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Abstract. High-resolution soil maps are urgently needed by land managers and researchers for a variety of applications. Digital

Soil Mapping (DSM) allows to regionalize soil properties by relating them to environmental covariates with the help of an em-

pirical model. In this study, a legacy soil data set was used to train a machine learning algorithm in order to predict the particle

size distribution within the catchment of the Bode river in Saxony-Anhalt (Germany). The ensemble learning method random

forest was used to predict soil texture based on environmental covariates originating from a digital elevation model, land cover5

data and geologic maps. We studied the usefulness of clustering applications in addressing various aspects of the DSM proce-

dure. To improve areal representativity of the legacy soil data in terms of spatial variability, the environmental covariates were

used to cluster the landscape of the study area into spatial units for stratified random sampling. Different sampling strategies

were used to create balanced training data and were evaluated on their ability to improve model performance. Clustering appli-

cations were also involved in feature selection and stratified cross-validation. Under the best performing sampling strategy, the10

resulting models achieved an R2 of 0.29 to 0.50 in topsoils and 0.16 – 0.32 in deeper soil layers. Overall, clustering applica-

tions appear to be a versatile tool to be employed at various steps of the DSM procedure. Beyond their successful application,

further application fields in DSM were identified. One of them is to find adequate means to include expert knowledge.

1 Introduction

In order to sustain soil resources, land managers and researchers are in need of information on the continuous landscape-scale15

distribution of soil properties. One of the important soil properties which governs most physical, chemical, and biological soil

processes is soil texture. Soil texture maps can be used for the assessment of erosion risk, water deficit, or pesticide and nutrient

storage and percolation (Blume et al., 2016).

Conventional soil maps are usually created by a qualitative analysis of the landscape based on a conceptual model which

subdivides the area into spatially assigned units with all soil properties set to uniform values within the units. The categories of20

these units do not necessarily represent soil systematic units and do not allow for the representation of small-scale, continuous

variability. Overall, these soil maps were never meant to be used as input to landscape-scale process models that strive to

simulate gas, matter and water flows. From this demand and an advance in information technology, the domain of Digital Soil

Mapping (DSM) has quickly advanced (Grunwald et al., 2011).
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DSM strives to capture and quantify the influence of the soil forming factors, which are represented by continuous gridded25

geo-information from remote sensing and other sources (Scull et al., 2003). Laboratory and field observations are coupled with

spatial environmental covariates covering the study area and are used to build an empirical model to predict the surveyed target

variable based on the quantitative relationship between soil properties and environmental covariates (McBratney et al., 2003;

Grunwald, 2009; Minasny and McBratney, 2016). The key technological advantages that allowed DSM are the increase in

computational power which facilitates model development, and the widespread availability of satellite systems (Rossiter, 2018).30

The latter are used for accurate georeferencing and as platforms for a variety of sensors which provide spatially continuous

measurements which can be used as environmental covariates.

The algorithms used for DSM applications are of different degrees of complexity, ranging from linear regression (Gobin

et al., 2001; Park and Vlek, 2002; de Carvalho Junior et al., 2014) to artificial neural networks (Park and Vlek, 2002; Zhao

et al., 2009). Most of these studies used continuous covariates based on a digital elevation model (DEM) as predictors, but35

certain applications also included categorical covariates, such as information based on geologic maps (Adhikari et al., 2013;

Vaysse and Lagacherie, 2017). The machine learning algorithm most frequently used in DSM approaches is random forest (RF)

ensemble learning method (Padarian et al., 2019). A key characteristic of RF is its adaptive nature which allows it to explore

complex, nonlinear, and high-dimensional relationships, without a prior understanding of the problem to be solved (Evans

et al., 2011). Compared to decision tree methods, RF is less likely to overfitting and is less sensitive to irrelevant predictors40

and outliers (Heung et al., 2014). Nevertheless, many RF and other modelling applications use feature selection preceding the

model building procedure to detect and exclude predictors with little information content with regards to the response variable.

Feature selection can be achieved though filter methods, which investigate the predictor-response relationship of each predictor

individually without considering the model algorithm, or alternatively by using wrapper methods that evaluate the performance

of the model using a variety of predictor subsets.45

The essential foundation of creating soil maps is the availability of a soil dataset of sufficient size and adequate distribution,

but the soil surveys providing this data are associated with high cost and labour (Grunwald et al., 2011). To forego this

effort, DSM is using legacy soil data whenever available. However, sampling in traditional soil surveys usually did not follow

statistical sampling theory, which can lead to a bias in the data and the models derived from it (Carré et al., 2007; Ließ, 2020).

