchment and particularly in the upper part of the study area. Third, the properties measured in the
734 Koua tributary (i.e. draining Camps des Sapins Mine) samples were not comprised in the ranges of
735 values covered by the artificial mixture samples (Figure 11).

736 Given the particular colour signature of this tributary (Figure 13), its contributions are
737 therefore not taken into account at all by the FDVS-PLSR models. Indeed, the sums of the source
738 contributions by FDVS-PLSR models are lower than the expected 100% particularly in the uppermost
739 part of the catchment (Tables 4 and 5), which may indicate that a source is not accounted for.
740 Artificial mixtures were constructed from a homogenized spectral signature of all mining source
741 samples. However, two distinct spectral signatures were observed between the upstream and
742 downstream mining source samples. Homogenizing the spectral signature of the mining samples led
743 to a loss of information in terms of spectral signature, in particular that of the mining samples
744 located upstream. As a result, a 3-source FDVS-PLSR models (i.e. non-mining, upstream and
745 downstream mining sources) would have been more appropriate than 2-source FDVS-PLSR models in
746 this context.

747 **4.2. Spatial and temporal variations of sediment source contributions**

748 Among the four models tested in this study, the 'colour + geochemistry' model is the most
749 appropriate to estimate mining and non-mining tributary contributions in the Thio River catchment.
750 According to the results of this model, mining tributaries provided the main sediment supply to the
751 river system with a mean contribution of $68 \pm 25\%$ for the 2015 flood event and $88 \pm 8\%$ for the
752 2017 flood event (Tables 4 and 5). The variability of mining tributary contributions between these
753 two flood events with a return period of 10 years ($3500 \text{ m}^3 \text{s}^{-1}$) could be explained in particular by the

754 variability of rainfall distribution (Sellier et al., 2019). Indeed, during the 2015 flood event, the Kouaré
755 River sub-catchment received twice the rainfall than observed in the rest of the Thio River
756 catchment, which may explain a higher contribution of non-mining tributaries for this event than for
757 the 2017 flood event where rainfall was more intense on the eastern part of the catchment in the
758 vicinity of the mines currently in operation (Thio Plateau, Camps des Sapins). In addition, the
759 inhabitants of Thio reported that bushfires had occurred in the Kouaré and Fanama sub-catchments
760 in 2015, which could have led to an increase in soil erosion processes, particularly landslides, in these
761 sub-catchments. This could also explain why the sediment contributions of the Kouaré tributary are
762 higher in 2015 compared to 2017. However, it is likely that, as for low intensity floods (i.e. $<200 \text{ m}^3 \text{s}^{-1}$
763 ¹), sediment generated during previous floods has been remobilized (Allenbach et al., 2020). The
764 current research does not allow to quantify this proportion of remobilized sediments. Future studies
765 based on the measurement of the $^{7}\text{Be}/^{210}\text{Pb}_{\text{xs}}$ ratio could provide information on this question as
766 both isotopes are supplied by rainfall and ^{7}Be is short-lived while $^{210}\text{Pb}_{\text{xs}}$ is much longer-lived. Indeed,
767 this ratio has been used in previous research to determine whether sediment has been eroded
768 recently (i.e. with a high ratio of $^{7}\text{Be}/^{210}\text{Pb}_{\text{xs}}$) or whether they have been remobilized from the
769 channel (i.e. with a low ratio of $^{7}\text{Be}/^{210}\text{Pb}_{\text{xs}}$) (Le Gall et al., 2017; Evrard et al., 2015).

770 Although the FDVS-PLSR models were unable to properly estimate the source contributions,
771 they provided qualitative indications about the proportion of sediment contribution between
772 'Upstream' and 'Downstream' mining tributaries at the level of the estuary. Indeed, only
773 'downstream' mining tributaries were finally identified by the FDVS-PLSR models as mining sources.
774 Mining contributions gradually increased in downstream direction. The predicted proportion sums of
775 river sediment samples also tend to reach the expected 100 %, which could result in a better
776 predictability of the models. As a result, these models indicated that sediment contribution from
777 downstream reaches dominated that of upstream reaches at the level of the estuary for both events.

