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Abstract. Low soil fertility is challenging the sustainable production of yam and other staple crops in the yam belt of West

Africa. Quantitative soil measures are needed to assess soil fertility decline and to improve crop nutrient supply in the region.

We developed and tested a mid-infrared (mid-IR) soil spectral library to enable timely and cost-efficient assessments of soil

properties. Our collection included 80 soil samples from four landscapes (10 km×10 km) and 20 fields/landscape across a

gradient from humid forest to savannah, and 14 additional samples from one landscape that had been sampled within the5

Land Health Degradation Framework. We derived partial least square regression models to spectrally estimate soil properties.

The models produced accurate cross-validated estimates of total carbon, total nitrogen, total sulfur, total iron, total aluminum,

total potassium, total calcium, exchangeable calcium, effective cation exchange capacity, diethylenetriaminepentaacetic acid

(DTPA) extractable iron and clay content (R2 > 0.75). The estimates of total zinc, pH, exchangeable magnesium, bioavailable

copper and manganese were less predictable (R2 > 0.50). Our results confirm that mid-IR spectroscopy is a reliable and quick10

method to assess the regional-level variation of most soil properties, especially the ones closely associated with soil organic

matter. Although the relatively small mid-IR library shows satisfactory performance, we expect that frequent but small model

updates will be needed to adapt the library to the variation of soil quality within individual fields in the regions and their

temporal fluctuations.

1 Introduction15

Yam (Dioscorea spp.) is an important food and cash crop in West Africa. The yam belt of West Africa spans across the central

zone of coastal countries in West Africa, located across the humid forest zone and northern Guinean savanna. It contributes to

about 92% of total world yam production, e.g. a total yield of 73 million metric tons in 2017 (Food and Agriculture Organization

of the United Nations, 2019). The cropping area in the West African yam belt has been expanded with accelerated population
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growth. The deforestation and expansion of agricultural land has in many places caused soil degradation. Furthermore, there20

has been a trend of shortened fallow periods in the cropping areas of West Africa over the last decades, which has further

exacerbated the decline in soil fertility across the yam belt. Traditionally, yam is grown without external input in these areas.

Therefore, the production of yam and other crops grown in the region depends on soil organic matter (SOM) status (Padwick,

1983), which serves as a main pool of plant-available nutrients and provides cation exchange surfaces for soil nutrients (Syers

et al., 1970; Soares and Alleoni, 2008). A particularly strong positive relationship between high organic matter stocks and yam25

productivity is reported after fallow and when no fertilizer is added (Diby et al., 2009; Kassi et al., 2017). Thus, maintaining or

increasing SOM and available nutrient levels is of utmost importance for sustainable production of yam and other crops in West

Africa (Carsky et al., 2010). Furthermore, linking soil properties and yam yields (Frossard et al., 2017) and accounting for soil

macro- and micronutrient status (O’Sullivan and Jenner, 2006) is fundamental to improving crop yields and soil management

strategies.30

Soil fertility is an integrative measure of soil attributes and their interactions that support the long-term agricultural produc-

tion potential. Soil fertility is commonly decomposed into the physical, chemical and biological major components (Abbott

and Murphy, 2007). Here, it is important to interpret soil fertility in the form of soil conditions and functions at an adequate

resolution over time and space, and in relation to the crop of interest. For yam, low tuber yields are often attributed to an unbal-

anced ratio of essential nutrients (i.e. N, P, K) available in the soil (Enyi, 1972) and a fast mineralization and hence depletion of35

organic matter (Carsky et al., 2010; Hgaza et al., 2011). Yet, the relationship between soil properties and tuber yield is not fully

understood (Frossard et al., 2017). The reason is that the response of yam to mineral fertilization is highly variable because of

confounding environmental and management variables, such as climate, soil type, inherent soil fertility, micronutrient deficien-

cies, tillage, seed tuber quality, planting date and density, staking and disease pressure across the yam belt (Kang and Wilson,

1981; O’Sullivan and Jenner, 2006; Cornet et al., 2016; Enesi et al., 2018). Further, there are no soil fertility recommendations40

specific for yam under West African conditions. For this reason, establishing yam field trials designed with different organic

and mineral fertilization strategies within different yam growing regions is required to optimize yam nutrient supply targeting

regional soil and environmental conditions (Frossard et al., 2017). Despite the importance of soil fertility, it is challenging

to quantify soil measures at sufficient temporal and spatial resolution to relate them to yam productivity together with other

management effects.45

To quickly assess key soil properties, such as soil organic carbon (SOC) and cation exchange capacity (CEC), we need

more cost- and time-efficient methods in addition to the traditional wet chemistry laboratory analyses that are often cost-

intensive and time consuming. Proximal sensing is a method that can provide reliable, rapid, and inexpensive soil measurements

(UNEP, 2012). Soil visible and near infrared (vis-NIR), and mid-infrared (mid-IR) diffuse reflectance spectroscopy has gained

popularity over the past 30 years to assess soil properties in a complementary manner to conventional laboratory analytical50

methods (Nocita et al., 2015). For model development and calibration but as importantly also for validation purposes, soil IR

spectroscopy requires laboratory reference analysis data. Previous studies have shown successful spectroscopic predictions of

soil properties, such as organic C, texture, cation exchange capacity (CEC), and exchangeable K (Viscarra Rossel et al., 2006;

Cécillon et al., 2009; Nocita et al., 2015; Sila et al., 2016). Many soil chemical and physical properties, such as soil mineralogy,
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the concentration, forms and distribution of SOM, are closely associated with IR spectral diversity. However, for determining55

a range of extraction-based soil properties, the predictive capability seems variable. This can be caused by complex surface

chemical processes that are not directly related to soil organic matter and/or insufficient densities available at local scale to

represent such locally complex relationships (Viscarra Rossel et al., 2006; Abdi et al., 2012; Sanderman et al., 2020). Further, a

library that includes a broad range of soil biophysical conditions found in the region in which it is used needs to be established.