Because soil forming factors operate on different scales, it is important that the spatial distribution of the data is suitable50

to capture the large- and small-scale variation of soil. In order to construct a model that can effectively predict throughout

the landscape, it is important to have a statistically representative sample of training and validation data that allows for the

generalization from the data to the spatial landscape context (Ließ, 2020). The most common approaches in dealing with this

issue involve (a) creating a more balanced training set by sampling from the entirety of observations, and (b) cost-sensitive

learning frameworks, in which the learning algorithm penalizes the prediction error of underrepresented samples (He and55

Garcia, 2008). Many DSM applications tackle the problem of data imbalance with the subsampling approach (Moran and Bui,

2002; Subburayalu and Slater, 2013; Heung et al., 2016; Sharififar et al., 2019). This can be achieved by clustering the study

area into homogeneous subareas with regards to the covariates, and drawing a certain number of samples from each of these

clusters.
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Another hurdle of modelling applications lies in training and tuning. Model building and performance evaluation can be60

sensitive to the data splitting into training and testing sets. Although resampling techniques like cross-validation (CV) reduce

the influence of data splitting, the model outcome can still be compromised by an uneven distribution of sample characteristics

between training and testing data sets.

Many of these challenges in the DSM procedure are related with identifying structures and similarities in the data. Therefore,

here we want to investigate the usefulness of data clustering applications in tackling some of the above-mentioned challenges65

in DSM. Specifically, we want to examine the benefits of using clustering applications for feature selection, for landscape

stratification to conduct data subsampling, and for stratified cross-validation to build robust models. This will be done on the

basis of training an RF model to predict soil texture within the catchment of the Bode river in Saxony-Anhalt, Germany. The

model is trained and validated using a soil legacy data set containing soil survey data. Environmental covariates related to soil

forming factors are obtained and used as predictors.70

2 Material and methods

2.1 Study area and data

2.1.1 Study Area

The study area of approximately 3,3000 km2 is part of the TERENO network for environmental observations (Zacharias et al.,

2011) and covers the water catchment of the river Bode in central Germany (Fig. 1). It corresponds to three federal German75

states: Saxony-Anhalt, Lower Saxony and Thuringia. The elevation ranges between 1 and 1141 m a.s.l. with the Harz Mountains

in the southwest, the north-eastern Harz foreland and the Magdeburg Börde of the North German Plain covering the rest of the

area. The climate is subarctic to humid continental (Peel, Finlayson and McMahon, 2007), with the mean annual precipitation

ranging from 433 to 1771 mm (Deutscher Wetterdienst, 2019). The geologic material in the area consists mostly of Triassic

limestone and Carboniferous shale and granite (BGR, 2007). Dominating soils according to the German soil classification80

(Finnern and Kühn, 1994) are Braunerde, Parabraunerde, Gley and Pararendzina (BGR, 2012).

2.1.2 Soil legacy data

The soil samples used for model training and validation are from a legacy data set provided by the regional geological survey

of the German federal state Saxony-Anhalt - Landesamt für Geologie und Bergwesen (LAGB, 2018). The data was recorded by

various soil surveyors between 1963 and 2006 and consists of soil profile data from 574 sites. For every site, a soil diagnostic85

survey was conducted. Soil horizon boundaries were recorded according to either the TGL (TGL, 1985), or the KA4 (Finnern

and Kühn, 1994) soil systematic system. For every soil horizon, the particle size distribution was measured in the laboratory

using DIN ISO 11277:2002-08. The fractions of three particle sizes were measured according to the German soil separates

(sand [2 mm to 0.063 mm], silt [0.063 mm to 0.002 mm], and clay [< 0.002 mm]). Sand, silt and clay contents were extracted

from the horizon data at two discrete soil depths (10 and 70 cm) and used as the response variables of the models. The two90
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Figure 1. Study area (a) location in Germany, (b) location of the survey sites, (c) cross-sectional elevation profile (black line in map).

depths were chosen to investigate whether different soil forming factors dominated soil-landscape development in the topsoil

and subsoil, respectively. Because the maximum depth of the surveyed soil profiles is not uniform, a depth of 70 cm was

chosen as a trade-off between maximum soil depth (closeness to parent material), while not compromising the sample size.

One sample is located in a Quaternary sand dune of less than 2 km2 (BGR, 2007) near the town of Blankenburg, and has a sand

content of 96 %. The sample was removed because one sample alone would not be sufficient for model training and validation.95

The soil texture of the soil legacy dataset used for model training and evaluation is shown in Fig. 2 a and b. A cluster analysis

targeting three equally sized subgroups was applied to differentiate clayey samples from silty and sandy samples, please refer

to the section Cluster analysis for details. Figure 2 c and d show the spatial distribution of these three clusters within the study

area.

2.1.3 Model predictors100

Spatially continuous geodata of the study area corresponding to the soil forming factors parent material, topography and land

cover were gathered. They comprise geologic maps of 1:200,000 (GUEK200) and 1:1,000,000 (GUEK1000) map scale (BGR,
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Figure 2. Soil legacy dataset used for model development. Particle size distribution and cluster affiliation of the soil data at (a) 10 and (b) 70

cm depth, respectively. (c) and (d) show the spatial distribution of the three clusters at 10 and 70 cm depth (Geographic coordinate system:

UTM zone 32N)

2007, 2006), a DEM of 10 m resolution (BKG, 2012), and CORINE Land Cover data from 1990, 2000, and 2012 (Büttner

et al., 2004). The local river network was generated from the OpenStreetMap data set by querying rivers and streams with the

Overpass API service (OpenStreetMap contributors, 2018). Some of the geodata were used without further modification, like105
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the land cover data and the elevation from the DEM. Additionally, further predictors were derived from these data and have

been resampled to the 10 m resolution of the DEM.

