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Abstract.

Information on soils’ composition and physical, chemical and biological properties is paramount to elucidate agroecosystem

functioning in space and over time. For this purposes we developed a national Swiss soil spectral library (SSL; n = 4374) in

the mid-infrared (mid-IR), calibrating 17 properties from legacy measurements on soils from the Swiss biodiversity monitor-

ing program (n = 3778; 1094 sites) and the Swiss long-term monitoring network (n = 596; 71 sites). General models were5

trained with the interpretable rule-based learner CUBIST, testing combinations of {5,10,20,50,100} committees of rules and

{2,5,7,9} neighbors to localize predictions with repeated by location grouped ten-fold cross-validation. To evaluate the infor-

mation in spectra to facilitate long-term soil monitoring at a plot-level, we conducted 71 model transfers for the NABO sites

to induce locally relevant information from the SSL, using the data-driven sample selection method RS-LOCAL. Eleven soil

properties were estimated with discrimination capacity suitable for screening (R2 > 0.6), out of which total carbon (C), organic10

C (OC), total N, organic matter content, pH, and clay showed accuracy eligible for accurate diagnostics (R2 > 0.8). CUBIST

and the spectra estimated total C accurately with RMSE = 0.84 % while the measured range was 0.1 – 58.3 %, and OC with

RMSE = 1.20 % (measured range 0.0 – 27.3 %). Compared to general estimates of properties from CUBIST, local modeling on

average reduced the root mean square error of total C per site fourfold. We found that the selected SSL subsets were highly

dissimilar in terms of both their spectral input space and the measured values. This suggests that data-driven selection with RS-15

LOCAL leverages chemical diversity in composition rather than similarity. Our results suggest that mid-IR soil estimates were

sufficiently accurate to support many soil applications that require a large volume of input data, such as precision agriculture,

soil C accounting and monitoring, and digital soil mapping. This SSL can be updated continuously, for example with samples
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from deeper profiles and organic soils, so that the measurement of key soil properties becomes even more accurate and efficient

in the near future.

1 Introduction

Soils provide a manifold of functions within terrestrial ecosystems, many of which are vital for humankind. To quantify these

functions from the soils’ composition and properties, one typically relies on physical, chemical and biological laboratory ana-5

lytical measurements. Doing this consumes both financial resources and time. For example, repeated measurements are needed

to describe soil functioning in changing environments, for example in response to agronomic management. Soil visible (vis)

and infrared (IR) spectroscopic measurements and modeling have become indispensable tools to gather quick, relatively ac-

curate, and inexpensive soil information, both on the field and in the laboratory (Nocita et al., 2015; Viscarra Rossel et al.,

2016, 2017). When soil chemical and physical properties are calibrated to the spectra, a single mid-IR (4000 – 500 cm−1;10

2500 – 25000 nm) or vis–NIR (25000 – 4000 cm−1, 400 – 2500 nm) measurement can be used to estimate multiple soil prop-

erties. Soil is a complex matrix with many organic and mineral components. This yields spectra with absorptions that overlap

and contain many and often highly correlated variables. Hence, to successfully develop calibrations and make predictions for

attributes related to soil composition, multivariate statistical methods are needed to disentangle relationships between these

variables and measured attributes. Further, it is important to consider that the diversity in spectral characteristics typically15

reflects soils’ chemical and physical composition. Since the soil composition is influenced by the soil forming factors — soil

parent material, climate, topography, organisms, and age of soils (Dokuchaev, 1899; Jenny, 1941) — these factors provide

further means of causally interpreting and judging the applicability of the method for a particular set of soils. Compared to the

NIR, mid-IR offers a more accurate characterization of soils’ chemistry since this region contains the fundamental vibrations

with more defined peaks (Janik et al., 1998).20

A soil spectral library (SSL) can be defined as a well-ordered and harmonized collection of soil samples, their spectra,

analytical reference measurements, contextual information, and additional metadata on samples and methods used. A central

question behind the development of large SSLs is how to achieve accurate local predictions based on established collections

of soil information — for example within a new landscape, ecosystem, farm, field, or plot in a new region — where reference

data of only a few observations are available. More recently, SSLs that span large geographical extents are being developed25

(Sila et al., 2016; Viscarra Rossel et al., 2016; Padarian et al., 2019b; England and Viscarra Rossel, 2018; Briedis et al.,

2020; Angelopoulou et al., 2020; Dangal et al., 2019). These efforts are motivated by the prospect that soil spectroscopy can

supplement many conventional methods of soil analysis. A range of predictive modeling strategies and algorithms have been

tested for soil spectral analysis, among others involving tools from chemometrics (e.g., partial least squares (PLS) regression)

(Janik and Skjemstad, 1995), traditional machine learning (e.g., regression tree methods) (Viscarra Rossel and Webster, 2012),30

to convolutional neural networks (CNNs) (Padarian et al., 2019a, b; Tsakiridis et al., 2020).

There are two main strategies for estimating properties of new soils using spectra. The first one is to calibrate one general or

global model that is applied to predict new samples, and the other is to derive local calibrations by conditioning on a specific set
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of observations and features of the SSL to new data based on soil knowledge and/or algorithms. However, empirical evaluation

of local and global methods are needed in different contexts where data on soil attributes is needed (i.e. soil study, soil mapping

project). Such studies or applications should consider the "no-free-lunch" theorems for machine learning and optimization

(Wolpert, 1996; Wolpert and Macready, 1997): there is no single algorithm or combinations of them that work best under all

situations or applications.5

General statistical learning makes use of all available training data to construct one parametric model. In contrast, local

learning methods combine different learning methods, supervised and/or unsupervised, and together with domain knowledge

produce more modular forms of learning (Solomatine, 2008). The available training set can be a subset and algorithmic sub-

models can thereby be optimized to more accurately predict new single observations or groups of them. Local learning has also

been termed transfer learning. Transfer learning is a general expression for adapting previous knowledge gained from existing10

data (i.e., model representation) for a new prediction case (Pratt et al., 1993; Pratt and Thrun, 1997; Thrun and Pratt, 1998). It

has been defined as a transfer from knowledge in (a) source task(s) or domain(s)—here, an SSL—to a target domain (Pan and

Yang, 2010), and thus comprising soils from new locations in this case.

The soil spectroscopy community has suggested several approaches to achieve local calibrations based on an established SSL

and its feature space. One example is augmenting (spiking) SSLs with a few weighted (Guerrero et al., 2016) or unweighted15

(Seidel et al., 2019) local samples. Other studies calibrated separate models on partitions of training data that were derived

from applying certain criteria (i.e., geographical region, terrain attributes, parent material, soil type, land use, spectra-based

clustering) (Sila et al., 2016; Ogen et al., 2019). Still others used memory-based learning based on spectral similarity, extracting

useful information from compositional relatedness of soils (Ramirez-Lopez et al., 2013; Clairotte et al., 2016; Hong et al.,

2019; Dangal et al., 2019) or additionally geographic proximity (Tziolas et al., 2019). These all produce individual models for20

each sample to be predicted. Memory-based learning combines both lazy learning, where a subset of stored samples are only

retrieved and modeled when new samples are predicted, and local learning principles, where modeled subsets define points

within a local neighborhood (Dietterich et al., 1993). The spectrum-based learner developed by Ramirez-Lopez et al. (2013) is

a prominent memory-based method for which each new prediction sample forms its own target domain. The selection of source

instances is governed by spectral similarity. These properties make it as well a transfer learning method. Another approach used25

by Padarian et al. (2019a) was re-training weights within specific layers of a deep convolutional neural network using local

(target) sets, which were spectral soil data sets per country (parameter-transfer approach). Finally, the selection of matching

SSL samples using the resampling-based selection RS-LOCAL algorithm has also been used (Lobsey et al., 2017). Lobsey et al.