778 Moreover, the analysis of colour parameters coupled to that of geochemical elements
779 highlighted the occurrence of three sub-groups of mining tributary samples, (1) 'Downstream'
780 samples characterized by high a* values and low K contents, (2) 'Koua tributary' samples located in
781 the upstream characterized by low a* values and low K contents and (3) 'Thio upstream' samples
782 corresponding to a mix of both dominant lithologies (i.e. peridotite massifs and volcano-sedimentary
783 formations) characterized by low a* values and higher K contents (i.e. 4 times higher than for the
784 two previous sub-groups) (Figure 13). Owing to the low K contents found in Thio River sediment
785 samples collected in the uppermost part (i.e. $\sim 2200 \text{ mg kg}^{-1}$ in 2015 and $\sim 2600 \text{ mg kg}^{-1}$ in 2017),
786 which were similar to those measured in samples of sub-group (2) ($\sim 2400 \text{ mg kg}^{-1}$), it would appear
787 that the Koua tributary draining Camps des Sapins mine dominated the sediment supply in the
788 upstream for both events.

789 **Conclusions**

790 One of the objectives of this study was to evaluate the performance of sediment tracing
791 methods based on spectroscopy (i.e. colour parameters and FDVS). However, the results showed that
792 the individual fingerprinting approaches based on spectroscopy did not provide sufficient
793 discrimination between sources to be used for the modelling of sediment source contributions.
794 Nevertheless, the inclusion of colour properties in addition to geochemical parameters turned out to
795 be the optimal combination of tracers providing the highest discrimination between sediment
796 sources. This 'colour + geochemistry' model is, however largely based on the discriminatory power
797 provided by K, which explains why the results obtained between both models are so similar. Indeed,
798 the contributions of mining tributaries were estimated to $65 \pm 27\%$ by the 'colour + geochemistry'
799 model versus $68 \pm 25\%$ by the 'geochemistry' model for the 2015 flood event. In a similar way, the
800 contributions of mining tributaries were estimated to $88 \pm 8\%$ by the 'colour + geochemistry' model
801 versus $83 \pm 8\%$ by the 'geochemistry' model for the 2017 flood event. Moreover, both approaches
802 have been experimentally validated [through tests with artificial mixture samples](#). As a result, the use

803 of these approaches could be extended to other mining catchments of New Caledonia but also
804 possibly to other similar nickel mining areas (i.e. Ni oxidized ores based on peridotite massifs) around
805 the world. In addition, although the individual fingerprinting approaches based on spectroscopy were
806 not able to discriminate sediment sources in the current research, spectroscopy measurements
807 provided complementary information to that delivered by the geochemical properties alone to
808 discriminate between sediment sources at the estuary. In the future, additional developments could
809 be considered to improve this technique. The concept of a two-source sediment tracing approach
810 (i.e. mining vs. non-mining tributary contributions) is maybe too simplistic in a mining context. The
811 initial hypothesis that red-orange eroded sediment comes from mining tributaries whereas yellow-
812 grey material originates from non-mining tributaries could not be fully confirmed in New Caledonia.
813 Indeed, soils found in both mining and non-mining areas are all highly weathered and share
814 similarities in terms of oxidized mineral composition (e.g. goethite), which likely generates confusion
815 for discriminating their respective colorimetric signatures. ~~SM~~Moreover, soils found across all mining
816 areas across a single catchment are not necessarily identical, as different depths of their respective
817 weathering profiles may crop out and result in variable colorimetric signatures. A preliminary
818 identification of these soils characteristic of different weathering stages could be considered to
819 improve the results of sediment tracing approaches based on spectroscopic measurements, both in
820 New Caledonia and in other similar nickel mining catchments around the world.

