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Abstract. Dry–rewetting perturbations are natural disturbances in the edaphic environment and particularly in dryland 

cultivation areas. The interaction of this disturbance with glyphosate–based herbicides (GBHs) deserves special attention in 10 

the soil environment due to the intensification of agricultural practices and the acceleration of climate change with an 

intensified water cycle. The objective of this study was to assess the response of microbial communities in a soil with long 

history of GBHs to a secondary imposed perturbation (a single dry–rewetting event). A factorial microcosm study was 

conducted to evaluate the potential conditioning effect of an acute glyphosate exposure on the response to a following dry–

rewetting event. A Respiratory Quotient (RQ) based on an ecologically relevant substrate (p–coumaric acid) and basal 15 

respiration was used as physiological indicator. Similarly, DNA–based analyses were considered, including quantitative PCR 

(qPCR) of functional sensitive microbial groups linked to cycles of carbon (Actinobacteria) and nitrogen (ammonia–

oxidizing microorganisms), qPCR of total bacteria and denaturing gradient gel electrophoresis (DGGE) of ammonia–

oxidizing bacteria (AOB). Significant effects of Herbicide and of Dry–rewetting perturbations were observed in the RQ and 

in the copy number of amoA gene of AOB, respectively. However, no significant interaction was observed between them 20 

when analyzing the physiological indicator and the copy number of the evaluated genes. PCR–DGGE results were not 

conclusive regarding a potential effect of Dry–rewetting × Herbicide interaction on AOB community structure, suggesting 

further analysis by deep sequencing of amoA gene. The results of this study indicate that the perturbation of an acute 

glyphosate exposure in a soil with long–history of this herbicide does not have a conditioning effect on the response to a 

subsequent dry–rewetting disturbance according to a physiological indicator or the quantified bacterial/archaeal genes.   25 

1 Introduction 

Soil microbial communities play a central role in several processes that contribute to a wide–range of important ecosystem 

services (Tilman et al., 2002; EFSA, 2016). Different factors with potential disruption effects on microbial communities and 

processes (e.g. pesticides), can reduce the functional sustainability of soils (Tilman et al., 2002). Among them, anthropic 
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disturbances (e.g., pesticides) or natural disturbances like dry–rewetting events are common perturbations of the soil 30 

environment, particularly in the context of global climate models which predict an intensification of the hydrological cycles  

with more extended periods of droughts and more intense rainfalls (Huntington, 2006).  

The effects of dry–rewetting cycles in the edaphic environment and on microbial communities have been considered in 

several studies (Hastings et al., 2000; Gleeson et al., 2008; Bustamante et al., 2012).  Desiccation can affect microbial 

communities through nutritional limitation, osmotic stress and competition for available nutrients (Griffiths et al., 2003). 35 

Similarly, a rapid rewetting can trigger an osmotic shock inducing lysis, release of intracellular solutes and an increase in C 

and N mineralization (Fierer et al., 2003). However, the interaction of these disturbances with the perturbation imposed by 

glyphosate–based herbicides (GBHs) has not been assessed before, even when the simultaneous exposure to both factors 

represents a common scenario in dryland cultivation areas such as in the semiarid Pampa of Argentina. These disturbance 

events could increase their frequency due to the intensification of agricultural practices based on glyphosate–resistant (GR) 40 

crops (Cerdeira and Duke, 2006) and repeated dry–rewetting cycles under an accelerating climate change (Huntington, 2006; 

Evans and Wallenstein, 2011). 

In a previous study, we reported no detection of a pollution–induced increase in microbial community tolerance (PICT) to 

glyphosate in a soil with long history of GBHs (Allegrini et al., 2015). Considering the aforementioned, we conducted a 

follow–up study to assess the response of microbial communities of a soil chronically exposed to GBHs to a secondary 45 

imposed perturbation (a single dry–rewetting event). The response of microbial communities to the perturbations imposed by 

glyphosate exposure and dry–rewetting was assessed through a physiological indicator, calculated as the ratio of basal 

respiration to substrate induced respiration (SIR) with p–coumaric acid as amended substrate. This respiratory quotient (RQ) 

has demonstrated to be sensitive to repeated glyphosate applications (Allegrini et al., 2017). Similarly, DNA–based analyses 

were conducted to quantifytate the abundance of genes from different microbial groups which could be affected by the 50 

imposed perturbations. We focused on microorganisms with well–known sensitivity to GBHs and other pesticides like 

ammonia–oxidizing bacteria and archaea (AOB, AOA) (Zhang et al., 2018) and Actinobacteria (Barriuso et al., 2010). 

