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‘begin{abstract}

5o0il aggregate stability is & useful indicator of soil physical health and can be used to
monitor conditicn through time. A novel method to quantify soil aggregate stability,
based on the relative increase in the footprint area of aggregates as they disintegrate
when immersed in water, has been developed and can be performed using a smartphone
application - SLAKES. In this study the SLAKES application was used to obtain slaking
index (5I) walues of topsoil samples (@ to 18 cm) at 158 sites to assess aggregate
stability in a mixed agricultural landscape. & large range in 5I values of @ to 7.3 was
observed. Soil properties and land use were found to be correlated with observed SI
values. Soils with clay content »25\% and CEC:clay ratioc 0.5 had the highest observed
SI values. Variation in SI for these soils was driven by OC content which fit a
segmented exponential decay function. An OC threshold of 1.1\% was observed below which
the most extreme 5I wvalues were observed. 5oils under dryland and irrigsted cropping
had lower OC content and higher cobserved 5I walues compared to soils under perennial
cover. These results suggest that farm managers can mitigate the effects of extrems
slaking by implementing managemsnt practices to increase OC content, such as minimum
tillage or cover —cropping. A regression-kriging method utilising a Cubist model with a
suite of spatial covariates was used to map SI across the study area. Accurate
predictions were produced with leave-one-out cross-validation===88&¢ civing am Lin's
concordance correlation coefficient (LCOCC)eEe of @.85 and an RMSE of 1.1. Similar
validation metrics were observed in an independent test set of samples consisting of 5@
observations (LCCC = @.82; RMSE = 1.1). The potential impact of implementing management
practices that promote soil OC sequestration on SI values in the study area was
explored by simulating how a @.5%% and 1.8%% increase in OC would impact 5I wvalues at
observation points, and then mapping this across the study area. Overall, the maps
produced in this study have the potential to guide management decisions by identifying
areas that currently experience extreme slaking, and highlightingthese areas that are
expected to have & significant reduction in slaking by increasing OC content.

‘end{abstract}

“copyrightstatement{TEXT}

“introduction #X¥ \introduction[modified heading if necessary]

Objective and quantitative metrics are required to assess soil health and monitor soil
condition through time. Development of simple accessible metrics to assess soil health
will facilitate increased spatial and temporal sampling density, and will encourage
farmers, consultants and even citizemns to participate in soil health assessment.
At e e e et e e e e — e et eree—

o ? i et ooregate stability is an important
indicator of physical condition that quantifies & soil's resistance to slaking and
dispersion. Slaking is the disintegration of scil aggregates as & result of rapid
wetting ‘citep{yoder,ocades}. Slaking occurs when soil aggregates are unable to
withstand the stress induced by water uptake derived from two main causes: swelling of
clay minerals as water is adsorbed intoc the interstitial space; and internal pressure
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caused by compressilon of entrapped alr bubbles as caplllary actlon draws water 1nto the
small pores between soil particles ‘\citep{emsrsong4}. Most cultivated soils in
Australia are prone to some degree of slaking. The degree of slaking determines if the
process produces & favourable or unfavourable environment for cultivation and plant
growth, and has implications for soil ceonservation. A small degree of slaking can be
beneficial and is associsted with self-mulching - an ability to recover from
disturbance by reforming small (<5 mm) sggregates at the soil surface following wetting
and drying cycles ‘\citep{selfmulch}; and mellowing - a partial disintegration of soil
aggregates on wetting that results in increased friability ‘citep{mellow]. Slaking
produces detrimental effects when aggregstes disintegrate further into microaggregstes
(¢ <0.25 mm). Detached microaggregates migrate and settle into pores, reducing pore
volume, decreasing infiltration and percolation rates, and leading to increased surface
runcff ‘“citep{rengasamyl9%34}. Erosion susceptibility is exacerbated as greater run-off
volumes increase erosive power and the slaked aggregstes also provide suitably sized
particles for translocation. Ultimately the soil has a lowered capacity to support
plant growth as plant available water and socil-atmosphere gas exchange are both reduced

In severe cases, crusting or hard-setting occurs when slaked and dispersed aggregates
coalesce and set hard on drying ‘citep{Mullins1%%8}. Scil strength increases as the
soil dries producing difficulty im cultivation wuntil the scil is rewetted, and shoot
emergence and root growth may be restricted ‘citep{Mullins1998}.

susceptibility of a soil aggregate to slake is related to texture, mineral composition
and organic matter content ‘citep{Mullins199@}. Soils with high clay content,
especially those containing smectite or vermiculite minerals, are more likely to slake
as they expand on wetting and also contain a greater number of small diameter pores
into which capillary action will draw water and compress entrapped air-bubbles
“citep{emersonG4}. High organic matter content improves soil structure by binding soil
particles into stable aggregates and reducing susceptibility to slaking
“citep{chenu2@@Borganic}. Technigues that increase soil organic matter such as cover
cropping, reduced tillage and application of organic amendments may reduce
susceptibility to slaking. Agricultural management practices that increase
susceptibility to slaking include: conventional tillage methods that destroy soil
structure and accelerate organic matter decomposition; burning or removal of crop
residues; and the application of pesticides and other chemicals that are harmful to
soil biots and lead to disruption of organic matter cycling and reduced aggregation=.
TFhe detrimental effects of soil slaking are more proncunced in areas with clear
wetting and drying cycles, such as temperate Australia. \cite{cocllisGeerge} found that+—
&= the initial water content of soil affects the degree of slaking upon rewetting and
sopils of low initial water content are more prone to rapid and explosive

slakingherpfeeitrrSoore=Tt.

Slaking and dispersion are gquantified through aggregste stability tests that observe

changes in soil aggregate morphology following immersion in water in an attempt to
predict soil behaviour in the field. ‘cite{emerson&?} developed & test to classify
samples intoc eight classes based on the degree of slaking, swelling and dispersion
observed when air-dried soil aggregates are immersed in distilled water. The Emesrson
Aggregate Test was extended by including a supplementary analysis whereby soil samples
were wetted and moulded into cubes before immersion in the distilled water as a means
to simulate the shear forces associated with raindrop impact and tillage on bare soil
“citep{lovedayPyle,emerson91l}. ‘cite{aswat} modified these tests further to include
observations of slaking and dispersion at both ten minutes and two hours post
submersion in the 'aggregste stability in water' (ASWAT) test. This grestly decreased
the time-requirement from 28+ h required for previous tests, however, interpretationm of
the degree of slaking for the ASWAT test remained moderately subjective and scores were
produced on an ordinal scale from @ to 4 which limits statisticsl applications.
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Established methods to quantify stability of aggregates subject to wet-sieving or
simulated rainfall are also time-consuming and require specialist equipment
\citep{yoder,schindelbeck].

A new method has been dewveloped to calculate degree of slaking using a time-series of

Few

The

digital photographs to quantify the increase of the footprint area of aggregates as
they disintegrate when immersed in distilled water “citep{marioc}. This method has been
incorporated inte a smartphone application, SLAKES, that is able to quantify aggregate
stability in only ten minutes ‘“citep{slakes}. The reduced assessment time was achieved
as the authors found that the two hour reading can be reliably estimasted from change in
footprint area over the ten minute analysis period. The SLAKES application requires no
specialty equipment and the automated nature of the application allows aggregate
stability to be quantified with minimalem training. These advances make the analysis
more readily available to farm managers and citizen scientists. The method calculates
an cbjective and continuous slaking index (SI), which reduces operator error and
facilitates slucidation of contributing factors of observed slaking. For example,
Veite{flynn} investigated aggregate stability of Vertisols wunder different agricultural
management strategies and found that 5I was significantly more sensitive at
distinguishing the perennial, no-till and conventional tillage management treatments
compared to the Cornell Wet Aggregate Stability Test ‘\citep{schindelbeck]}.

studies have mapped aspects of soil sggregate stebility wsing digitsl soil mapping (DSM
} techniques. ‘cite{ocdeh} used regression-kriging and indicator-kriging to model the
electrochemical stability index (ESI) across an irrigated cropping region of western
MsW, Australia. This resulted in & map of 'risks zones' that were susceptible to
dispersion and which could be prioritised for increased monitoring and tactical
management to abate immediate and future detrimental impacts on crop production. A
study by ‘\citep{ANNABI2817157} also wtilised regression-kriging to produce accurate
predictions of soil aggregate stability of an agricultural district in Tunisia. —Fine
-resolution maps of soil aggregate stability across fields and farms have considerable
potential to aid farm managers in decision-making processes. Such maps could—ede guide
farm managers to implement soil amelioration practices, such as tactical application of
gypsum, or change in management practices, such as minimum tillageesdedrereberr—me=tie=d or
use of cover —crops. Tools that make aggregate stability quantification accessible,
such as the SLAKES application, may facilitate the production of such maps.

current study investigated the use of the SLAKES application and D5SM technigues to
assess varlation in SI across a landscape with different agriculturzl and natural land
uses. The contribution of both soil attributes and land management to slaking was
investigatedesp¥ered, and the potential impact of increasing soil OC levels on slaking
was explored.