(2017) showed that this data-driven transfer approach outperforms most other current methods for deriving local estimates.

Still, despite these promising learners, transferring the useful information contained within large and diverse SSLs, and their30

resulting calibrations onto new, local target areas with unique soil characteristics remains challenging due to soil complexity.

RS-LOCAL obtains locally-relevant information by selecting specific rows (instances) from the training set and transfer

them to the prediction set. RS-LOCAL is an example of an instance or sample transfer approach. It heavily relies on sampling

and performance-driven reduction of the library, yielding a subset of samples that can accurately estimate the properties of

soils in the local target task. We wanted to investigate this promising new method for local soil estimation and monitoring in35
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Switzerland because it makes no prior assumptions on which samples from the library could be useful. This makes it potentially

more accurate and as well more flexible to new local soil contexts than when creating constraints with similarity measures. A

further advantage for large SSLs is that it removes samples that might be spectrally similar but cause inaccurate calibrations

(i.e., erroneous measurements or spectra with confounding effects). Such a local approach however requires an well-established

and sufficiently diverse SSL in order to extract useful soils that are locally relevant.5

Thus, our first goal was to develop a national mid-IR SSL with reference measurements for Switzerland to deliver 17 key

chemical and physical soil proxies. This SSL includes soils and their analysis data from the long-term Swiss soil monitoring

network (NABO; 71 agricultural sites with times series measurements, n = 596) and the Swiss biodiversity monitoring (BDM)

network (1094 grid-locations, n = 3778). This is the first operational SSL for Switzerland in the mid-IR that allows means

for spectral estimation with sufficient existing soil diversity. The second goal was to develop general rule-based models for all10

available soils properties using the CUBIST algorithm. Further, we wanted to infer important spectral regions in the models and

their chemical associations, which we illustrated with the estimation of total carbon (C).

For soil monitoring, it is crucial to obtain locally unbiased spectral estimates of key soil properties such as organic C, from

high soil variability of large SSLs and over time. This was our motivation to design a predictive transfer workflow that was

adaptive to soils’ composition and properties for each long-term monitoring site. Hence, our third goal was to leverage the SSL15

with its spatial and temporal variability of soils to derive local calibrations by transfer learning with RS-LOCAL. Specifically, we

aimed for reproducing time-series measurements (starting from 1985) of soil C at the Swiss agricultural long-term monitoring

sites based on spectral analyses and two calibration samples per site. To the best of our knowledge, there is no study yet that

has evaluated the usefulness of a large and diverse SSL for systematic soil monitoring. We therefore wanted to design a local

calibration strategy using transfer learning, that would be effective in reducing (conditional) bias at monitoring plots compared20

to the general rules derived in the first aim. Furthermore, we had a strong interest in identifying the mechanisms, considering

both soil knowledge and data distributions, of how such a local transfer would induce locally-adaptive soil estimation.
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2 Material and Methods

2.1 Soils and data sets

To establish the Swiss SSL, we obtained soil samples and reference data from two different sources: 1) the Swiss soil moni-

toring network (NABO), and 2) the Swiss Biodiversity Monitoring (BDM) program (Bundesamt für Umwelt (BAFU), 2014)

(Figure 1). The NABO currently consists of 108 sites where soils are being continuously measured every five years since5

1985 for long-term soil monitoring. Out of the 108 sites, we selected 71 sites under agricultural management—comprising of

arable land (33 sites), permanent grassland (26 sites), and special crops (11 sites; horticulture)—and one protected area. For

the mid-infrared SSL, we used 596 NABO soil samples from 6 campaigns conducted between 1985 and 2015.

Figure 1. Swiss map with sampling locations of mid-infrared spectral library including the sites of the Biodiversity Monitoring Program

(BDM; 6× 4 km; n= 1094) and the National Soil Monitoring Network (NABO; n= 71). 71 NABO sites (10 m× 10 m) were sampled with

a grid-based stratified design. 1094 BDM samples were obtained from single sampling events. The NABO sites have been continuously

sampled and measured in five-year intervals since 1985.

The plots at the NABO sites covered 10 m× 10 m each. These were repeatedly sampled for 0–20 cm soil depth. Four replicate

samples were taken by stratified random sampling and bulking four times 25 cores from 100 sub-areas of 1 m2 to account for10

small-scale soil variability. Desaules et al. (2010) and Gubler et al. (2019) detailed the sample collection and data harmonization

process of the measurements. The soils of the BDM were sampled at 0–0.2 m depth from positions on a regular grid of

6 km×4 km laid over Switzerland (a total of 1094 locations). Each sampled location included four sub-samples that were

taken at the intersection of the four cardinal directions from the center point and the circumference of a circle with a radius of
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3 m to 3.5 m (Meuli et al., 2017). Due to it’s design covering all major geographic regions in Switzerland—the Jura mountain

range, the Central Plateau, and the Alps—the BDM sampling campaign comprises a major part of the biogeochemical diversity

of soils and predominant land use types in Switzerland. The wide coverage of soil conditions are an important source of soil

chemical variability.

2.2 Chemical reference analysis5

Data on chemical and physical soil properties were previously measured and provided by the NABO group. All laboratory

soil analyses for the 17 properties were based on the protocols of the Swiss Standard Method (Agroscope, 1996). Mineral

elements were determined by extraction with 1:10 ammonium acetate-EDTA solution (AAE10; method Agroscope 1996). The

measured properties were total C, organic C (OC), total nitrogen (N), pH (CaCl2), CaCO3, clay, silt, sand, CECpot, P(AAE),

K(AAE), Ca(AAE), Mg(AAE), Cu(AAE), Zn(AAE), and Fe(AAE). All chemical analyses of NABO soils were done on four10

bulked replicates per site and sampling event. For BDM locations, four spatial replicates were measured each.

2.3 Measuring and processing spectra

All milled soil samples from the NABO and the BDM archive (n = 4374; with a particle size below 100 µm) were measured

with the Vertex 70 Fourier-transform spectrometer from Bruker (Bruker Optik GmbH, Ettlingen, Germany) at ETH Zurich,

using a high-throughput accessory (HTS-XT) and custom 24-well plates tailored to diffuse reflectance measurements. The15

mid-IR spectrometer was equipped with a KBr beamsplitter and a Mercury Cadmium Telluride (MCT) detector, which was

permanently cooled with liquid nitrogen during the measurements. The reflectance spectra were acquired between 7500 cm−1

(1333.3 nm) and 600 cm−1 (16666.7 nm) at an effective resolution of 2 cm−1.

Each soil sample was measured twice. The soil surface was flattened evenly and without compression by the thin round

middle part of the spatula. The first measurement position of the 24-well plate contained a gold (Au) reference surface, which20

produced a single reflectance spectrum for normalizing the reflectance of the 23 following soil measurements. The "atmospheric

compensation" routine implemented in the Bruker OPUS software was used to eliminate unwanted absorptions of H2O vapour

continuum and CO2 gas in the measurement chamber, based on the single channel reference spectrum measured once on each

plate. All single channel reflectance spectra were obtained by averaging 32 internal measurements. The spectra were recorded

as log(1/R). Then, an average spectrum per sample was produced by calculating the mean of all spectral variables for the25

measured replicates. Finally, the spectrum offset and further scatter effects were reduced and the features were transformed

with a Savitzky-Golay (Savitzky and Golay, 1964) first derivative smoother using a window size of 35 variables (70 cm−1)

and third order polynomial fit. Finally, we selected every 8th spectral variable to reduce redundancy in the spectra (collinearity)

and produce more parsimonious spectral estimates of soil properties. This resulted in 209 variables between 634 cm−1 and

3962 cm−1, which formed the predictors for the subsequent general and local transfer modeling.30
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2.4 Data processing and statistical computing

All spectral and reference data were processed and modeled with the R software environment for statistical computing and

graphics version 3.6.0 (R Core Team, 2019). We used the caret (Kuhn, 2020) R package to streamline the statistical learning

process. Basic data transformations such as data preparation and aggregation were done using the tidyverse (Wickham, 2019)

set of packages and data.table (Dowle and Srinivasan, 2019). The spectral data were handled and processed with the simplerspec5

(Baumann, 2019) and prospectr (Stevens and Ramirez-Lopez, 2013) packages.