Depending on the geographical extent of the study — field (e.g., Cambou et al., 2016), region, country (e.g., Clairotte et al.,60

2016), continent (e.g., Sila et al., 2016)), world (e.g., Viscarra Rossel et al., 2016) — various statistical predictive modeling

strategies are typically employed to account for geographically regional variability in soil properties and determine empirical

relationships between spectra and soil attributes. Particular subsets of and features in spectra are characteristic for functional

groups of soil components and thus, elucidating spectral features that are important for the prediction of a particular soil

attribute helps to understand and validate the mechanisms based on which the empirically models predict the soil properties.65

In this work, we aim to develop mid-IR spectroscopy as a diagnostic tool for key analytical soil variables within four

climatically, ecologically, and agriculturally distinct landscapes in Burkina Faso and Ivory Coast. For yam and other cash crops,

there is a lack of soil diagnostic tools to identify factors limiting yields and to derive site-specific fertilizer recommendations

within and across landscapes. In these regions, yam has substantial economic importance for small-holder farmers. As land

management and soil status is a key factor not only for yam but also other high-value crops in the region, quick and cost-70

effective soil status assessments should be transferable to other crops with similar nutrient demands. Thus, the main objectives

of this study were to (1) develop and evaluate openly accessible and re-usable mid-IR spectroscopic models to estimate soil

properties for selected landscapes representing major soil and climatic conditions in the West African yam belt, (2) to determine

important spectral features for specific soil properties, and (3) to build a new soil spectral library in four landscapes of the West

African yam belt for soil prediction and assessment. Finally, we make specific recommendations on whether and how specific75

mid-infrared diagnostic measures are applicable for different soil management and screening purposes. We also discuss the

spectroscopic evaluation of the soil’s capacity to retain and release nutrients for sustained and improved cropping in the region.

2 Materials and methods

2.1 Landscapes and soil sampling

Our study area covered the climatic and soil biophysical conditions representative of the West African yam belt. We selected80

four landscapes, two in Ivory Coast and two in Burkina Faso. Each landscape (approximately 10 km x 10 km) represents

a diverse geographic ecoregion. The landscapes cover a gradient between humid forest and the northern Guinean savannah.

Specifically, the landscape Liliyo in Ivory Coast is at 5.88◦N and in the humid forest zone. The predominant soil type is

Ferralsol (FAO, 2014). The landscape Tieningboué in Ivory Coast is at 8.14◦N and belongs to the forest savannah transitional

zone. The soils are dominated by Nitisols and Lixisols (FAO, 2014). The landscape Midebdo is at 9.97◦N and in the sub-humid85

savannah of Burkina Faso. Its dominant soil types include Lixisols, Gleysols, and Leptosols (FAO, 2014). The landscape Léo
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is at 11.07◦N and in the northern Guinean savannah of Burkina Faso and has Lixisols and Vertisols as the dominant soil type

(FAO, 2014). The mean annual rainfall was approximately 1300 mm in Liliyo, and 900 mm in Tiéingboué, Midebdo, and Léo.

During July and August 2016, we sampled the soil from a total of 80 fields under yam cultivation across the four landscapes,

i.e. 20 yam fields in each landscape. The fields were selected in advance by taking into account visual variation in soil color90

and texture across the landscape. The yam fields selected contained the maximum soil variability based on soil colour and

cropping history, taking into account both local farmers’ knowledge on soil fertility and agronomic extension expertise. Yam is

typically planted on soil mounds, ranging from 5000 to 10000 mounds per hectare with a single yam plant per mound. Within

each field, we sampled the soil at four adjacent mounds in square arrangement, which were spaced between 0.5 and 2 m. At

each mound, 6 to 8 auger cores (25 mm in diameter) to the 0.3 m depth were taken at a radius between 0.15 and 0.3 m away95

from the center of a mound, depending on the size of the mounds. Then the soils from the four mounds were combined into

one composite sample per field (around 500 to 1000 g of soil).

An additional set of 14 composite soil samples was collected by the International Center for Research in Agroforestry

(ICRAF) at Liliyo from one sentinel site called "Petit-Bouaké" (UNEP, 2012). Sampling took place between 25 and 29 August,

2015 at positions that were previously selected for the Land Degradation Surveillance Framework (LDSF) in a spatially stratified100

manner (Vagen et al., 2010). The soil samples received from ICRAF were within the same landscape as the sampled soils in

Liliyo within YAMSYS, but sampled from different positions. All soil samples were air-dried and stored in plastic bags until

further analysis.

2.2 Soil reference analyses

The air-dried soil samples were crushed and sieved at 2 mm. About 60 to 70 g of the sieved soil was oven-dried at 60◦C for 24105

hours, of which 20 g were ball-milled. All chemical analyses except soil pH were conducted both on the soils sampled in yam

fields (n= 80) and the LDSF soils obtained from ICRAF (n= 14).

The milled soils were analyzed for total C and macronutrient (N and S) concentrations using an elemental analyzer (vario

PYRO cube, Elementar Analysensysteme GmbH, Germany). For each of the four landscapes, two soils were selected and ana-

lyzed based on three analytical replicates for quantifying within-sample variance of the elemental analysis. For the remaining110

samples, the analysis was not repeated. Sulfanilamide was used as a calibration standard for the dry combustion. For pH deter-

mination 10 g of air-dried soil per sample was placed in a 50 mL Falcon tube and 20 mL of de-ionized water was added. The

samples were shaken in a horizontal shaker for 1.5 hours and measured for pH using a pH electrode (Benchtop pH/ISE meter

model 720A, Orion Research Inc., USA).