821 **Data availability**

822 The database has been registered on the PANGEAE website and is currently undergoing the
823 editorial process: <https://issues.pangaea.de/browse/PDI-25229>.

824 **Author contribution**

825 Oldrich Navratil, Michel Allenbach and Olivier Evrard designed research. Virginie Sellier,
826 Oldrich Navratil, Olivier Evrard and Irène Lefèvre carried out fieldwork sampling. Virginie Sellier

827 conducted the analyses. All co-authors contributed to data analysis and interpretation. John Patrick
828 Laceby contributed to modelling. All co-authors contributed to the writing and approved the final
829 version of the manuscript.

830 **Competing interests**

831 The authors declare that they have no conflict interest.

832 **Acknowledgements**

833 This work was funded by the National Technical Research Center (CNRT) "Nickel and Its
834 Environment", Noumea, New Caledonia » (n°10PS2013-CNRT.UNC/IMMILA). The PhD project of
835 Virginie Sellier is also financed by the French Atomic Energy Commission (CEA, Commissariat à
836 l'Energie Atomique et aux Energies Alternatives). The authors are grateful to Jean-Guy M'Boueri,
837 Pierre Chanel, Jean-Jean, Lorenza M'Boueri, Nicolle Mathys for their invaluable support to identify
838 and have access to the field sampling sites. The authors would also like to thank Magdalena Uber for
839 her contribution to the spectrophotometric analyses.

840

841 **References**

- 842 Abel, A., Michael, A., Zartl, A., and Werner, F.: Impact of erosion-transported overburden dump
843 materials on water quality in Lake Cospuden evolved from a former open cast lignite mine
844 south of Leipzig, Germany, *Environmental Geology*, 39, 683-688, 2000.
- 845 Allenbach, M., Bertrand, M., Despinoy, Y., Evrard, O., Garcin, M., Liébault, F., Navratil, O., Recking, A.,
846 Richard, D., Rouet, I., Sabinot, C., Sellier, V., Tessier, B., Thinon, I., Touraivane, and Worliczek,
847 E.: Rapport scientifique. Programme « IMMILA, Impact de la mine au lagon ». CNRT « Nickel
848 & son environnement. 250 pages. , 2020.
- 849 Batista, P. V. G., Laceby, J. P., Silva, M. L. N., Tassinari, D., Bispo, D. F. A., Curi, N., Davies, J., and
850 Quinton, J. N.: Using pedological knowledge to improve sediment source apportionment in
851 tropical environments, *J Soils Sediments*, 10.1007/s11368-018-2199-5, 2018.
- 852 Baudrimont, M., Dominique, Y., Feurtet-Mazel, A., Gonzalez, P., Gourvès, P.-Y., Gunkel-Grillon, P.,
853 Laporte-Magoni, C., Lefrançois, E., Letourneur, Y., Marquié, J., Maury-Brachet, R., Monna, F.,
854 Pasquet, C., Rivière, E., and Roth, E.: - Rapport scientifique final. Programme « Dispersion des
855 métaux de la mine au lagon. ». CNRT « Nickel & son environnement ». 192 pages, 2019.
- 856 Bird, E. C. F., Dubois, J. P., and Iltis, J. A.: The impacts of opencast mining on the rivers and coasts of
857 New Caledonia. Tokyo, Japan, United Nations University, 1984.
- 858 Blake, W. H., Wallbrink, P. J., Wilkinson, S. N., Humphreys, G. S., Doerr, S. H., Shakesby, R. A., and
859 Tomkins, K. M.: Deriving hillslope sediment budgets in wildfire-affected forests using fallout
860 radionuclide tracers, *Geomorphology*, 104, 105-116, 10.1016/j.geomorph.2008.08.004, 2009.
- 861 Brosinsky, A., Foerster, S., Segl, K., and Kaufmann, H.: Spectral fingerprinting: sediment source
862 discrimination and contribution modelling of artificial mixtures based on VNIR-SWIR spectral
863 properties, *Journal of soils and sediments*, 14, 1949-1964, 2014.
- 864 Brown, A.: The potential use of pollen in the identification of suspended sediment sources, *Earth
865 Surface Processes and Landforms*, 10, 27-32, 1985.
- 866 Clarke, P., and David, C.: New Provincial Environmental Legislation in New Caledonia: Continuity and
867 Reform in Environmental Governance in a French Pacific Territory, *Asia Pac. J. Envtl. L.*, 13,
868 135, 2010.
- 869 Collins, A., and Walling, D.: Selecting fingerprint properties for discriminating potential suspended
870 sediment sources in river basins, *Journal of hydrology*, 261, 218-244, 2002.
- 871 Collins, A. L., Walling, D. E., and Leeks, G. J. L.: Composite fingerprinting of the spatial source of fluvial
872 suspended sediment : a case study of the Exe and Severn river basins, United Kingdom,
873 *Géomorphologie*, 2, 41-53, 10.3406/morfo.1996.877, 1996.
- 874 Coulthard, T. J., and Macklin, M. G.: Modeling long-term contamination in river systems from
875 historical metal mining, *Geology*, 31, 451-454, 2003.
- 876 Danloux, J., and Laganier, R.: Classification et quantification des phénomènes d'érosion, de transport
877 et de sédimentation sur les bassins touchés par l'exploitation minière en Nouvelle Calédonie,
878 1991.