“section{Methodology}
“subsection{5ite description}

The

study was centred around a mixed farming property, L*lara (3@\textdegreelS'ls" 5,
149\ textdegree51'39" E), which is located ‘\textasciitildell km north-east of the
township of Marrabri, MN5W, Auvstralia (Fig. ‘\ref{fig:studyArea}). Climate at the study
site is classified as humid subtropical {Cfa) under the K{\"olppen-Geiger system
“citep{koppen}. The site experiences hot summers and cool winters. The long-term
average annual precipitation for the study area is 658 mmy and is slightly summer
-dominant ‘“citep{bom}. The landscape at L'lara and its surrounds can be broadly
characterised into two distinct areas: sand covered hills derived predominantly from
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Jurassic coarse-grained sediments of Pilligs sandstone covered by Quaternary sands and
talus material; and floodplain areas derived from Quaternary alluvial deposits of
basaltic materials washed from the western side of the MNandewar range. The soils of the
floocdplain area at L*lara asre—e classified as Vertisolsiessdfied—eas—irlaeb——armd—tromm—
repessals—treearinr—te—the—tustmatin—Cadl—Classifiantdinn according to the World
Reference Base for Soil Resources, with some expression of calecic horizons

Yltep {wrbistett: —rit—amertt—ercers—af—arep—ertesedts. The sand hill area is
represented by Fre——oi-—reteerorirriEeTeerere e ooyl
—ierrtereta Rt s—ird—errerrete—retbeptisre it Luvisol, Lixisol, Solonetz, Leptoscl
and Regosol so0il groups.—tre—urifyirmp—fertore—of—these—orils—rerr—the—presermee—af—a—

retotivety—sormdy—topaeit- L' lara encompasses a total area of 1,858 ha, with
approximately 1,878 ha used for drylands—bresdeere cropping. Cropping is performed

primarily on the Vertiwsols, and cccurs over both summer and winter periods with cotton
(\textit{Gossypium hirsutum} L.}, wheat (“textit{Triticum aestiwvum} L.}, cancla
(\textit{Brassica napus} L.) and chickpea (‘“textit{Cicer arietinum} L.} grown in
rotation. Lowsr lying floodplain areas close to cresk lines and all of the sand hill
area is used for grazing of beef cattle on unimproved native pastures
{(\textasciitilde7@4 ha) and remnant forest cover (\textasciitilde?& ha).

\begin{figure}[h]
“includegraphics[width=128cm]{fig@l.PNG}
‘caption{a) Location of L"lara farm and the wider study area in relation to the township of

Marrabri, MSW, Australia. Sample locations used as & training set (n = 188) and test
set (n = 58) are indicated. Satellite imagery sourced from Google Earth Pro WV 7.3.2
.3776. (March 5, 281%). Narrsbri, MN5W, Australis. 307 1&° 31.37"5, 149° 51" 46.42YE,
Eye alt 28.57 km. Image @ CNES/Airbus 2@28. http://wew.earth.google.com [April 28,
2e2e]. b) MrVBF calculated at 3@ m resolution using the SRTM digital elevation model. ¢
] Pixel-wise 58th percentile of MNDVI calculated from Landsat 7 scenes covering the time
-period 2888 to 2018. d) Simplified land use across the study area \citep{abares_alumj}.
FR, forest reserve; Gr, grazing including understorey grazing and stock routes; DC,
dryland cropping; IC, irrigated cropping; OW, open water; BU, built-up areas. The
external perimeter boundary of L"lara is indicated by the thick black line and
boundaries of cropping paddocks are indicated by thin black lines.}

“label{fig:studyArea}
‘end{figure}

L'lara lies st the centre of & diverse landscape. Outside the property, dryland cropping

and grazing occcur on the floodplains and slopes to the =ast and south. Intensive
irrigeted agricultural production occurs on the lower floodplain to the south-west of
the property, and the Killarney State Conservation Area lies directly to the north.
This conservation area contains similar species as the remnant forest area found on
L'lara which is dominated by white cypress pine (‘\textit{Callitris glaucophyllal),
hickory (M\textit{Acacia leiocalyx}), black cypress pine (‘textit{Callitris
endlicheri}), narrow-leaved ironbark (\textit{Eucalyptus crebra}l}, bulloak
(\textit{Allocasuarina leuhmannii}) and dirty gum (\textit{Eucalyptus chloroclada}).

‘“subsection{5cil sampling}
A training set of 188 samples and a test set of 5@ samples were defined (Table ‘“ref{table

:campaigns}). The training set comprised both on- and off-farm samples. Sempe—tte==
mere—identified—ermtare—ord—tre—surroormdimE—areo—The—meferiey—aF on-farm samples (n
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= 58) were identified based on a random stratified sampliné app%nach utilising soil
type and land use as parameters (Fig. ‘ref{fig:studyArea}). This ensured representation
of the major soil types and different land uses - dryland cropping, pasture and forest

cover found on the property. The off-farm samples (n =v—tmrestigomte—=iokomz—tmtieare=
serroumitre——tere—ar—additdemad 58) samples were sourced from neighbouring properties

found within a 5 km distance from the boundary of L'lara. As a soil type map was not
available for off-farm locations tFhewe sites were identified through a random
stratified approach utilising K-means clustering and rasters of elevation, multi
-resolution valley bottom flatness (MrVBF) and airborne gamma radiometrics as inmput

variables ‘citep{filippiUR}.——meers—etorberinme Fres—oeitised—te—sptit—tire—drea—iree—
four strata wereetess=s identified whose geographic distribution were

approximatelymeezdy =quivalent to sand hill, transition, upper floodplain and lower
floodplain landscape positions. Sample sites were randomly selected within esach stratum
. Five of the samples on the lower floodplain were under irrigated agriculture, a land
use not represented on L'lara. The test set was constructed wtilising 3@ existing

siteséd—svpplementory—doteret—of28—cwistimg—sttes on the dryland cropping areas of

L'lara which are described in ‘“cite{filippi}, and 2@ sites on the pasture areas=were=—

ﬂé3ﬂ—ﬁ3fd—ﬂﬂ—ﬁ—tfﬂt—ﬂet—ﬁef—meﬂf&—pfeﬁtfttﬂﬂs At each of the 158 sites a topsoil (@ to

18 cm) sample was obtained by excavation using a shovel at a discrete location.

\begin{table}[h]
‘caption{Summary of sampling campaigns and land use for each dataset.}
\begin{tabular}{lllcccecc}

“tophline
& & & \multicolumn{5}{c}{0Observations {(n)} W
Sample set & Location & Date & Forest & Pasture & Dryland & Irrigated
& Total M\
‘\middlehline
Training & L'lara & Dec-18 & & & 2@ & 32 & -
& 58 A
& Surrounds & Aug-19 & 7 & 18 & 20 & 5
& 56 WA,
Test & L'lara & Jul-18 & - & - & 38 £ -
& 30 LA
& L'lara & Jul-18 & - & 2@ & - £ -
& 28 \\
\bottomhline
‘end{tabular}
“label{table:campaigns}
‘end{table}

“subsection{Sample preparation and ltaboratory methods}

All soil samples were air-dried at 48\textdegree C for 48 hours. —A selection of 128 to 15
so0il3® aggregates (¢ 5-18 mm) were isolated from the air-dried, bulk soil samples prior
to grinding and sieving for laboratory analysis. If distinct aggregates were not
immediately evident in the bulk soil then the sample was passed through a 5 mm sieve to
1snlate aggregates, this procedure was often required in sandy soilsemd-retzimed—=fter—

. The remaining sample was then ground to
pass through & 2 mm sieve prior to laboratory analysis. Particle size analysis was
performed using the hydrometer method ‘\citep{geeBauder}. Organic carbon content was
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quantified using the Walkley-Black method “citep{WB}. Soil pH and electrical
conductivity (EC) was measured using a 1:5 soll:H\textsubscript{2}0 suspension. As the
soil samples did not contain significant quantities of carbonates or soluble salts, the
cation exchange capacity (CEC) was assessed using the ammonium acetate method
“citep{rayment}. Exchangeable sodium percentage (ESP) and Ca:Mg ratio were calculated
from the relevant exchangeable cations, and CEC:clay ratioc was calculated following
correction for the CEC contribution of organic matter (OM). Laboratery data was
obtained on the 188 samples of the training set only, for the test set only slaking
index information was obtained.

‘subsection{SLAKES slaking index}
N z c on 5 3 I 5t : - . . red—burd
3 ] : .- i e | oy b
. ;2 3 > s berd 3 ; 1 ;

. . - : ; .
seits—~ slaking index (5I) was obtained using the SLAKES application ‘\citep{slakes}.
Briefly, a smartphone (Galaxy J2 Pro, Samsung, Republic of Korea) with an 8 MP digital
camera was Tixed on an articulated stand to provide the camera lens an unimpeded view
of the bench surface. The height of the stand was adjusted so that the field of view of
the camera was filled by a 180 mm diameter petri dish placed on the surface of the
bench directly below the camera. Three soil aggregates were placed into the petri dish
and an initial image of the aggregates was acquired. The petri dish was then drawn back
and replaced by an identical petri dish filled with sufficient deionised water to
completely immerse the aggregates. The aggregates were held directly above the
deicnised water and dropped simultansously intoe the petri dish with care being taken to
preserve the order and orientation of the aggregstes to that of the initial image. The
start button of the SLAKES application was then immediately pressed and the setup left
to process over 3 12 minute period after which the 5I was displayed on the screen of
the smartphone. The experiment was performed on a white surface to increase contrast
between the soil aggregates and the background surface. The experiment was also
performed under diffuse and constant lighting to prevent the occurrence of shadows over
the petri dish which could introduce errors during the image segmentation process. The
procedure was repeated twice for each sample and if the difference between the
duplicate readings was greater than one unit an additional reading was obtained. An
additional reading was required for approximately 20\% of samples and was more commonly
required for soils with higher slaking index values compared to samples which exhibited
minimal slaking. When additional readings were taken the outlier reading wasBoetier—

reedimga—rere discarded and remainingptiestes readings averaged to provide the final SI
for each sample.

