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Abstract. High resolution
:::::::::::::
High-resolution soil maps are urgently needed by land managers and researchers for a variety of

applications. Digital Soil Mapping (DSM) allows to regionalize soil properties by relating them to environmental covariates

with the help of an empirical model. In this study, a legacy soil data set was used to train a machine learning algorithm in order

to predict the particle size distribution within the catchment of the Bode river in Saxony-Anhalt (Germany). The ensemble

learning method random forest was used to predict soil texture based on environmental covariates originating from a digital5

elevation model, land cover data and geologic maps. We studied the usefulness of clustering applications in addressing various

aspects of the DSM procedure. To investigate the role of the imbalanced data problem in the learning process
::::::
improve

:::::
areal

::::::::::::
representativity

::
of
:::
the

::::::
legacy

:::
soil

::::
data

::
in

:::::
terms

::
of

::::::
spatial

::::::::
variability, the environmental variables

::::::::
covariates were used to cluster

the landscape of the study area
:::
into

::::::
spatial

:::::
units

:::
for

:::::::
stratified

:::::::
random

::::::::
sampling. Different sampling strategies were used to

create balanced training data and were evaluated on their ability to improve model performance. Clustering applications were10

also involved in feature selection and stratified cross-validation.
:::::
Under

:::
the

::::
best

::::::::::
performing

::::::::
sampling

:::::::
strategy,

:::
the

::::::::
resulting

::::::
models

:::::::
achieved

:::
an

:::
R2

::
of

::::
0.29

::
to

::::
0.50

::
in

:::::::
topsoils

:::
and

::::
0.16

:
–
::::
0.32

::
in
::::::
deeper

::::
soil

:::::
layers.

:
Overall, clustering applications appear

to be a versatile tool to be employed at various steps of the DSM procedure. Beyond their successful application, further

application fields in DSM were identified. One of them is to find adequate means to include expert knowledge.

1 Introduction15

In order to sustain soil resources, land managers and researchers are in need of information on the continuous landscape-scale

distribution of soil properties. One of the important soil properties which governs most physical, chemical, and biological soil

processes is soil texture. Soil texture maps can be used for the assessment of erosion risk, water deficit, or pesticide and nutrient

storage and percolation
::::::::::::::::
(Blume et al., 2016).

Conventional soil maps are usually created by a qualitative analysis of the landscape based on a conceptual model which20

subdivides the area into spatially assigned units with all soil properties set to uniform values within the units. The categories of

these units do not necessarily represent soil systematic units and do not allow for the representation of small-scale, continuous

variability. Overall, these soil maps were never meant to be used as input to landscape-scale process models that strive to
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simulate gas, matter and water flows. From this demand and an advance in information technology, the domain of Digital Soil

Mapping (DSM) has quickly advanced (Grunwald et al., 2011).25

DSM strives to capture and quantify the influence of the soil forming factors, which are represented by continuous gridded

geo-information from remote sensing and other sources (Scull et al., 2003). Laboratory and field observations are coupled

with spatial environmental covariates covering the study area and are used to build an empirical model to predict the surveyed

response
:::::
target variable based on the quantitative relationship between soil properties and environmental covariates (McBratney

et al., 2003; Grunwald, 2009; Minasny and McBratney, 2016). The key technological advantages that allowed DSM are the30

increase in computational power which facilitates model development, and the widespread availability of satellite systems

(Rossiter, 2018). The latter are used for accurate georeferencing and as platforms for a variety of sensors which provide

spatially continuous measurements which can be used as environmental covariates.

The algorithms used for DSM applications are of different degrees of complexityranging from regression analysis ,
:::::::
ranging

::::
from

:::::
linear

:::::::::
regression (Gobin et al., 2001; Park and Vlek, 2002; de Carvalho Junior et al., 2014) to artificial neural networks35

(Park and Vlek, 2002; Zhao et al., 2009). Most of these studies used continuous predictors
::::::::
covariates based on a digital elevation

model (DEM)
::
as

::::::::
predictors, but certain applications also included categorical predictors

::::::::
covariates, such as information based

on geologic maps (Adhikari et al., 2013; Vaysse and Lagacherie, 2017). The machine learning algorithm most frequently used in

DSM approaches is random forest (RF) ensemble learning method (e. g. Blanco et al. (2018); Padarian et al. (2019); Møller et al. (2019)

).
:::::::::::::::::
(Padarian et al., 2019)

:
.
:
A key characteristic of RF is its adaptive nature which allows it to explore complex, nonlinear, and40

high-dimensional relationships, without a prior understanding of the problem to be solved (Evans et al., 2011). Compared to

parametric
:::::::
decision

:::
tree

:
methods, RF is not prone to overfitting , even in the presence of some irrelevant parameters

:::
less

:::::
likely

::
to

::::::::
overfitting

::::
and

:
is
::::
less

:::::::
sensitive

::
to

::::::::
irrelevant

:::::::::
predictors and outliers (Heung et al., 2014). Nevertheless, many RF applications

and most
:::
and other modelling applications use feature selection preceding the model building procedure

:
to
::::::
detect

:::
and

:::::::
exclude

::::::::
predictors

::::
with

::::
little

::::::::::
information

:::::::
content

::::
with

::::::
regards

::
to

:::
the

::::::::
response

:::::::
variable. Feature selection reduces the noise introduced45

through uninformative predictors. This can be achieved though filter methods, which investigate the predictor-response rela-

tionship of each predictor individually without considering the model algorithm,
:
or alternatively by using wrapper functions

:::::::
methods that evaluate the performance of the model using a variety of predictor subsets.Feature selection can, however, also

include the omission of strong predictors, as they might dominate the model output and cause the emergence of artifacts.