In the digital vector information underlying the geologic maps, a variety of attributes is contained, including age, material,

and origin. The layer ‘petrography’ was used from both geologic maps, and the layer ‘genesis’ was used from the 1:200,000

map. As the information contained in the petrography layer is descriptive, it was categorized into binary information on the110

occurrence of particle size classes in addition to its inclusion as unmodified layer. Three new predictors (Sandbin, Siltbin and

Claybin) were created for every landscape unit based on the occurrence of the words sand or sandstone, silt or siltstone, and

clay or claystone, respectively.

Several topographic predictors were derived from the DEM, since relief is often considered as the main driver of soil

formation (McBratney et al., 2003; Scull et al., 2003; Behrens et al., 2010). Topographic predictors were calculated with the115

SAGA GIS software Version 6.4.0 (Conrad et al., 2015). The used topographic predictors were selected according to their

appearance in similar digital soil mapping applications (Bulmer et al., 2016; Vaysse and Lagacherie, 2017; Blanco et al., 2018;

Kalambukattu et al., 2018; Zhou et al., 2019) Table 1. Sink removal by Wang and Liu (2006) was applied prior to the calculation

of the hydrological terrain parameters (minimal slope = 0.01). For the calculation of the vertical distance to channel network,

the layer of waterways acquired from OpenStreetMap was used. Indices for terrain convexity and terrain surface texture were120

calculated by using a flat area threshold of 0.08 in order to minimize the impact of inaccuracies and insignificantly small

depressions and mounds (Conrad et al., 2015).

Since soil-forming factors can take effect on different spatial scales, it is advised to take multiscale approaches into account

(Behrens et al., 2010). Accordingly, convergence index (Köthe and Lehmeier, 1996), terrain ruggedness index (Riley, 1999),

convexity and terrain surface texture were calculated with a search radius of 10, 50, 100 and 200 m, in order to express local to125

regional landscape attributes. The annulus based topographic position index (Guisan et al., 1999) was calculated on two scales,

one ranging from 0 to 100 m and from 100 to 200 m.

2.2 Modelling procedure

2.2.1 Random forest

RF models are based on regression trees (RTs), which use selected values of predictor variables to repeatedly split the data in130

a way that maximizes the homogeneity of the subsets regarding the response variable (Kuhn and Johnson, 2013). Instead of

building a single tree as it is the case in RTs, RF uses the ensemble method bagging which constructs several trees based on

bootstrapped samples of the data. The resulting averaged prediction has a lower variance and thus increased model stability

compared with RTs. Although randomness is added to the procedure through resampling of the data, the underlying predictor-

response relationship is not altered by bagging. As a consequence, many of the trees share similar structures. This correlation135

between trees can lead to a decrease in predictive performance of the ensemble (Breiman, 2001). To introduce diversity to the

ensemble and decorrelate the trees, RF is extended by a random feature selection. Instead of using the entire set of predictors

to build a tree, a random subset of the predictors is used for each tree. This reduction of predictors leads to a trade-off between
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Table 1. Topographic predictors derived from the digital elevation model. Indices that have been calculated with varying window size are

denoted by multiscale.

Domain Predictor Reference

Morphometry Slope Zevenbergen and Thorne (1987)

Convergence index (multiscale) Köthe and Lehmeier (1996)

Mass balance index Friedrich (1996)

Slope height Böhner and Selige (2006)

Normalized height Böhner and Selige (2006)

Standardized height Böhner and Selige (2006)

Valley depth Böhner and Selige (2006)

Mid-slope position Böhner and Selige (2006)

Terrain ruggedness index (multiscale) Riley (1999)

Convexity (multiscale) Conrad et al. (2015)

Terrain surface texture (multiscale) Conrad et al. (2015)

Multi-Scale Topographic position index (multiscale) Guisan et al. (1999)

Lighting Positive openness Yokoyama et al. (2002)

Negative openness Yokoyama et al. (2002)

Diffuse insolation Böhner and Antonić (2009)

Direct insolation Böhner and Antonić (2009)

Hydrology Terrain classification index for lowlands Bock et al. (2007)

LS-Factor Böhner and Selige (2006)

Stream power index Moore et al. (1991)

Topographic wetness index Beven and Kirkby (1979)

Upslope contributing catchment area Marchi and Dalla Fontana (2005)

Channels Vertical distance to channel network Conrad et al. (2015)

Location Latitude

Longitude

the strength of individual trees (high number of predictors) and more diversity between trees (low number of predictors). The

respective tuning parameter, which controls this trade-off, is mtry, the size of the predictor subset. Further parameters include140

’ntree’, the number of trees and ’nodesize’, the minimum number of samples to be kept in a terminal node of the trees (Were

et al., 2015).