The SLAKES application uses an image segmentation approach to calculate the footprint area
of each aggregate, expressed as pixel count, and tracks the relative increase in area
of individual aggregates as they breakdown over time ‘“citep{marioc}. The SI of an
individual aggregate at a given time after immersion is calculated as:

‘\begin{equation}

5I_t = \frac{a_{t}-A_{@}1{a {@}}

‘end{equation}

where, the ‘textit{A\textsubscript{e}} is the initial footprint area of the aggregate and
YWtextit{a\textsubscript{t}} is the footprint area if the aggregate at time, “textit{t}.
An 5I of @ means that the footprint ares of the aggregate has not increased at all, an
5I of 1 means that the footprint area has increased in size by 108%\%, an SI of 2 means
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that the footprint area has increased in size by 2@@\¥, etc. The change in SI over the
course of the analysis is used to fit a Gompertz function on a log time-scale and
calculate parameters \textit{a}, ‘\textit{b}, ‘textit{c}:

“begin{equation}

SI_t = aer{-ber{-ch\edot{}log(t)}}

‘end{equation}

where, as described in ‘\cite{mario}, ‘“textit{a} is an asymptote representing the maximum 5I
after an indefinite period of time, ‘“textit{b} describes displacement along the time
axis and is associated with initial slaking, ‘textit{c} describes the growth rate and
is associated with ongoing slsking of the aggregste. The 5I valus returned from the
SLAKES application is the average of the ‘textit{a} parameter calculated individually
for easch aggregate. A major benefit of this approach is that this wvalue can be
estimated after only 19 minutes of immersicn, unlike sthe ASHWAT testr—eppresches that

requires #wepegf23¥$ hours of immersion.

“subsection{Spatial covariates for modelling and mapping slaking index}

A range of publicly available spatial datasets were used as input wariables to model SI
across the study area (Table ‘\ref{table:covars}). This included satellite imagery, a
digital elevation model, terrain attributes, air-borne y-radiometric maps, and a
lithology indicator. Landsat 7 tier 1 surface reflectance satellite imagery from 2008
to 2018 was accessed through Google Earth Engine ‘\citep{gorelick2®l7goocgle}. To remove
pixels that were affected by cloud cover or shading, a cloud-masking filter was applied
to all images. The MNormalized Difference Wegetation Index (NDVI) was then calculated
for each pixel in each image. The Sh\textsuperscript{th}, S@\textsuperscript{th} and
95hvtextsuperscript{th} percentile of the time-series of NDVI wvalues were then
determined for each pixel. The reason for using different NDVI percentiles was to
characterise spatial variability in wvegetation cover and vigour over the nineteen year
period. For example, the median (5@\textsuperscript{th} percentile) gives a value of
typical greenness and the 9S\tewxtsuperscript{th} percentile gives peak plant greenness.
The Sh\textsuperscript{th} percentile would likely be low and represent soil variability
for areas that are tilled or heavily grazed, and remain higher for areas of perennial
cover such as forests.

“begin{tablel}[h]
Ycaption{Description and source of covariates used for digital soil mapping.}
Ybegin{tabular}{llcl}

Ytophline
Type & Description & Resolution & Source W\
“middlehline
Satellite imagery$~'dag® & Landsat 7 NODVI 58 & 3@ m & Google Earth Engine AR
& Landsat 7 NDVI S@%\% & 30 m & Google Earth Engine "M
& Landsat 7 NDWI 95%% & 30 m & Google Earth Engine WA
Terrain & DEM (m) & S m & MSW Govermment A\
& Slope (\¥) & 38 m & CSIRD WA
& Aspect (\textdegree) 2 2@ m & CSIRD ),
& MrvBF & 38 m & CSIRD A
& MrRTF & 38 m & CSIRD A
y-radiometrics & Total dose & 198 m & Geoscience Australia A\
& Potassium (\%) & 188 m & Geoscience Australia M\
Lithology & silica (\%¥) & “textasciitilde{}125 m & ‘cite{gray} W
“bottomhline

Yend{tabular?t
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‘belowtable{$ \dag$lLandsat 7 NDVI values represent percentiles computed over the 2008 to
2818 time-period} ¥ Table Footnotes

“label{table:covars}

‘end{table}

A 5 m digital elevation model (DEM) was accessed through the ELVIS (ELeVation Information
System) platform \citep{elvis}. This DEM was derived from photogrammetry and generated
via airborne imagery, it gives an accurate point estimate of elevation though it is not
hydrologically enforced. Shuttle Radar Topography Mission (SRTM) derived terrain
attributes at 3@ m resolution were also accessed through CSIRO's Data Access Portal
“citep{csiro}. The specific terrsin attributes cbtained included aspect, multi
-resolution ridge-top flatness (MrRTF), multi-resolution walley bottom flatness (MrvBF
V1, and slope. Gridded gamma radiometric data at 188 m spatial resolution derived from
an air-borne gammas ray spectrometer was obtained through the Geophysical Archiwve Data
Delivery System (GADDS) “citep{GA}. VWariation in the concentrations of the
radicelements in this product are indicative of change in seil type or parent material.
The individual datasets used included dose rate, and potassium concentration data,
which were processed with low-pass filtering ‘\citep{minty}. A& map of silica index,
which is essentially a map of silica content of soil parent material, was also used as
a covariate ‘citep{gray}. The silica index is known to relate to soil texture and other
important soil physical properties, such as water holding capacity.

“subsection{Modelling and mapping procedure}

A regression-kriging approach was utilised to mesp SI across the study area. All data
handling and processing was performed in the—eper—sefenere R platform for statistical
computing ‘citep{R}. The data set was split intoc a training set (n = 183) and a test
set (n = 58) as previously defined. At each of the 188 sampling sites in the training
set, the spatial covariates described in Table 1 were extracted using the nearest
neighbour method. A Cubist model was then used to build & relationship between 5I and
the spatial covariates at each obserwvation point ‘citep{cubist}. & 20 m grid of the
study area was created and the spatial covariates were then extracted using the nearest
neighbour method at each grid point. The developed Cubist model was then used to
predict ST on this grid of the study area. The residuals (difference between the
observed and predicted 5I values) at obserwvation points showed a weak spatial
autocorrelation. A Gaussian function fit to the empirical semivariogram had a
relatively large nugget of @.81, sill Df 1.11 and a range of 1. 92 km. were Aertmed—emrEe—

3 grid of¥=
kriged residuals was constructed and added to the mapped output of the Cuhlst model to
obtain the final 5I prediction map of the study area. The complexity of the Cubist
model was fine-tuned uwsing a leave-one-out cross-validation (LOOCV) approach on the
training set. The external wvalidation test set consisting of 5@ sites was used to
assess the final model. Validation metrics wsed to assess the prediction performance
were the Lin's concordance correlation coefficient (LCCC), root-mean-square error (RMSE
}, bias and the coefficient of determination (R\textsuperscript{2}).

“subsection{Mapping the simulated effect of increased soil organic carbon on slaking index}

et T T T T T T T e T T T e T T T T T T T T E T T e T O e T T T
Fe—mehrieve—ehis—the Rrelationships between SI and measured soil properties werees
explored to identify potential comtributingso==t factors of—=t=kimgas a means to inform
management practices to reduce excessive slaking. Two classes of soils were evident in
the samples, soils with clay content $\geq{25\%}% and CEC:clay ratioc $\geq{@.5}% which
consistently exhibited excessive slaking, and other s0ilsrrre—rr—————|——
pehrts—inte—etrr e with—simiter—tebhreviewr. Class-based regression was—Hren used to
construct individual predictive models between SI and—the=== other measured soil
attributes for each class using either multiple linsar regression or segmented, non
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-linear regression for more complex relationships ‘\citep{nlstools}. The effect of
increasing soil OC levels on SI was investigated by simulating=e= increases of 8.5'\%
and 1.8 ¥—Smreresse—tn OC and applying the relevant class-based regression egquation
using the laboratory data at each point. These modified 5I walues were then
extrapolated across the study ares using the same regression-kriging approach as
described above and wvalidated using a LOOCV approach.

‘section{Results and discussion}

‘“subsection{Investigating slaking index variation}

‘subsubsection{Slaking index and soil properties}

A large range in SI was observed for the samples analysed in this study (Table “wref{table
:lab_data}). A minimum SI of @ was observed for nine samples, meaning that no slaking
or swelling cccurred and the footprint area of these soil aggregstes did not increase.
A maximum SI of 7.3 was observed, meaning that the average footprint area for these
aggregates 1s projected to increasereressed in size by 732\X. This indicates an extreme
level of aggregate disintegration, although it remains below the maximum theoretical SI
of 7.8 suggested by “cite{mario}. Organic C had an observed range of 6.33 to 2.97\%
and a median value of 8.88\%, demonstrating that many of the sampled locations had low
levels of OC. Other measured soil properties ranged widely, demonstrating the diversity
of soils sampled, e.g. clay ranged from 2.5 to 68.2°\% and pH ranged from 4.8 to 9.2.