2.5 General soil estimation: Rules for the entire SSL

The general soil estimation was done by rules trained with the CUBIST (Quinlan, 1993) learner, separately developed for each

analytical soil measure. We chose this algorithm since it has shown excellent performance for SSLs with rather large soil

variability and multicollinear spectral variables, and because its interpretation is mechanistically more intuitive as it is a form10

of data partitioning (simple conditions and linear equations). CUBIST first forms model trees using basic mechanisms of M5

(Quinlan, 1992). Wang and Witten (1996) outlined detailed principles behind the construction of the model trees and derivation

of rules, and Viscarra Rossel and Webster (2012) described it for soil spectroscopic modeling.

2.5.1 Model development and validation

We tested a full-factorial combination of {5,10,20,50,100} committees of rules and {2,5,7,9} neighbors to tune the CUBIST15

models. To get realistic estimates of the models’ general performance, we defined a grouped ten-fold cross-validation scheme

that treated the entire site (e.g., for total Carbon: NABO: 71 sites; BDM: 1079 sites) as independent in the modeling data sets.

This made all observations from a site the unit of prediction, making the procedure equivalent to external cross-validation.

To reduce the bias-variance trade-off in the assessment, we repeated five times the grouped ten-fold cross-validation (CV)

procedure (Friedman et al., 2008; Kuhn and Johnson, 2013). This was done with predefined random seeds to reproduce the20

division into training and validation proportions. We considered this site grouping factor as prior information when cross-

validation segments were created, so that a particular site was only present within one segment (fold) of a cross-validation

split. This grouped assignment prevented that the relationships were trained on the model fitting sets and prevented a particular

site from leaking into the testing segments, yielding reliable generalization errors.

We tested the correspondence of mid-IR and model-derived predictions (xi) and measured standard reference measurements25

(x̂i) with common regression metrics. We cross-validated the inaccuracy of the models with the root mean square error (RMSE).

The mean squared error (MSE) was further decomposed into mean error (ME) or bias and the standard deviation of the

error (SDE) or imprecision, so that RMSE2 = ME2 + SDE2 (Viscarra Rossel and McBratney, 1998). To describe the linear

dependency between measurements and modeled values and give a relative goodness of fit, the coefficient of determination

(R2) from linear regression is also reported. All metrics were aggregated from five estimates from independent resampling30

repeats. We reported mean values and standard deviations to provide uncertainties of the estimates.
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2.5.2 Deriving important spectral variables

We used the recursive feature elimination (RFE) method, a backwards variable-selection algorithm described by Guyon et al.

(2002), to test whether the modeling can be simplified and to find most important spectral features. Soil reflectance spectra

typically contain many correlated and potentially redundant variables. Therefore, constraining them to relevant subsets that feed

into the modeling can further improve predictive accuracy and reduce computation time and storage for model updates. We5

recursively eliminated subsets of variables with low CUBIST variable importance, calculated with equally weighted usage of a

particular variable in split conditions and regressions. This step-wise variable reduction was based on the following predefined

subset sizes Si, starting with the full set at i = 1 and ending with the most important predictor at i = 30:

Si = {209,150,120,105,90,75,60,50,40,35,30,25,20,17,14,12,11,10,9,8,7,6,5,4,3,2,1} (1)

The dropped variables at each specific reduction step received identical importance ranks, from 30 (least important variables)10

to 1 (most important variable). Importance ranks were determined with step-wise variable reduction because model-based

importance of a given input variable can substantially change when some correlated variables occur more frequently than

others. Otherwise, using CUBIST importance measure on the entire spectrum would confound the importance of relevant but

highly correlated variables. Since RFE is a wrapper method of variable selection, external test sets (resampling) was needed

to exclude selection bias in estimating subset performance (RMSE) (Kuhn and Johnson, 2013). For this purpose, we nested15

another inner layer of resampling for RFE within the five times repeated 10-fold CV scheme. Importance ranks of variables and

outer test RMSEs were averaged from the 50 CV folds. To decrease computation time, we conducted the RFE with 5 CUBIST

committees. The RFE procedure and the resampling setup is explained further in the appendix 3.2.1.

2.6 Local soil estimation for plot-level monitoring

We defined a local soil estimation scenario where a new long-term monitoring site was initiated at time zero (t0). Each one of20

the 71 NABO sites was assumed to be novel while the remaining ones were established with spectral and reference data records.

We therefore conducted 71 separate model transfers to test spectral-based soil monitoring using this SSL. We calibrated models

at each site using two local samples per given site and a relevant subset of the remaining Swiss SSL. The two local samples

were chosen from pooled samples at t0 (first two out of maximum four replicates), or in addition at t1 if there was only one

sample in t0. Figure 2 illustrates the local modeling workflow. All other samples per given site besides the two chosen during25

calibration (in other words the successive time-series measurements at a monitoring plot) were used as local validation samples

(Nsite,i). The respective samples from the remaining SSL included spectra and reference measurements from all BDM samples

and NABO samples, excluding the ones from the respective target site. We used only two calibration samples per NABO site

to capture the predictive mechanisms at site-level because we wanted to avoid overoptimistic local assessment; both local

calibration and validation samples were repeated soil measurements, and are otherwise — if not adequately handled in the30

calibration sampling strategy — at risk of information leakage when soils’ composition and relevant properties show constant

trends over time.
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Figure 2. Scheme illustrating the transfer of the soil spectral library (SSL) to a long-term monitoring site using the RS-LOCAL approach.

The local calibration samples and a subset of the SSL are used to calibrate a partial least squares regression (PLSR) model, which predicts

the local validation samples.

For each of the 71 sites, the spectral relevant samples from the remaining Swiss SSL were selected using the RS-LOCAL

algorithm (see Lobsey et al. (2017)). The site-specific samples (msite, i) denote local calibration samples from a NABO plot.

The recursive reductions of the initial training data, which determined the finally yielded subsets (Ksite, i ) were driven by

model performance (RMSE) for the two local calibration samples. For each NABO site i, the corresponding Ksite, i set was

spiked with the two local calibration samples. On this combined msite, i + Ksite, i data set, a final PLSR model, locally adapted5

for the monitoring plot by optimization on the calibration samples, was developed using 10-fold cross-validation. Finally, the

local validation spectra (Nsite, i) were predicted using the most accurate calibration model.

The search algorithm RS-LOCAL has three empirical parameters to control the samples that are selected for the local transfer

from the SSL (Lobsey et al., 2017). Parameter k is both the number of samples drawn from the original and reduced library

without replacement and the number of samples of the returned SSL subset. Parameter b is the number of times k samples10

are randomly drawn from the remaining data at iteration i of the performance-driven library reduction. Parameter r is the

proportion of samples, which are consistently in weakest models, that are removed at it each reduction step. The configuration

of the RS-LOCAL search was optimized for each NABO site. For each site, we ran separate RS-LOCAL runs, testing a full-

factorial combination of empirical parameter sets k = {30,50,150}, b = {10,20,50}, r = {0.05,0.1,0.2}. The finally selected

optimal subset per site yielded the smallest RMSE on the two local calibration samples, and was therefore used to infer15

predictions for the local validation samples.
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2.6.1 Uncertainty of spectral monitoring uncertainty: CUBIST vs. RS-LOCAL transfer

To compare performance of the CUBIST and RS-LOCAL transfer, errors and concordance of both methods were conditionally

assessed per individual NABO (n = 71) site. For CUBIST, grouped cross-validation hold-outs were used. Thereby, the two local

validation samples Nsite, i were excluded, so that the test configuration was identical to the local transfer scenario. In addition to

the mentioned assessment statistics, the ratio of performance to interquartile distance (Bellon-Maurel et al., 2010) (RPIQ; 75th5

and 25th percentiles) was used for relative comparisons between the local transfer and rule-based model because it is robust to

non-normal and skewed distributions of measured values.