- 879 Daszykowski, M., Walczak, B., and Massart, D.: Representative subset selection, *Analytica chimica
880 acta*, 468, 91-103, 2002.
- 881 Davis, C. M., and Fox, J. F.: Sediment fingerprinting: review of the method and future improvements
882 for allocating nonpoint source pollution, *J Environ Eng*, 135, 490-504, 2009.
- 883 Debret, M., Sebag, D., Desmet, M., Balsam, W., Copard, Y., Mourier, B., Susperrigui, A.-S., Arnaud, F.,
884 Bentaleb, I., and Chapron, E.: Spectrocolorimetric interpretation of sedimentary dynamics:
885 the new “Q7/4 diagram”, *Earth-Science Reviews*, 109, 1-19, 2011.
- 886 Denis, B.: Etude de sols fersiallitiques désaturés du plateau de Tango (Nouvelle-Calédonie), *Cahiers
887 ORSTOM. Série Pédologie*, 24, 61-76, 1988.
- 888 Dumas, P.: Méthodologie de cartographie de la sensibilité des sols à l'érosion appliquée à la région
889 de Dumbéa à Païta-Bouloupari (Nouvelle-Calédonie), *Les Cahiers d'Outre-Mer. Revue de
890 géographie de Bordeaux*, 63, 567-584, 2010.
- 891 Dumas, P., Printemps, J., Mangeas, M., and Luneau, G.: Developing erosion models for integrated
892 coastal zone management: A case study of The New Caledonia west coast, *Marine Pollution
893 Bulletin*, 61, 519-529, 2010.
- 894 Evrard, O., Laceby, J. P., Huon, S., Lefèvre, I., Sengtaheuanghong, O., and Ribolzi, O.: Combining
895 multiple fallout radionuclides (137Cs, 7Be, 210Pbxs) to investigate temporal sediment source
896 dynamics in tropical, ephemeral riverine systems, *J Soils Sediments*, 16, 1130-1144,
897 10.1007/s11368-015-1316-y, 2015.
- 898 Evrard, O., Durand, R., Foucher, A., Tiecher, T., Sellier, V., Onda, Y., Lefèvre, I., Cerdan, O., and
899 Laceby, J. P.: Using spectrocolourimetry to trace sediment source dynamics in coastal
900 catchments draining the main Fukushima radioactive pollution plume (2011–2017), *Journal
901 of Soils and Sediments*, 1-12, 2019.
- 902 Evrard, O., Chaboche, P.-A., Ramon, R., Foucher, A., and Laceby, J. P.: A global review of sediment
903 source fingerprinting research incorporating fallout radiocesium (137Cs), *Geomorphology*,
904 107103, 2020.
- 905 Garcin, M.: Exploitation des granulats en lit vif des cours d'eau de la Grande-Terre, Nouvelle-
906 Calédonie. BRGM/RP-58531-FR. 114 p., 90 fig., 3 tabl., Bureau des Recherches Géologiques et
907 Minières 2010.
- 908 Garcin, M., Gastaldi, Y., and Lesimple, S.: Quantification et évolution temporelle des apports miniers
909 dans les rivières calédoniennes. BRGM/RP-66840-FR, 44 p., 23 fig., 5, Bureau des Recherches
910 Géologiques et Minières
- 911 2017.
- 912 Gruszowski, K., Foster, I. D., Lees, J., and Charlesworth, S.: Sediment sources and transport pathways
913 in a rural catchment, Herefordshire, UK, *Hydrological Processes*, 17, 2665-2681, 2003.
- 914 Hedouin, L., Pringault, O., Metian, M., Bustamante, P., and Warnau, M.: Nickel bioaccumulation in
915 bivalves from the New Caledonia lagoon: Seawater and food exposure, *Chemosphere*, 66,
916 1449-1457, 2007.