“begin{table}[h]
‘caption{Summary statistics of slaking index and laboratory derived soil properties.}
‘begin{tabular}{lcccccc}

“tophline

Froperty & Min. & 1st Qu. & Median & Mean & 3rd Qu. & Max. W\

‘middlehline

slaking index & e.e %2 0.4 & 2.6 & 2.7 & 4.8 & 7.3 N

Organic carbon (%) & @.33 & e.74 L oa.88 & 1l.e7 & 1.22 & 2.37 W\

Clay (\%) & 2.5 2 11.1 & 20.1 & 28.1 & 42.1 & 66.2 \\

pH{1:5 H\textsubscript{2}@) & 4.8 &2 6.8 &6.8 R 7.0 & 8.3 & 9.2 )

EC (d5 m\textsuperscript{-1}) & 8.01 2 0.84 £ 0.12 & 8.15 & 2.19 & 8.81 W\

Exch. Ca\textsuperscript{42} (omol’textsubscript{c} kg\textsuperscript{-1}) & e.0 2
1.7 & 12.5 & 11.3 & 19.8 & 24.0 \\

Exch. Mgh\textsuperscript{4+2} (cmoli\textsubscript{c} kg\textsuperscript{-1}) % 0.8 &
a.7 & 5.1 & 6.9 & 11.@ & 17.@ \\

Exch. Kitextsuperscript{+} (cmoli\textsubscript{c} kg'\textsuperscript{-1}) & 8.1 & B
.4 42 09.8 & 8.9 1.4 & 2.2 NN

Exch. Ma‘\textsuperscript{+} (cmolitextsubscript{c} kg'\textsuperscript{-1}) & a.o 20
.8 £ 8.2 & 8.5 &£ @8.6 & 3.8 N\

CEC (cmoli\textsubscript{c} kg'\textsuperscript{-11}) & 2.2 & 2.8 & 15.6 & 13.8

& 32.8 & 52.8 \\

ESP (\%) & 9.2 2 1.0 £1.8 & 2.9 & 3.6 & 19.4 )\

Ca:Mg ratio & 0.1 & 1.5 &1.9 & 2.2 & 2.5 & 18.8 \\

CEC:clay ratio £ a.e1 & .88 & 0.44 & 2.43 & 8.7 & 1.89 \\

‘\bottomhline

‘end{tabular}

“label{table:1lab_data}

‘end{table}

5laking index £5F—was positively correlsted with clay content {(r = 2.84), pH {r = @.78},
electrical conductiwvity (r = @.44), CEC (r = 8.87), CEC:clay ratio (r = ©.84) and all
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exchangeable cations (Table %
observed for 5T with OC {r =

‘cite{mario} findings that SI
exchangeable Na‘\textsuperscri
correlated with Ca:Mg. The st
with exchangeable Mgl\textsupe
study that demonstrated excha
flocculation of soil particle
believed that the observed co
exchangeable Mg\textsuperscri
such &s smectite, rather than
indicator of SI potential. On
greater than 1, in contrast o
observed SI less than 1. Clay
both & higher concentration o
of smaller pores that may tra

of clay soils had a highiigh

ref{table:1lab_cor}). Weak negative correlations were
-8.31) and Ca:Mg (r = -8.28). These observations support
was positively correlated with pH, clay content and
pt{+} and Mg\textsuperscript{+2}, and negatively
rongest correlation with SI in this study was observed
rscript{4+2} (r = 8.98). This is in contrast to a recent
ngeable Mgh\textsuperscript{+2} played a negligible role in
s and aggregate stability ‘citep{ZHU2819422}. It is
rrelation in our study is due to the dependence of
pt{+2} on clay content, CEC and shrink-swell minerals,
a direct casusal effect. Clay content was & strong
ly one sample with clay content <25%%¥ had an observed =I
nly three samples with clay content $\geq{25%%}% had an
soils are oftem more susceptible to slaking as they have
f shrink-swell minerals and also a greater concentration
p and compress air bubbles \c1tep{emerson64} The majority

CEC:clay ratiocs—srsepred—in—tirese—samples—amd—eorrelatian

nith—edmp—eambemt indicatinge= that the dominant phyllosilicate in many of the clay

soils studied is smectite. No
‘eitef{churchman} reviewed cau
identified that exchangeable
high ESP walues. Most of the
the lack of correlation with
dispersion observed in these
application currently cannot

\begin{table}[h]
“caption{Pearson correlation coef
“begin{tabular}{lccccccceccecec}

ocC & -8.31 & &
& & &
Clay & “textbf{@.84} & -8&.
& i i
pH & \textbf{@.70} & -8.
& & &
EC & \textbf{0.44] & @.o
& & &
Exch. Ca & \textbf{®.83} & -o.
& & i
Exch., Mg & “textbf{@.se} & -e.
& \textbf{®.s2} &
Exch. K & “textbf{®.52} & 9.1
& \textbf{e.67} & \textb
Exch. Na & ‘“textbf{®.c4} & -8&.
& \textbf{e.ca} & \textb
W
CEC & \textbf{©.87} & -@.
& \textbf{®.99} & \textb
& W
ESP & 9.1 & 0@.24 & 0.21

\textbf{e.48} & -0.086 &

correlation was observed between SI and ESP in our study.
ses of swelling and dispersion in Australian soils and
Matextsuperscript{+} increased swelling, but only for
samples in our study had low ESP walues, which explains
5T walues. The low ESP values resulted in minimal

samples, which was beneficial for this study as the SLAKES
distinguish between slaking and dispersion ‘\citep{marioc}.

ficient (r) between soil properties.}

& 2 & & 2 2
W
13 & 2 4 = = &
& W
28 & \textbf{e.ss} & & 5 2
& & W
7 & \textbf{e.58} & \textbf{e.47} & &
& & & W
15 & \textbf{o.584} & \textbf{®.83} & \textbf{®.45}
& & & i AN
22 & \textbf{e.s5} & \textbf{e.74} & \textbf{e.as}
2 2 b 2 & WY

o & \textbf{e.55} & \textbf{e.s8} & \textbf{®.63}
f{e.65} & & & & &

25 & \textbf{e.&68} & \textbf{e.65} & \textbf{e.63}
f{e.65} & \textbf{®.52} & & i &

W

17 & \textbf{8.57} & \textbf{®.82} & \textbf{®.49}
f{e.97} & \textbf{e.7e} & \textbf{®.66} & &

& -0.10 & 9.16 & -8.89 & -2.04 & -2.1@ 2

& W
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Ca:Mg é —E.iﬁ & @.22 & -2.20 & -0.84 & -0.87 & -8.1@ & -2.27 & -2.84 &

-8.12 & -9.15 & -0.24 & W
CEC:clay & “textbf{@.84} & -2.21 & \textbf{e.74} & M\textbf{e.72} & \textbf{e.3s}
& \textbf{e.24} & \textbf{e.ol} & Ntewtbf{e.s2} & \textbf{e.z3} &
\textbf{0.94} & -8.14 & -8.16 \\
& &I & oc & Clay & pH & EC & Exch. Ca & Exch. Mg & Ewch. K &

Exch. Ma & CEC & ESP & Ca:Mg A\

‘end{tabular}

‘belowtable{Bold font indicates significance at p <€ 8.85. SI, slaking index; OC, organic
carbon; pH, pH(1:5 H\textsubscript{2}0); EC, electrical conductivity (1:5
Hi\textsubsecript{2}0); CEC, cation exchange capacity; ESP, exchangeable sodium
percentage; Ca:Mg, ratic of exchangeable Cal\textsuperscript{+2} to Mg\textsuperscript{
+2}; CEC:clay, ratio of organic matter corrected CEC to clay content.}

“label{table:lab_cor}

‘end{table}

‘subsubsection{Slaking index and land use}

Land use at sampling sites wasere categorised into four classes: forest, predominately
remnant vegetation cover on sand hills; pasture, encompassing improved/unimproved
pastures but also stock routes and other areas of perennial grass cover; dryland
cropping; and irrigated cropping. Clear differences in SI walues were observed under
these different land uses, which were accentuated after separating based on clay
content (Fig. ‘ref{fig:landuseVs5I}). For samples with clay content %\geq{25%\%1%,
irrigated cropping had the highest 5I walues, followed by dryland cropping {which
showed a large range of 5I values), and then pasture. No samples with clay content
$\gegq{25%}% were observed under forest cowver, nor soils with clay content <25%% under
irrigeted cropping. These findings are supported by the few existing studies
investigating S5I values of aggregates under cultivated sites compared to paired sites
under natural vegetation ‘\citep{marioc, flynn}. Decreased aggregate stability of soils
under cropping compared to pasture or natural vegetation has also been observed by
other indicators of aggregate stability, such as mean weight diameter and water stable
aggregates ‘\citep{saygin,¥E201871}. The marked differences in soil aggregate stability
between land wuses may be attributable to the impact of cultivation on the soil - both
the direct destruction of aggregates through cultivation and associated increase in
soil respiration and loss of 0C. Fr—e—eewdew—af—The natural disposition of these soils
te slake is evident with an average 5I of 2.8 cbserved for soils with $\geq{25\%}% clay
content under perennial ground cover in the pasture land use. This natural disposition
had been significantly exacerbated by cultivation with an average 5I value of 4.8
observed for sites under dryland cropping, and 5.8 for sites under irrigation.= The
difference in mean 5I value between irrigated and pasture land wses for clay seoils was
not found to be significant at the 95\% confidence level (p=8.87) but given the large
difference in means this is assumed to be due to the small number of observations for
the irrigated clay seoils (n=5). The higher level of slaking under irrigation may be due
to the fact that irrigated cropping represents a further level of cultivation
intensification compared to dryland sites and sampled irrigated sites also only
occurred on soils with clay content »5@\¥. For those sites with clay content «<25%\% 5I
values were predominately <1. Differences between land use were met—es—disédret—not
significant for these low clay content soils although increases in mean values were
observed from forest to pasture and then dryland agriculture. A wide range of SI values
was observed for samples with %$'\geq{25.%}% clay content, warranting further
investigation.
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\begin{figure}[h]