The essential foundation of creating soil maps is the availability of a soil dataset of sufficient size and adequate distribu-50

tion, but the soil surveys providing this data are associated with high cost and labor
::::::
labour (Grunwald et al., 2011). To forego

this effort, DSM is using legacy soil data whenever available. However, sampling in traditional soil surveys usually did not

follow statistical sampling theory
:
,
:
which can lead to a bias in the data and the models derived from it (Carré et al., 2007)

:::::::::::::::::::::::::
(Carré et al., 2007; Ließ, 2020). Because soil forming factors operate on different scales, it is important that the spatial distri-

bution of the data is suitable to capture the large- and small-scale variation of soil. Moreover, a bias could be added to the55

prediction if samples from certain parts of the landscape are over- or under-represented in the data. This would lead to an

imbalanced learning problem and compromise the predictive performance of the models (He and Garcia, 2008). In order to

construct a model that can effectively predict throughout the landscape, it is important to have a statistically representative
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sample of training and validation data that allows for the generalisation
::::::::::::
generalization from the data to the spatial landscape

context (Ließ, 2020). The most common approaches in dealing with this issue involve (a) creating a more balanced training60

set by sampling from the entirety of observations, and (b) cost-sensitive learning frameworks, in which the learning algorithm

penalizes the prediction error of underrepresented samples (He and Garcia, 2008). Many DSM applications tackle the problem

of data imbalance with the subsampling approach (Moran and Bui, 2002; Subburayalu and Slater, 2013; Heung et al., 2016;

Sharififar et al., 2019). This can be achieved by clustering the study area into homogeneous sections
:::::::
subareas

::::
with

:::::::
regards

::
to

::
the

:::::::::
covariates, and drawing a certain number of samples from each of these clusters.65

Another hurdle of modeling
::::::::
modelling

:
applications lies in training and tuning. Model building and performance evaluation

can be sensitive to the selection of
:::
data

:::::::
splitting

::::
into

:
training and testing samples

:::
sets. Although resampling techniques like

cross-validation (CV) increase model robustness, the
:::::
reduce

:::
the

::::::::
influence

:::
of

::::
data

::::::::
splitting,

:::
the

:::::
model

:
outcome can still be

compromised by an uneven distribution of classes between the data subsets
::::::
sample

::::::::::::
characteristics

:::::::
between

:::::::
training

:::
and

::::::
testing

:::
data

::::
sets.70

Many of these challenges in the DSM procedure are related with identifying structures and similarities in the data. There-

fore, here we want to investigate the usefulness of data clustering applications in tackling some of the above mentioned

::::::::::::::
above-mentioned challenges in DSM. Specifically, we want to examine the benefits of using clustering applications for feature

selection,
::
for

:::::::::
landscape

::::::::::
stratification

::
to

:::::::
conduct

::::
data

:::::::::::
subsampling,

:::
and

:::
for

:::::::
stratified

::::::::::::::
cross-validation to address the imbalanced

learning problem, and resampling to build robust models. This will be done on the basis of training an RF model to predict75

soil texture within the catchment of the Bode river in Saxony-Anhalt, Germany. The model is trained and validated using a soil

legacy data set containing soil survey data. Environmental covariates related to soil forming factors are obtained and used as

predictors.

2 Material and methods

2.1 Study area and data80

2.1.1 Study Area

The study area of approximately 3,3000 km2 is part of the TERENO network for environmental observations (Zacharias et al.,

2011) and covers the water catchment of the river Bode in central Germany (Fig. 1). It corresponds to three federal German

states: Saxony-Anhalt, Lower Saxony and Thuringia. The elevation ranges between 1 and 1141 m a.s.l. with the Harz Mountains

in the southwest, the north-eastern Harz foreland and the Magdeburg Börde of the North German Plain covering the rest of the85

area. The climate is subarctic to humid continental (Peel, Finlayson and McMahon, 2007), with the mean annual precipitation

ranging from 433 to 1771 mm (Deutscher Wetterdienst, 2019). The geologic material in the area consists mostly of Triassic

limestone and Carboniferous shale and granite (BGR, 2007). Dominating soils according to the German soil classification

(Finnern and Kühn, 1994) are Braunerde, Parabraunerde, Gley and Pararendzina (BGR, 2012).
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Figure 1. Study area (a) location in Germany, (b) location of the survey sites, (c) cross-sectional elevation profile (black line in map).

2.1.2 Soil legacy data90

The soil samples used for model training and validation are from a legacy data set provided by the regional geological survey

of the German federal state Saxony-Anhalt - Landesamt für Geologie und Bergwesen (LAGB, 2018). The data was recorded by

various soil surveyors between 1963 and 2006 and consists of soil profile data from 574 sites. For every site, a soil diagnostic

survey was conducted. Soil horizon boundaries were recorded according to either the TGL (TGL, 1985), or the KA4 (Finnern

and Kühn, 1994) soil systematic system. For every soil horizon, the particle size distribution was measured in the laboratory95

using DIN ISO 11277:2002-08. The fractions of three particle sizes were measured according to the German soil separates

(sand [2 mm to 0.063 mm], silt [0.063 mm to 0.002 mm], and clay [< 0.002 mm]). Sand, silt and clay contents were extracted

from the horizon data at two discrete soil depths (10 and 70 cm) and used as the target
:::::::
response

:
variables of the models.

The two depths were chosen to investigate whether different soil forming factors dominated soil-landscape development in the

topsoil and subsoil, respectively. Because the maximum depth of the surveyed soil profiles is not uniform, a depth of 70 cm was100

chosen as a trade-off between maximum soil depth (closeness to parent material), while not compromising the sample size.

One sample was removed from the profiles as an outlier. The sample is located in a Quaternary sand dune of less than 2 km2
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(BGR, 2007) near the town of Blankenburg, and has a sand content of 96 %. The sample was removed because one sample

alone would not be sufficient for model training and validation. The soil texture of the soil legacy dataset used as model input

::
for

::::::
model

:::::::
training

:::
and

:::::::::
evaluation

:
is shown in Fig. 2 a and b. A cluster analysis targeting three equally sized subgroups was105

applied to differentiate clayey samples from silty and sandy samples, please refer to the section Cluster analysis for details.

Figure 2 c and d show the spatial distribution of these three clusters within the study area.