Bioavailable micronutrient (Fe, Mn, Zn, and Cu) concentrations in soils were determined with the diethylenetriaminepen-115

taacetic acid (DTPA) extraction method, as described in Lindsay and Norvell (1978). The extracting solution consisted of

0.0005 M DTPA, 0.01 M CaCl2, and 0.1 M triethanolamine. Briefly, 10 g of the sieved (<2 mm) soils were extracted with

20 mL of DTPA solution. Micronutrient concentrations in the filtrates were measured by inductively coupled plasma optical

emission spectroscopy (ICP-OES, a Shimandzu Plasma Atomic Emission Spectrometer ICPE-9820). Final DTPA extractable
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concentrations of Fe, Mn, Zn, and Cu were calculated back to per kg dry soil. For each landscape, two soils were selected and120

analyzed in triplicates to assess analytical errors. For the remaining soils the analysis was not repeated.

For each sample, the concentrations of total element (Fe, Si, Al, K, Ca, P, Zn, Cu, and Mn) in the soil was assessed by

energy dispersive X-ray fluorescence spectrometry (ED-XRF) measurements on 4 g of the milled soil with a SPECTRO XEPHOS

instrument (SPECTRO Analytical Instruments GmbH, Germany). The soil was mixed with equal amount of wax using a ball

mill and pressed into pellets. Exchangeable cations (Ca2+, Mg2+, K+, Na+, and Al3+) were determined with the BaCl2125

method (Hendershot and Duquette, 1986). About 2 g of the air-dried soil (<2 mm) were extracted by shaking for 2 hours

with 30 mL of 0.1 M BaCl2 on a horizontal shaker (120 cycles min−1). The suspension was filtered through no. 40 filter

paper (Whatman, Brentford, UK). For each landscape, two soils were analyzed in analytical triplicates. The concentrations of

exchangeable cations in the BaCl2 extract were measured by inductively coupled plasma optical emission spectroscopy (ICP-

OES, Shimandzu Plasma Atomic Emission Spectrometer ICPE-9820). Different BaCl2 extract dilutions were used in order to130

obtain an optimal signal intensity for the quantification of specific elements across all samples. Concentration of H+ per kg

dry soil was calculated based on the pH measured in the BaCl2 extractant. The BaCl2 extraction does only slightly modify

pH and is therefore an appropriate method to calculate effective CEC (CECeff) at native soil pH. Using the concentrations of the

BaCl2-extractable cations (i.e. Ca2+, Mg2+, K+, Na+, Al3+ and H+), CECeff was calculated as sum of exchangeable cations

in cmol of cation charge per kg dry soil. Exchangeable acidity was defined by the sum of exchangeable Al3+ and H+. Base135

saturation in % was calculated as ratio of the sum of basic cations (Ca2+, Mg2+, K+, and Na+) in cmol(+) per kg soil to the

CECeff multiplied by 100.

Particle size analysis was conducted by the International Institute of Tropical Agriculture (IITA) in Cameroon, as described

in Bouyoucos (1951). Briefly, 50 g of dried 2 mm sieved soil was stirred with 50 mL 4 % sodium hexametaphosphate and

100 mL of deionized water in a mixer, to break down the aggregates into into individual particles. Readings with a hydrometer140

(ASTM 152 H, Thermco, New Jersey, USA) were taken after letting it stand in the suspension for 30 minutes. The silt content

was calculated by subtracting the measured proportion of sand and clay from 100%.

Spectroscopic measurements

The milled soils (n= 94) were measured on a Bruker ALPHA DRIFT spectrometer (Bruker Optics GmbH, Ettingen, Germany),

which was equipped with a ZnSe optics device, a KBr beamsplitter, and a DTGS (deuterated tri-glycine sulfate) detector. Mid-145

IR spectra were recorded between 4000 cm−1 and 500 cm−1 with a spectral resolution of 4 cm−1 and a sampling resolution

of 2 cm−1. Reflectance (R) spectra were transformed to apparent absorbance (A) using A= log10(1/R) and corrected for

atmospheric CO2 using macros within the OPUS spectrometer software (Bruker Corporation, US). The spectra were referenced

to a IR-grade fine ground potassium bromide (KBr) powder spectrum, which was measured prior to the first soil sample and

measured every hour again. All spectra were recorded by averaging 128 scans (internal measurements) to improve the signal-150

to-noise ratio for each of the three independent replicate samples of each soil.
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2.3 Spectroscopic modeling

2.3.1 Processing of soil spectra

Three replicates of spectra were averaged for each sample. The spectra were transformed by using a Savitzky-Golay smoothed

first derivative using a third-order polynomial and a window size of 21 points (42 cm−1 at spectrum interval of 2 cm−1)155

(Savitzky and Golay, 1964). Prior to spectral modeling, Savitzky-Golay preprocessed spectra were further mean centered and

scaled (divided by standard deviation) at each wavenumber.