Ammonia oxidizing prokaryotes and Actinomycetes are involved in ecologically relevant processes in soil (N–cycling and 

organic matter turnover, respectively) and have been classified as microorganisms with high degree of sensitivity with 

respect to losses of organisms or functions (Anderson, 2003). We hypothesize that, if no increase in community tolerance 55 

was observed after long exposure to GBHs in the field, an acute exposure would not significantly modify the structure and 

physiology of the microbial community so as to condition the sensitivity to a subsequent dry–rewetting disturbance. 
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2 Material and methods 

2.1 Soil sampling and microcosm set up 

Sampling was conducted in the same agricultural plot (ZAVH) with long history (more than 20 years) of exposure to GBHs 60 

that was described in a previous study (Allegrini et al., 2015). Fifteen subsamples were taken at a 0–10 cm depth, sieved 

(<5.6 mm) and pooled to obtain a composite sample. Soil was stored at 4°C and used within 6 days for the microcosm study. 

Twelve microcosms (equivalent to 40 g of oven dry soil) were prepared in 100 ml sterile screw–cap polypropylene flasks, 

loosely capped to reduce water evaporation whilst leaving enough space for free passage of air. All flasks (60 % WHC) were 

pre–incubated in the dark at 25 °C (Ingelab I.501PF Incubator) for 1 week. Then, microcosms were randomly assigned to the 65 

following treatments, in a 2×2 factorial design with 3 replicates per treatment: “Herbicide” (two levels: with GBH “CG” and 

control with distilled sterile water “SG”) and “Dry–rewetting” (two levels: with desiccation “CD” and untreated control 

“SD”). First, microcosms received either the CG or SG treatments (day 0). The herbicide (Roundup Full II, Monsanto™, N–

(phosphonomethyl)glycine potassium salt, 66.2 % w v
-1

, additives not specified) was applied in a final volume of 0.2 ml 

(with distilled water) at a rate of 49 µg active ingredient g
–1

 soil similarly to other studies with silt loam soils (Haney et al., 70 

2000; Ratcliff et al., 2006). This dose mimics the concentration of glyphosate found in soil after a 1× application rate in the 

field (0.84 kg ha
–1

) considering a 2 mm soil interaction penetration due to the high absorptivity and low leachability of 

glyphosate (Haney et al., 2000). Microcosms were initially incubated for 14 days under conditions described above for the 

pre–incubation step. The dry–rewetting disturbance was imposed at day 14 and microcosms were returned to incubation for 

14 days more. Sampling of microcosms for analysis was done on day 28. The dry–rewetting disturbance consisted of air–75 

drying from the top with fan–forced air at room temperature (20–25 °C) during 24 h, followed by rewetting with distilled 

water up to 60 % WHC. 

2.2 Physiological analysis 

Substrate–induced respiration with p–coumaric acid and basal respiration in soil suspensions were determined with BD 

Oxygen Biosensor
TM 

System microplates according to the same protocol and data processing details described in a previous 80 

study (Allegrini et al., 2017).  

2.3 DNA–based analysis 

2.3.1 DNA extraction and quantitation 

The commercial kit PowerSoil
TM

 DNA Isolation kit (MoBio, Inc., Carlsbad, CA) was used for DNA extraction from soil 

samples according to manufacturer instructions. DNA was quantified using QuantiFluor dsDNA kit in a Quantus fluorometer 85 

(Promega Madison, WI). 
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2.3.2 Quantification of indicator genes  

Quantification of 16 rRNA gene, amoA gene of AOB (amoAAOB) and amoA of AOA (amoAAOA) was conducted by 

quantitative Real Time PCR (qPCR) using the protocols described in Allegrini et al. (2015), Zabaloy et al. (2016) and 

Zabaloy et al. (2017), respectively. For Actinobacteria the pair of primers S–P–Acti–1154–a–S–19/S–P–Acti–1339–a–A–18 90 

was used (Pfeiffer et al., 20132014). The composition of the master mix in the latter case was as follows: 7.5 μl of PCR iTaq 

Universal SYBR Green Supermix (2×; Bio–Rad Laboratories); 0.3 μl of each primer (stocks 10 μM, Invitrogen), 1 μl of 

DNA (1–10 ng μl
−1

) and ultrapure water to 15 μl. The amplification program was as follows: pre–incubation (95 °C, 5 min, 1 

cycle), amplification (95 °C 15 s, 59 °C 30 s, 72 °C 45 s, 35 cycles), followed by melting curve analysis (65–95 °C). 

