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Abstract 

Lezíria Grande of Vila Franca de Xira, located in Portugal, is an important agricultural system where soil faces the risk of 15 

salinization due to climate change, as the level and salinity of groundwater are likely to increase, as a result of the rise of the 

sea water level and consequently of the estuary. These changes can also affect the salinity of the irrigation water which is 

collected upstream of the estuary. Soil salinity can be assessed over large areas by the following rationale: (1) use of 

electromagnetic induction (EMI) to measure the soil apparent electrical conductivity (ECa, mS m−1); (2) inversion of ECa to 

obtain electromagnetic conductivity images (EMCI) which provide the spatial distribution of the soil electrical conductivity 20 

(σ, mS m
−1

); (3) calibration process consisting of a regression between σ and the electrical conductivity of the saturated soil 

paste extract (ECe, dS m
−1

), used as a proxy for soil salinity; and (4) conversion of EMCI into salinity cross sections using 

the obtained calibration equation. 

In this study, EMI surveys and soil sampling were carried out between May 2017 and October 2018 at four locations with 

different salinity levels across the study area of Lezíria de Vila Franca. A previously developed regional calibration was used 25 

for predicting ECe from EMCI. Using time-lapse EMCI data, this study aims (1) to evaluate the ability of the regional 

calibration to predict soil salinity, and (2) to perform a preliminary qualitative analysis of soil salinity dynamics in the study 

area. The validation analysis showed that ECe was predicted with a root mean square error (RMSE) of 3.14 dS m−1 in a range 

of 52.35 dS m−1, slightly overestimated (−1.23 dS m−1), with a strong Lin’s concordance correlation coefficient (CCC) of 

0.94 and high linearity between measured and predicted data (R2 = 0.90). It was also observed that the prediction ability of 30 

the regional calibration is more influenced by spatial variability of data than temporal variability of data. Soil salinity cross 

sections were generated for each date and location of data collection, revealing qualitative salinity fluctuations related to the 

input of salts and water either through irrigation, precipitation, and level and salinity of groundwater. Time-lapse EMCI is 

developing into a valid methodology for evaluating the risk of soil salinization, so it can further support the evaluation and 

adoption of proper agricultural management strategies, especially in irrigated areas, where continuous monitoring of soil 35 

salinity dynamics is required. 
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1 Introduction 

Lezíria Grande de Vila Franca de Xira (hereafter called Lezíria de Vila Franca) is an important agricultural system of alluvial 40 

origin located by the estuary of river Tejo, northeast of Lisbon, Portugal (Fig. 1), where soil faces risk of salinization due to 

the marine origin of part of the sediments, tidal influence of the estuary, irrigation practices, and projected evolution of 

future climate with increasing temperature and decreasing precipitation. Traditional soil salinity investigations have been 

conducted in the study area using the electrical conductivity of a saturated soil paste extract (ECe, dS m
−1

) as a proxy for soil 

salinity. However, they were limited to few boreholes and involved soil sampling, which restricted the analysis to point 45 

information, often lacking representativeness at the field scale. In addition, borehole drilling is invasive and not feasible to 

conduct over large areas, given the large number of boreholes that needs to be made. 

Electromagnetic induction (EMI) is widely used as a non-invasive and cost-effective solution to map soil properties over 

large areas. EMI measures the apparent electrical conductivity of the soil (ECa, mS m
−1

), which is a function of soil 

properties such as salinity, texture, cation exchange capacity, water content and temperature. However, in a saline soil, soil 50 

salinity is generally the dominant factor responsible for the spatiotemporal variability of soil EC a when soil is moist. EMI 

surveys have been successfully used in conjunction with soil sampling to assess soil salinity through location-specific 

calibration between measured ECa and soil salinity (e.g. Triantafilis et al., 2000; 2001; Corwin and Lesch, 2005; Bouksila et 

al., 2012; Corwin and Scudiero, 2019; Kaufmann et al. 2019; von Hebel et al. 2019). However, the ability of this method for 

mapping soil salinity distribution with depth is limited. This is because EMI measures ECa, a depth-weighted average 55 

conductivity measurement, which does not represent the soil electrical conductivity (σ, mS m
−1