“includegraphics[width=8.3%2cm]{figl2.PNG}

“caption{Boxplots of slaking index grouped by land use (forest, pasture, dryland cropping
or irrigated cropping) and clay content (<25\%¥ or $%\geq{25\%}%) for the training set.
Significant differences between means (p<®.85) of each class calculated using Tukey's
Honest Significant Difference test are indicated by a lowercase letter above each plot.
The number of observations for each class are indicated in brackets below each plot.}

Ylabel{fig:landuseVssSI}

‘end{figure}

“subsubsection{Effect of organic carbon on slaking index}

Organic C has been shown to increase soil aggregstion and decrease susceptibility to
slaking ‘\citep{six2e@@s0il}. ‘cite{chenu2@@@organic} found OC to be & good predictor of
soil aggregate stability (R\textsuperscript{2} = 8.72) when investigating the effects
of tillage management on humic loamy soils in southwest France. The diverse range of
soils used in this study are assumed to have confounded this relationship as only a
weak negative correlation (r = -8.31) between 5I and OC was observed while much
stronger correlations were observed for other soil properties such as clay content or
CEC:clay ratio (Table ‘ref{table:lab_cor}). To investigate these correlations further,
the relationship between clay content, CEC:clay ratic and 5I was visualised (Fig.
Yref{fig:clay_ratio}). CEC:clay ratioc was chosen as an important parameter as it is a
useful indicator of clay mineral type which affects slaking through contribution to the
shrink-swell characteristics of & secil. A correlstion between clay content and CEC:clay
ratioc was observed (Table ‘\ref{table:lab cor}). This relationship was related to
landscape position in the study area, as high clay content soils found on floodplain
areas also contained s higher proportion of shrink-swell clay minerals, such as
smectite. Meanwhile, topsoil samples from the hills and slopes had lower clay content
and aslsoc & lower CEC:clay ratio, indicating the dominance of low CEC phylleosilicates,
such as kaolinite or illite. As identified previously, samples with clay content <25%\%
showed minimal slaking. For samples with a clay content %$h\geq{25\%¥}%, CEC:clay ratio
was an important predictor of slaking. For example, soils with a clay content
“textasciitilded4®\¥ showed low to moderate slaking for CEC:clay ratio <8.5 and moderate
to extreme levels of slaking for CEC:clay ratio »8.5 (Fig. ‘ref{fig:clay_ratio}). Clear
threshold values were observed with extreme slaking values only occurring for seoils
clay content $'\geq{25\%}% and CEC:clay ratic »8.5. This observation was used to
allocate samples into two classes: samples with clay content $hgeq{25\%}% and CEC:clay
ratic »2.5; and all remaining samples. Relationships between measured soil properties
and ocbserved SI waluss were modelled independently for esch class as different critical
values were expected to control behaviour of different soil classes ‘citep{loveland}.

\begin{figurel}[h]

“includegraphics[width=8.3%=2cm]{figd3.PNG]}

‘caption{Relationship between clay content, CEC:clay ratio and slaking index (5I). Land use
at sample site is indicated as either forest, pasture, dryland cropping or irrigated
cropping. Dashed lines indicate clay content of 25\% and CEC:clay ratioc of 8.5 abowe
which extreme slaking was observed.}

Ylabel{fig:clay_ratio}

‘vend{figure}

Soil organic carbon was the only significant predictor of SI for soils with clay content
$hgeqg{25'\%}% and CEC:clay ratio »8.5. The relationship between 5I and OC fit a
segmented, exponential decay functionm (Fig. ‘“ref{fig:si_oc}). This equation was
developed by optimising & four parameter nonlinesr regression model to minimise
residual sum of sgquares using the ‘“emph{nls} functions from the ‘emph{nlstools} R
package ‘citep{nlstoocls}. The modsl contained: a constant walue that characterised 5I
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behaviour under low OC levels; a threshold wvalue above which the relationship was
characterised by exponential decay; and two parameters that characterised exponential
decay behaviour at high OC levels. A threshold value of 1.1\¥ OC was identified. The
average observed SI values for samples below this threshold was 5.21=——tr—irigi==st

Extreme 5I values were uniquely observed for samples
with 0OC content under this threshold value. As the constant value indicates, no
relationship between OC and S5I was identified for these samples, nor could a
relationship be developed between 5I and other measured soil properties—e—fdentifi=d.
As such the factors responsible for the large range in observed SI walues for these
soils remains unidentified. To —identify causal factors future research should
investigate potential relationships betwsen SI and OC fractions, OC type, microbial
activity or crop species that have been previously=keem identified as influencing
aggregate stability ‘\citep{six2,morel,six3}. The 1.1%& threshold value alsoc effectively
separated observed differences in OC content between pasture and cropping land use
activities. Interestingly, pasture sites with \textasciitilde{1.8'¥} OC had lower
observed SI walues than corresponding dryland agriculture sites indicating that direct
effects of cultivation, extended fallow or monocculture production may influence
observed SI walues although the number of samples is too few for statistical analysis.
Similar critical OC content values ranging from 1.1 to 2\%¥ have been identified when
considering & soil's sbility to provide nutrients for crop growth, or support microbial
diversity ‘\citep{sunel997agricultural,Zvomuys,yan2e@@functional}. For this study the 1
LA0% OC walue should not be interpreted as & target wvalue for farm managers to achieve
but rather it describes an absolute minimum threshold below which slaking is
unpredictable and can result in extreme values. To abate potentially detrimental
effects of slaking farm managers should aim to increase OC levels above this minimum
threshold. The exponential decay component of the equation provided a weak fit to the
available data (R\textsuperscript{2} = 8.27). The function suggests that slaking can be
reduced, but not completely eliminated, by increasing OC content for the range of 0OC
contents observed in this study. The constant parameter of 2.76 in the exponential
decay function suggests a minimum obtainable SI value for these soils, however this
model was based on few observations and limited samples of »2%\% OC. Future
investigation should prioritise identification of sites with higher OC content to
better characterise this relationship.

relationship betwsen 5I and OC for those soils that did not meet the criteria of
$h\gegq{25%}% clay content and CEC:clay ratic »8.5 were modelled separately using
multiple-linear regression. For these soils, S5I was explained with the following
equation: \emph{5I} = -8.22 - @.19%\times{0C}$50c— + 0.09%\times{clay]}isctny
(Rytextsuperscript{2}= @.77, RMSE = @.7, p = ©.0802). This regression eguation
indicatesswte—demenstrabes that while OC content still had a significant effect on
observed SI walues, the magnitude of the effect is lesserreletive—effect—rrr—smelier
for these soils. For example, soils with clay content $\geq{25%}% and CEC:clay ratio
8.5 are ewpected to see & reduction in 5I of 1.59 wnits if 0OC is increased from @.7°\%
to 1.7°%, meanwhile if OC is increased from @.7°% to 1.7°% in other =o0ils 3 decrease in
SI of only ©.19 is expected to occur. These two equations were used to model the effect
on 5I of—e simulated ©.5\% and 1.8\% increases in OC at the sample sites, which weree=s
then mapped across the study area. The results of the®se analyses are shown in Section
3.2.4.