Decimal dilutions of a plasmid harboring one copy of 16S rRNA gene of Streptomyces albus DSM 40313 were used as 95 

standards (serial 10
-1

 dilutions to obtain between 4.97×10
6
 and 4.97×10

2
 copies). All amplifications were conducted in ABI 

7500 Real Time System (Applied Biosystems, Foster City, CA).  

The abundance values of these genes were used as surrogates of population sizes, although no attempt was made to convert 

copies into cell numbers to avoid introducing errors (e.g. errors related with an unknown number of operons per cell in 

mixed bacterial communities) (Zabaloy et al., 2017; Ouyang et al., 2016). The efficiencies of qPCR assays were 84.1% 100 

(amoAAOB), 78.57% (amoAAOA), 91.07% (total bacteria 16S rRNA) and 93.67% (Actinobacteria 16S rRNA); and R
2
 values 

were ≥ 0.99 in all assays. 

2.3.2 Denaturing gradient gel electrophoresis of AOB 

The amplification of amoAAOB with amoA–1F/amoA–2R primers (Rotthauwe et al., 1997) and the DGGE analysis of PCR 

products were conducted according to previously reported protocols (Allegrini et al., 2017). Digital gel images were 105 

processed with Software Gel Compare II
TM

 v4.6 (Applied Maths). After optimization of gel properties normalization was 

conducted using amplicons of Nitrosomonas europaea and uncultured bacteria 5–A51 (accession number KJ643949 in 

GenBank) as internal reference positions (GelCompar II
TM

 v. 4.6, Software Manual). 

2.4 Statistical analysis 

Respiratory quotient (RQ) values were analyzed using a two–way ANOVA at a 5 % significance level using R Statistical 110 

Software v3.5.0 (R Development Core team). The copy numbers of genes (log10 copies µg
–1 

DNA) were analyzed in the 

same way. In all cases, normality and homoscedasticity were verified with Shapiro–Wilks and Levene test, respectively 

(α=0.05). 

Denaturing gradient gel electrophoresis fingerprints were analyzed with the Software GelCompar II
TM

 v4.6 (Applied Maths, 

Kortrijk, Belgium) through cluster analysis using Pearson correlation coefficient (r) and Unweighted Pair Group Method 115 

with Arithmetic Mean (UPGMA) algorithm. Cophenetic correlation coefficients were calculated in each branch and the root 

to determine the quality of the dendrogram. Clusters were defined at 80 % similarity level (cut–off) and the 100 % internal 
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stability of them (group separation assessment) was verified in GelCompar II using the statistical method Jackknife 

resampling with average similarities (GelCompar II™ v. 4.6, Software Manual). 

3 Results 120 

3.1 Respiratory responses 

The mean RQ values for the different treatments are indicated in Fig. 1. According to two–way ANOVA (Table 1), no 

interaction was observed between factors (P > 0.05). Thus, main effects were considered. No statistical significance was 

observed for the main effect of Dry–rewetting. Conversely, Herbicide showed a significant effect (P < 0.05) with a higher 

RQ value in CG microcosms relative to the untreated microcosms (SG). 125 

3.2 DNA–based analysis 

3.2.1 Quantification of indicators genes 

For all the indicators genes, the results of two–way ANOVA (Table 32) indicated no statistical significance of Herbicide 

main effect as well as no interaction, while a significant Dry–rewetting effect was detected only for AOB (P < 0.05). The 

equations obtained after linear regression of qPCR standard curves and the respective efficiencies are indicated in Table 2. 130 

Mean copy numbers for each treatment and each gene are shown in Fig. 2 and Table 43. For all the indicators genes, the 

results of two–way ANOVA (Table 3) indicated no statistical significance of Herbicide main effect as well as no interaction, 

while a significant Dry–rewetting effect was detected only for AOB (P < 0.05). The abundance of amoAAOB (averaged for 

both levels of Herbicide factor) was 1.27 fold higher in microcosms with dry–rewetting dessication (CD) than in undisturbed 