For the interpretation of the RF models, the model function calculates a variable importance measure. This is done by

building models which use permutations of a predictor variable. The accuracy of the permuted model is then compared to a

model built from the original data. The returned value indicates the decrease on prediction accuracy after permutation.145

2.2.2 Cluster analysis

A cluster analysis (CA) was conducted for several purposes:

– CA-1: feature selection
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– CA-2: landscape stratification into subareas for subsampling

– CA-3: data stratification in CV approach150

in CA-1, k-means clustering was used to split the soil texture data of both depth levels into three clusters to distinguish between

sandy, silty and clayey soils (Fig. 2). The clustering was performed with the kmeans function using 40 initializations for each

of the 30 iterations on the center-scaled sand, silt, and clay contents. The resulting clusters’ predictor ranges at the assigned

soil survey sites were retrieved. Their respective difference formed the basis for feature selection in terms of a filter method

(please refer to chapter 2.2.3).155

CA-2 was applied for landscape stratification into homogeneous subareas on behalf of the gridded continuous multivariate

predictor data. This data, however, has certain traits which provide a challenge to cluster analysis. These traits are the high

dimensionality of the data, correlation between predictor variables, and its consistence of numerical as well as categorical

predictors. These issues were tackled by applying a Factor Analysis of Mixed Data (FAMD) from the FactoMineR package

(Lê et al., 2008) on the data set. Because of the high resource demand of conducting an FAMD on the whole data set (33160

million gridcells), the function was applied on a random data subset of 100,000 samples first, and then the resulting FAMD

model was applied to the whole data set. In order to allow for the application of the function for FAMD transformation trained

on the data subset to the complete dataset, the minimum and maximum values of all numerical predictors and all classes of

the categorical predictors were additionally included. The FAMD returns n factors, with the percentage of explained variance

decreasing with every factor. A reliable method to determine the number of dimensions to retain from the FAMD is the ‘elbow’165

approach (Linting et al., 2007). The contribution of each retained dimension to the percentage of explained variance decreases

strongly with the first dimensions, until it reaches a nearly constant value. The ‘elbow’ approach suggests using all dimensions

before the stagnation of the explained variance. The resulting FAMD transformed data was clustered using k-means in CA-2.

The number of clusters was determined by the use of cluster validation indices calculated with the NbClust function from

the package NbClust (Charrad et al., 2014). The function calculates 27 clustering indices for each clustering solution in a given170

range of number of clusters. All of the clustering indices cast their vote for their favoured number of clusters. Because of the

high computational cost, the function was repeatedly applied (2,000 times) on random data subsets of size 2,000 of the data

resulting from the FAMD. Preliminary test runs have shown that a sample of size 2,000 produced stable clustering results. A

number of 2 to 17 clusters was tested.

CA-3 was conducted in order to perform a stratified CV. Stratification was conducted on behalf of the response variable. In a175

first step, the legacy dataset including sand, silt and clay content was clustered into five equally sized subgroups. From each of

the subgroups, the profiles were then in a 2nd step equally assigned to the k folds in order to obtain a similar data distribution

in each of the k folds. The clustering was achieved by using a same-size k-means algorithm (Schubert and Zimek, 2019) to

divide the profiles of both depth levels into five clusters based on the soil texture.
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2.2.3 Feature selection180

The RF algorithm is relatively robust against uninformative predictors by only selecting the strongest predictors as splitting

criterion (Hamza and Larocque, 2005; Kuhn and Johnson, 2013). And even though the reduction of the predictor set may

not necessarily improve model performance, it can still benefit model interpretability and reduce computational time (Chan-

drashekar and Sahin, 2014). However, the feature selection based on CA-1 was not only conducted to remove uninformative

predictors, but also to study the predictor-response relation.185

The clustered profiles were paired with the corresponding predictor values. The Kruskal–Wallis test was used to compare

the distributions of predictor values between the three clusters. The resulting p-values were adjusted for multiple comparison

by controlling the false discovery rate (Benjamini and Yekutieli, 2001). All predictors with significant differences in means

between the three clusters (α = 0.05) were used as predictors for the RF models of the respective depth levels. To gain further

insight into the predictor-response relationship, the Dunn’s test was performed on these predictors as a post hoc analysis. This190

allows to determine which clusters show significant differences concerning the particular predictors.

Preliminary results have shown, that categorical predictors and the usage of the Cartesian coordinate space can lead to

artefacts in the maps of predicted soil texture. Two more models were built in addition to the model using the full predictor set

(full) in order to tackle this problem. One model is leaving out the petrography and genesis layers as predictors (no geo) and

the other is leaving out petrography, genesis, longitude and latitude (no geo+coords).195

2.2.4 Strategies for unbalanced data

Statistical sampling from the soil data set was used in order to create training and validation data better balanced in regard

to landscape characteristics corresponding to the interaction of the soil forming factors. Please compare Ließ (2015, 2020)

concerning a detailed discussion of this aspect. This was done by applying four subsampling approaches to the model training

data based on the landscape clusters obtained from of CA-2. Performance of the models trained on the thereby adapted data was200

compared to that of models build with the legacy dataset in its original distribution. Subsampling was conducted to match the

spatial coverage of the landscape clusters (area-weighted method = AW), or in order to provide a sample that represents each

landscape cluster with the same amount of data (equal number approach = EN) (similar to Heung et al. 2016). The subsampled

dataset is obtained either by oversampling or undersampling (He and Garcia, 2008). Oversampling obtains the dataset by

including all samples from all clusters and then replicating certain randomly selected samples until the desired sample size for205

each cluster is reached. Undersampling includes all samples from the minority cluster, and then randomly draws samples from

all other clusters, until the desired sample size is obtained. The four applied sampling approaches are displayed in Fig. 3).