2.3.2 Model development and validation

The measured soil properties were modeled by applying partial least squares regression (PLSR) (Wold et al., 1983) with the

preprocessed spectra as predictors. The models were fitted using the orthogonal scores PLSR algorithm. 5-times repeated 10-160

fold cross-validation was performed to provide unbiased and precise assessment of PLSR model performance (Molinaro et al.,

2005; Kim, 2009). For each individual soil property, the number of factors for the most accurate PLSR model was tuned

separately. For each soil property model, the sample set was repeatedly randomly split into k = 10 (approximately) equally-

sized subsets without replacement for all repeats r = 1,2, ..,5 and all candidate values in the tuning grid with the number

of PLSR factors (ncomp) = 1,2, ...,10. Within each of the r×ncomp = 5× 10 = 50 resampling data set splits, each of the165

10 possible held-out and model fitting set combinations (folds) was subjected to candidate model building at the respective

ncomp, using k− 1 = 9 out of 10 subsets and remaining held-out samples were predicted based on the fitted models. The root

mean square error (RMSE, eq. (1)) of the held-out samples was calculated by aggregating all repeated K-fold cross-validation

predictions (ŷi) and corresponding observed values (yi) grouped by ncomp, which resulted in a cross-validated performance

profile RMSE vs. ncomp.170

RMSE =

√∑n
i=1(ŷi− yi)2

n
(1)

Based on this performance profile, the minimal ncomp among the models whose performance was within a single standard

error (“One standard error” rule, (Breiman et al., 1984)) of the lowest numerical value of RMSE was selected.

Model assessment was done with the best factors for each property using cross-validation hold outs. We reported the cross-

validated measures RMSE, R2 (coefficient of determination) obtained via linear least-squares regression, and ratio of perfor-175

mance to deviation (RPD), after averaging predictions across repeats. The RPD index is the ratio of the chemical reference data

standard deviation (sy) to the RMSE of prediction.

RPD =
sy

RMSE
(2)
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Besides calculating the above listed performance measures, the uncertainty of spectral estimates was graphically reported

for each soil sample, using prediction means and 95% confidence intervals derived from cross-validation repeats (n= r = 5;180

Eq. 3 and 4).

S2
n =

1

n− 1

n∑
i=1

(yi− ŷi)
2

(3)

ŷi± t(n− 1,1−α/2) Sn√
n
;α= 0.05 (4)

To cover the full training data space in the models for future sample predictions, the final PLSR models were rebuilt using

the entire training set and the respective values of optimal final number of PLSR components determined by the procedure185

described above.

2.3.3 Model interpretation

The mid-IR spectra contain complex information about soil composition and properties. To establish a predictive relation-

ship, statistical models need to find relevant spectral features for each soil property. Model interpretation requires a variable

importance assessment to decide on the contribution of spectral variables to prediction and to explain spectral mechanisms.190

Therefore, we conducted model interpretation based on the variable importance in projection (VIP) method (Wold et al., 1993;

Chong and Jun, 2005), using the model at respective best number of factors (ncomp). The VIP measure vj was calculated for

each wavenumber variable j as

vj =

√√√√p

A∑
a=1

[
SSa

(
waj/‖waj‖

)2]
/

A∑
a=1

(SSa) (5)

where waj are the PLSR weights for the ath component for each of the wavenumber variables and SSa is the sum of squares195

explained by the ath component:

SSa = q2a t
T
a ta (6)

where qa are the scores of the predicted variable y and ta are the scores of the predictors X . These VIP scores account for

multicollinearity found in spectra and are considered as robust measure to identify relevant predictors. Important wavenumbers

were classified with a VIP score above 1. A variable with VIP above 1 contributes more than the average to the model prediction.200

For model interpretation, we only computed VIP at the respective finally chosen number of PLS components afinal for each

considered model. We focused on a selection of three well performing models with R2 ≥ 0.8 (RPD ≥ 2.3) to illustrate model

interpretation. These were total C, total N and clay content.
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2.4 Statistical software

The entire analysis was performed using the R statistical computing language and environment (version 3.6.0) (R Core Team,205

2017). We used the pls (Mevik et al., 2019) package for PLSR, as described by Martens and Naes (1989). Cross-validation

resampling, model tuning, and assessment was done using the caret package (Kuhn et al., 2019). Custom functions from the

simplerspec package were used for spectroscopic modeling (Baumann, 2019). All data and code to reproduce the results

of this study is available online via Zenodo (Baumann, 2020).

3 Results210

Measured properties and mid-IR estimates of yam soils

The distribution of soil properties of the yam fields showed a wide variation across the landscapes (Figure 1). Total C concen-

trations across all fields ranged from 2.4 g C kg−1 soil to 24.7 g C kg−1 soil. Total C values at the landscape scale were the

lowest (median) in Léo and the highest in Tiéningboué. Soils from yam fields in the two landscapes from Ivory Coast (13.0

± 5.4 g C kg−1 soil; mean ± standard deviation) had relatively higher total C compared with the fields in the landscapes215

in Burkina Faso (6.1 ± 3.6 g C kg−1 soil). The median value and variation of CECeff exhibited similar patterns across the

landscapes to total C. Total N concentrations across all fields ranged from 0.18 g N kg−1 soil to 2.48 g N kg−1 soil. Total N

within and across the four landscapes exhibited a similar pattern as total C. Generally, the landscapes in Burkina Faso were

low in total N compared to those from Ivory Coast (0.44 ± 0.24 g N kg−1 soil vs. 1.09 ± 0.46 g N kg−1 soil). Median total N

concentrations were almost identical for Liliyo and Tiéningboué with 1.1 g N kg−1 soil). Total S concentrations varied between220

41 mg S kg−1 soil to 242 mg S kg−1 soil across all fields, and showed a similar pattern as total C and N. The yam fields in the

landscapes of Bukina Faso had on average more than two times higher total S than the other landscapes. Total P concentrations

were in a similar range for the landscapes Léo, Midebdo, and Liliyo. In Tiéningboué, total P values were almost two times

higher than the other fields (817 mg S kg−1 soil vs. 453 mg P kg−1 soil), with more within-landscape variation.