2.1.3 Model predictors

Spatially continuous geodata of the study area corresponding to the soil forming factors parent material, topography and land

cover were gathered. They comprise geologic maps of 1:200,000 (GUEK200) and 1:1,000,000 (GUEK1000) map scale (BGR,110

2007, 2006), a DEM of 10 m resolution (BKG, 2012), and CORINE Land Cover data from 1990, 2000, and 2012 (Büttner

et al., 2004). The local river network was generated from the OpenStreetMap data set by querying rivers and streams with the

Overpass API service (OpenStreetMap contributors, 2018). Some of the geodata was
::::
were used without further modification

:
,

like the land cover data and the elevation from the DEM. Additionally, further variables
::::::::
predictors

:
were derived from these

data and have been resampled to the 10 m resolution of the DEM.115

In the digital vector information underlying the geologic maps, a variety of attributes is contained,
:
including age, material,

and origin. The layer ‘petrography’ was used from both geologic maps, and the layer ‘genesis’ was used from the 1:200,000

map. As the information contained in the petrography layer is descriptive, it was categorized into binary information on the

occurrence of particle size classes in addition to its inclusion as unmodified layer. Three new predictors (Sandbin, Siltbin and

Claybin) were created for every landscape unit based on the occurrence of the words sand or sandstone, silt or siltstone, and120

clay or claystone, respectively.

Several topographic predictors were derived from the DEM, since relief is often considered as the main driver of soil

formation (McBratney et al., 2003; Scull et al., 2003; Behrens et al., 2010). Topographic predictors were calculated with the

SAGA GIS software Version 6.4.0 (Conrad et al., 2015). The used topographic predictors were selected according to their

appearance in similar digital soil mapping applications (Bulmer et al., 2016; Vaysse and Lagacherie, 2017; Blanco et al., 2018;125

Kalambukattu et al., 2018; Zhou et al., 2019) Table 1. Sink removal by Wang and Liu (2006) was applied prior to the calculation

of the hydrological terrain parameters (minimal slope = 0.01). For the calculation of the vertical distance to channel network,

the layer of waterways acquired from OpenStreetMap was used. Indices for terrain convexity and terrain surface texture were

calculated by using a flat area threshold of 0.08 in order to minimize the impact of inaccuracies and insignificantly small

depressions and mounds (Conrad et al., 2015).130

Since soil-forming factors can take effect on different spatial scales, it is advised to take multi-scale
::::::::
multiscale

:
approaches

into account (Behrens et al., 2010). Accordingly, convergence index (Köthe and Lehmeier, 1996), terrain ruggedness index

(Riley, 1999), convexity and terrain surface texture were calculated with a search radius of 10, 50, 100 and 200 m, in order

to express local to regional landscape attributes. The annulus based topographic position index (Guisan et al., 1999) was

calculated on two scales, one ranging from 0 to 100 m and from 100 to 200 m.135
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Figure 2. Soil legacy dataset used for model development. Particle size distribution and cluster affiliation of the soil data at (a) 10 and (b) 70

cm depth, respectively. (c) and (d) show the spatial distribution of the three clusters at 10 and 70 cm depth (Geographic coordinate system:

UTM zone 32N)

6



Table 1. Topographic predictors derived from the digital elevation model. Indices that have been calculated with varying parameters
::::::
window

:::
size are denoted by multiscale.

Domain Predictor Reference

Morphometry Slope Zevenbergen and Thorne (1987)

Convergence index (multiscale) Köthe and Lehmeier (1996)

Mass balance index Friedrich (1996)

Slope height Böhner and Selige (2006)

Normalized height Böhner and Selige (2006)

Standardized height Böhner and Selige (2006)

Valley depth Böhner and Selige (2006)

Mid-slope position Böhner and Selige (2006)

Terrain ruggedness index (multiscale) Riley (1999)

Convexity (multiscale) Conrad et al. (2015)

Terrain surface texture (multiscale) Conrad et al. (2015)

Multi-Scale Topographic position index (multiscale) Guisan et al. (1999)

Lighting Positive openness Yokoyama et al. (2002)

Negative openness Yokoyama et al. (2002)

Diffuse insolation Böhner and Antonić (2009)

Direct insolation Böhner and Antonić (2009)

Hydrology Terrain classification index for lowlands Bock et al. (2007)

LS-Factor Böhner and Selige (2006)

Stream power index Moore et al. (1991)

Topographic wetness index Beven and Kirkby (1979)

Upslope contributing catchment area Marchi and Dalla Fontana (2005)

Channels Vertical distance to channel network Conrad et al. (2015)

Location Latitude

Longitude

2.2 Modeling
:::::::::
Modelling procedure

2.2.1 Random forest

RF models are based on regression trees (RTs), which use selected values of predictor variables to repeatedly split the data

in a way that maximizes the homogeneity of the subsets regarding the response variable (Kuhn and Johnson, 2013).Besides

the benefit of their good interpretability, RTs have several shortcomings in terms of model performance (Evans, 2009)
:
. . One140

reason for the limited performance lies in the recursive splitting of the data. This splitting assumes the homogeneity within

rectangular regions in the predictor space and returns discrete outcome values for these regions. Another issue of regression

trees is their high sensitivity to fluctuations in the training data. The resulting models have a high variance and are unstable to

small changes in the data.RF tackles the shortcomings of RTs by using two expansions. Instead of building a single tree
:
as

::
it
::
is

::
the

::::
case

::
in

::::
RTs, RF uses the ensemble method bagging which constructs several trees based on bootstrap

:::::::::::
bootstrapped samples145
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of the data. The resulting averaged prediction has a lower variance and thus increased model stability
::::::::
compared

::::
with

::::
RTs.

Although randomness is added to the procedure through resampling of the data, the underlying predictor-response relationship

is not altered by bagging. As a consequence, many of the trees share similar structures. This correlation between trees can

lead to a decrease in predictive performance of the ensemble (Breiman, 2001). To introduce diversity to the ensemble and

decorrelate the trees, RF is extended by a random feature selection. Instead of using the entire set of predictors to build a tree,150

a random subset of the predictors is used for each tree. This reduction of predictors leads to a trade-off between the strength

of individual trees (high number of predictors) and more diversity between trees (low number of predictors). The respective

tuning parameter,
:
which controls this trade-off, is mtry, the size of the predictor subset. Further parameters include ’ntree’, the

number of trees and ’nodesize’, the minimum number of samples to be kept in a terminal node of the trees (Were et al., 2015).

For the interpretation of the RF models, the model function calculates a variable importance measure. This is done by155

building models which use permutations of a predictor variable. The accuracy of the permuted model is then compared to a

model built from the original data. The returned value indicates the decrease on prediction accuracy after permutation.