2.2.5 Model training, tuning, and evaluation

Model tuning and evaluation for the RF models was conducted by a nested approach of repeated stratified 5-fold CV (5

repetitions). The detailed procedure is shown in Fig. 4 (a). As a performance measure, the root-mean-square error (RMSE) was210

derived. In order to make the model performance values comparable for all models, the respective test set was kept the same,
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Undersampling
Loss of information
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(368/241)
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(566/370)

EN undersampling
(350/304)

Figure 3. Applied sampling approaches. Parentheses show the number of samples in the training set (10 cm and 70 cm depth respectively).

Abbreviations of the sampling methods as used in the results are shown in italic.

while data subsampling was only applied to the respective training sets (Fig. 4 b). Furthermore, response data was centred and

scaled (SD = 1) to allow for the comparability of model performance between models targeting sand, silt, and clay content.

The k folds of the nested approach were derived by stratified sampling regarding the response data. In order to stratify the

dataset regarding all three response variables at once, response strata were formed by applying CA-3. Tuning takes place in the215

inner CV, where the model is evaluated for mtry parameter values within the range of 5 to 25, while ntree was set to 1000 and

nodesize to 5. Overall, the model building procedure was applied six times in order to create individual RF models for each of

the three particle sizes for the two soil depths.

For the data analysis and modelling, the R version 3.5.1 was used (R Core Team, 2018). All computation was performed on

a machine running Windows Server 2016 Standard with four Intel Xeon Processor E7-8867 v4 and 6.00 TB of memory.220

3 Results and discussion

3.1 Exploratory data analysis

3.1.1 Feature selection

The soil profiles used for model building were split into three groups based on their soil texture with CA-1. A clayey cluster

was, thereby, distinguished from a silty and a sandy cluster. Primarily, this was done in order to understand which predictors225

are best in separating these three groups and therefore, are expected to have a high explanatory power in the models to predict

spatial soil texture distribution within the investigation area. The soil texture of the profiles at 10 and 70 cm depth and their

cluster affiliation is shown in Fig. 2 (a) and (b). The spatial distribution of the clusters is shown in Fig. 2 (c) and (d). The

distribution of cluster affiliation within the study area shows that most of the profiles in the lowlands belong to the silty cluster.

This is typical for the soils of this area, which are influenced by loess deposits.230
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Figure 4. Nested k-fold CV approach for model tuning and evaluation. General approach without data subsampling (a). Incorporation of the

subsampling strategies in the CV approach (b).

The predictor data at each sampling site was assigned to the soil profile data. The data distribution of the predictors between

the three soil texture clusters was then compared by applying a Kruskal-Wallis test. Out of 39 numeric predictors, 27 predic-

tors showed a significant difference of the mean at either 10 or 70 cm depth (Table 2). The predictors displaying significant

differences between any two of the soil texture clusters were included in the random forest models. The trends in differences

between the clusters are predominantly in agreement across the two depth levels (Fig. 5). For many of the predictor values with235

significant differences in the means, it was the silty cluster that was the most distinguishable from the other two clusters. From

the 54 statistical tests (27 significant predictors for two soil depth), 51 showed differences between the sandy and the silty

clusters and 28 showed differences between the clayey and the silty clusters, while only 19 tests showed differences between

the sandy and the clayey clusters.

Since the clustering application used here for feature selection is a filter method, it is unable to take interactions between240

different predictors into account. This could compromise the efficacy of the feature selection if there are predictor-response

relationships which are only revealed in combination with other predictors. The advantage of the clustering method is to create

meaningful categories in the data and investigate their relationship with the predictor values, which can not be provided by a

wrapper method.
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Figure 5. Data distribution of selected predictors per soil texture cluster and soil depth. Letters above bosxplots denote significance groups

within one depth level. The Y-axis are cropped to highlight the interquartile range.

3.1.2 Landscape stratification for subsampling approaches245

CA-2 was conducted in order to subsample from the legacy soil data set and create a balanced model training set. The FAMD

data transformation showed an increased drop of explained variance with the sixth factor, resulting in the five first factors being

used as input for CA-2. The NbClust application resulted in 29 % of the votes being appointed to finding two clusters in the

data, while the second-largest vote was 13 % in favour of three clusters. Hence, the environmental data of the study area was

divided into two clusters using k-means. The resulting clusters broadly divided the study area into the mountainous region and250

the lowlands (compare Fig. 1). This way of stratifying the landscape is an apparent choice, since the relatively low number
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Table 2. Predictors included in the random forest model for 10 and 70 cm depth, denoted by ‘*’.