The concentrations of total Fe, total Al, total Ca, total Zn, and total Cu in the soil tended to be higher for the landscapes in225

Ivory Coast than in Burkina Faso (Figure 1). To give an example, median concentrations of total Ca were 2.16 g Ca kg−1 soil

in fields sampled from the Tiéningboué region, and similar in Liliyo (= 1.90 g Ca kg−1 soil), while they were markedly

lower in Léo and Midebdo (= 0.90 vs. 1.26 g Ca kg−1 soil). In general, the ranges for total micronutrient contents were more

variable in the landscapes of Ivory Coast (e.g., range = 14.0–57.0 mg Zn kg−1 soil in Liliyo; lowest range in Léo = 12.2–

19.7 mg Zn kg−1 soil). Total K concentration was highly variable within and across the landscapes (overall range = 0.5–230

34.1 g K kg−1 soil), and lowest in Midebdo (range = 0.9–8.9 g K kg−1 soil), while the highest total K median was measured

in yam fields of Léo (range = 4.1–25.0 g K kg−1 soil).

Median extractable Fe and its interquartile ranges were comparable across the landscapes (see Figure 1). However, there

were some fields where extractable Fe reached values higher than 100 mg Fe kg−1 soil. Median extractable Zn values showed

a similar pattern as total C, with the highest median values and interquartile range in Tiéningboué and had the lowest in Léo. In235
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Figure 1. Reference measurements of soil chemical properties. Léo and Midebdo are two yam growing landscapes in Burkina Faso, and

Lilyo and Tiéningboué are in Côte d’Ivoire. The chemically analyzed soils (n= 94) originated from 20 yam fields per landscape, and 14

additional soils from the Lilyo region were provided by the World Agroforestry Center (ICRAF). C = carbon, N = nitrogen, P = phosphorus,

Fe = iron, Al = aluminum, Si = silicum, Ca = calcium, Zn = zinc, Cu = copper, K = potassium, Mn = manganese. Bioavailable micronutrients

were measured by the diethylenetriaminepentaacetic acid (DTPA) extraction method. Ca(exch.), Mg(exch.), K(exch.), and Al(exch.) signify

exchangeable elements determined with BaCl2 extraction. CECeff = effective cation exchange capacity, BSeff = effective base saturation. The

number of soils analyzed for each individual property is indicated above the the 75% percentile.
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comparison, the highest median values and interquartile range of extractable Cu and Mn were found in Liliyo. For extractable

Zn, Cu, and Mn median values and interquartile range were higher in the two landscapes in Ivory Coast than the two landscapes

in Burkina Faso.

Across all samples and landscapes, soil pH varied between 4.7 and 8.4. Median pH was comparable in Tiéningboué (=

6.4), Liliyo (= 6.5), and Midebdo (= 6.5). Median pH of yam fields in Léo (= 6.0) was lower than in the other landscapes.240

Exchangeable K, Ca, and Mg concentrations showed similar patterns across the four landscapes. In Burkina Faso, each of the

exchangeable cations showed relatively low median concentrations across the fields and less landscape-level variation than in

Ivory Coast. In general, the highest median and variation of exchangeable cations among the landscapes were measured in

the yam field soils of Tiéningboué. Median exchangeable Al values were comparable among the landscapes, although there

were some outliers with exchangeable Al > 20 mg kg−1 soil for Midebdo, Liliyo, and Tiéningboué. The CECeff ranged from245

0.9 cmol(+) kg−1 soil to 14.6 cmol(+) kg−1 soil across all fields and landscapes. Median CECeff tended to decreases in the

following order across landscapes: Léo > Midebdo > Liliyo > Tiéningboué. The interquartile range of CECeff was also the

greatest in Tiéningboué and the smallest in Léo.

Reference measurements for total N, S, exchangeable Ca, exchangeable Mg and CECeff. were closely correlated with total

C (Figure 2; 0.71≤ r ≤ 0.92 (CECeff.)). Also, total Ca, Al, and clay content correlated closely with total C (r > 0.70). Clay250

contents were weakly related to silt (r = 0.21), while sand had a markedly negative relationship with silt (r =−0.89). Bioavail-

able Zn (DTPA) was co-varying with both CECeff. (r = 0.58) and total Zn (r = 0.59). Bioavailable Cu (DTPA) had a strongly

positive association to total Cu (r = 0.90). Exchangeable K (BaCl2) had the strongest relationship with total C and CECeff.

(r = 0.63, and r = 0.64).

3.1 Soil mid-IR spectroscopic models255

Among the measured soil properties, mid-IR PLSR models for total K (R2 = 0.96) and total Al (R2 = 0.97) were best per-

forming (Table 1). Out of a total of 27 soil attributes, 11 were well quantified by the models (R2
cv > 0.75; Figure 3). The

confidence intervals derived from cross-validation prediction were very narrow, showing that all PLSR models were stable.

Within this group of stable models, four soil attributes are directly related to the mineralogy (total Fe, Al, K and Ca), three are

related to soil organic matter (total C, N and S), one to texture (clay fraction), one to plant nutrition (exchangeable Fe), and two260

related to mineralogy and plant nutrition (exchangeable Ca and CECeff). More specifically, total C was accurately predicted,

with an R2 of 0.92 and a RMSE of 1.6 g C kg−1 soil. The models were also able to predict total N well (R2 = 0.89; RMSE

= 0.16 g N kg−1 soil). Prediction accuracy of total S was slightly lower than for total C, but its goodness-of-fit and RMSE

suggest that the model was reliable for prediction. However, exchangeable K (R2 = 0.28) and BSeff (R2 = 0.24) were poorly

predicted (Table 1). Predictions for percent clay were reliable (R2 = 0.81; RMSE = 2.1%), whereas predictions for percent265

sand (R2 = 0.45; RMSE = 8.1%) and percent silt (R2 = 0.41; RMSE = 6.5%) were not accurate. Finally, chosen models of all

soil attributes had between 1 and 9 PLSR components.
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Figure 2. Correlation matrix of soil properties measured on each 20 soils sampled from individual yam fields per landscape, and 14 additional

agricultural soils received from the World Agroforestry Center (n= 94; see Figure 1 for further details and abbreviated chemical properties).