(SD) microcosms (Table 43). 135 

3.2.2 DGGE of ammonia–oxidizing bacteria 

DGGE profiles showed few bands and high similarity values (Pearson coefficients) among replicates of the four treatments, 

with no separation in four treatment–clusters. Similarly, no obvious separation was observed between microcosms with (CD) 

and without (SD) dry–rewetting or between glyphosate–treated (CG) and untreated microcosms (SG). At 80 % similarity 

level (cut–off), a separation in two clusters was observed (Fig. 3, grey branches). In one of them, we observed two replicates 140 

of CD/SG treatment. In the second cluster the three replicates of CD/CG treatment clustered together with microcosms in 

which no dry–rewetting was applied (SD). 
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4 Discussion 

In this study we evaluated whether an acute in vitro glyphosate application on a soil with long history of application of 

GBHs modulates the response of the microbial communities to the following dry–rewetting disturbance. 145 

We hypothesized that if no PICT was observed in the studied soil after long exposure in the field (Allegrini et al., 2015), a 

single glyphosate application to microcosms would have no effect in the structure of the microbial community, as the 

probability to change to an alternative state is more likely in response to a press disturbance (chronic exposure) than to a 

pulse disturbance (Shade et al., 2012). These changes in microbial communities associated with greater tolerance to a 

pesticide might, at the same time, conceal a higher sensitivity in the response to other perturbations (a “cost of tolerance”; 150 

Clements and Rohr, 2009). Thus, for the soil assessed in this study, we expected no conditioning effect in the the sensitivity 

to a secondary perturbation  will not be conditioned by the presence/absence of a previous acute glyphosate exposure 

(Clements and Rohr, 2009). This hypothesis was confirmed by our results: no interaction was observed between Herbicide 

and Dry–rewetting in an acute exposure to both perturbations with a physiological indicator (Table 1) and with DNA–based 

methods (Table 2), supporting the absence of a PICT response. The non–significant interaction observed for Actinobacteria 155 

(Table 2) indicates that one of the main characteristics of this microbial group, the high tolerance to desiccation (Evans and 

Wallestein, 2011), is not conditioned by the previous exposure to a single application of a GBH, even when negative effects 

of GBHs on this phylum have been reported (Barriuso et al., 2010). For amoA, the absence of interaction is also a relevant 

observation considering that AOB are particularly sensitive to pesticides and also to water availability (Franzluebbers et al., 

19951994; Hastings et al., 2000; Gleeson et al., 2010). Thus, our results suggest that the sensitivity expected to each 160 

perturbation alone does not necessarily results in a synergic effect when combined.  

Ammonia–oxidizing archaea were more abundant than AOB for all treatments. Also, they clearly differentiated from AOB 

as no significant dry–rewetting effect was observed (Table 2). This observation is consistent with the results of Gleeson et al. 

(2010), who reported that AOB are more responsive to water availability than AOA. The statistical significance of dry–

rewetting main effect on the abundance of AOB indicates that the microbial community of the soil assessed in this study is 165 

particularly sensitive to the perturbation. Conversely, the abundance of AOB seems to be less sensitive to GBH exposure (no 

significance detected for this factor), supporting previous results with the same soil and the same herbicide formulation in 

which no effects of repeated applications were detected on absolute abundance (up to three applications) (Allegrini et al., 

2017). As indicated in Tables 3 2 and 43, the dry–rewetting perturbation enhanced the abundance of amoAAOB relative to the 

untreated microcosms (SD). Most gram negative bacteria are affected by a rapid rewetting after desiccation events and a 170 

recover to the initial abundance values has been reported for AOB at 18 days after rewetting (Hastings et al., 2000). At 

functional level (nitrification rate), Fierer and Schimel (2002) found a significant increase in the activity of autotrophic 

nitrifying communities after several dry–rewetting cycles, in agreement with the higher abundance that we observed for 

amoAAOB and with a correlation between amoA copy number and nitrification potential observed in different soils (Rudisill et 

al., 2016; Zabaloy et al., 2017).   175 
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The low number of bands observed in the DGGE profiles of amoAAOB amplicons suggests a low richness of AOB in the 

studied soil. This result is in agreement with a previous biogeographic study which reported a low diversity of amoA 

sequences in soil AOB communities, with most of them in the Nitrosospira lineages (Fierer et al., 2009). More recently, a 

microcosm study with a loam sandy soil from Pampa region observed low diversity in AOB community with DGGE 