2.2.2 Cluster analysis

A cluster analysis (CA) was conducted for several purposes:

– CA-1: feature selection160

– CA-2: landscape stratification
:::
into

::::::::
subareas for subsampling

– CA-3: data stratification in CV approach

in CA-1, k-means clustering was used to split the soil texture data of both depth levels into three clusters
:
to
::::::::::
distinguish

:::::::
between

:::::
sandy,

::::
silty

:::
and

::::::
clayey

::::
soils

:
(Fig. 2). The clustering was performed with the kmeans function using 40 initializations with each

::
for

:::::
each

::
of

:::
the

:
30 iterations . Data were

::
on

:::
the

:
center-scaled

::::
sand,

::::
silt,

:::
and

::::
clay

:::::::
contents. The resulting clusters’ predictor165

ranges at the assigned soil survey sites were retrieved.
:::::
Their

::::::::
respective

:::::::::
difference

:::::::
formed

:::
the

::::
basis

:::
for

:::::::
feature

:::::::
selection

:::
in

::::
terms

:::
of

:
a
::::
filter

:::::::
method

::::::
(please

::::
refer

::
to

:::::::
chapter

:::::
2.2.3).

CA-2 was applied for landscape stratification
:::
into

::::::::::::
homogeneous

:::::::
subareas

:
on behalf of the gridded continuous multivariate

predictor data. The dataof the environmental variables of the study area
:::
This

::::
data, however, has certain traits which may hinder

or prohibit
::::::
provide

:
a
::::::::
challenge

::
to

:
cluster analysis. The environmental data has high dimensionality with correlating

::::
These

:::::
traits170

::
are

::::
the

::::
high

::::::::::::
dimensionality

::
of
::::

the
::::
data,

:::::::::
correlation

::::::::
between

:::::::
predictor

:
variables, and consists

::
its

::::::::::
consistence of numerical as

well as categorical covariates
::::::::
predictors. These issues were tackled by applying a Factor Analysis of Mixed Data (FAMD) from

the FactoMineR package (Lê et al., 2008) on the data set. Because of the high resource demand of conducting an FAMD on the

whole data set (33 million gridcells), the function was applied on a random data subset of 100,000 samples (data minimum and

maximum additionally included) first, and then the resulting FAMD model was applied to the whole data set. Additionally, one175

sample for each class of every categorical variable was also added to the subset. Similarly to a principle component analysis

(PCA), the
:
In

:::::
order

::
to

:::::
allow

:::
for

::::
the

:::::::::
application

::
of

::::
the

:::::::
function

:::
for

::::::
FAMD

:::::::::::::
transformation

::::::
trained

:::
on

:::
the

::::
data

:::::
subset

:::
to

:::
the
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:::::::
complete

:::::::
dataset,

:::
the

::::::::
minimum

::::
and

:::::::::
maximum

:::::
values

::
of
:::

all
:::::::::
numerical

::::::::
predictors

::::
and

::
all

::::::
classes

:::
of

:::
the

:::::::::
categorical

:::::::::
predictors

::::
were

::::::::::
additionally

::::::::
included.

::::
The

:
FAMD returns n components

:::::
factors, with the percentage of explained variance decreasing

with every component
::::
factor. A reliable method to determine the number of dimensions to retain from the FAMD is the ‘elbow’180

approach (Linting et al., 2007). The contribution of each retained dimension to the percentage of explained variance decreases

strongly with the first dimensions, until it reaches a nearly constant value. The ‘elbow’ approach suggests using all dimensions

before the stagnation of the explained variance. The resulting FAMD transformed data was clustered using k-means in CA-2.

The number of clusters was determined by the use of cluster validation indices calculated with the NbClust function from the

package (Charrad et al., 2014). NbClust
:::::::
NbClust

::::::::::::::::::
(Charrad et al., 2014).

::::
The

:::::::
function

:
calculates 27 clustering indices for each185

clustering solution in a given range of number of clusters. All of the clustering indices cast their vote for their favoured number

of clusters. Because of the high computational costof NbClust, it was not possible to apply the function on the whole data set.

Instead,repeated random sub-sampling was used to calculate the indices. A random sample of
:
,
:::
the

:::::::
function

::::
was

:::::::::
repeatedly

::::::
applied

::::::
(2,000

:::::
times)

:::
on

:::::::
random

::::
data

::::::
subsets

::
of

::::
size

:
2,000 data points was drawn

::
of

:::
the

::::
data

::::::::
resulting from the FAMDdata

(33,000,000 observations), and a table containing the number of votes for the number of suggested clusters was created. The190

random sampling was repeated
:
.
::::::::::
Preliminary

:::
test

::::
runs

:::::
have

::::::
shown

:::
that

::
a
::::::
sample

::
of

::::
size

:
2,000 times and the votes of each

solution added to the table of votes. The number of clusters to be investigated by NbClust ranged between
:::::::
produced

::::::
stable

::::::::
clustering

::::::
results.

::
A

:::::::
number

::
of 2 and 17.

:
to

:::
17

::::::
clusters

::::
was

::::::
tested.

CA-3 was conducted in order to perform a stratified CV. The legacy data set
:::::::::::
Stratification

:::
was

:::::::::
conducted

:::
on

:::::
behalf

:::
of

:::
the

:::::::
response

:::::::
variable.

:::
In

:
a
::::
first

::::
step,

:::
the

::::::
legacy

::::::
dataset including sand, silt , and clay content was clustered into five equally-sized195

subgroupsto form the strata for model tuning and evaluation
::::::
equally

:::::
sized

:::::::::
subgroups.

:::::
From

::::
each

::
of

:::
the

:::::::::
subgroups,

:::
the

:::::::
profiles

::::
were

::::
then

::
in

:
a
::::
2nd

::::
step

::::::
equally

:::::::
assigned

::
to
:::

the
::
k
:::::
folds

::
in

::::
order

::
to
::::::

obtain
:
a
::::::
similar

::::
data

::::::::::
distribution

::
in

::::
each

::
of
:::

the
::
k
:::::
folds. The

clustering was achieved by using a same-size k-means algorithm (Schubert and Zimek, 2019) to divide the profiles of both

depth levels into five clusters based on the soil texture.Finally, the samples of each cluster were evenly distributed 2to each

fold.200

2.2.3 Feature selection

The RF algorithm is relatively robust against uninformative predictors by only selecting the strongest predictors as splitting

criterion (Hamza and Larocque, 2005; Kuhn and Johnson, 2013). Although
:::
And

::::
even

::::::
though

:
the reduction of the predictor set

may not necessarily lead to a reduced error
:::::::
improve

:::::
model

:::::::::::
performance, it can still benefit model interpretability and reduce

computational time (Chandrashekar and Sahin, 2014).
::::::::
However,

:::
the

::::::
feature

:::::::
selection

::::::
based

::
on

:
CA-1 was not only conducted205

to remove uninformative predictors, but
:::
also

:
to study the relationship between the environmental variables and the response

value.
:::::::::::::::
predictor-response

:::::::
relation.