Pearson correlation coefficients (r) were rounded to 1 digit.
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Table 1. Descriptive summary of measured (meas.) soil reference data (see Figure 1) and evaluation results of cross-validated PLSR models.

All samples across the four landscapes were aggregated into a single model per respective soil property. Model evaluation was done on held-

out predictions of 5 times repeated 10-fold cross-validation (cv) at the finally selected number of PLSR components (ncomp). CV = coefficient

of variation, RMSE = root mean square error, RPD = ratio of performance to deviation. C = carbon, N = nitrogen, P = phosphorus, Fe = iron,

Al = aluminum, Si = silicum, Ca = calcium, Zn = zinc, Cu = copper, K = potassium, Mn = manganese. Bioavailable micronutrients were

measured by diethylenetriaminepentaacetic acid (DTPA) extraction. Ca(exch.), Mg(exch.), K(exch.), and Al(exch.) signify exchangeable

elements determined with BaCl2 extraction. CECeff = effective cation exchange capacity, BSeff = effective base saturation.

Soil attribute n Minmeas. Maxmeas. Medmeas. Meanmeas. CVmeas. ncomp RMSEcv R2
cv RPDcv

Total C [g kg−1] 94 2.4 24.7 8.5 9.9 58 6 1.6 0.92 3.6

Total N [g kg−1] 94 0.18 2.48 0.72 0.81 61 6 0.16 0.89 3.0

Total S [mg kg−1] 94 41 242 99 111 46 2 20 0.85 2.6

Sand [%] 80 29.8 91.6 75.6 74.2 14 2 8.1 0.42 1.3

Silt [%] 80 3.9 54.1 12.0 14.1 60 2 6.5 0.41 1.3

Clay [%] 80 4.5 26.1 10.1 11.6 42 2 2.1 0.81 2.3

Total P [mg kg−1] 94 240 1631 467 530 40 3 131 0.61 1.6

Total Fe [g kg−1] 94 4 35 10 12 54 5 3 0.81 2.3

Total Al [g kg−1] 94 10 102 48 53 42 5 4 0.97 6.0

Total Si [g kg−1] 94 200 363 262 262 12 3 20 0.59 1.6

Total Ca [g kg−1] 94 0.3 7.6 1.4 1.9 70 5 0.6 0.78 2.2

Total Zn [mg kg−1] 94 9.5 71.6 19.1 22.6 49 1 6.7 0.63 1.7

Total Cu [mg kg−1] 94 0.5 29.2 4.7 6.8 87 7 3.2 0.71 1.9

Total K [g kg−1] 94 0.5 34.1 5.8 9.5 91 7 1.7 0.96 5.1

Total Mn [mg kg−1] 94 59.2 1146.0 221.5 308.0 74 5 116.4 0.74 2.0

log(Fe(DTPA)) [mg kg−1] 92 1.0 6.7 2.7 2.9 38 9 0.5 0.77 2.0

Zn (DTPA) [mg kg−1] 87 0.2 11.5 1.9 2.8 89 3 2.1 0.25 1.1

Cu (DTPA) [mg kg−1] 92 0.1 1.5 0.2 0.4 89 6 0.2 0.74 2.0

Mn (DTPA) [mg kg−1] 92 2.5 31.4 6.5 8.6 69 3 4.0 0.55 1.5

pHH20 80 4.7 8.4 6.4 6.4 11 8 0.5 0.61 1.6

Ca (exch.) [mg kg−1] 92 98 2170 604 774 70 5 237 0.81 2.3

Mg (exch.) [mg kg−1] 93 18 432 76 113 84 3 58 0.62 1.6

K (exch.) [mg kg−1] 94 0 868 104 145 95 1 120 0.28 1.2

Al (exch.) [mg kg−1] 94 0 47 0 4 258 2 9 0.21 1.1

CECeff [cmol(+) kg−1] 91 0.9 14.6 4.2 5.3 67 6 1.4 0.84 2.5

BSeff [%] 91 79 100 100 98 4 2 3 0.24 1.1

3.1.1 Model interpretation

A large proportion of absorptions had VIP > 1 for each the total C, total N and clay models (Figure 4). Important wavenumbers

(VIP > 1) for total C were mostly between 3140 cm−1 and 1230 cm−1. Besides clear absorption peaks, there were relatively270
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Figure 3. Cross-validated predictions of soil properties derived from best mid-infrared (mid-IR) partial least squares regression (PLSR) mod-

els vs. laboratory reference measurements (see Figure 1). Average estimates, their confidence intervals (error bars), and evaluation metrics

were derived with 5× repeated 10-fold cross-validation. ncomp = number of PLSR components of most accurate final models, RSME = root

mean square error, RPD = ratio of performance to deviation. Only soil properties modeled with R2 > 0.75 are shown. CECeff = effective

cation exchange capacity. Exchangeable (exch.) elements were determined with BaCl2. Bioavailable Fe was determined diethylenetriamine-

pentaacetic acid (DTPA) extraction.
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continuous spectral features that were important to the models. For example, the relatively continuous and smooth spectral

region between the alkyl C−H vibrations at 2855 cm−1 and 2362 cm−1 had comparable contribution to the model as peak

regions associated with total C prediction. The VIP patterns across wavenumbers were almost identical for total C and N

models, and its reference measurements were strongly correlated (r = 0.94; Figure 2). In contrast, the clay content model

deviated from the total C model in particular regions, for example around the kaolinite OH− feature at 3620 cm−1 or at275

kaolinite Al−O−H vibrations at 934 cm−1 and 914 cm−1.
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Figure 4. Variable importance analysis of partial least squares regression (PLSR) models for the concentrations of total soil C and total N,

and clay content, including overlaid raw and preprocessed spectra. Top panel shows resampled mean sample absorbance spectra (n= 94).