Predictor
Depth

Predictor
Depth

10 cm 70 cm 10 cm 70 cm

Aspect Petrography (GUEK1000) *

Contributing area * Petrography (GUEK200) * *

Convergence index (10 m radius) Positive openness * *

Convergence index (100 m radius) * Sandbin (GUEK200) *

Convergence index (200 m radius) Siltbin (GUEK200) * *

Convergence index (500 m radius) * Claybin (GUEK200) *

Convexity (10 m radius) * Slope * *

Convexity (100 m radius) * * Slope height

Convexity (200 m radius) * * Standardized height * *

Convexity (50 m radius) * Stream power index

Diffuse insolation * * Terrain classification index * *

Direct insolation Terrain surface texture (10 m radius)

Elevation * * Terrain surface texture (100 m radius) * *

Genesis (GUEK 1000) * * Terrain surface texture (200 m radius) * *

Land cover 1990 * * Terrain surface texture (50 m radius) *

Land cover 2000 * * Topographic position index (0-100 m) *

Land cover 2018 * * Topographic position index (100-200 m) *

Latitude * * Topographic ruggedness index (10 m radius) * *

Longitude * * Topographic ruggedness index (100 m radius) * *

LS-Factor * * Topographic ruggedness index (200 m radius) * *

Mass Balance Index Topographic ruggedness index (50 m radius) * *

Mid-slope position Topographic wetness index * *

Negative openness * * Valley depth

Normalized height Vertical distance to channel network

of training samples suggests taking a small number of clusters to have sufficient samples per cluster. Further, the heuristic

approach of dividing the landscape, which is often superior to automated classification (MacMillan et al., 2004), also suggests

the separation between the high- and the lowlands due to the relatively sharp divide.

3.2 Model development255

3.2.1 Model performance

The predictive performance of the RF models was investigated under different subsampling approaches, a range of mtry tuning

parameter values and three predictor sets. Since the RMSE values for model evaluation were calculated for the modeled

response variables scaled to an SD of one to provide a comparable metric, the RMSE values can be interpreted as zero being

perfect predictability, and values over one meaning a worse performance than using the observed mean as the predicted value.260
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The RMSE values of all subsampling approaches for the full predictor set is shown in Fig. 6. The median RMSE is between 0.67

and 0.94, with the silt and sand models clearly outperforming the clay models. For all particle size classes, model performance

is better for 10 cm compared to 70 cm depth, with an average difference in the RMSE of 0.08 for clay and silt, and 0.12 for

sand. This decrease in performance may be due to a decrease in sample size with soil depth. Studies where sample size has

been consistent along profile depth have shown that the predictive performance does not necessarily decrease with soil depth265

(Adhikari et al., 2013; Vaysse and Lagacherie, 2015).
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Figure 6. Model performance as boxplots of RMSE of the 5 repetitions for three particle size contents for (a) and (d) clay, (b) and (e) silt

and (c) and (f) sand and five subsampling methods. The models (a), (b) and (c) are for 10 cm depth while (d), (e) and (f) are 70 cm depth.

The subsampling method with the lowest median RMSE is highlighted. The black horizontal lines stand for an RMSE of one, which equals

the RMSE of predicting the observed mean.

There is no consistently better performing subsampling method. However, both undersampling approaches seem to have

higher median RMSE values than the two oversampling methods. It seems likely that the decline in model performance was
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due to the reduction of the sample size. Using the RMSE of the whole study area as the selection criteria for the subsampling

approach also has its limitations because it does not provide information on the spatial distribution of the prediction accuracy.270

Adding more weight to samples of a certain cluster can lead to increased accuracy in the respective area, while this gain is

not necessarily covered by the validation data. The role of subsampling on the distribution of prediction accuracy is exemplar-

ily displayed in Fig. 7. Although there are strong differences of the overall accuracy between clusters, neither of them profit

explicitly from a certain subsampling method. The right choice of the subsampling method most likely depends on the under-

lying data, since other DSM studies have not revealed a distinctly better performing method. While the EN approach increased275

model accuracy for the minority class in Heung et al. (2014), Schmidt et al. (2008) found the contrary effect in their study and

Moran and Bui (2002) found AW to be the best performing model. Sharififar et al. (2019) used a combination of over- and

undersampling to create a balanced data set which significantly improved model performance, while over- and undersampling

decreased model performance in Taghizadeh-Mehrjardi et al. (2019).
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Figure 7. Landscape cluster specific model performance of the silt model at 10 cm depth with (a) showing the R2 of the samples from the

lowlands cluster and (b) the samples from the mountainous cluster.

In order to prevent the occurrence of artefacts, predictors have been retained from model building. This led to a decrease in280

model performance across all particle sizes and depth layers (Fig. 8). The no geo+coords models showed an average increase

of scaled RMSE of 3, 7 and 12 % for sand silt and clay at 10 cm depth when compared with the full model.
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Figure 8. Model performance as RMSE for three particle size contents for (a) and (d) clay, (b) and (e) silt and (c) and (f) sand. The models

(a), (b) and (c) are for 10 cm depth while (d), (e) and (f) are 70 cm depth. Models were built using either all predictors (full), leaving out the

geologic predictors (no geo) or leaving out geology, latitude and longitude (no geo+coords). The black horizontal lines stand for an RMSE

of one, which equals the RMSE of predicting the observed mean.