2.6.2 Evaluating the predictive mechanisms behind the local transfer

For each of the 71 statistical transfers at a plot-level, we quantified the similarity between the selected data sources Ki (from

SSL) and the respective local target domain {mi;Ni} (local calibration and validation) by multivariate distances across the10

spectral input variables. The distance of single observations within {Ki;mi} was referenced to the center of all data, which

lead to two respective distributions of distance measures for these sets of points and per site. This procedure involved two steps:

1) compress the input data to reduce the "curse of dimensionality" (Bellman, 1961) and be able to discriminate similarity with

spectra (with many dimensions, distance to nearest neighbor becomes similar to distance to farthest neighbor); 2) calculate

Mahalanobis distance using a robust method (see below; Varmuza and Filzmoser (2016)), so that the location and scatter were15

influenced by the main data rather than by atypical observations.

To condense the spectral information over the entire SSL, Savitzky-Golay preprocessed spectra that included all observa-

tions with carbon elemental measurements were mean-centered, scaled, and then transformed by PCA using singular value

decomposition. Dimensionality reduction was necessary to avoid computationally singular values during the subsequent calcu-

lation of the covariance matrix (for the Mahalanobis distance). The first ten principal components that explained 86.5 % of the20

variation in preprocessed spectra were kept for distance calculations. Finally, the Mahalanobis distance of all the observations

to their center was computed with robust estimates for both the center and the covariance matrix of the selected PCA scores,

using the Minimum Covariance Determinant (MCD) estimator (Rousseeuw, 1984; Hubert and Debruyne, 2010).
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3 Results

3.1 Summary of reference measurements

The samples from the Swiss soil monitoring network (NABO) exhibited the highest variability across samples for total C and

OC (n = 592; Table 1). Organic C ranged from 1.1 % to 27.3 %. The texture of the soils varied considerably. The pH had

values between 3.5 and 7.6 and the soils were slightly acidic overall with a median of 5.8. Compared to the NABO data set, the5

soils from the BDM program covered a wider set (n = 3723 for total C) and range of measured soil properties. The measured

range of total C for BDM (0.1 – 58.3 %) extended further than that for the NABO. The distribution of pH values was similar

in the NABO and BDM sets. The BDM data included also the available cations extracted by AAE (see Table 1). The median

CECpot was almost equivalent to the value of the NABO sites (24 vs. 23 cmol(+) kg−1). Exchangeable Ca showed the largest

coefficient of variation (CV = 1.56) among the measured properties of the BDM set.10

3.2 General soil estimation with CUBIST modeling

For most of the properties, minimal cross-validated errors were achieved with 100 committees and 9 neighbors. The rule-based

models explained a large proportion of the variation (R2 > 0.9) in properties that typically have a strong link to total C (humus,

organic C, N) (Table 3; Figure 3). Clay was accurately estimated (RMSE = 5 %; range = 0–60 %), whereas sand and silt were

less accurately estimated. The pH was accurately estimated (RMSE = 0.3). Our models discriminated a large proportion in15

the measured variation of Ca and Mg (ammonium acetate-EDTA) in the mid-IR (R2 = 0.97 and 0.78). Reference values of

potential cation exchange capacity ranged from 0 – 136 cmol(+) kg−1 and were modeled with an RMSE of 7 cmol(+) kg−1

(R2 = 0.70). However, the extractable nutrients P, K, Cu and Zn were insufficiently explained by mid-infrared spectral rules.

However, the rules achieved nearly unbiased property estimates over all observations. We found marginal local bias at the

largest values, mostly for variables with positively skewed distributions such as total C.20

Overall, out of the 17 available soil properties, total C, total N, total CaCO3, Ca and Mg (ammonium acetate-EDTA),

Organic Matter, OC, CECpot, pH, sand and clay (11) were modeled with relatively good discrimination capacity in the measured

ranges (Figure 3).

3.2.1 Model interpretation and filtering with variable importance

Figure 4 shows that the test RMSE overall increased with less spectral variables using CUBIST. The lowest error (RMSEtest =25

0.834 % for total C) of spectroscopic estimation was achieved with the initial modeling spectra (209 variables). The predictive

capacity for total C across all external cross-validations even increased when we reduced the number of spectral input variables

further to 105 and 90 variables (RMSEtest = 0.810 % and 0.820 % for total C, respectively). For the subsequent variable

reduction steps, model performance steadily dropped until one wavenumber was left (RMSEtest = 1.88 % C).

The spectral feature between 1786 cm−1 and 1754 cm−1 was the most important one for the estimation of total C with30

CUBIST (Figure 4). The twelve spectral variables with the best importance ranks across all RFE iterations and test sets de-

11
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Table 1. Summary statistics of the measured soil properties of the Swiss soil spectral library derived from the sample archive of the Swiss soil

monitoring network (NABO) and the Swiss Biodiversity Monitoring (BDM) program. C = total carbon, OC = organic carbon, CECpot = po-

tential cation exchange capacity. Extractable element contents were based on 1:10 ammonium acetate-EDTA (AAE) solution. All measured

values were referenced to dry weight by water correction after drying at 105 ◦C.

n #Locations Min Max Median Mean SD CV

NABO

C [%] 572 71 1.1 27.3 3.3 4.0 3.5 0.88

OC [%] 592 71 1.1 27.3 3.0 3.7 3.4 0.92

N [%] 572 71 0.11 1.99 0.32 0.36 0.26 0.71

pH 574 71 3.5 7.6 5.7 5.8 0.9 0.16

Clay [%] 80 55 3 59 22 23 10 0.45

Silt [%] 81 55 15 80 38 40 13 0.32

Sand [%] 80 55 4 82 40 37 17 0.45

CECpot [cmol(+)kg−1] 121 58 7 136 23 26 17 0.68

BDM

C [%] 3723 1079 0.1 58.3 4.1 5.5 4.9 0.89

OC [%] 498 472 0.0 22.5 3.2 3.9 2.8 0.72

Humus [%] 3664 1073 0 115 7 9 9 1.01

N [%] 3724 1079 −0.00 2.64 0.32 0.38 0.25 0.67

pH 3765 1094 2.6 8.0 5.6 5.6 1.3 0.24

CaCO3 [%] 1565 455 −0.2 88.5 3.6 10.7 14.4 1.35

Clay [%] 787 785 0 60 19 21 11 0.51

Silt [%] 787 785 10 71 30 31 10 0.31

Sand [%] 787 785 1 82 42 41 17 0.41

CECpot [cmol(+)kg−1] 674 190 0 94 24 26 12 0.44

P (AAE) [mgkg−1] 417 417 1 1047 19 40 77 1.92

K (AAE) [mgkg−1] 417 417 22 1255 106 136 115 0.84

Ca (AAE) [mgkg−1] 417 417 141 96250 3927 12226 19127 1.56

Mg (AAE) [mgkg−1] 417 417 16 3196 161 232 259 1.11

Cu (AAE) [mgkg−1] 417 417 2 73 6 8 5 0.73

Zn (AAE) [mgkg−1] 417 417 1 131 4 6 9 1.43

Fe (AAE) [mgkg−1] 417 417 84 1640 342 387 194 0.50

DNA [µgg−1] 718 225 2 155 15 20 17 0.87
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ŷ

Organic C [%]

RMSE =  6.7 ±  0.1
bias =  0.1 ±  0.0
R2 =  0.72 ±  0.01

0

50

100

0 50 10
0

y

ŷ
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Figure 3. Agreement between measured and mid-infrared predicted values that was obtained from CUBIST models. Models’ performance

was assessed by site grouped cross-validation holdouts (five times repeated ten-fold). Models of soil properties with R2 > 0.6 are shown

(see Table 3 for more detailed model summaries).