Prominent peaks were identified as local maxima with a span of 10 points 20 cm−1 for the selected wavenumbers. Fundamental mid-

IR vibrations that are well described in the literature (e.g., Madejová et al., 2002; Rossel and Behrens, 2010; Stevens et al., 2013) were

added as labels when identified peaks matched literature assignments. (Q) stands for quartz and (K) for kaolinite. The middle panel depicts

preprocessed spectra (Savitzky-Golay first derivative with a window size of 21 points (42 cm−1); 3rd order polynomial fit). The bottom panel

shows variable importance in the projection (VIP) for three selected well performing PLSR models (total C, total N and clay; R2 > 0.81).

The black horizontal line at VIP = 1 indicates the threshold above where absorbance at the wavenumbers explain more than average to the

prediction of a certain soil property. Dashed points closely below the y = 0 line of the VIP graph visualize positive (above y = 0) and negative

(below y = 0) PLSR β coefficients.
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Discussion

3.2 Accuracy and relevance of mid-IR spectroscopy for agronomic diagnostics

Timely and accurate estimates of multiple soil properties are required to better understand and predict soil constraints across

the yam belt in West Africa. The soil spectral library from our study, which includes four landscapes of the yam belt, can280

be practical to diagnose and monitor (and eventually manage) soil fertility that is considered to be low and therefore being

a major constraint to yam production in West Africa. Specifically, our results show that properties closely related to organic

matter — total amount of C, (micro)-nutrients, and exchangeable cations — can be accurately estimated using mid-IR spectra

and in the selected yam growing landscapes (Figure 3). Soil organic matter plays a crucial role during vegetative growth

and tuber formation phases of yam, as it guarantees among many other functions the storage and availability of essential285

nutrients and water needed for yam and tuber growth throughout the season, and as well prevents soil erosion due to it’s

structural stabilization capacity. It promotes soil aggregation, which stabilizes soil organic matter and protects it from microbial

decomposition (Six et al., 2006).

Fertilizers are becoming more essential to replenish mineral nutrients for prolonged cropping. Nevertheless, soil organic mat-

ter is at high risk of depletion in the regions because of the increasing land use frequencies and shorter fallows to restore the soil290

organic C pools. While it is pivotal to develop innovative crop and soil management solutions to this problem (O’Sullivan and

Jenner, 2006; Frossard et al., 2017; Kiba et al., 2020), it is also crucial to perform a separate but complementary activity to give

feedback on potential soil changes: developing and applying soil conventional and proximal sensing methods. When testing

sustainable soil and crop management options, for example to derive region-specific and farm-adapted nutrient management

strategies, putting both validated quantitative statements on the status of soil organic carbon and local farmers’ soil knowledge295

into the equation is crucial (Wawire et al., 2021). Inevitably, both determining the inherent soil status (i.e., soil texture and

organic carbon) and measuring the chemical and physical environment that regulates nutrient availability at trial sites (e.g.,

pH), is of agronomic and environmental importance (Foster, 1981). Maintaining and improving soil quality attributes will be

paramount to sustain soils’ ecosystem functions and crop yields over time. Activities to maintain and improve soil properties

can for example be oriented towards fostering nutrient recycling.300

Quick and reasonably accurate soil estimates derived from mid-IR spectra and empiric models as for example outlined

in this study can inform site-adapted timing, placing and form of nutrient supply based on local soil conditions. To give a

specific example, yam requires relatively large quantities of N and K (e.g., O’Sullivan, 2010); on light-textured soils, yam

can attainhigh tuber yields, but at a high risk of loosing large proportions of applied N and K to the environment (e.g., Diby

et al., 2011). Therefore, spectral estimates of texture can give an indication that applying larger amounts of N and K at once305

would not improve yield potential under such situations. Hence, more frequent and local mineral applications of these nutrients

after crop emergence, eventually combined with organic mulch, could improve the fertilizer efficiency and mitigate negative

environmental impacts under these soil conditions. To estimate the availability of specific (micro)nutrients, however, more

efforts need to be made to measure them at fine temporal and spatial resolution.
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The mid-IR model accurately estimated C (RMSE = 1.6 g kg−1 soil; Table 1; Figure 3). Mostly, only field-scale spectroscopic310

models achieve such accuracy (Nocita et al., 2015; Guerrero et al., 2016), whereas the predictive accuracy reported for larger-

scale application of spectroscopic models is lower than for our model (Rossel and Webster, 2012; Stevens et al., 2013; Sila

et al., 2016). Models covering a wide geographical range of soils often result in high prediction errors (Stenberg and Rossel,

2010). Despite different soil types and climate regimes across a wide geographic spacing between the calibration fields, we

achieved an accurate spectroscopic estimation of total C. The model was also able to reliably estimate a range of other important315

soil properties than total C. Specifically, other soil variables eligible for a mid-IR quantification include total N, total S, total

Ca, total K, total Al, exchangeable Ca, Fe DTPA, CECeff., and clay content (R2 > 0.75). The close correlations of total C with

N, S, exchangeable Ca, exchangeable Mg, CECeff., total Ca, Al, and clay content (Figure 2) are consistent with Johnson et al.