The clustered profiles were paired with the corresponding predictor values, and the numeric predictors are tested for

normality with the Shapiro-Wilk test. The Kruskal–Wallis test is
:::
was used to compare the distributions of predictor values

between the three clusters. The resulting p-values were adjusted for multiple comparison by controlling the false discovery rate210

(Benjamini and Yekutieli, 2001). All predictor values .
:::
All

:::::::::
predictors with significant differences in means

:::::::
between

:::
the

:::::
three
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::::::
clusters

:
(α = 0.05) were used as predictors for the RF models of the respective depth levels. To gain further insight in

:::
into the

predictor-response relationship, the Dunn’s test was performed on the significant response variables
::::
these

::::::::
predictors

:
as a post

hoc analysis.
:::
This

::::::
allows

::
to

:::::::::
determine

:::::
which

:::::::
clusters

::::
show

:::::::::
significant

:::::::::
differences

::::::::::
concerning

:::
the

::::::::
particular

:::::::::
predictors.

Preliminary results have shown, that categorical predictors and the usage of the Cartesian coordinate space can lead to215

artifacts
:::::::
artefacts in the maps of predicted soil texture. Two more models were built in addition to the model using the full

predictor set (full) in order to tackle this problem. One model is leaving out the petrography and genesis layers as predictors

(no geo) and the other is leaving out petrography, genesis, longitude and latitude (no geo+coords).

2.2.4 Strategies for unbalanced data

Statistical sampling from the soil data set was used in order to create training and validation data better balanced with regards220

to landscape features
::
in

::::::
regard

::
to

::::::::
landscape

::::::::::::
characteristics

:
corresponding to the interaction of the soil forming factors. Please

compare Ließ (2015, 2020) concerning a detailed discussion of this aspect. This was done by applying four subsampling

approaches to the model training data based on the landscape clusters obtained from of CA-2. Performance of the models

trained on the thereby adapted data was compared to that of models build with the legacy dataset in its original distribution.

Subsampling was conducted to match the spatial coverage of the landscape clusters (area-weighted method = AW), or in order225

to provide a sample that represents each landscape cluster with the same amount of data (equal number approach = EN) (similar

to Heung et al. 2016). The subsampled dataset is obtained either by oversampling or undersampling (He and Garcia, 2008).

Oversampling obtains the dataset by including all samples from all clusters and then replicating certain randomly selected

samples until the desired sample size for each cluster is reached. Undersampling includes all samples from the minority cluster,

and then randomly draws samples from all other clusters, until the desired sample size is obtained. The four applied sampling230

approaches are displayed in Fig. 3).

  

No subsampling
(458/337)

Area-weighted
Number of samples

proportional to occurrence

Equal-number
Same number of samples

in every cluster

Oversampling
No loss of information

Undersampling
Loss of information

AW oversampling
(757/658)

AW undersampling
(368/241)

EN oversampling
(566/370)

EN undersampling
(350/304)

Figure 3. Applied sampling approaches. Parentheses show the number of samples in the training set (10 cm and 70 cm depth respectively).

Abbreviations of the sampling methods as used in the results are shown in italic.
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2.2.5 Model
:::::::
training,

:
tuning

:
, and evaluation

Model tuning and evaluation for the RF models was conducted by a nested approach of repeated stratified 5-fold CV (5 repeti-

tions). The detailed procedure is shown in Fig. 4
::
(a).

:::
As

:
a . As performance measure, the root mean square

::::::::::::::
root-mean-square

error (RMSE) was derived. In order to make the model performance values comparable for all models, the respective test set235

was kept the same, while data subsampling was only applied to the respective training sets (Fig. 4 b). Furthermore, response

data was centered
::::::
centred and scaled (SD = 1) to allow for the comparability of model performance between models targeting

sand, silt, and clay content. The k
:
k
:
folds of the nested approach were derived by stratified sampling regarding the response

data. In order to stratify the dataset regarding all three response variables at once, response strata were formed by applying

CA-3. Tuning takes place in the inner CV, where the model is evaluated for mtry parameter values within the range of 5 to 25,240

while ntree was set to 1000 and nodesize to 5. Overall, the model building procedure is
:::
was applied six times in order to create

individual RF models for each of the three particle sizes for the two soil depths.

For the data analysis and modeling
::::::::
modelling, the R version 3.5.1 was used (R Core Team, 2018). All computation was

performed on a machine running Windows Server 2016 Standard with four Intel Xeon Processor E7-8867 v4 and 6.00 TB of

memory.245

3 Results and discussion

3.1 Exploratory data analysis

3.1.1 Feature selection

The soil profiles used for model building were split into three groups based on their soil texture with CA-1. A clayey cluster

was, thereby
:
, distinguished from a silty and a sandy cluster. Primarily, this was done in order to understand which predictor250

variables
::::::::
predictors are best in separating these three groups and therefore, are expected to have a high explanatory power in

the models to predict spatial soil texture distribution within the investigation area. The soil texture of the profiles at 10 and 70

cm depth and their cluster affiliation is shown in Fig. 2 (a) and (b). The spatial distribution of the clusters is shown in Fig. 2

(c) and (d). The distribution of cluster affiliation within the study area shows that most of the profiles in the lowlands belong to

the silty cluster. This is typical for the soils of this area,
:
which are influenced by loess deposits.255

The predictor data at each sampling site was assigned to the soil profile data. The data distribution of the predictor variables

::::::::
predictors

:
between the three soil texture clusters was then compared by applying a Kruskal-Wallis test. Out of 39 numeric

predictors, 27 predictors showed a significant difference of the mean at either 10 or 70 cm depth (Table 2). The predictors

displaying significant differences between any two of the soil texture clusters were included in the random forest models. A

post hoc test was applied to determine which clusters show significant differences concerning the particular predictor variable.260