Voegin{figure}[t]
‘“includegraphics[width=8.332cm]{fig@4.PNG}
‘“caption{Relationship between slaking index (SI)} and organic carbon {0C) for soil samples
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with clay content $%g=q{25\%1% and CEC:clay ratio »6.5. A segmented, exponential decay
function containing a lag phase and threshold value of 1.1\¥ OC was fit to the observed
data points. Land use at =ach observation point is indicated.}

“label{fig:si oc}

‘“end{figure}

“subsection{Mapping results}

“subsubsection{Importance of predictor variables}

Investigation of the use of covariates as conditions and predictors in the Cubist model
showed that MrvVBF and the NDWI S\textsuperscript{th}, @\textsuperscript{th} and
9shtextsuperscript{th} percentiles were the most important predictor variables of 5I
values., The MNDVI dats used in this study largely represent varistion in vegetation
cover, and hence land use. The S\textsuperscript{th} percentile WOVI was used as both a
condition and a predictor in the model. The Shtextsuperscript{th} percentile NDVI
represents the lower distribution of vegetation over the 2808-20818 period with low
values indicating cultivated sites ‘citep{ndvi crop}, and variation within cultivated
sites representing topsoil wariability. Low values of S\textsuperscript{th} percentile
NDVI indicate areas of bare-esarth from cultivation or extended fallow, facilitating the
identification of cropping sites. For cropping sites, the S\textsuperscript{th},
S@\textsuperscript{th}, and 95\textsuperscript{th} percentile walues would be vastly
different due to the seasonal nature of cropping. This would be similar in the pastures
due to seasonal 'browning off"' of#m the perennial grass cover. In contrast, the
different NDVI percentiles for forest cover would be high and relatively similar due to
the more constant biomass throughout different seasons. The importance of NDVI
percentiles in the model, and known relationships with land wse support previous
findings that land use has a considerable influence on observed SI values (Fig.
Vref{fig:landuseVsSI}). The importance of MrVBF may be attributed to the information it
contains on landscape position, which is related to clay content and CEC:clay ratio
‘citep{mrvbf}. The lowest MrVBF walues were found on the sand hills, increasing through
a transition zone to the upper floodplain. The highest MrvBF wvalues were found on the
lower floodplain, which also corresponded to the highest clay content in the study area
. Slope and gamma radiometric potassium data were used as predictors in the modelfer—
seme—mesh=t=s. The important predictors in the model reflect those used by
Wcite{YE201871} to map aggregste stability in a small catchment of the Loess Platesu
which the authors found was explained by intrinsic factors (parent material, terrain
attributes and soil type) and extrinsic factors {land use and farming practice). The
covariates that were the least important predictors included elevation, MrRTF and
aspect.

“subsubsection{Mapping accuracy}

The quality of the predictions of SI from the regression-kriging approach was assessed
using two wvalidation techniques. The first technique involved using LOOCV om the
training dataset (n = 188). This method showed that SI could be predicted to a
relatively high degrees of accuracy, with an LCCC of @8.85, R\textsuperscript{2} of 8.75,
RMSE of 1.1 and a bias of 8.8 (Fig. ‘ref{fig:goof}). The second approach involved
comparing 5I values observed for an independent test set (n = 58) with SI walues
extracted from the final map product. The second approach demonstrated the robustness
of the model, as 5I was predicted with similar accuracy to that of the training set,
with an LCCC of @.82, R\textsuperscript{2} of ©.78, RMSE of 1.1 and & bias of ©.6 (Fig.
Wref{fig:goof}). This demonstrates that 5I can be accurately spatially predicted when
using D5M techniques and ancillary spatisl information. The successful prediction of 5I



can be attributed to availability of ancillary spatial information that explain the
main factors controlling slaking, such as the different MODVI percentiles representing
land cover and use, and MrVBF representing clay content and the accumulation of water
fsoil. While there are no other published studies to our knowledge that have modelled
and mapped 5I across & study area, these walidation statistics are comparable to other
D5M studies that hawve modelled other aspects of soil stability such as
hWelte{ANNABIZ2O17157} who modelled aggregeste stability using three different indices in
a study region in Tunisia, with an accuracy of 8.682 to 8.74 R\textsuperscript{2} when
tested with LOOCV.

245

246  \begin{figurel}[H]

247  “\centering

248  “dncludegraphics[width=8.3cm]{figd5.PNG]}

243 “caption{Plot of observed and predicted slaking index (5I) walues from regression-kriging
for two walidation methods: (1) leave-one-out cross validation (LOOCV) on the training
set (n = 188), and (2) external wvalidation on an independent test set (n = 5@8).}

250 \label{fig:goof}

251 end{figure}

252

253  \subsubsection{Spatial variability of slaking index}

254 The map of soil 5I across the study area shows considersble wvaristion (Fig. ‘ref{fig:5Imap}
1. The model was very effective at mapping high clay content soils that had a natural
tendency to slake and also at identifying tillage practices that exacerbated this
effect. It is clear that 5I values were higher on arable areas, particularly on the
cropped fields at L'lara, as well as the dryland and irrigated cropping areas lower
down the floodplain to the south-west of L'lara. The forested areas showed the lowest
SI walues in the study aresa. The spatial patterns of the maps are clearly driven by
vegetation cover/land use, and MrVBF, as indicated by the variables used as conditions
and predictors in the Cubist model. The unique featurespee=rr= of MrVBF can be seen,
as low 5I values are found where deposition would be low, whereas high 5I values are
found where deposition iswewdd expected to be high. The NDVI S\textsuperscript{th}
percentile covariate provides a good indication of whether a field has undergone
tillage or been left in a bare fallow but provides no insight into the frequency,
timing or intensity of tillage events. An aspect for further improvement to this
approach would be to include & more sensitive method able to characterise the frequency
of tillage ewvents or guantify the amount of time left under bare fallow.

255

256  \begin{figure]}[H]

257 \centering

258  Ndncludegraphics[width=12cm]{fig@&.PNG}

259  “caption{Prediction of slaking index (S5I) across the study area using regression-kriging.
Slaking index (Hre—rourmdaries—aft——tara—form—are—trddested—as—pell—as—SI) values at
observation sites for the training set (n = 183) and test set (n = 5@) are provided.
The external perimeter boundary of L'lara is indicated by the thick black line and
boundaries of cropping paddocks are indicated by thin black lines.}

268 \label{fig:5Imap}

261 end{figure}

262

263 \subsubsection{Mappingeprtme——imoree Treslaking index after modelledfer—e—te¥ increase in
organic carbon}

264 The impact of increasing soil OC levels by @.5%% and 1.8%% on SI values was assessed and
mapped acrosz the study area (Fig. ‘ref{fig:5I change}}. When tested with LOOCV, the-—
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mapping procedure used for the simulated @.5\% increase in OC scenario was found to
have an LCCC of @8.94, RHtextsuperscrlpt{E} of @.98, RMSE of 8.6 and a bias of -8.1, and

the simulated 1.8%\% increase in OC scenarioc hadresodeime—simeleted—SF—vetoes—coudd—te—
predicted—arooratetys—weth an LCCC of ©.95, R\textsuperscript{2} of 8.92, RMSE of 8.4

and a bias of @.08. The validation metrics for thes simulated 8.5\% and 1.8\% increases
in OC were better than those—eméer derived from modelling under current conditions.
This may be attributed to the simulated map showing & bimodal distribution of 5I walues
, with approximately half of the study area predicted to—ke have 5I wvalues of
“textasciitilde{}®, and the other half predicted to have 5I wvalues of
“textasciitilde{}3 under the 1.8\% increase in OC scenario. The reason for this is
likely due to SI wvalues returning to their natursl, or expected walues, that are
primarily driven by clay content and clay type as opposed to land use and management.
Ancther contributing factor for the improved validation metrics under increased 0OC
scenarios is due to the 5I values being based on modelled data from which unmexplained
error has been removed. Future efforts should account for the error of the underlying
regression equations and quantify the uncertainty of the resultant maps by
bootstrapping and applying random error based on the the prediction variance of the
underlying regression equations. The change maps shows the difference between the
current observed 5I valuess, and the simulated SI under increased OC content
scenarioswish—trir—trereersre—af—3—a€. Theseds map reveals a much larger expected
decrease in 5I values for the 1.8\% increase in OC scenario and that theskret—ehe
largest decreases in 5I wvalues were predicted to occur on dryland and irrigated
cropping areas on L'lara and surrounds. Some of these areas were predicted to have
their 5I walue decreased by uvp to 3 wnits. Much of the forested and pasture areas with
lower current 5I values were predicted to have their 5I value largely unchanged ewven by

a 1.8\% increase in OC content. The produced mapsrestles—sf—this—erelysis— highlight

areaseireriy=——iror—te—ter—ft+ ofthat are expected toc have=—frercorrr—ori—St—omSF—omm—
aeerespte—sbabritidy lower SI when OC levels are increased. This could encourage farmers

and land managers to implement management practices that increase soil OC levels in
cultivated areas, such as minimal tillage and cover cropping.