(Zabaloy et al., 2017). An obvious separation among DGGE profiles of microcosms with and without dry–rewetting was not 180 

observed, indicating no effects of this perturbation on the community structure of AOB. Thus, even that though qPCR 

indicated an increase in the abundance of amoAAOB sequences, the profiling (fingerprinting) of the community structure did 

not show the same sensitivity to the dry–rewetting disturbance (Fig. 3).  

The separation observed at 80 % similarity level (Fig. 3) between two replicates of CD/SG treatment and the three replicates 

CD/CG could be indicating an interaction as no comparable separation was detected between SD/SG and SD/CG. However, 185 

more evidences are still necessary to determine whether or not there is a significant interaction effect on the structure of 

AOB. Amplicon sequencing of amoAAOB and beta diversity analysis could provide substantially more information in this 

regard. 

In conclusion, our study demonstrates that acute exposure to a GBH does not have a conditioning effect on the response of 

microbial communities to a secondary disturbance (dry–rewetting) in a soil with chronic exposure to GBHs. To obtain more 190 

evidences supporting our conclusion, future studies should assess the effects of several dry–rewetting cycles. 
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Table 1. Two–way ANOVA of respiratory quotient (RQ) values. The P–values indicated for the main effects of Herbicide and of Dry–

rewetting disturbances correspond to the model without interaction as no significance (P > 0.05) was observed for this term. df: degrees of 

freedom. 

ANOVA RQ p–coumaric acid 

Dry–rewetting (df = 1) P = 0.34 (F = 1.01) 

Herbicide (df = 1) *P = 0.03 (F = 6.61) 

Interaction (df = 1) P = 0.92 (F = 0.01) 

Error df 8 
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Figure 1: Respiratory quotient (RQ) values. The four treatments are indicated in different colours. Error bars indicate the standard error of 

the mean (n=3). SD/SG: No Dry–rewetting disturbance/No herbicide; SD/CG: No dry–rewetting disturbance/Herbicide; CD/SG: Dry–

rewetting disturbance/No herbicide; CD/CG: Dry–rewetting disturbance/Herbicide.  

 

Table 2. Equations of qPCR standard curves. The results for ammonia–oxidizing bacteria (AOB), ammonia–oxidizing archaea (AOA), 325 

Actinobacteria and total bacteria are indicated. 

Gene Group Equation R2 Efficiency (%) 

amoA AOB Ct = 41.21 – 3.76 log10 (copy number) 0.99 84.1 

amoA AOA Ct = 38.19 – 3.56 log10 (copy number) 0.998 78.57 

16S rRNA Total bacteria Ct = 38.19 – 3.56 log10 (copy number) 0.999 91.07 

16S rRNA Actinobacteria Ct = 38.17– 3.48 log10 (copy number) 1 93.67 

Table 32. Two–way ANOVA of copy numbers for different indicator genes. The P–values indicated for the main effects of Herbicide and 

of Dry–rewetting disturbances correspond to the model without interaction as no significance (P > 0.05) was observed for this term. df: 

degrees of freedom. 

ANOVA Total bacteria Actinobacteria AOB AOA 

Dry–rewetting (df = 1) P = 0.42 P = 0.13 *P = 0.026 P = 0.06 

Herbicide (df =1) P = 0.97 P = 0.63 P = 0.57 P = 0.83 

Interaction (df=1) P = 0.52 P = 0.68 P = 0.88 P =  0.97 

Error df 8 8 8 8 



13 

 

 330 

 

Figure 2. Copy number of indicator genes for total bacteria, Actinobacteria, AOB and AOA. Error bars indicate the standard error of the 

mean (n=3). SD/SG: No dry–rewetting disturbance/No herbicide; SD/CG: No dry–rewetting disturbance/Herbicide; CD/SG: Dry–

rewetting disturbance/No herbicide; CD/CG: Dry–rewetting disturbance/Herbicide. 