) with depth. More recently, 

a state-of-the-art approach called electromagnetic conductivity imaging (EMCI) has permitted to obtain σ from the inversion 

of multi-height and/or multi sensor ECa data (Monteiro Santos, 2004; Dafflon et al., 2013; von Hebel et al., 2014; Farzamian 

et al., 2015; Shanahan et al., 2015; Jadoon et al, 2015; Moghadas et al., 2017). When comparing σ with the soil properties 

sampled in boreholes, such as ECe, soil water content, pH, among others, a calibration process is developed through a 60 

regression between σ and the soil properties. This way, EMCI can be converted to a cross section of the soil properties which 
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show strong correlation with σ. This methodology has been applied in Lezíria de Vila Franca to study soil salinity risk 

(Farzamian et al., 2019; Paz et al., 2019b), and salinity and sodicity risk (Paz et al., 2019a) in which EMCI has been 

converted to ECe and sodium adsorption ratio. In this later study, the authors performed a principal component analysis of 

the soil properties in the study area, and found that the water content was correlated with sigma, but with a relatively lower 65 

influence when compared to the properties related to salinity (ECe, SAR and ESP). 

Because the inversion of ECa is relatively recent since the use of EMI for soil characterization, the lack of validation using an 

independent data set still limits the use of this new methodology (Corwin and Scudiero, 2019), making it therefore important 

to further test its accuracy in salinity monitoring. 

When repeated over a period of time at the same place, EMCI becomes time-lapse EMCI and can be used to investigate the 70 

dynamics of soil properties such as soil water content (Huang et al., 2017; 2018; Moghadas et al., 2017). Using time-lapse 

EMCI data, this study aims (1) to evaluate the ability of a previously developed regional calibration to predict soil salinity, 

and (2) to perform a preliminary qualitative analysis of soil salinity dynamics in the study area. For this purpose, EMI 

measurements and soil sampling were carried out between May 2017 and October 2018 at four locations with different 

salinity levels across the study area. EMI measurements were performed with a single-coil instrument (EM38), collecting 75 

ECa data in the horizontal and vertical orientations and at two heights, and then inverted to obtain EMCI, which provides a 

vertical distribution of σ. Finally, σ was converted to ECe using the previously developed regional calibration. Soil samples 

were collected along the EMI transects, and used for laboratory determination of ECe. These data were used as an 

independent dataset to evaluate the ability of the regional calibration to predict soil salinity, and to generate soil salinity cross 

sections for each date of data collection. 80 

2 Material and methods 

2.1 Study area 

The study was carried out in Lezíria de Vila Franca, a peninsula of alluvial origin surrounded by the rivers Tejo and Sorraia, 

and the Tejo estuary, located 10 km northeast of Lisbon, Portugal, as shown in Fig. 1. Soils in this region have fine to very 

fine texture and are classified as Fluvisols in the northern part and as Solonchaks in the southern part, according to the 85 
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Harmonized World Soil Database (Fischer et al., 2012). Climate is temperate with hot and dry summers, according to the 

Köppen classification. Daily measurements of precipitation, mean temperature and reference evapotranspiration recorded 

during the study period at the meteorological station represented by the blue circle in Fig. 1b, are shown in Fig. 2. Land use 

in this area (of about 130 km2) is constituted by irrigated annual crops in the northern part and mainly by rainfed pastures in 

the southern part. Irrigation is assured by an infrastructure that covers most of the area, collecting surface water at the 90 

confluence of the two rivers. The irrigation water has low salinity with electrical conductivity typically below 0.5 dS m-1 and 

sodium adsorption ratio below 1 (mmolc L−1)0.5. The area exhibits a north-south soil salinity gradient which influences the 

distribution of land use types and which is probably due to the regional distribution of the marine fraction of sediments and 

to the saline influence of the estuary on groundwater in the southern part. 

Four locations were chosen in the study area, as presented in Fig. 1b, with numbers 1 to 4. Locations 1, 2, and 3 are 95 

cultivated with annual rotations of irrigated herbaceous crops in spring and annual ryegrass (Lolium multiflorum) in the 

autumn, with ploughing usually once a year. During the study years (2017 and 2018), the spring crop at location 1 was 

tomato drip irrigated, and at locations 2 and 3 was maize irrigated by centre pivots. Location 4 is a rainfed spontaneous 

pasture that hasn’t been ploughed at least in the last ten years. During the study period, location 1 was irrigated from 

12 April to 23 July 2017 and from 30 May to 23 September 2018; location 2 was irrigated from 17 June to 11 October 2017 100 

and from 24 May to 22 September 2018; and location 3 was irrigated from 17 May to 10 September 2017 and from 06 June 

to 17 September 2018. Groundwater level is shallow, as expected in an estuarine environment, and has saline characteristics. 