13

https://doi.org/10.5194/soil-2020-105
Preprint. Discussion started: 22 February 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 4. Top: Root mean square error (RMSE) of mid-infrared estimates of total C that CUBIST produced at the respective subsets of

spectral variables. The performance profile was obtained with a recursive feature elimination (RFE) procedure using predefined subset sizes,

which was embedded into a nested and by site grouped cross-validation scheme that excluded selection bias and ensured generalization of the

estimated performance of variable filtering. The 50 repeated sets of outer holdouts gave uncertainties of the procedure (error bars represent

standard deviations of the test RMSE). Middle: Average importance ranks across the spectrum. Lower rank values indicate higher importance

for the estimation of total C. Ranks were determined with RFE. Bottom: Mid-infrared absorbance spectra of the Swiss soil spectral library

(n= 4295; with corresponding total carbon (C) measurements determined by dry combustion). The spectra are annotated with the 17 most

influential spectral variables (wavenumbers) in the CUBIST model (average importance rank < 15); these had the highest mean importance

ranking determined by the recursive feature elimination procedure.
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Table 3. Cross-validated mid-IR estimates of 18 soil properties derived from rule-based CUBIST models that were developed using all avail-

able data. The 10-fold cross-validation procedure was grouped by the site and repeated 5 times to achieve many test-train data combinations

and provide realistic model assessment with generalization. #C and #N denote the number of committees and neighbors for CUBIST. C = total

carbon , OC = organic carbon, N = total nitrogen, and CECpot = potential cation exchange capacity. Elemental nutrients were extracted with

1:10 ammonium acetate-EDTA (AAE) solution.

n Range #C #N #Rules RMSE ME SDE R2

Total C [%] 4295 0.1–58.3 100 9 6–26 0.84 ± 0.01 0.03 ± 0.00 0.84 ± 0.01 0.97 ± 0.00

OC [%] 1090 0.0–27.3 100 9 3–14 1.2 ± 0.0 0.1 ± 0.0 1.2 ± 0.0 0.87 ± 0.01

Humus [%] 3664 0–115 100 9 3–12 3 ± 0 0 ± 0 3 ± 0 0.91 ± 0.00

N [%] 4296 −0.00–2.64 100 9 9–21 0.06 ± 0.00 0.00 ± 0.00 0.05 ± 0.00 0.95 ± 0.00

pH 4339 1.0–8.0 100 9 4–18 0.3 ± 0.0 0.0 ± 0.0 0.3 ± 0.0 0.93 ± 0.00

CaCO3 [%] 1565 −0.2–88.5 50 9 1–5 6.6 ± 0.0 0.1 ± 0.0 6.6 ± 0.0 0.79 ± 0.00

Clay [%] 867 0–60 100 9 2–6 5 ± 0 0 ± 0 5 ± 0 0.81 ± 0.00

Silt [%] 868 1–80 100 9 1–14 7 ± 0 −0 ± 0 7 ± 0 0.51 ± 0.01

Sand [%] 867 1–82 100 9 1–6 9 ± 0 −0 ± 0 9 ± 0 0.72 ± 0.00

CECpot [cmol(+)kg−1] 795 0–136 50 9 1–10 7 ± 0 0 ± 0 7 ± 0 0.72 ± 0.01

P (AAE) [mgkg−1] 417 1–1047 50 9 1–8 77 ± 1 −3 ± 1 77 ± 1 0.05 ± 0.00

K (AAE) [mgkg−1] 417 1–1255 100 9 1–12 111 ± 2 −3 ± 1 111 ± 2 0.10 ± 0.01

Ca (AAE) [mgkg−1] 417 1–96250 100 9 6–14 3327 ± 120 −59 ± 56 3326 ± 120 0.97 ± 0.00

Mg (AAE) [mgkg−1] 417 1–3196 100 9 1–13 123 ± 5 4 ± 1 123 ± 5 0.79 ± 0.02

Cu (AAE) [mgkg−1] 417 1–73 50 9 1–7 5 ± 0 −0 ± 0 5 ± 0 0.10 ± 0.01

Zn (AAE) [mgkg−1] 417 1–131 100 9 1–13 9 ± 0 −0 ± 0 9 ± 0 0.06 ± 0.01

Fe (AAE) [mgkg−1] 417 1–1640 50 5 1–7 167 ± 3 1 ± 1 167 ± 3 0.28 ± 0.02

rived from the subset sizes were (starting with best): 1754 cm−1 (mean(rank) = 1.04) , 1786 cm−1 , 1770 cm−1 , 2010 cm−1,

2506 cm−1, 1850 cm−1, 1370 cm−1, 2522 cm−1, 1818 cm−1, 1866 cm−1, 2058 cm−1, 1386 cm−1 (mean(rank) = 12.7; Fig-

ure 4).

3.3 Accuracy of the local transfer models compared to the general model

For the example site 65 COR, the best performance of RS-LOCAL was achieved with 55 samples from the SSL (K), 10 sampling5

events (B) of size K at each iteration, and 10 % reduction (r) at each iteration (Figure 5). This effectively yielded 52 transfer

samples from the SSL that were combined with two site calibration samples previously used to supervise the selection from the

data source, to form a PLS regression calibration model for the estimation of the site validation samples (Figure 5 panel a right).

Compared to the target observations from the site (right part of panels a and b; measured range = 1.19–1.60 % C), the selected
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instances were heterogeneous with regard to their spectral appearance, their input feature space, and their measurements (range

= 0.87–9.77 % C). The selected instances covered a significant proportion of the first two components in the feature space of

the entire SSL.

1) SSL transfer + Site calibration 2) Site validation (65 COR, n = 12)
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Figure 5. Illustration of the site-specific transfer modeling of total carbon (C), using RS-LOCAL for the example site 65 COR of the Swiss

soil monitoring network (NABO). Panel a contains the principal components subspace (PC1 and PC2) of the Savitzky-Golay first derivative

mid-IR spectra, and panel b outlines the corresponding absorbance spectra, which are coloured by the total C content. The left subplots show

the SSL transfer samples (n= 55) that were selected from the soil spectral library (n = 4281; excluding all NABO calibration samples).

This subset was most accurate when predicting the two calibration samples under the mechanisms RS-LOCAL and their optimal tuning

configuration for the site ({K = 50;B = 10;r = 0.1}). The right panels shows the time series data for the validation samples of the NABO

site "65 COR".
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The RMSE on the site validation samples (RMSENi
) at the final subsets varied between 0.001 and 1.073 % C and for all

tuning parameter combinations and sites, and between 0.001 and 0.302 % C for the best subsets per site (Figure A1).