- 917 Highley, D., Chapman, G. R., and Bonel, K.: The economic importance of minerals to the UK, British
918 Geological Survey, 2004.
- 919 Iltis, J.: La mine, élément de la controverse écologique dans le Pacifique Sud, *L'Espace géographique*,
920 193-205, 1992.
- 921 James, L. A.: Legacy sediment: definitions and processes of episodically produced anthropogenic
922 sediment, *Anthropocene*, 2, 16-26, 2013.
- 923 Juillot, F.: – Rapport scientifique final. Programme « Dynamique des métaux de la mine au lagon ».
924 CNRT « Nickel & son environnement ». 202 pages., 2019.
- 925 Klages, M., and Hsieh, Y.: Suspended Solids Carried by the Gallatin River of Southwestern Montana:
926 II. Using Mineralogy for Inferring Sources 1, *Journal of Environmental Quality*, 4, 68-73, 1975.
- 927 Kumar, A., and Maiti, S. K.: Assessment of potentially toxic heavy metal contamination in agricultural
928 fields, sediment, and water from an abandoned chromite-asbestos mine waste of Roro hill,
929 Chaibasa, India, *Environmental earth sciences*, 74, 2617-2633, 2015.
- 930 Laceby, J. P., and Olley, J.: An examination of geochemical modelling approaches to tracing sediment
931 sources incorporating distribution mixing and elemental correlations, *Hydrol. Process.*, 29,
932 1669-1685, 10.1002/hyp.10287, 2015.
- 933 Laceby, J. P., Evrard, O., Smith, H. G., Blake, W. H., Olley, J. M., Minella, J. P. G., and Owens, P. N.: The
934 challenges and opportunities of addressing particle size effects in sediment source
935 fingerprinting: A review, *Earth-Sci. Rev.*, 169, 85-103, 10.1016/j.earscirev.2017.04.009, 2017.
- 936 Le Gall, M., Evrard, O., Foucher, A., Laceby, J. P., Salvador-Blanes, S., Manière, L., Lefèvre, I., Cerdan,
937 O., and Ayrault, S.: Investigating the temporal dynamics of suspended sediment during flood
938 events with ^{7}Be and ^{210}Pb measurements in a drained lowland catchment, *Scientific
939 reports*, 7, 42099, 2017.
- 940 Legout, C., Poulenard, J., Nemery, J., Navratil, O., Grangeon, T., Evrard, O., and Esteves, M.:
941 Quantifying suspended sediment sources during runoff events in headwater catchments
942 using spectrophotometry, *J Soils Sediments*, 13, 1478-1492, 10.1007/s11368-013-0728-9,
943 2013.
- 944 Mardhel, V., Iseppi, M., Regninger, P. A., and Sevin, B.: Connaissance de l'ophiolite, géophysique
945 aéroportée et étude de la structure. Rapport scientifique final. Programme «OPHIOSTRUCT».
946 CNRT «Nickel & son environnement», 2018.
- 947 Martínez-Carreras, N., Udelhoven, T., Krein, A., Gallart, F., Iffly, J. F., Ziebel, J., Hoffmann, L., Pfister,
948 L., and Walling, D. E.: The use of sediment colour measured by diffuse reflectance
949 spectrometry to determine sediment sources: application to the Attert River catchment
950 (Luxembourg), *J Hydrol.*, 382, 49-63, 2010.
- 951 Motha, J., Wallbrink, P., Hairsine, P., and Grayson, R.: Unsealed roads as suspended sediment sources
952 in an agricultural catchment in south-eastern Australia, *Journal of Hydrology*, 286, 1-18,
953 2004.
- 954 Navratil, O., Evrard, O., Esteves, M., Legout, C., Ayrault, S., Némery, J., Mate-Marin, A., Ahmadi, M.,
955 Lefèvre, I., and Poirel, A.: Temporal variability of suspended sediment sources in an alpine