The trends in differences between the clusters are predominantly in agreement across the two depth levels (Fig. 5). For many of

the predictor values with significant differences in the means, it was the silty cluster that was the most distinguishable from the
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Full data set

Test

Training

80 % of data

Training Test

RF  
for all values in

mtry
range

Training Test

Best mtry

1 1

1 1

EN undersampling

EN oversampling

AW undersampling

AW oversampling

A B

A B

(a) (b)

+ (b)

No subsampling

Figure 4. Nested k-fold CV approach for model tuning and evaluation. General approach without data subsampling (a). Incorporation of the

subsampling strategies in the CV approach (b).

other two clusters. From the 54 statistical tests (27 significant predictors for two soil depth), 51 showed differences between

the sandy and the silty clusters and 28 showed differences between the clayey and the silty clusters, while only 19 tests showed

differences between the sandy and the clayey clusters.265

Since the clustering application used here for feature selection is a filter method, it is unable to take interactions between

different predictors into account. This could compromise the efficacy of the feature selection if there are predictor response

:::::::::::::::
predictor-response relationships which are only revealed in combination with other predictors. The advantage of the clustering

method is to create meaningful categories in the data and investigate their relationship with the predictor values, which can not

be provided by a wrapper method.270

3.1.2 Landscape stratification for subsampling approaches

CA-2 was conducted in order to subsample from the legacy soil data set and create a balanced model training set. The FAMD

data transformation showed an increased drop of explained variance with the sixth factor, resulting in the five first factors being

used as input for CA-2. The NbClust application resulted in 29 % of the votes being appointed to finding two clusters in the

data, while the second largest
::::::::::::
second-largest vote was 13 % in favor

:::::
favour of three clusters. Hence, the environmental data of275
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Figure 5. Data distribution of selected predictors per soil texture cluster and soil depth. Letters above bosxplots denote significance groups

within one depth level. The Y-axis are cropped to highlight the interquartile range.

the study area was stratified
::::::
divided into two clusters using k-means. The resulting clusters broadly divided the study area into

the mountainous region and the lowlands (compare Fig. 1). This way of stratifying the landscape is an apparent choice,
:
since

the relatively low number of training samples suggests taking a small number of clusters to have sufficient samples per cluster.

Further, the heuristic approach of dividing the landscape, which is often superior to automated classification (MacMillan et al.,

2004), also suggests the separation between the high- and the lowlands due to the relatively sharp divide.280
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Table 2. Predictors included in the random forest model for 10 and 70 cm depth, denoted by ‘*’.

Predictor
Depth

Predictor
Depth

10 cm 70 cm 10 cm 70 cm

Aspect Petrography (GUEK1000) *

Contributing area * Petrography (GUEK200) * *

Convergence index (10 m radius) Positive openness * *

Convergence index (100 m radius) * Sandbin (GUEK200) *

Convergence index (200 m radius) Siltbin (GUEK200) * *

Convergence index (500 m radius) * Claybin (GUEK200) *

Convexity (10 m radius) * Slope * *

Convexity (100 m radius) * * Slope height

Convexity (200 m radius) * * Standardized height * *

Convexity (50 m radius) * Stream power index

Diffuse insolation * * Terrain classification index * *

Direct insolation Terrain surface texture (10 m radius)

Elevation * * Terrain surface texture (100 m radius) * *

Genesis (GUEK 1000) * * Terrain surface texture (200 m radius) * *

Land cover 1990 * * Terrain surface texture (50 m radius) *

Land cover 2000 * * Topographic position index (0-100 m) *

Land cover 2018 * * Topographic position index (100-200 m) *

Latitude * * Topographic ruggedness index (10 m radius) * *

Longitude * * Topographic ruggedness index (100 m radius) * *

LS-Factor * * Topographic ruggedness index (200 m radius) * *

Mass Balance Index Topographic ruggedness index (50 m radius) * *

Mid-slope position Topographic wetness index * *

Negative openness * * Valley depth

Normalized height Vertical distance to channel network

3.2 Model development

3.2.1 Model performance

The predictive performance of the RF models was investigated under different subsampling approaches, a range of mtry tuning

parameter values and three predictor sets. Since the RMSE values for model evaluation were calculated for the modeled

:::::::
response

:
variables scaled to an SD of one to provide a comparable metric, the RMSE values can be interpreted as zero being285

perfect predictability, and values over one meaning a worse performance then
::::
than using the observed mean as the predicted

value. The RMSE values of all subsampling approaches for the full predictor set is shown in Fig. 6. The median RMSE is

between 0.67 and 0.94, with the silt and sand models clearly outperforming the clay models. For all particle size classes, model

performance is better for 10 cm compared to 70 cm depth, with an average difference in the RMSE of 0.08 for clay and silt,
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and 0.12 for sand. This decrease of
::
in

:
performance may be due to a decrease in sample size with soil depth. Studies where290

sample size has been consistent along profile depth have shown that the predictive performance does not necessarily decrease

with soil depth (Adhikari et al., 2013; Vaysse and Lagacherie, 2015).
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Figure 6. Model performance as boxplots of RMSE of the 5 repetitions for three particle size contents for (a) and (d) clay, (b) and (e) silt

and (c) and (f) sand and five subsampling methods. The models (a), (b) and (c) are for 10 cm depth while (d), (e) and (f) are 70 cm depth.

The subsampling method with the lowest median RMSE is highlighted. The black horizontal lines stand for an RMSE of one, which equals

the RMSE of predicting the observed mean.

There is no consistently better performing subsampling method. However, both undersampling approaches seem to have

higher median RMSE values than the two oversampling methods. It seems likely that the decline in model performance was

due to the reduction of the sample size. Using the RMSE of the whole study area as the selection criteria for the subsampling295

approach also has its limitations because it does not provide information on the spatial distribution of the prediction accuracy.

Adding more weight to samples of a certain cluster can lead to increased accuracy in the respective area,
:
while this gain is
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not necessarily covered by the validation data. The role of subsampling on the distribution of prediction accuracy is exemplar-

ily displayed in Fig. 7. Although there are strong differences of the overall accuracy between clusters, neither of them profit

explicitly from a certain subsampling method. The right choice of the subsampling method most likely depends on the under-300

lying data, since other DSM studies have not revealed a distinctly better performing method. While the EN approach increased

model accuracy for the minority class in Heung et al. (2014), Schmidt et al. (2008) found the contrary effect in their study and

Moran and Bui (2002) found AW to be the best performing model. Sharififar et al. (2019) used a combination of over- and

undersampling to create a balanced data set which significantly improved model performance, while over- and undersampling

decreased model performance in Taghizadeh-Mehrjardi et al. (2019).305
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Figure 7. Landscape cluster specific model performance of the silt model at 10 cm depth with (a) showing the R2 of the samples from the

lowlands cluster and (b) the samples from the mountainous cluster.