 335 

Figure 3. Cluster analysis of DGGE profiles of AOB. The dendrogram was obtained using Pearson–UPGMA analysis of densitometric 

profiles. Treatments are indicated in different colours. Lower case letters indicate replicates within treatments. In each node, the left 

number indicates the similarity value (r × 100), while the right number is the cophenetic correlation coefficient. Grey branches indicate 

clusters with 100 % internal stability according to Jackknife method, defined at 80 % similarity value. SD/SG: No dry–rewetting 
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disturbance/No herbicide; SD/CG: No dry–rewetting disturbance/Herbicide; CD/SG: Dry–rewetting disturbance/No herbicide; CD/CG: 340 

Dry–rewetting disturbance/Herbicide.  

 

Table 43. Copy number (copies µg–1 DNA) of the indicator genes assessed for the different microbial groups. SD/SG: No dry–

rewetting/No herbicide; SD/CG: no dry–rewetting disturbance/Herbicide; CD/SG: dry–rewetting disturbance/no herbicide; CD/SG: Dry–

rewetting disturbance/Herbicide.  345 

Treatment AOB AOA Total bacteria Actinobacteria AOB*  

SD/SG 9.44 × 105 ± 1.60 × 105 2.56 × 107 ± 2.24 × 106 1.26 × 109 ± 1.99 × 108 1.77 × 107 ± 1.86 × 106 
9.05 × 105 ± 

8.47 × 104 

(SD) 
SD/CG 8.66× 105 ± 9.32 × 104 2.59 × 107 ± 5.50 × 106 1.16 × 109 ± 1.47 × 108 1.90 × 107 ± 6.01 × 106 

CD/SG 1.17 × 106 ± 5.84 × 104 3.34 × 107 ± 3.17 × 106 1.05 × 109 ± 4.05 × 107 2.81 × 107 ± 5.22 × 106 
1.15 × 106 ± 

3.16 × 104 

(CD) 
CD/CG 1.12 × 106 ± 3.15 × 104 3.24 × 107 ± 9.59 × 105 1.13 × 109 ± 6.81 × 107 2.31 × 107 ± 7.49 × 106 

*Copy number of microcosms with (CD) or without (SD) dry–rewetting disturbance averaged through all levels of Herbicide factor.  
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Point-by-point response to the reviewers’ comments 

Anonymous Referee #1     Received and published: 22 April 2020 

General comments: In this manuscript, the authors evaluate the potential conditioning effect of an acute glyphosate 375 

exposure (first imposed perturbation) on the response of soil microbial communities to a single dry-rewetting event 

(second imposed perturbation), in soils with a long history of exposure to glyphosate-based herbicides. The topic 

under study is relevant, the hypothesis is sound, and the experimental design is suitable for the aim of the study. In 

addition, the manuscript is concise, well written and organized; therefore I recommend its publication after some 

minor revisions. 380 

Technical corrections: 

L27-28: The phrase “(e.g. pesticides)” is repeated in both sentences; maybe it’s not necessary to mention it twice. 

We agree with the comment. The phrase was removed in line 27. 

L124-125 and Table 2: I’m not sure that this table is really necessary here. Maybe the information of R2 and 

%Efficiency could be simply put in a sentence in the methods section? I suggest a brief sentence, like: “The 385 

efficiencies of qPCR assays were 84.1% (amoA-AOB), 78.57% (amoA-AOA), 91.07% (total bacteria 16S rRNA) and 

93.67% (Actinobacteria 16S rRNA); and R2 values were ≥ 0.99 in all assays”. 

We agree with the suggestion. Table 2 was removed and the information was inserted in the text in the same way as 

suggested by the reviewer. 

L145-146: I’m not sure that I’m getting this right. How does the lack of interaction between the two disturbances 390 

support the absence of a PICT response? Can you briefly clarify what a clear PICT response would be? Is it possible 

that even if there was a PICT response, there wasn’t interaction with the second perturbation (desiccation)? 