In the southern part of the study area, closer to the estuary, the depth and salinity of groundwater are influenced by tidal 

variation. 
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 105 

Figure 1: (a–b) Location of the study area in Portugal, showing the main geographical features and the four locations; (c) details of 

the four locations showing the EM38 transects and the soil sampling sites © Google Earth. 

  

 

Figure 2: Distribution of daily precipitation (P), reference evapotranspiration (ET) and mean temperature (T) recorded at the 110 
meteorological station located in the study area during the study period. 
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2.2 Electromagnetic induction data acquisition and inversion 

EMI data was acquired using the EM38 instrument (Geonics Ltd, Mississauga, Canada). Technology of this instrument is 

based on two coils, one transmitting the electromagnetic signal, and the other receiving it, distanced 1 m apart from each 115 

other inside the instrument case. The position of these coils can be controlled by placing the instrument in a vertical position 

relative to the soil surface - horizontal dipole mode (the coils stand in the horizontal position), which provides a maximum 

depth of investigation of 1.5 m - or in a horizontal position relative to the soil surface - vertical dipole mode (the coils stand 

in the vertical position), which provides a maximum depth of investigation of 0.75 m. EM38 surveys were done on five dates 

at locations 1 and 4, and on six dates at locations 2 and 3, during the period of May 2017 to October 2018. Measurements on 120 

the two first dates were continuously acquired at each location, along a 100 m transect, using a GPS (Rikaline 6010, with 

5 m position accuracy) for registration of the position. Subsequent EMI measurements were acquired at each location, along 

a 20 m transect. The middle point of each 20 m transect was coincident with the medium point of each previous 100 m 

transect. Measurements were acquired at positions 1 m apart along the 20 m transects (Fig. 1c), overlapping the medium 

section of the 100 m transects. ECa was collected at two heights from the soil surface (0.15 and 0.4 m) in the horizontal and 125 

vertical dipole orientations, which was assured by placing the EM38 on a cart built specifically for this purpose. The cart has 

two shelves to accommodate the instrument, one at 0.15 m from the soil surface, and the other at 0.40 m from the soil 

surface. Inversion of ECa data to obtain σ was carried out using a 1-D laterally constrained inversion algorithm (Monteiro 

Santos et al., 2011). The ECa responses of the model were calculated through forward modelling based on the full solution of 

the Maxwell equations (Kaufman and Keller, 1983). The subsurface model used in the inversion process consisted of a set of 130 

1-D models distributed according to the position of the ECa measurements. The subsurface model at each measurement 

position was constrained by the neighbouring models, allowing the use of the algorithm in regions characterized by high 

conductivity contrast. An Occam regularization (De Groot-Hedlin and Constable, 1990) based approach was used to invert 

the ECa data. All ECa data, collected at the four locations, were inverted by applying a five-layer earth initial model with 

electrical conductivity of 100 mS m−1 and a fixed layer thickness of 0.30 m. To run the algorithm, several parameters were 135 

selected, such as the type of inversion algorithm, the number of iterations, and the smoothing factor (λ) that controls the 
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roughness of the model. The optimal inversion parameters for the present conditions were obtained in previous studies for 

the study area (Farzamian et al., 2019). 

2.3 Soil sampling and laboratory analysis 

Soil samples were collected at the same time of EMI surveys along the transects, as shown in Fig. 1c. At each sampling site, 140 

five soil samples were collected at 0.3 m increments, from a depth of 0.15 m to 1.35 m, as a representation of topsoil 

(0−0.3 m), subsurface (0.3−0.6 m), upper subsoil (0.6−0.9 m), intermediate subsoil (0.9−1.2 m), and lower subsoil (1.2–

1.5 m), to monitor water content and ECe. In the laboratory, water content was obtained using the gravimetric method, and 

then converted to volumetric water content (θ – m3 m−3) after bulk density (g m−3) determination from undisturbed 100 

cm3soil samples. ECe was measured with a conductivity meter (WTW 1C20-0211 inoLab) in the extract collected from the 145 

soil saturation paste obtained from 300 g of air-dry soil samples, according to the methods described by Richards (1954). In 

this study, the soil is classified according to its ECe level as non-saline (ECe<2 dS m
−1

), slightly-saline (2–4 dS m
−1

), 

moderately-saline (4–8 dS m
−1

), highly-saline (8–16 dS m
−1

), and severely saline (>16 dS m
−1

), according to the 

terminology proposed by Barrett-Lennard et al. (2008). 