The local approach reduced the error of the rule-based approach on average by factor 4.4 (Figure 6; mean(RMSErs−local) = 0.07 % C;

mean(RMSEcubist) = 0.31 % C). The local transfer was more accurate for the majority of NABO sites (69 out of 71 sites). The

linear dependency between modeled and measured values was higher for the local transfer compared to the general model (535

out of 71 sites). Moreover, RS-LOCAL produced on average 1.3 times less biased estimates of total C per site for 52 out of 69

sites in terms of absolute values (|ME | = 0.01 % C vs. 0.05 % C). The ratio of performance to inter-quartile distance (RPIQ)

confirmed that local learning in the mid-infrared was able to better discriminate developments of total C over time, relative to

its measured distribution. Overall, local learning with two local calibration samples and targeted SSL selections allowed for

better estimations than the generic CUBIST (RPIQ = 3.08 vs. 1.00; RPIQ larger for 66 out of 71 sites).10

3.3.1 Predictive mechanisms behind the local transfer

The samples used for the transfer process (RS-LOCAL data) of the example site COR 65 showed high spectral dissimilarity

along the first 2 PCs, explaining 39.8 % of preprocessed spectral variance (Figure 5). Compared to the entire SSL with total

carbon (C) measurements available (the source domain prior selection; range PC1: −41.4 to 13.0; range PC2: −19.0 to 30.0),

the selected transfer samples of this site occupied a region of major variation in the PC space (range PC1:−15.4 to 11.4; range15

PC2:−10.2 to 10.9). The two local calibration samples and the 12 validation samples on the upper right corner were close to

each other in the PC1-PC2 subspace (Figure 5, panel a, left and right; range PC1: 9.2 to 11.0; range PC2: 4.9 to 7.5). Not

only the absorbance spectra but also the corresponding C reference values were highly variable compared to the exemplary

NABO site (Figure 5, panel b; 0.73–11.78 % C for Krs−local, and 1.19–1.60 % C for the plot of this site). This particular target

monitoring site indicated that RS-LOCAL selected soils from the SSL with a relatively large spectral diversity and a wide range20

of total C.

The instances selected by RS-LOCAL filled a substantial proportion of the SSL’s feature space (Figure 7), confirming the

trend of site 65 COR. We found that RS-LOCAL yielded a quite wide selection of relevant samples from the SSL with reference

to both the total C range and a wide coverage of spectral features expressed with robust multivariate locations. The spectral

estimations of the site validation sets that resulted from RS-LOCAL-based transfers did neither show trends in the mode or25

spread for distributions of C measurements nor in the ones from their spectral distances. The measured distributions of Ki,site

SSL subsets and Ni,site local validation samples for further key soil properties related to the chemical composition (OC, pH,

CECpot, clay and CaCO3) were also markedly different, confirming the local transfer of quite heterogeneous soils (Table 5).

For example, standard deviations of the 0 %, 25 %, 50 %, and 75 % percentile differences between the transfer sets selected

the SSL and the samples from the respective NABO site were on average between 1.8 % and and 6.6 % for measured C and30

OC. Further, the measured clay and CaCO3 contents was markedly different between the RS-LOCAL selection and the local

validation sets (> 6.8 %). This findings correspond with the dissimilar selection compared to the local target samples found in

the PCA space of preprocessed spectra.
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Figure 6. Model assessment of the estimated total carbon (TC) of 71 NABO sites for the general learning with CUBIST (y-axis) vs. local

learning transfer with RS-LOCAL (x-axis). The four panels depict the root-mean-square-error (RMSE), the mean error (ME), the ratio of

performance to interquartile distance (RPIQ) and R2. The 1:1-line emphasizes the difference between the two approaches.
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Figure 7. Analyzing the mechanisms behind the individual adaptive transfer realized with RS-LOCAL. Panel a: The left horizontal bars show

the root mean square error (RMSE) of mid-infrared predictions of the temporal validation set of time series of total Carbon (C) for each

of the 71 NABO sites, which was calculated without the two respective calibration samples. The blue density plots depict the distribution

of the site-specific validation samples, and the brown vertical bars show the measured values of C for the final subsets of SSL used for the

transfer (K). Panel b: The distribution of the robust distances from the PCA center of Savitzky-Golay preprocessed spectra of the entire soil

spectral library compared to the subset of instances involved in the individual tranfer modeling (similarity in site-specific vs. final RS-LOCAL

selection), computed with the Minimum Covariance Determinant (MCD) estimator.
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Table 5. Standard deviations (SD) of the absolute differences of percentiles (P0,P25,P50,P75,P100) of final RS-LOCAL subsets (Ki,site)

and corresponding site validation samples (Ni,site) the across 71 long-term monitoring sites. The aggregated values for six measured soil

properties are shown. C = total Carbon, OC = organic Carbon, CECpot = potential cation exchange capacity.

SD
(
|PX(Ki,site)−PX(Ni,site)|

)
SD

(
|∆P0|

)
SD

(
|∆P25|

)
SD

(
|∆P50|

)
SD

(
|∆P75|

)
SD

(
|∆P100|

)
C [%] 1.8 2.2 2.5 3.1 6.1

OC [%] 2.5 2.3 2.2 2.2 6.6

pH 0.8 0.7 0.5 0.6 0.9

CECpot [cmol(+)kg−1] 9.8 10.3 10.6 10.6 23.1

Clay [%] 11.0 9.7 8.5 6.8 9.0

CaCO3 [%] 7.4 7.9 8.9 9.8 17.8

4 Discussion

4.1 General soil estimation with the Swiss SSL

Many of the chemical properties with distinct links to soil organic matter and the key minerals (e.g., clays and quartz) were

discriminated well with mid-IR CUBIST models (Table 3; Figure 3). Specifically, the models estimated total C, OC, N, pH,

texture, AAE10-Ca, and AAE10-Mg with R2 > 0.7. This suggests that the majority of developed models are useful for appli-5

cations that require soil proxies in order to manage land resources. For example, CECpot. (RMSE = 7.0 cmol(+) kg−1), as well

as pH, have high ecological importance for nutrient availability in ecosystems. In agriculture, both measures are key factors for

fertilization recommendations.

The accuracy of our estimates for the properties that have direct chemical links, through compound-associated absorptions,

were mostly comparable to established continental or country-specific mid-IR SSLs. For example, Clairotte et al. (2016)10

achieved RMSE = 0.2 % for OC using mid-IR and the spectrum-based learner for local predictions, while Sila et al. (2016)

reported RMSE = 0.4 %. The accuracy of our general OC estimates was lower (RMSE = 1.2 %), which we explain by the

relatively large range of measured values and variable mineralogy (Stenberg and Rossel (2010)). We found that total C had

more CUBIST rules per committee than OC (Table 3), indicating total C leverages more chemical constituents and latent

absorptions for its estimation. Further, for total C, which also included inorganic C (mostly CaCO3), we had about four times15

more training data than OC and a higher soil diversity (1079 vs. 472 BDM sites). These differences might in addition explain

why we yielded higher accuracy for total C (RMSE = 0.84 %).

The variable importance assessment of the spectroscopic models revealed five major regions of features with particularly high

predictive influence for total C: 2890 cm−1, 2522 cm−1, 2010 cm−1, 1754 cm−1, and 1370 cm−1 (Figure 4). We attribute the
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two absorption peaks near 2890 cm−1 to C−H stretching vibrations of organic matter (Skjemstad and Dalal, 1987), which were

also relatively important for estimating C in other studies (e.g., Janik and Skjemstad (1995); Viscarra Rossel and McBratney

(1998)). The important variable at 2522 cm−1 is indicative of C=O absorption due to the carbonyl group present in carbonates

(e.g., calcite) (Nguyen et al., 1991; Soriano-Disla et al., 2014). The three important absorptions between 2010 cm−1 and

1786 cm−1 result from three consecutive Si-O-Si (overtone and combination) absorptions, which are indicative of quartz.5

However, the most important absorptions near 1754 cm−1 showed no distinct peak but an edge feature. This is in accordance

with Sila et al. (2016), which identified this region as being most relevant for estimating total C with a general model (random

forest) developed from the SSL of the African Soil Information project. This region is close to the C=O stretching vibration

of the carboxyl group that occurs around 1725 – 1720 cm−1 (Madari et al., 2006), which is further confirmed by the high

importance of these vibrations found by Janik and Skjemstad (1995). The last relatively important region around 1370 cm−110

was also an edge feature with no distinctly visible peak of chemical group assigned, which, however, might be influenced by the

adjacent carboxylate (COO−) or ˘−CH absorptions at 1400 – 1350cm−1 of aliphatic compounds such as humic acids (Madari

et al., 2006; Parikh et al., 2014). In summary, the CUBIST-RFE variable importance analysis enabled us to link characteristic

absorptions of typically prominent functional groups of soil organic and inorganic C compounds, and as well quartz absorptions

as indirect correlative features of predictive relevance, with our general-model based estimates of total C.15

Since the rule-based models we developed can estimate 11 soil properties (Figure 3), the Swiss SSL will be useful for new

soils when new reference measurements for model adaptation are relatively scarce or not available. Thereby, the Swiss SSL

will be cost and time efficient for characterizing soils of similar composition in the near future. The new predictions can further

be augmented with straightforward model interpretation, which allows chemical inference of pedological aspects to provide

means of model applicability. Although the combined BDM and NABO set comprises a large soil variability in Switzerland,20

the diversity of subsoils at depths greater than 20 cm — mostly in terms of the mineral composition — as well as peat and

forest soils are probably not yet represented sufficiently in the SSL. We therefore must continuously update the present SSL

with more and deeper soil horizons in the near future.