(2019), who reported very similar associations of clay content and exchangeable cations (Ca, Mg, K) as well as CECeff. in soils

from rice fields (0.54≤ r ≤ 0.65) — nevertheless they spectrally modeled a considerable soil variability (20 countries in sub-320

Saharan Africa; 42 study sites) and a larger sample size (n= 285) using PLS regression. At the same time, the measured range

and the error in spectral estimates of CEC were larger compared to ours (RMSE = 6.7 cmol(+) kg−1 vs. 1.4 cmol(+) kg−1;

range = 1.9–66.5 cmol(+) kg−1 vs. 0.9–14.6 cmol(+) kg). Even though, total K and Fe(DTPA) were poorly correlated with total

C, their spectroscopic estimates were relatively accurate. This suggests that the mid-IR prediction of other soil properties is

largely based on their correlation with total C as well as other absorption features of many organic and mineral soil components325

having a specific IR adsorption.

We also found reasonable prediction accuracy for Cu(DTPA) (R2 = 0.74) and Mn(DTPA) (R2 = 0.55), although soil nutrients

that are extraction-based or dependent on surface chemistry usually have variable predictive performance (Janik et al., 1998).

Since relationships between soil composition and soil matrix exchange processes are typically complex, some properties may

not be represented in the models in a straight-forward manner (Janik et al., 1998; Nocita et al., 2015).330

Although total elements are not necessarily a direct proxy for plant-available nutrients — with exception of total C from

organic matter — they can be related to mineralogical status, which is influenced by weathering and nutrient supply. For

example, total Fe from iron oxides can be important in controlling the availability of P (Parfitt et al., 1975) and total P can

be correlated to available P in other cases. For yam — which is an understudied crop with a relatively large yield gap —

fertilizer response on N, P, and K is often absent on soils that have been under long fallow periods (O’Sullivan, 2010). Even335

more importantly, the number of thoroughly conduced yam fertilizer trials in a region and for distinct soil types are often

not sufficient for site-specific calibration of soil tests with regard to fertilizer response and recommendations (O’Sullivan and

Jenner, 2006).

3.3 Interpretation of spectral features

All mid-IR spectra that we measured for soils in the four landscapes exhibited a similar pattern of absorbance (Figure 4).340

The O-Si-O absorptions in quartz at 1080 cm−1, 800–780 cm−1 and 700 cm−1 were a prominent feature in the spectra due

to relatively high sand contents across the landscapes (range 30% to 92%, median 76%). Our spectra further had hydroxyl

(OH) absorptions, which are typical for kaolin minerals, at 3695 cm−1 (surface OH), 3620 cm−1 (inner OH), 914 cm−1 (inner
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OH), and 936 cm−1 (surface OH) (Madejová et al., 2002). The spectral pattern between the hydroxyl bands at 3695 cm−1 and

3620 cm−1 was relatively consistent and the intensity ratio of these flanking peaks was close to 1. This is typical for halloysite345

(0.8–0.9) while the ratio for kaolinite is often higher (1.2–1.5) and dickite lower (0.6–0.8) (Lyon and Tuddenham, 1960). The

two weak intermediary stretching absorptions at around 3657 cm−1 and 3670 cm−1 indicate surface hydroxyls. Together with

the absorption at 936 cm−1, the spectra would suggest the presence of rather well-ordered prismatic halloysite (Hillier et al.,

2016). This aligns well with the spectral patterns of soils that were assigned to the Halloysite archetype through similarity

mapping (by comparison to the pure mineral spectra) by Sila et al. (2016). Our spectra confirm the presence of kaolin minerals,350

which reflects the advanced state of mineral weathering in these tropical soil types.

Our accurate predictions, which are comparable to field-scale calibrations, are most likely because of the relatively uniform

mid-IR spectra we obtained from our samples and their linear relationships to some of the key properties. This suggests a

relatively homogeneous soil chemical composition, particularly with regard to the mineralogy of the sampled soils. Still, the

data set presented here is relatively small and no randomized spatial sampling strategy was used for selecting field locations.355

Therefore, we propose to implement a spectroscopy-driven approach to diagnose soils in more yam growing areas, as an effort

to broaden the library to achieve better spatial coverage of soil variability.

4 Conclusions

We developed models with mid-IR spectra to estimate soil chemical and physical properties relevant to production of yam and

other staple crops in four landscapes in the yam belt of West Africa. We tested the models for the important soil properties that360

are applied widely for agronomic performance evaluation. We showed that mid-IR spectroscopy models have the potential to

cost-effectively and rapidly determine the distribution and variability of important soil properties across highly variable yam

production landscapes in West Africa. Specifically, total C, total N, total S, total Fe, total Al, total K, total Ca, exchangeable Ca,

CECeff, bioavailable Fe, and clay content can be quantified with RPD > 2 and R2 > 0.75 when aiming to predict in the range

of soil property values found in the environmental conditions covered by this study. We achieved spectral estimates with quite365

small uncertainties, that are typically reported for libraries at the geographical extent of a field or farm. The correlation analysis

of measured values together with spectral inference helps improve our understanding of how soil properties are interrelated

with soil functional composition. This study delivered parsimonious, unbiased and accurate mid-IR spectroscopy-based models

to monitor and predict soil quality and to manage crop nutrition. Hence, we envision this pilot study as being a starting point

to continuously update and adapt the mid-IR model library for more efficient site-specific and agronomically relevant soil370

estimates in the West African yam belt. This can bring better capacity to diagnose and and long-term monitor soils compared

with traditional wet chemistry, and will hopefully ameliorate the soil conditions for sustainably meeting the demand of yam

and other important staple crops in the regions.
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