TheR2 values for model performance of the full and the no geo+coords models are shown in Table 3. Model performance of

the silt and sand models at 10 cm depth are comparable with the results of Vaysse and Lagacherie (2015) and de Carvalho Junior

et al. (2014), while other publications have shown that R2 values above 0.5 are achievable (Moore et al., 1993; Gobin et al.,285

2001; Adhikari et al., 2013). Moore et al. (1993) argues that R2 values above 0.7 are not to be expected due to the underlying

random variability of soil and limitations in the accuracy of measurements. Differences in model performance are most likely

to be related to the size and the heterogeneity of the study area and the quality of soil samples. This is illustrated well in Fig. 7

which demonstrates the variability of predictive performance across landscape types.

3.2.2 Model specification290

The mtry values for the full predictor model are shown in Fig. 9. There is no clear trend of optimal mtry value with model

performance, and many models have a relatively large range of selected mtry values. It is worthwhile to mention, though, that

for certain models the selected mtry value is right at the lower boundary of the tested mtry parameter range, which is the case
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Table 3. Model performance in R2 for three texture classes on two depth levels and for two predictor subsets.

Particle size

Predictor set Depth Clay Silt Sand

full
10 cm 0.29 0.48 0.50

70 cm 0.16 0.36 0.32

no geo+coords
10 cm 0.25 0.40 0.37

70 cm 0.11 0.30 0.27

for the silt model at 10 cm. Accordingly, an extension of this lower boundary and the corresponding lower model complexity

would likely have resulted in even better model performance.295

Predictor importance is shown in Fig. 10 a and b. The better model performance at 10 cm depth is reflected in the overall

higher importance values. Altogether, petrography has the highest explanatory power. It should be noted, though, that GUEK

200 petrography was included for both depths, GUEK 1000 petrography was only included in the model to predict soil texture

at 10 cm depth (Table 2). There are few remaining predictors with notably increased predictive ability. These are latitude for

silt and sand, positive openness and the topographic ruggedness index (100 and 200 m radius) for sand and terrain surface300

texture (200 m radius) for clay.

Omitting the geologic information and coordinates leads to an overall increase of importance values for the remaining

predictors (Fig. 10 c). The importance value of elevation increased strongly. The same applies for many other topographical

predictors, although in a less pronounced manner (positive and negative openness, diffuse insulation, terrain surface texture

(200 m radius)).305

3.3 Spatial prediction

Model output was generated by taking the median of all 25 models (CV procedure with 5 folds and 5 repetitions). The predicted,

spatially continuous values of the sand, silt and clay content at 10 cm depth corresponding to the models with the best median

predictive performance (Fig. 6) are shown in Fig. 11. It needs to be noted that the maps of predicted values are showing the

results of independent models for different soil texture classes, and the results don’t add up to 100 %. The method to scale the310

data to 100 % should be selected with the purpose of the specific data utilization in mind. Different approaches could include

leaving one of the texture classes out and summing up to 100 %, weighted scaling by texture class or weighted scaling by the

regional accuracy of the texture classes.

In the predicted spatial distribution of the sand and silt content, there is a strong regional difference between the lowlands

and the mountainous region in the southwest. Sand content is generally increasing with elevation, and is very high in riparian315

regions and valley bottoms. High silt contents can be expected in the lowlands outside riparian regions. The spatial variability

of all three response variables is dominated by categorical predictor traits (petrography) that draw clear boundaries and even

transfer artefacts present in the geological map products. However, it is more evident in the sand and clay model output. A
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Figure 9. Results of the model tuning procedure to find the best performing mtry values (mtryselect) under different subsampling approaches.

(a), (b) and (c) show the results of the clay, silt and sand models at 10 cm depth, while (d), (e) and (f) show the same texture classes at 70 cm

depth. Grey lines correspond to the tested mtry parameter range

limitation of the geologic maps, which is the lack of unity in the naming of geologic units between different geographic regions,

but also at federal state boundaries for the GUEK200 is also reproduced in the results. While the GUEK 1000 was generated by320

the German Federal Institute for Geosciences and Natural Resources (BGR), the GUEK 200 is a joint product between BGR

and the regional geological survey institutions. Although the unit boundaries align across the map tiles, their description may

differ because GUEK200 harmonization at national level is not yet completed. This leads to an abrupt change of predicted sand

and silt values in an otherwise homogeneous region (Fig. 11 areal zoom).

These model outputs clearly show the limitation in predictive capacity due to the limitations in the available data to represent325

the parent material. The prediction of soil texture is predominantly based on parent material, which allows to distinguish
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Figure 10. Mean importance of the 20 strongest predictors of the model using the full predictor set (a) and (b) and the model leaving out

the geologic maps and coordinates as predictors (c) and (d). (a) and (c) show importance values for the models at 10 cm depth and (b) and

(d) at 70 cm. Predictors are sorted by decreasing mean importance value. The importance metric is calculated as the decrease in prediction

accuracy after the permutation of the predictor values.

the observed variability of soil texture between the lowlands and the mountains. Once parent material and coordinates are

removed, the models increase the importance of those topographic predictors which can be used to distinguish between these

broad geographic regions (elevation, positive openness, diffuse insulation). Pedogenetic processes related to topography like

the lateral redistribution of particles along slopes can only play a minor role, as the low importance values of predictors based330

on immediate pixel neighbourhood have low importance values. However, other DSM approaches have successfully captured

relief based variability of soil texture on the scale of hill slopes using only topographical predictors (Moore et al., 1991;

De Bruin and Stein, 1998; McBratney et al., 2000).