In order to prevent the occurrence of artifacts
:::::::
artefacts, predictors have been retained from model building. This led to a

decrease in model performance across all particle sizes and depth layers (Fig. 8). The no geo+coords models showed an

average increase of scaled RMSE of 3, 7 and 12 % for sand silt and clay at 10 cm depth when compared with the full model.

TheR2 values for model performance of the full and the no geo+coords models are shown in Table 3. Model performance of

the silt and sand models at 10 cm depth are comparable with the results of Vaysse and Lagacherie (2015) and de Carvalho Junior310

et al. (2014), while other publications have shown that R2 values above 0.5 are achievable (Moore et al., 1993; Gobin et al.,

2001; Adhikari et al., 2013). Moore et al. (1993) argues that R2 values above 0.7 are not to be expected due to the underlying
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Figure 8. Model performance as RMSE for three particle size contents for (a) and (d) clay, (b) and (e) silt and (c) and (f) sand. The models

(a), (b) and (c) are for 10 cm depth while (d), (e) and (f) are 70 cm depth. Models were built using either all predictors (full), leaving out the

geologic predictors (no geo) or leaving out geology, latitude and longitude (no geo+coords). The black horizontal lines stand for an RMSE

of one, which equals the RMSE of predicting the observed mean.

Table 3. Model performance in R2 for three texture classes on two depth levels and for two predictor subsets.

Particle size

Predictor set Depth Clay Silt Sand

full
10 cm 0.29 0.48 0.50

70 cm 0.16 0.36 0.32

no geo+coords
10 cm 0.25 0.40 0.37

70 cm 0.11 0.30 0.27

random variability of soil and limitations in the accuracy of measurements. Differences in model performance are most likely

to be related to the size and the heterogeneity of the study area and the quality of soil samples. This is illustrated well in Fig. 7

which demonstrates the variability of predictive performance across landscape types.315

17



3.2.2 Model specification

The mtry values for the full predictor model are shown in Fig. 9. There is no clear trend of optimal mtry value with model

performance, and many models have a relatively large range of selected mtry values. It is worthwhile to mention, though, that

for certain models the selected mtry value is right at the lower boundary of the tested mtry parameter range, which is the case

for the silt model at 10 cm. Accordingly, an extension of this lower boundary and the corresponding lower model complexity320

would likely have resulted in even better model performance.
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Figure 9. Results of the model tuning procedure to find the best performing mtry values (mtryselect) under different subsampling approaches.

(a), (b) and (c) show the results of the clay, silt and sand models at 10 cm depth, while (d), (e) and (f) show the same texture classes at 70 cm

depth. Grey lines correspond to the tested mtry parameter range
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Predictor importance is shown in Fig. 10 a and b. The better model performance at 10 cm depth is reflected in the overall

higher importance values. Altogether, petrography has the highest explanatory power. It should be noted, though, that GUEK

200 petrography was included for both depths, GUEK 1000 petrography was only included in the model to predict soil texture

at 10 cm depth (Table 2). There are few remaining predictors with notably increased predictive ability. These are latitude for325

silt and sand, positive openness and the topographic ruggedness index (100 and 200 m radius) for sand and terrain surface

texture (200 m radius) for clay.
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Figure 10. Mean importance of the 20 strongest predictors of the model using the full predictor set (a) and (b) and the model leaving out

the geologic maps and coordinates as predictors (c) and (d). (a) and (c) show importance values for the models at 10 cm depth and (b) and

(d) at 70 cm. Predictors are sorted by decreasing mean importance value. The importance metric is calculated as the decrease in prediction

accuracy after the permutation of the predictor values.

Omitting the geologic information and coordinates leads to an overall increase of importance values for the remaining

predictors (Fig. 10 c). The importance value of elevation increased strongly. The same applies for many other topographical

predictors, although in a less pronounced manner (positive and negative openness, diffuse insulation, terrain surface texture330

(200 m radius)).
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3.3 Spatial prediction

Model output was generated by taking the median of all 25 models (CV procedure with 5 folds and 5 repetitions). The predicted,

spatially continuous values of the sand, silt and clay content at 10 cm depth corresponding to the models with the best median

predictive performance (Fig. 6) are shown in Fig. 11. It needs to be noted that the maps of predicted values are showing the335

results of independent models for different soil texture classes, and the results don’t add up to 100 %. The method to scale the

data to 100 % should be selected with the purpose of the specific data utilization in mind. Different approaches could include

leaving one of the texture classes out and summing up to 100 %, weighted scaling by texture class or weighted scaling by the

regional accuracy of the texture classes.
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Figure 11. Median of all predictions for sand, silt and clay content at 10 cm depth. The maps show the output of the models built with the

predictor set specified in Table 2. The scale bar shows distance in meters.
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In the predicted spatial distribution of the sand and silt content, there is a strong regional difference between the lowlands340

and the mountainous region in the southwest. Sand content is generally increasing with elevation, and is very high in riparian

regions and valley bottoms. High silt contents can be expected in the lowlands outside of riparian regions. The spatial variability

of all three target
:::::::
response

:
variables is dominated by categorical predictor traits (petrography) that draw clear boundaries and

even transfer artefacts present in the geological map products. However
:
,
:
it is more evident in the sand and clay model output.

A limitation of the geologic maps, which is the lack of unity in the naming of feature classes
:::::::
geologic

::::
units

:
between different345

geographic regions, but also at federal state boundaries for the GUEK200 is also reproduced in the results. While the GUEK

1000 was generated by the German Federal Institute for Geosciences and Natural Resources (BGR), the GUEK 200 is a joint

product between BGR and the regional geological survey institutions. Although the feature shapes
::::
unit

:::::::::
boundaries align across

the tile boundaries, their class
::::
map

::::
tiles,

::::
their

:
description may differ because GUEK200 harmonization at national level is not

yet completed. This leads to an abrupt change of predicted sand and silt values in an otherwise homogeneous region (Fig. 11350

areal zoom).