- 956 catchment combining river/rainfall monitoring and sediment fingerprinting, *Earth Surface*
957 *Processes and Landforms*, 37, 828-846, 2012.
- 958 Owens, P. N., and Walling, D. E.: The phosphorus content of fluvial sediment in rural and
959 industrialized river basins, *Water Res.*, 36, 685-701, 2002.
- 960 Pascal, N.: *Ecosystèmes coralliens de Nouvelle-Calédonie. Valeur économique des services*
961 *écosystémiques. Partie I: Valeur financière.* IFRECOR., 2010.
- 962 Poulenard, J., Perrette, Y., Fanget, B., Quetin, P., Trevisan, D., and Dorioz, J.-M.: Infrared
963 spectroscopy tracing of sediment sources in a small rural watershed (French Alps), *Science of*
964 *the Total Environment*, 407, 2808-2819, 2009.
- 965 Poulenard, J., Legout, C., Nemery, J., Bramorski, J., Navratil, O., Douchin, A., Fanget, B., Perrette, Y.,
966 Evrard, O., and Esteves, M.: Tracing sediment sources during floods using Diffuse Reflectance
967 Infrared Fourier Transform Spectrometry (DRIFTS): A case study in a highly erosive
968 mountainous catchment (Southern French Alps), *Journal of Hydrology*, 414, 452-462, 2012.
- 969 Priadi, C., Ayrauk, S., Pacini, S., and Bonte, P.: Urbanization impact on metals mobility in riverine
970 suspended sediment: role of metal oxides, *International Journal of Environmental Science &*
971 *Technology*, 8, 1-18, 2011.
- 972 Prior, T., Daly, J., Mason, L., and Giurco, D.: Resourcing the future: Using foresight in resource
973 governance, *Geoforum*, 44, 316-328, 2013.
- 974 Quantin, P., Bourdon, E., and Becquer, T.: *Minéralogie et contraintes édaphiques des sols "ferritiques"*
975 dérivés de roches ultrabasiques en Nouvelle-Calédonie: relations entre
976 constituants minéraux et disponibilité en certains éléments (Al, Fe, Si, Mg, Mn, Ni, Co, Cr, Cu,
977 Zn, Mo) facilement solubles, 1997.
- 978 Rossel, R. V., Walvoort, D., McBratney, A., Janik, L. J., and Skjemstad, J.: Visible, near infrared, mid
979 infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of
980 various soil properties, *Geoderma*, 131, 59-75, 2006.
- 981 Sellier, V., Navratil, O., Laceby, J. P., Allenbach, M., Lefèvre, I., and Evrard, O.: Investigating the use of
982 fallout and geogenic radionuclides as potential tracing properties to quantify the sources of
983 suspended sediment in a mining catchment in New Caledonia, South Pacific, *Journal of Soils*
984 and *Sediments*, 1-17, 2019.
- 985 Sevin, B.: *Cartographie du régolithe sur formation ultrabasique de Nouvelle-Calédonie: Localisation*
986 *dans l'espace et le temps des gisements nickélières*, Nouvelle Calédonie, 2014.
- 987 Shellberg, J., Brooks, A., and Spencer, J.: Land-use change from indigenous management to cattle
988 grazing initiates the gulling of alluvial soils in northern Australia, *19th World Congress of Soil*
989 *Science: Soil Solutions for a Changing World*, 2010, 1-6,
- 990 Sherriff, S. C., Franks, S. W., Rowan, J. S., Fenton, O., and Ó'hUallacháin, D.: Uncertainty-based
991 assessment of tracer selection, tracer non-conservativeness and multiple solutions in
992 sediment fingerprinting using synthetic and field data, *J Soils Sediments*, 15, 2101-2116,
993 10.1007/s11368-015-1123-5, 2015.