“begin{figure}[H]

“centering

Yincludegraphics[width=12Fcm]{figa7.PNG}

“caption{Prediction of slaking index—5%+ across the study area using regression-kriging
after— modelled—3%% increases in organic carbon: a) slaking index after a modelled @
.5\% increase in organic carbon; change in slaking index after a modelled ©.5%\%
increase in organic carbon; <) slaking index after a modelled 1.8\% increase in organic
carbon; change in slaking index after a modelled 1.8%% increase in organic carbon—fi=ft

o . The external perimeter
houndaryte3 of L'lara is indicated by the thick black line and boundaries of cropping
paddocks are indicated by thin black lines.form—sre——rdEered]

“label{fig:5I change]

‘end{figure}

“conclusions %% ‘conclusions[modified heading if necessary]

Seil slaking index (5I) walues were cbtained through the use of the SLAKES smartphone
application across a mixed farming landscape to assess aggregate stability of the
topsoil in a mixed agricultural landscape. Land use had & clear impact on 5I values,
with sites under irrigated and dryland cropping showing higher SI walues than those
under pasture and forested areas. Clay content, CEC:clay ratic and organic carbon



275
276
237

278
279
288
281
282

283
2584
285

286
287
288
289
2598
291
292
293
294
295
296

content had a considerable impact on SI wvalues of soil samples. Samples with low OC and
high clay content combined with high CEC:clay ratio were the most prone to slaking. A&n
0C threshold of 1.1\% was observed, below which slaking behaviour was not correlated
with any of the measured soil properties and the most extrems SI values were cbserved.
A regression-kriging approach utilising & Cubist medel and diverse spatial covariates
proved to be successful in spatially modelling SI walues. The model had high predictive
power, with am LCCC of @.85 and RMSE of 1.1, when using a LOOCY approach on the
training dataset (n = 183). The results were also of high gquality when assessed using
an independent test set (n = 58), with an LCCC of ©.82 and RMSE of 1.1. The decrease in
SI expected frome a ©.5'\% and 1.8\% increase in OC content was also simulasted and
mapped across the study area. The results of these®® simulations suggested that
considerable improvements in SI and soil aggregate stability could be achieved if
practices that promote the sequestration of OC were implemented, particularly on
cultivated aresas. Overall, this study demonstrated that novel approaches to cheaply and
rapidly assess the aggregate stability of soil samples could be combined with DSM
approaches to create accurate, fine-resoclution maps of aggregate stability. These maps
have the potential to guide management decisions, whether that be to determine land use
and management, such as avoiding cultivation/cropping in areas that are prone to
slaking, or to increase OC in areas of extreme slaking through the use of minimum
tillage or cover —cropping.

wauthorcontributiond

EJ,

PF and AM designed the experiment and the data analysis method. EJ, PF, RW and VP
performed the field sampling campaigns. RW and MF collected the slaking index data. EJ
and PF analysed the data. EJ prepared the paper with contribution from all co-authors.

I ¥% this section is mandatory

‘“competinginterests{The authors declare they have no competing interests.} ¥¥ this section

is mandatory even if you declare that no competing interests are present

\begin{acknowledgements}
The authors would like to thank the Grains Research and Development Corporation (GRDC) and

the Australian Government's MNational Landcare Program for—peeede funding this research.
The authors would also like to thank Ms Blandine Lemercier and Afprof. Sébastien
Salvador-Blanes for their review and valuable suggestions teo improve the manuscript,
andwe—wooit—etsoTike—toeckmowiedge ot thottoms—of Ms Alessandra Calegari, Ms
Vita Ayu Kusuma Dewi, Ms Zhiwei (Vera) Wang, Mr Bradley Ginns, Ms Hannah Lowe and Ms
Victoria Pauly for their assistancesssistimeg in gathering— and analysing #he—s0il
sampleseees.

‘end{acknowledgements]}

¥X REFEREMNCES

‘bibliographystyle{copernicus}
‘bibliography{example.bib}

A



Author’s response to RC1
Specific comments

Line 22: Development of simple accessible metrics to assess soil health facilitate spatial and
temporal sampling density but should also support the implication of farmers, consultants and even
citizen in soil health assessment.

Sentence has been reworded to incorporate suggestions.

Line 28-29: The degree of slaking determines if the process produces a favourable or unfavourable
environment for cultivation and plant growth. It is true but not sufficient. It also determines the
degree of soil conservation because the aim is to cultivate but likewise to protect this resource.

Added “and has implications for soil conservation.”

Line 45: The authors focus on agricultural practices that increase soil susceptibility to slaking, but
what about practices limiting susceptibility to slaking? Carbon management, crop successions,
superficial or “light” tillage. . .

Added “Techniques that increase soil organic matter such as cover-cropping, reduced tillage and
application of organic amendments may reduce susceptibility to slaking”

Line 59: Another group of widely used method to estimate aggregate stability (that is the contrary of
slaking) is the Mean Weight Diameter (MWD) after wet sieving of soil aggregates. You should
mention this reference method.

Added “Established methods to quantify stability of aggregates subject to wet-sieving (Yoder, 1936)
or simulated rainfall (Schindelbeck et al., 2016) are also time-consuming and require specialist
equipment.”

Line 93-95: Please, provide the equivalent of soil references according to the World Base Reference
for soil classification.

Australian Soil Classification has been removed and text changed to: The soils of the floodplain area
at L'lara are classified as Vertisols according to the World Reference Base for Soil Resources, with
some expression of calcic horizons (IUSS Working Group WRB, 2015). The sand hill area is
represented by Luvisol, Lixisol, Solonetz, Leptosol and Regosol soil groups.

Line 96: Please define “broadacre”.



The term ‘broadacre’ has been removed to prevent any ambiguity as the term has limited use
outside of Australia. The remaining sentence still conveys the same meaning.

Line 96: Is L'lara covered with a soil map? If yes it and if it is relevant, it could interesting to add this
map (near figure 1 for instance). It not, a land use map could also be helpful to interpret figures 6
and 7.

A soil type map was produced but unfortunately only covers L’lara and it is in the Australian Soil
Classification and we have been requested to use WRB. MrVBF, NDVI and land use maps have been
added to Figure 1. The MrVBF map gives a good indication of the distribution of Vertisols versus
other soil with a sandy topsoil.

Line 111: “in the area surrounding L’lara, an additional 50 samples. . .” or “50 additional samples”?

Text has been modified at request of RC2.

Line 108-119: Sampling scheme: collection of datasets with various sampling approach. | guess they
came from various field campaigns and programmes. What are the dates for each one? A summary
of the distribution of land use at the observation points is missing. It could be a table or a sentence
in the text.

Text has been modified for clarity and a table added summarising the sampling dates and number of
observations for each land use for each campaign.

Line 121: What was the size of the 20 to 30 aggregates? | suppose that it was for each soil sample.
Please mention that.

Target diameter of “(¢ 5-10 mm)” given in text.

Line 130-132: These 2 sentence could be move to the 2.3 section and replace the 2 first sentences of
this section. | suggest renaming this 2.3 section: “soil sample preparation and laboratory methods”
(or something like that).

Lines 130-132 moved to section 2.3 and section 2.3 renamed “Sample preparation and laboratory
methods”. Note number of samples changed to “12 to 15” at the request of RC2.

Line 141: ‘10 minutes’

Existing grammar is correct, suggestion not incorporated.



Line 145: It the difference between replicates was more than one, only the unique additional reading
was considered for the final result of SI? And what would happen if this additional reading was an
outlier one? How many times a third observation was necessary?

Modified text: “An additional reading was required for approximately 20\% of samples and was
more commonly required for soils with higher slaking index values compared to samples which
exhibited minimal slaking. When additional readings were taken the outlier reading was discarded
and remaining readings averaged to provide the final Sl for each sample.”

When an additional reading was taken it was always within one unit of one of the original duplicates.
The additional sample and the duplicate within one unit were then averaged to give the final slaking
index value and the other duplicate was treated as an outlier and not used in the calculation.

Line 160: Please name other approaches.

Text has been modified “unlike the ASWAT test that requires 2 hours of immersion.”

Line 174: All terrain attributes are not at the same spatial resolution. Slope, aspect, MrVBF and
MrRTF could have been obtained from the 5m DEM since it was available.

The 5 m photogrammetry DEM provides the most accurate point estimate of elevation but it is not
hydrologically enforced and for this reason we prefer to use the elevation derivatives calculated
from the 30 m SRTM DEM.

Added “and gives an accurate point estimate of elevation though it is not hydrologically enforced”.

Line 178: Why potassium concentration is of particular interest?

Added “Variation in the concentrations of the radioelements are indicative of change in soil type or

parent material”.

Line 184: How was made the split between training and test datasets?

Text has been updated in section 2.2. to clarify this.

Line 190: “The kriged residuals was were added. . .”. There is non information in the text about the
variogram of the residuals? Were residuals spatially structured?

Added information about kriging of the residuals: “The residuals (difference between the observed
and predicted Sl values) at observation points showed a weak spatial autocorrelation. A Gaussian



function fit to the empirical semivariogram had a relatively large nugget of 0.81, sill of 1.11 and a
range of 1.92 km.”

Line 196: The first sentence is not clear. Please reword. You could also rephrase the second
sentence. Line 198: Observation points are allocated into classes having similar behaviour. How
many classes? How the choice of classes and allocations of observations was done?

Start of paragraph reworded “Relationships between Sl and measured soil properties were explored
to identify potential contributing factors as a means to inform management practices to reduce
excessive slaking. Two classes of soils were evident in the samples, soils with clay content 225% and
CEC:clay ratio>0.5 which consistently exhibited excessive slaking, and other soils.

Table 2: It would be relevant to distinguish training and test datasets to confirm that they cover a
similar range of soil attributes values, especially because of the difference in location between the 2
datasets: training data only located within L’lara boundaries.

As indicated in Figure 1 the test set is located entirely within L’lara and is inter-mixed with samples
from the training set. In this instance | don’t believe it is necessary to confirm that the samples
occupy the same covariate space.

Line 225: “. . .in these samples. . .” which ones? With clay content >25%?

Text modified “The majority of clay soils had a high CEC:clay ratio indicating that the dominant
phyllosilicate in the clay soils studied is smectite.”

Figure 2: It would be useful to know the number of samples in each of the classes land use/clay by
adding this information in the figure. What about statistical significance of the differences between
classes?

The number of observations for each class and significant differences (p<0.05) between means
calculated using Tukey’s HSD have been added to the plot and discussed in the text.

Line 267: | guess “3)” has to be suppressed.

“3)” was an incomplete reference to “(Fig. 3)”. Corrected in text.