These model outputs clearly show the limitation in predictive capacity due to the limitations in the available covariates
::::
data

to represent the parent material. The prediction of soil texture is predominantly based on parent material, which allows to dis-

tinguish the observed variability of soil texture between the lowlands and the mountains. Once parent material and coordinates

are removed, the models increase the importance of those topographic predictors which can be used to distinguish between355

these broad geographic regions (elevation, positive openness, diffuse insulation). Pedogenetic processes related to topography

like the lateral redistribution of particles along slopes can only play a minor role, as the low importance values of predictors

based on immediate pixel neighborhood
::::::::::::
neighbourhood

:
have low importance values. However, other DSM approaches have

successfully captured relief based variability of soil texture on the scale of hillslopes
:::
hill

::::::
slopes using only topographical

predictors (Moore et al., 1991; De Bruin and Stein, 1998; McBratney et al., 2000).360

The inclusion of expert knowledge such as geological map products in machine learning models for the spatial continuous

soil prediction at high resolution still requires further investigation. While the geologic maps have strong predictive power, they

consist of too many different geologic units. This leads to some of the units not having a sufficient number of soil samples to

be able to generalize for that unit. However, our approach of reducing the number of geologic units by creating the particle size

class bins was not able to produce useful predictors. One approach could be to use expert knowledge to merge geologic units365

that have parent material with similar soil texture classes. This merging should happen under the restriction that the resulting

units should be as homogeneous as possible while providing enough samples for training and validation. Solving the issue

of abrupt change in predicted values across geologic units could possibly be addressed by a fuzzy approach. Additionally,

knowledge on the level of certainty of boundary demarcation between geologic units could be used to create fuzzy geologic

maps as predictors.370

In order to tackle the issue of artefacts present in the model output, two more models with a reduced set of predictors were

built. The models using all predictors as specified in Table 2 (full) were compared to models leaving out the geologic predictors

(no geo) or leaving out geology, latitude and longitude (no geo+coords). Although the dominance of the categorical predictors

on the model output was lifted in the ‘no geo’ model version, an artifact
::::::
artefact

:
due to the predictors longitude and latitude
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emerged. This new phenomenon appeared as a horizontal or vertical abrupt change in the predicted values across major parts of375

the study area (not shown). This aspect has already been observed in other DSM applications employing recursive partitioning

algorithms (Behrens et al., 2018; Hengl et al., 2018; Nussbaum et al., 2018). Møller et al. (2019) addressed this problem with

oblique geographic coordinates and provide an overview on ready applied approaches. Accordingly, we tested the usage of

three euclidean distance fields instead of Cartesian coordinates. However, the use of this alternative coordinate system led to

the emergence of radial artifacts
:::::::
artefacts (results not shown).380

The additional omission of latitude and longitude from the predictors leads to smoother maps, where only minor abrupt

boundaries exist due to land cover,
:
which is also a categorical predictor (Fig. 12). However, this is aspect has to be differentiated

from that of the geologic predictors. CORINE land cover classes were classified in remote sensing data products. Hence
:
,

spatial class boundaries do not reflect expert knowledge. Abrupt changes might in fact be due to land cover changes. The large

agricultural fields of the lowlands are heavily impacted by wind erosion of the loess material during bare soil conditions. These385

‘no geo+coords’ predictions are reproducing the spatial variability of the ‘full’ model,
:
even on relatively small scales. Strong

deviations between the two model versions are in the eastern Harz region and in the riparian zones of the southern lowlands.

The difference in sand and silt content between the Harz and the lowlands were most likely derived from the predictors

elevation and positive openness. These predictors are strongly correlated (-0.95), have high importance values in both predictor

sets,
:

and show strong significant differences between the texture clusters (Fig. 5). The other predictors of Fig. 5 have lower390

values of absolute correlation with elevation (0.27 – 0.37) while still having a significant effects
::::
effect

:
on the texture clusters.

These predictors were more likely related to the variability within the two large-scale regions. The output of the ‘no geo+coords’

models show much more variability on smaller scales then
::::
than the ‘full’ models.

4 Conclusions

Our DSM approach has shown that RF is an appropriate method to model the variability of soil texture in the study area. The395

predictive performance of the silt and sand models is within the range of similar studies, while the prediction of the clay content

did not seem feasible.

Clustering applications appear to be a versatile tool to be employed at various steps of the DSM procedure. Using a clustering

application for feature selection offers additional insight into the predictor response
:::::::::::::::
predictor-response

:
relationship, while

clustering to conduct a stratified CV allowed for a robust model evaluation. Overall, stratified k-fold CV is common in DSM.400

To use the described cluster application allows for a simultaneous stratification regarding multiple target
:::::::
response

:
variables.

However, to truly evaluate the power of this filter method it would have to be compared with other feature selection methods

which would have exceeded the workload for this study. We intend to do so in future studies.

The biggest area of application for data clustering in DSM appears to be in landscape clustering. Dividing
::::::::::
stratification

::
to

:::::
divide

:
the landscape into homogeneous subgroups allows to address the imbalanced learning problem and gives control and405

feedback over the spatial distribution of model performance. The
::::::::
subareas.

:::::::
Beyond

::::
their

:::::
usage

:::
for

::::::::
stratified

::::::::
sampling

::::
and

:::::::::::
subsampling,

::
the

:
resulting stratification of the study area has further potential, like the use of landscape classes

:::::
strata as predic-
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Figure 12. Median of all predictions for sand, silt and clay content at 10 cm depth. The maps show the output of the models built without

using the geologic maps, longitude and latitude as predictors. The scale bar shows distance in meters.

tors, the construction of individual models per landscape type
:::::::
stratum, or to interpret the predictor response

:::::::::::::::
predictor-response

relationship in different landscapes. A remaining difficulty in clustering applications is the determination of the number of

clusters. Here, the combinations of clustering indices and heuristic methods have proven to be useful tools.410

Finally, clustering applications could also provide solutions to the problems encountered during this model building process
:::
the

:::::
model

:::::::
building

:::::::::
procedure, like the replacement of the Cartesian coordinates, the inclusion of expert knowledge, pooling geo-

logic units and blurring the transitions between geologic units.
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