- 994 Smith, H. G., Sheridan, G. J., Lane, P. N. J., Noske, P. J., and Heijnis, H.: Changes to sediment sources
995 following wildfire in a forested upland catchment, southeastern Australia, *Hydrol. Process.*,
996 25, 2878-2889, 10.1002/hyp.8050, 2011.
- 997 Surell, A.: *Étude sur les torrents des Hautes-Alpes*, Carilian-Goeury, 1841.
- 998 Tiecher, T., Caner, L., Minella, J. P., and dos Santos, D. R.: Combining visible-based-color parameters
999 and geochemical tracers to improve sediment source discrimination and apportionment, *Sci
1000 Total Environ.*, 527-528, 135-149, 10.1016/j.scitotenv.2015.04.103, 2015.
- 1001 Trescases, J. J.: Weathering and geochemical behaviour of the elements of ultramafic rocks in New
1002 Caledonia, *BMRJ. Aust. Geol and Geophys.*, 141, 149-161, 1973.
- 1003 Uber, M., Legout, C., Nord, G., Crouzet, C., Demory, F., and Poulenard, J.: Comparing alternative
1004 tracing measurements and mixing models to fingerprint suspended sediment sources in a
1005 mesoscale Mediterranean catchment, *Journal of Soils and Sediments*, 1-19, 2019.
- 1006 Valette-Silver, N. J.: The use of sediment cores to reconstruct historical trends in contamination of
1007 estuarine and coastal sediments, *Estuaries*, 16, 577-588, 1993.
- 1008 Varol, M.: Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using
1009 pollution indices and multivariate statistical techniques, *Journal of Hazardous Materials*, 195,
1010 355-364, 2011.
- 1011 Wallbrink, P., Murray, A., Olley, J., and Olive, L.: Determining sources and transit times of suspended
1012 sediment in the Murrumbidgee River, New South Wales, Australia, using fallout ^{137}Cs and
1013 ^{210}Pb , *Water Resour Res.*, 34, 879-887, 1998.
- 1014 Wallbrink, P. J.: Quantifying the erosion processes and land-uses which dominate fine sediment
1015 supply to Moreton Bay, Southeast Queensland, Australia, *Journal of environmental
1016 radioactivity*, 76, 67-80, 2004.
- 1017 Walling, D., Peart, M., Oldfield, F., and Thompson, R.: Suspended sediment sources identified by
1018 magnetic measurements, *Nature*, 281, 110, 1979.
- 1019 Yellishetty, M., Mudd, G. M., and Shukla, R.: Prediction of soil erosion from waste dumps of opencast
1020 mines and evaluation of their impacts on the environment, *International Journal of Mining,
1021 Reclamation and Environment*, 27, 88-102, 2013.
- 1022