4.2 Local transfer from the SSL for soil monitoring at plot-scale

The local estimates of total C that were derived with RS-LOCAL selection were substantially better on average (RMSE = 0.07 % C)25

as those derived using all of the data and general CUBIST models (RMSE = 0.31 % C; Figure 6). The data-driven estimation at

plot-scale further considerably reduced bias and increased R2 compared to the general CUBIST.

Our third goal was to analyze the characteristics of soils that were selected from the SSL and used for establishing locally-

adaptive models tailored to the respective long-term monitoring sites. Surprisingly, the RS-LOCAL subsets selected from the

SSL had rather dissimilar spectra in the robust PCA space (Figure 5; Figure 7); their distances to the center had a wide30

distribution compared to the local samples. The Ksite, i subsets accordingly covered a large proportion of the spectral input

space. The likely dissimilar chemical composition of soils was also reflected in the reference measurements of total C. We

conducted a broader analysis to interpret the soil context of the selected samples with further soil compositional covariates

(OC, pH, CECpot, clay, CaCO3), which also did not resemble the soil characteristics of the local monitoring sites (see Figure
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5). These findings together with the accurate validation results clearly indicate that dissimilarity and diversity in soils can also

provide the means for fitting locally-adaptive models.

Nevertheless, we can yet only speculate about how and why such diverse calibration sets are able to leverage accurate local

calibrations. One hypothesis is that by increasing the range and variability in spectral variables and measurements a model

can become quite stable in the central range of local refererence measurements because a larger range of input variables is5

considered; thereby, the RS-LOCAL subsets that are selected from the SSL and used for PLS regression would stabilize and

reduce the errors of the local samples. We imagine that we leverage a similar mechanism as in simple linear regression, where

narrowing the range of the independent variable (x) in the training samples would decrease the accuracy of intermediate values

of the independent variable. We therefore need to further look into the details of spectral dissimilar learning, for example,

also investigating the relevance of specific spectral features for local spectral transfers. The inherent working principles of10

RS-LOCAL are in contrast to the spectrum-based learner (SBL) or other forms of memory-based learning that utilize similar

samples to infer sample-specific predictions based on existing training data (Lin and Vitter, 1994; Ramirez-Lopez et al., 2013).

Our approach could describe a data-driven phenomenon, which implies that spectra can help to estimate a set of unrelated new

soils. Another possibility is that there is in fact a pedological explanation that could be elucidated with more soil covariates

such as mineralogy.15

Local soil characterization is simpler, quicker and cheaper when a large proportion of properties of new soils are estimated

by spectroscopy. Our results suggest the importance of optimizing the transfer of relevant information present in large SSLs

to minimize the required amount of conventional laboratory analyses of new soils. Soil chemical and physical heterogeneity

can be substantial in large SSLs. Therefore, such data variation can be beneficial for future predictions of properties of soils.

However, learning a single general model over a heterogeneous training set, and obtaining parameter estimates optimized20

with a global measure of goodness of fit can introduce bias and inaccuracy to local (soil) estimation (Hand and Vinciotti,

2003; Ramirez-Lopez et al., 2013; Lobsey et al., 2017). Although the highest estimation accuracy could be achieved with only

soils of the target study area (Stenberg and Rossel, 2010; Guerrero et al., 2016), it is impractical and inefficient to derive a

single spectral prediction model with those. It requires 1) a large volume of reference measurements for a reasonably accurate

multivariate calibration, and 2) it does not utilize already existing soil information.25

Currently, the Swiss long-term soil monitoring uses a spatially representative sampling and then bulking the soils into four

replicates for reference measurements (Desaules et al., 2010; Gubler et al., 2019). When the long-term monitoring would be

augmented with mid-IR spectroscopy, one could make spectral measurements on all subsamples, rather than only on bulked

samples, which would deliver spatially-explicit information and reduce nuisance factors from different sampling conditions. If

not constrained economically (separate drying and sieving of sub-samples), a spectral workflow could thus allow to account30

for small-scale soil variability and reduce bias in measurements to robustly estimate temporal soil changes. For example, there

is currently a relatively large variability in C measurements between the bulked replicate samples at one time point (Gubler

et al., 2019). Our results suggest that unbiased spectral measurements eventually mediate such inconsistencies.

Relatively precise and unbiased geographically-local estimates of soil properties from diverse and large SSLs can be achived

by a handful of data-driven statistical approaches that are currently popular in the soil science community (Viscarra Rossel35
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and Webster, 2012; Ramirez-Lopez et al., 2013; Guerrero et al., 2014; Lobsey et al., 2017; Tsakiridis et al., 2020). Among the

methods, we tested RS-LOCAL Lobsey et al. (2017) in our local soil monitoring scenario. Compared to memory-based learning,

such as SBL (Ramirez-Lopez et al. (2013)), RS-LOCAL does not precondition the choice of useful subsets based on similarity

in the input dimensions, here spectra, when performing the selection of SSL samples. The RS-LOCAL method is applied to

exhaustively sample instances from the SSL without replacement, while it preferably selects those that perform well on the5

local target set, using PLS regression. An advantage of the method is that it can further deal with erroneous spectra as well as

inaccurate and imprecise analytical reference measurements in the SSL, because it filters them as irrelevant instances. Besides

chemometric and classical machine learning approaches, convolutional neural networks are being popularized for modeling

SSLs with large soil variability (e.g., Liu et al. (2018); Padarian et al. (2019a, b); Tsakiridis et al. (2020)). There seems to be a

small performance gain of a multi-output CNN with a similarity-based error correction using neighbors compared to the SBL10

(Tsakiridis et al. (2020); RMSE = 10.96 g kg−1 vs. 11.74 g kg−1 for OC). Despite the current development of interpretation

methods in deep learning, CUBIST and PLSR modeling employed in both in the SBL and RS-LOCAL offer easier interpretation

with comparable accuracy to CNNs.

Transfer learning or local learning introduces a new paradigm to supervised learning: model building is governed by the

intended model application and thus coupled to it (Hand and Vinciotti, 2003). This contrasts general-model application, where15

the inference process is separated from the prediction of new data. Including local samples and their local data characteristics is

necessary in order that a combined search and learning algorithm has a chance to capture predictive mechanisms. At the same

time, the selection process and the partial data dependence within the predictive unit, the site, requires a careful assessment

scheme to prevent a potential selection bias in the assessment of the approach. To account for this, we kept the respective site-

specific local tuning and calibration set — whose hold-out performance directed the iterative search process and the reduction20

of the SSL — at minimum size of two observations at t0 or in addition t1 when only one measurement was available from the

first sampling (see Figure 2).