The inclusion of expert knowledge such as geological map products in machine learning models for the spatial continuous

soil prediction at high resolution still requires further investigation. While the geologic maps have strong predictive power,335

they consist of too many geologic units. This leads to some units not having a sufficient number of soil samples to be able to

generalize for that unit. However, our approach of reducing the number of geologic units by creating the particle size class bins

19



Sand content
at 10 cm [%]

30

25

20

15

10

5

Sand content
at 10 cm [%]

75

65

60

55

70

Silt content
at 10 cm [%]

75

65

60

55

70

16

24

22

18

20

Clay content
at 10 cm [%]

Figure 11. Median of all predictions for sand, silt and clay content at 10 cm depth. The maps show the output of the models built with the

predictor set specified in Table 2. The scale bar shows distance in meters.

was not able to produce useful predictors. One approach could be to use expert knowledge to merge geologic units that have

parent material with similar soil texture classes. This merging should happen under the restriction that the resulting units should

be as homogeneous as possible while providing enough samples for training and validation. Solving the issue of abrupt change340

in predicted values across geologic units could possibly be addressed by a fuzzy approach. Additionally, knowledge on the

level of certainty of boundary demarcation between geologic units could be used to create fuzzy geologic maps as predictors.

In order to tackle the issue of artefacts present in the model output, two more models with a reduced set of predictors were

built. The models using all predictors as specified in Table 2 (full) were compared to models leaving out the geologic predictors

(no geo) or leaving out geology, latitude and longitude (no geo+coords). Although the dominance of the categorical predictors345
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on the model output was lifted in the ‘no geo’ model version, an artefact due to the predictors longitude and latitude emerged.

This new phenomenon appeared as a horizontal or vertical abrupt change in the predicted values across major parts of the

study area (not shown). This aspect has already been observed in other DSM applications employing recursive partitioning

algorithms (Behrens et al., 2018; Hengl et al., 2018; Nussbaum et al., 2018). Møller et al. (2019) addressed this problem with

oblique geographic coordinates and provide an overview on ready applied approaches. Accordingly, we tested the usage of350

three euclidean distance fields instead of Cartesian coordinates. However, the use of this alternative coordinate system led to

the emergence of radial artefacts (results not shown).

The additional omission of latitude and longitude from the predictors leads to smoother maps, where only minor abrupt

boundaries exist due to land cover, which is also a categorical predictor (Fig. 12). However, this is aspect has to be differentiated

from that of the geologic predictors. CORINE land cover classes were classified in remote sensing data products. Hence,355

spatial class boundaries do not reflect expert knowledge. Abrupt changes might in fact be due to land cover changes. The large

agricultural fields of the lowlands are heavily impacted by wind erosion of the loess material during bare soil conditions. These

‘no geo+coords’ predictions are reproducing the spatial variability of the ‘full’ model, even on relatively small scales. Strong

deviations between the two model versions are in the eastern Harz region and in the riparian zones of the southern lowlands.

The difference in sand and silt content between the Harz and the lowlands were most likely derived from the predictors360

elevation and positive openness. These predictors are strongly correlated (-0.95), have high importance values in both predictor

sets, and show strong significant differences between the texture clusters (Fig. 5). The other predictors of Fig. 5 have lower

values of absolute correlation with elevation (0.27 – 0.37) while still having a significant effect on the texture clusters. These

predictors were more likely related to the variability within the two large-scale regions. The output of the ‘no geo+coords’

models show much more variability on smaller scales than the ‘full’ models.365

4 Conclusions

Our DSM approach has shown that RF is an appropriate method to model the variability of soil texture in the study area. The

predictive performance of the silt and sand models is within the range of similar studies, while the prediction of the clay content

did not seem feasible.

Clustering applications appear to be a versatile tool to be employed at various steps of the DSM procedure. Using a clustering370

application for feature selection offers additional insight into the predictor-response relationship, while clustering to conduct

a stratified CV allowed for a robust model evaluation. Overall, stratified k-fold CV is common in DSM. To use the described

cluster application allows for a simultaneous stratification regarding multiple response variables. However, to truly evaluate the

power of this filter method it would have to be compared with other feature selection methods which would have exceeded the

workload for this study. We intend to do so in future studies.375

The biggest area of application for data clustering in DSM appears to be in landscape stratification to divide the landscape

into homogeneous subareas. Beyond their usage for stratified sampling and subsampling, the resulting stratification of the study

area has further potential, like the use of landscape strata as predictors, the construction of individual models per landscape
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Figure 12. Median of all predictions for sand, silt and clay content at 10 cm depth. The maps show the output of the models built without

using the geologic maps, longitude and latitude as predictors. The scale bar shows distance in meters.

stratum, or to interpret the predictor-response relationship in different landscapes. A remaining difficulty in clustering applica-

tions is the determination of the number of clusters. Here, the combinations of clustering indices and heuristic methods have380

proven to be useful tools.

Finally, clustering applications could also provide solutions to the problems encountered during the model building proce-

dure, like the replacement of the Cartesian coordinates, the inclusion of expert knowledge, pooling geologic units and blurring

the transitions between geologic units.
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