Changes in microbial communities associated with the development of a greater tolerance (PICT) to a pesticide in the field 

(chronic exposure) might, at the same time, conceal a higher sensitivity in the response to other perturbations (a “cost of 

tolerance” when adapting to an environmental stress; Clements and Rohr, 2009). Thus, if no PICT response was observed in 395 

the studied soil after long exposure in the field (Allegrini et al., 2015), it could be expected that a single glyphosate 

application to microcosms (acute exposure) would have no effect at all in the structure of the microbial community and, 

consequently, no conditioning effect of this acute glyphosate exposure should be observed on the response to a secondary 

perturbation (dry-rewetting in this case). The absence of conditioning effect is consistently reflected in the non-significant 

interaction term of ANOVA.  400 

However, it is important to mention that even if a PICT response would have been observed in this soil, the higher tolerance 

could have associated costs in the response to only some environmental stresses (e.g., to stresses caused by other xenobiotics 

but no to a dry-rewetting stress). Thus, a non-significant interaction could be also observed for a soil in which a PICT has 

been detected. Based on this argument, we consider that the absence of interaction in our study is not a conclusive result 

supporting the absence of a PICT response.  In other words, the result we observed in the microcosm assay (no 405 
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conditioning effect of an acute glyphosate exposure to dry-rewetting response) is an expected result for a soil in which 

no PICT was observed (as explained above) but it cannot be considered a supporting evidence of the absence of a 

PICT response in this soil. 

We have removed the phrase “supporting the absence of a PICT response” in line 146. Also we have introduced the concept 

of “cost of tolerance” after line 142, as explained before in response to the reviewer comment.   410 

L147 and L155: Can you please check Table numbers? I believe it’s Table 3.  

As indicated by the reviewer it is Table 3 and not Table 2.  

L152: “does not necessarily result” 

Ok, the error was corrected. 

L161: Tables 3 and 4. 415 

Ok, the error was corrected. 

L173: Maybe “even though” instead of “even that”?  

We agree with the suggestion. 

Figure 3: I’m sorry, what do lowercase letters mean? Replicates within treatments sometimes have different 

lowercase letters, e.g., CD/SG_a, CD/SG_b and CD/SG_c. 420 

Lowercase letters were used to identify the different replicates within treatments. 

Anonymous Referee #2     Received and published: 15 May 2020 

The response of microbial communities to different perturbations is of great interest for designing sustainable 

farming practices (either tactic or strategic). Particularly the long term effect of GBHs is relevant in no-till 

agricultural systems, and the dry-wetting effects are important in rainfed agriculture. This research explores in a 425 

microcosm experiment the effect of GBHs and dry-rewetting perturbations on soil microbial communities, but the 

interaction effect was not clear. Despite sound methods were used in the present work, deeper studies are needed and 

can be addressed with new research techniques like microbiome sequencing and also by repeated cycles of dry-

rewetting to address more clearly the ecological impact (eg. resilience, resistance to disturbance). The manuscript is 

appropriate for publishing in SOIL. Some minor corrections are needed: 430 

1- Check references: year in text is different from the year in References list a. Line 40 and 148: Evans and 

Wallenstein, 2011 or 2012? b. Line 87: Zabaloy et al 2016 is not in Reference list c. Line 89: Pfeiffer et al 2013 or 

2014? d. Line 144: Clements and Rohr 2009 or 2008? e. Line 151: Franzluebbers et al 1995 or 1994? 

All references were checked and the modifications were introduced as indicated by the reviewer. 

2- As Reviewer #1 suggests, the concept of PICT response and the absence of interaction could be explained with 435 

more detail. 

We agree with the need of clarification of this concept. Please see the response to the third comment of Reviewer 1 (L145-

146). 

3- Line 58: how many years is “long term”? Despite described in Allegrini et al 2015, please indicate in the text. 



17 

 

With long-term we refer to a history of more than 20 years. We introduced it in the text as suggested by the reviewer. 440 

4- Line 48: change quantitae by quantity. 

The change was introduced in the text as indicated by the reviewer. 

List of all relevant changes 

All relevant changes were introduced in response to the reviewers’ comments and were indicated previously. 

In addition to these changes, the following changes were also introduced: 445 

Abstract (Lines 23 to 25 of the revised version of the manuscript) 

 The following lines were introduced in response to the Topical Editor comments: 

“The results of this study indicate that the perturbation of an acute glyphosate exposure in a soil with long-history of this 

herbicide does not have a conditioning effect on the response to a subsequent dry-rewetting disturbance according to a 

physiological indicator or the quantified bacterial/archaeal genes.” 450 

Data availability 

A typing error was found in the name of the database and was corrected: 

“4TL Database” changed by “4TU Research.Data Database” 

 