4.3 Future applications and updates of the SSL

We found that data-driven modeling with selection of spectral dissimilar soils (see Figure 7) is accurate for inducing local

predictions of total C (Figure 6). Hence, there is the need to further improve data-driven selection using RS-LOCAL, i.e., by25

further optimizing the current version of the algorithm. To address this need, we could use combined memory-based or lazy

learning strategies (Stanfill and Waltz, 1986; Lin and Vitter, 1994; Ramirez-Lopez et al., 2013) to optimize with more data-

driven transfer methods (Pan and Yang, 2010) in terms of reducing the time needed to evaluate suitable subsets of the SSL

for a new application. To give an example, some similarity criteria or clustering before doing calibration sampling could be

used as prior information for reducing the SSL size to obtain the final subsets. In principle, the sample reduction could also be30

done with algorithms that can deal with non-linear relationships between spectra and soil properties, such as random forest or

Cubist. Another extension is to further filter spectral features and to do data compression to make the local modeling faster and

even more adaptive to local conditions.
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Our results showed that a transfer of the SSL to individual monitoring sites yielded very low bias and was accurate. This

indicates that mid-IR spectroscopy and SSLs have the potential to give quick and relatively precise soil property estimates for

soil monitoring. Nevertheless, the sites of the NABO long-term-monitoring program has not undergone substantial changes in

OC (Gubler et al., 2019). Up to now, although major changes carbon content and organic composition should yield a spectral

response, spectral changes in OC have mostly been reported along chronosequences (i.e., Awiti et al. (2008)), and only rarely5

for changes within individual plots over time (Deng et al., 2013). Hence, to address this, we propose to further investigate

to what extent mid-IR spectroscopy can detect changes of OC considering small-scale variability and different agronomic

management practices. This could for example be achieved with a study using soils from a long-term field trial, that shows

sufficient temporal changes to be detected with spectroscopy.

The current SSL includes soils that contain between 0.1 and 58.3 % C, and 0.0 and 27.3 % OC (Table 1). Since organic10

soils can have up to 50 % OC, organic soils might be underrepresented in the current Swiss SSL. For this reason, we also tested

the present Swiss SSL with a case study and augmented it to better represent organic soils, using new soils from two peat land

regions in Switzerland (Helfenstein et al., 2020, submitted).

Our results suggest that the present mid-IR SSL has great potential for applications that require soil data in high temporal and

spatial coverage (i.e., for deriving quantitative indicators of soil quality for spatial planning or for soil-related environmental15

research). Mid-infrared spectral modeling was able to estimate many soil properties accurately with rather large variation in

measurements explained (Figure 3), making them suitable for agronomic diagnosis and the assessment of soil functions in

various landscapes. Currently, fine grained soil information of properties and function across agricultural lands in Switzerland

is still scarce and often challenging to harmonize (i.e., measurement methods) because legacy maps are at varying levels of

detail and quality (Keller et al., 2018; Grêt-Regamey et al., 2018). For example, only 13 % (127000 ha) of soil in agricultural20

land has been mapped with soil attributes of sufficient quality to evaluate its potential for crop production (Rehbein et al., 2020).

Soil properties are also insufficiently mapped nationwide from point into space, depth and over time to regionally model soil

processes, or to evaluate site-specific effects of agricultural practices on soils (i.e., soil C dynamics). Therefore, we suggest

to couple infrared spectral estimation with traditional soil surveys and digital soil mapping to speed up the collection of soil

information in Switzerland and elsewhere. This will offer means to test and further extend this SSL, so that only minimal25

amounts of costly and time consuming traditional laboratory analyses will be needed for characterizing and mapping soils’

properties and functions in the next decades.

5 Conclusions

We developed the Swiss mid-IR SSL (n = 4374), using legacy soils and reference measurements of 17 properties, from 71

long-term monitoring sites (national soil monitoring; NABO) and 1094 locations sampled from a regular grid over Switzerland30

(biodiversity monitoring program; BDM). The trained CUBIST models — a general modeling approach using all data — were

able to explain a relatively large proportion (R2 > 0.6) of measured variance for 11 out of 17 properties. Total C, OC, total

N, pH, CECpot, and clay content were estimated with high discrimination capacity (R2 > 0.8). Total C was estimated with a
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cross-validated RMSE = 0.84 % at a measured range of 0.1 – 58.3 %, and OC with RMSE = 1.20 % at a measured range of 0.0 –

27.3 %. Compared to the general CUBIST approach, the local transfer yielded on average 4.4 times more accurate estimates

of total C with the mean RMSE = 0.07 %, which is a substantial improvement of local estimates at plot-scale. Our similarity

analysis revealed that local learning with subset selection based on RS-LOCAL produced a chemically diverse calibration set

rather than narrowing down soil diversity for local modeling, as it is for example the case in memory-based learning. The de-5

veloped national mid-IR SSL offers rapid soil estimates which are key inputs for many applications requiring soil information.

These include for example, digital soil mapping (i.e., spatial planning, assessing soil functions), agronomic diagnostics and

precision farming, soil C accounting and monitoring, as well as ecological and soil research (i.e., biogeochemical modeling,

soil physics). The created mid-IR SSL and both local and general models can be updated with new soil records, which will

allow to cover more soils conditions and will require less and less soil laboratory reference measurements in relation to spectral10

measurements for monitoring, mapping and modeling new soils.

Appendix A: Figures and tables in appendices

A1 Recursive feature elimination for interpreting general soil estimation with CUBIST

The recursive feature elimination (RFE) procedure started with the initial set of S1 = 1665 predictive variables that resulted

after processing the spectra (see section 2.3). The following subset sizes Si representing the number of spectral variables that15

are retained after each ith variable elimination step were defined and evaluated within the RFE procedure:

Si = {209,150,120,105,90,75,60,50,40,35,30,25,20,17,14,12,11,10,9,8,7,6,5,4,3,2,1} (A1)

The first variable elimination step (i = 1) started with tuning a full CUBIST model derived from S1 = 209 possible predictors

using 10-fold cross-validation, then calculating the CUBIST model usage statistics for all predictors, next sorting all predictors

from highest to lowest importance, and lastly dropping S1−S2 = 59 of the least important predictors. For the next iteration (20

i = 2) and the following ones, we repeated this model fitting and variable reduction procedure with S2 = 150 predictors and

the preceding subsets, until the most important predictive variable (S30 = 1) was left at the last iteration (i = 30).

Variable selection is in addition prone to overoptimistic model assessment when resampling subsets (i.e., cross-validation)

are used for two purposes, here model building and selection. This selection bias due to data leakage is well-documented for

so-called wrapper methods of variable selection like RFE (Ambroise and McLachlan, 2002; Kuhn and Johnson, 2013), and25

occurs if these two tasks are not sufficiently separated by using independent data sets for each of them; this becomes especially

more important when many predictive variables in relation to to relatively few observations are used, as it the case for our

spectra.

To provide realistic predictive generalization of the RFE method, the aforementioned iterative selection procedure was done

within an internal cross-validation scheme so that independent data were used to test the performance of the variable selection30

on the outer data segments. These outer cross-validation segments served external validation. To quantify the uncertainty of
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Figure A1. Performance profile of the 27 empirical parameter combinations of RS-LOCAL tested on each of the 71 NABO sites. The errors

(root mean squared error (RMSE)) of the plot-level transfer was assessed with the first two calibration samples for each time series of total

C (see Figure 1 for an illustration of the setup of the local predictive transfer)

the models using the reduced variable sets and specifically variable selection, the outer cross-validation layer that served cross-

validation was repeated five times, leading to five independent estimations per sample.

A2 Tuning profile of the RS-LOCAL parameters for local predictive transfers

The most relevant samples from the SSL at each respective NABO long-term monitoring plot were empirically selected at the

RS-LOCAL configuration that yielded the lowest RMSE on two calibration samples per plot (Figure A1; performance profile).5

Time-series validation on the remaining samples of each site was separated from the optimization in the transfer workflow (see

Figure 2).
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