Line 301: The scenario of an increase of SOC by 1% conduces to predict a reduction of Sl of 1.59 units
for soils with clay content >25% and CEC:clay ration >0.5 according to the decay function. Values of
Sl depending on OC are widely dispersed around the model (figure 4). Nevertheless, the map of



change in Sl after increase of C is based on this weak model. | suggest the authors to be more
cautious in their conclusions concerning the effect of OC change on Sl. Some elements of discussion
about uncertainty are expected.

Added — “provided a weak fit to the available data”

Additional discussion points added to section 3.2.4 - “Another contributing factor for the improved
validation metrics under increased OC scenarios is due to the Sl values being based on modelled

data which has had all unexplained error removed. Future efforts should account for the error of the
underlying regression equations and quantify the uncertainty of the resultant maps by bootstrapping
and applying random error based on the the prediction variance of the underlying regression
equations.”

Line 321: “. . .for some models”. How many models were run? Please complete the section 2.6.

IM

Changed to “in the model”. A single cubist model was calibrated and LOOCV used for validation.

Line 345: ‘patterns’

Changed to ‘features’

Line 353-354: The accuracy of the mapping process was assessed, but not the real effect of
increasing SOC content by 1% because uncertainty of the decay function of SI with SOC (the map was
based on) was not estimated. This must be specified to avoid misunderstanding of this result.

Stipulated that the validation metrics refer to the “mapping procedure” and also added “Another
contributing factor for the improved validation metrics under increased OC scenarios is due to the SI
values being based on modelled data from which unexplained error has been removed.”

The authors would like to thank RC1 for their constructive review, we have also simulated the
change in slaking index under a 0.5% increase in OC as suggested.



Author’s response to RC2
Abstract :
Line 13 : explain in full words the term LCCC

LCCC explicitly defined as Lin’s concordance correlation coefficient

Introduction :
Lines 48-49 : state (if relevant) that an initial low soil water content increases slaking.

Added “and soils of low initial water content more prone to rapid and explosive slaking”

Lines 76-78 : add that in the paper by Annabi et al., 2017 the method used to measure soil aggregate
stability is the normalized method(1SO/DIS 10930, 2012), which is time and cost consuming, which is
not the case of the SLAKES approach.

Added “Tools that make aggregate stability quantification accessible, such as the SLAKES application,
may facilitate the production of such maps.” Detractions of wet-sieving and simulated rainfall
techniques were added at line 59 at the request of RC1.

Methodology

Lines 93-95 : please refer to the WRB soil classification as the Australian classification is unknown by
most of readers.

Australian Soil Classification has been removed and text changed to: The soils of the floodplain area
at L'lara are classified as Vertisols according to the World Reference Base for Soil Resources, with
some expression of calcic horizons (IUSS Working Group WRB, 2015). The sand hill area is
represented by Luvisol, Lixisol, Solonetz, Leptosol and Regosol soil groups.

Lines 93-100 : it would be interesting to present the soil and landuse maps of the study area, as they
are primary drivers of soil aggregate stability. These maps would be very useful to help the reader
interpret the SI maps you present later in the paper. These data are moreover used for soil sampling
as input parameters.

A soil type map was produced but unfortunately only covers L’'lara and it is in the Australian Soil
Classification and we have been requested to use WRB. MrVBF, NDVI and land use maps have been
added to Figure 1. The MrVBF map gives a good indication of the distribution of Vertisols versus
other soil with a sandy topsoil.



Lines 108-119 : the reading of this paragraph is not straightforward, as the sampling strategy is quite
complex. | think the 108 samples described lines 108 to 116 should be introduced by a short
sentence line 108, such as for example : "A training set of 108 samples and a test set of 50 samples
were defined. The training set comprises 58 on- and 50 off-farm samples."

Text has been modified for clarity.

Lines 112-113 : why are the input parameters for the sampling strategy different for off-farm
samples ? Is it due to the fact that a soil map is not available ? This could be mentioned.

Correct, the soil map was only available on-farm. Text has been adjusted accordingly.

Lines 113-114 : | do not understand on which sampling set the K-means clustering is applied, and for
what purpose.

K-means was the stratification method for stratified random sampling to identify off-farm samples.
Text has been updated for clarity.

Line 130 : why are 20 to 30 soil aggregates necessary for the slaking test, as only 3 aggregates are
necessary for the test, and the test is repeated three times at most ?

Text has been changed to “12 to 15” aggregates. While we did not need to repeat the test more than
three times, however the application did crash sometimes and the test could be compromised if a
shadow was inadvertently cast over the sample while analysing so it is recommended to have some
spare aggregates to run additional tests. Note this has been moved to section 2.3 at the request of
RC1.

Lines 144-146 : | think it is important to provide information on the repeatability of the
measurements, e.g. to ensure the average value calculated for the Sl is representative of the whole
sample SI. Indeed, the Sl is calculated on 3 aggregates, which could be considered as a low number.
It is therefore important that you provide at least a graph with the distribution of the differences in
Sl values for the 108 samples, including 'outlier readings'. In that respect, and to further explore the
representativity of the measured aggregates, it would be interesting to present the values of the 'a’
coefficient for each aggregate that is tested.

Modified text: “An additional reading was required for approximately 20\% of samples and was
more commonly required for soils with higher slaking index values compared to samples which
exhibited minimal slaking. When additional readings were taken the outlier reading was discarded
and remaining readings averaged to provide the final Sl for each sample.”

The graph you mention would be great to have but unfortunately the data was collected by different
people over a number of months. Some reported every scan taken including replicates and outliers



for each sample, others only the final two replicates used, and others only reported the final
averaged value. | will ensure that all scans are recorded and look to include such a graph in future
publications, but | am reluctant to publish the incomplete dataset here.

The version of the app used reports the slaking index for each aggregate after the 10 minute analysis
time but not the ‘a’ coefficient for each aggregate, this may be introduced in later versions of the
app though.

Line 145 : |1 do not understand what are these 'outlier readings', and on what basis they could be
discarded.

When an additional reading was taken it was always within one unit of one of the original duplicates.
The additional sample and the duplicate within one unit were then averaged to give the final slaking
index value and the other duplicate was treated as an outlier and not used in the calculation.

Line 175 : what is the unit of the aspect ? How did you go around the circular nature of the variable ?

Degrees symbol added to the table. The variable was not found to be a significant predictor when
left in degrees or when aspect was investigated as a cardinal direction factor.

Results :

Line 209 : you state that some aggregates "increased in size by 730%". As | understand it, it is not the
actual increase that is measured after 10 mn of immersion at the end of the SLAKES experiment, but
rather a final aggregate size using the Gompertz function at t=co.

Correct. Added “is projected to increase”.

Line 210-211 : you mention that all Sl values are below the maximum theoretical value of 7.8
suggested by Fajardo et al. (2016). What about the 'outlier readings' you mentioned line 145 ? This
should be clarified.

All reasonable results were below this threshold. At times when a shadow was inadvertently cast
over the petri dish values of >1,000 were reported but these were discarded.

Line 246 : just to make sure, you mention average Sl values, is it an average or a median value ?

It is average value. The value returned from the app is the average of the three aggregates analysed
and then we average the value from duplicate tests to achieve the final value.



Line 261 : make reference to Table 2.

Reference to Table 3 added

Lines 302-304 : is there a way to account for the uncertainty due to the (relatively weak) regression
applied for the mapping ?

Points added to the discussion — “Another contributing factor for the improved validation metrics
under increased OC scenarios is due to the Sl values being based on modelled data from which
unexplained error has been removed. Future efforts should account for the error of the underlying
regression equations and quantify the uncertainty of the resultant maps by bootstrapping and

)

applying random error based on the the prediction variance of the underlying regression equations.”

Lines 340-341 : this assumption is not straightforward, and requires to provide a soil and landuse
map.

Land use, MrVBF and NDVI maps have been added to Figure 1 to facilitate interpretation.

Lines 345-346 : the same deals for MrVBF : a MrVBF map would help the reader.

Land use, MrVBF and NDVI maps have been added to Figure 1 to facilitate interpretation.

Lines 362-363 : | do not think the mapping of Sl change is the main result that "shows" the benefit of
increasing soil OC on Sl values. This was shown by the results leading to Figure 4. Here, the mapping
allows to precisely locate where there is a real benefit to increase soil OC to increase aggregate
stability.

Correct. Sentence changed to “The produced maps highlight areas that are expected to have lower
Sl when OC levels are increased”.

Figures, tables :
Figure 1 : the black lines (bold and not bold) on the map are not defined in the legend.

Description of lines has been added to the Fig. 1 caption as well as for Figs 6 and 7.

Table 3 : for readability, emphasize in bold characters the correlations that are significant at a given
confidence level.



Bold font has been used to indicates correlation with significance at p < 0.05 and the table caption
updated accordingly.

Minor edits :
Line 200 : "[...] on Sl has been investigated"

Amended

Line 240 : "[...] natural vegetation (Fajardo et al., 2016 ; Flynn et al., 2020)."

Amended

Line 244 : remove "In a review of"

Amended

Line 267 : remove "3)"

Amended. This was an incomplete reference to Fig. 3

Line 283 : remove one "been"

Amended

Line 354 : remove"under"

Amended

Line 356 : remove "be"

Amended

Line 381 : "through the use of"

Amended