2.4 Prediction of ECe from time-lapse EMCI  150 

A regional calibration to predict ECe from σ was previously developed for the study area resulting in the linear equation 

ECe = 0.03σ – 1.05 (Farzamian et al., 2019). This calibration was termed “regional” because the equation was obtained using 

all ECe and σ data collected at four locations in the study area. Farzamian et al. (2019) tested the regional and location-

specific calibrations, verifying that they have comparable prediction ability. However, the regional calibration can be used at 

any new location in the study area, within the range of measured ECe, which makes it highly suitable for mapping salinity in 155 

the study area. The regional calibration was based on data collected during May and June 2017 and was validated using a 

leave-one-out-cross-validation method with good results (RMSE = 2.54 dS m
−1 in the 0–37 dS m−1 range). The detailed 

calibration and cross-validation procedures are described in Farzamian et al. (2019).  

In the present study, the regional calibration was used to predict ECe from time-lapse EMCI (pECe). The predicted ECe and 

ECe measured from soil samples (mECe), collected at the same time as the EMI surveys, were used as an independent data 160 
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set for the validation of the regional calibration. The validation was performed by calculating the root mean square error 

(RMSE), the coefficient of determination (R2) between the measured and predicted ECe, the Lin’s concordance correlation 

coefficient (CCC), and the mean error (ME). Description of these statistical indicators and the equations used to calculate 

them are shown in Table 1. Calculations were done using global data, and also using data discriminated by date of 

measurement (in this case we considered dates when measurements were done at the four locations – January, June and 165 

October 2018), depth of measurement and location.  

 

Table 1 – Description and equations of the statistical indicators used to evaluate the prediction ability of the regional calibration in 

this work. 

Statistics Equation1 Description 

Root mean square error (RMSE) 

RMSE = √
∑ (mECei − pECei)

2n
i=1

n − 2
 

Evaluates matching between 

measured and predicted data. 

When it is zero, it indicates 

perfect matching between 

measured and predicted data. 

Mean error (ME) 
ME =

∑ (mECei − pECei)
n
i=1

n
 

Evaluates whether the predicted 

data are over- or underestimated. 

A negative value means 

overestimation, a positive value 

means underestimation. 

Lin’s concordance correlation 

coefficient (Lin’s CCC) Lin′s CCC =
2smECe−pECe

smECe
2 + spECe

2 + (mECei − pECei)
2
 

Evaluates agreement between 

measured and predicted data. 

Ranges from -1 to 1. When it is 1, 

it indicates perfect agreement 

between measured and predicted 

data (Lin, 1989). 

Coefficient of determination (R2) 

R2 =

(

 
∑ (mECei −mECei)(pECei − pECei)
n
i=1

√∑ (mECei −mECei)
2n

i=1 √∑ (pECei − pECei)
2n

i=1 )

 

2

 

Indicates the degree of linearity 

between predicted and measured 

data. Ranges from 0 to 1. Above 

0.5 is considered satisfactory. 

1n is the total number of data; mECe is measured ECe; pECe is predicted ECe; the upper bar represents the mean of the indicated data. 170 
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4 Results and discussion 

4.1 Temporal variation of measured θ and ECe 175 

Figure 3 shows the variation of θ and ECe with time at the sampling site located in the middle of each transect (Fig. 1c), at 

locations 1 to 4. At location 1, θ increases with depth and the lower subsoil (1.2–1.5 m) is permanently saturated within the 

study period. In the more superficial layers until 0.9 m depth, the influence of rainfall, evapotranspiration, and irrigation is 

noticeable. For instance, in the topsoil, θ peaks in January 2018 and lowers during the dry seasons, because drip irrigation 

during the dry seasons has a localized effect and there is high water uptake by the crop. At location 2, unlike the other 180 

locations, the lower subsoil is unsaturated. The influence of rainfall, evapotranspiration and irrigation is also noticeable. At 

locations 3 and 4, θ also increases with depth and the intermediate and lower subsoil layers are permanently saturated. 

Regarding ECe, at location 1 the values observed are always below 1 dS m
−1

, except for the topsoil in September and 

October 2018, which is probably due to fertigation practises during the irrigation period. At location 2, ECe generally 

increases with depth. All layers show a peak in June and July 2018, probably due to fertigation practises. At location 3, ECe 185 

reaches higher levels than at the previous locations, exceeding 4 dS m
−1

, which is the generally accepted threshold for the 

classification of saline soils. Location 4 presents the highest ECe of all locations. At the topsoil the values are below 4 

dS m
−1

, but increase consistently with depth to about 50 dS m
−1

 in the lower subsoil. The increase of ECe during June 2018 

can be due to the influence of saline groundwater. 

 190 
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Figure 3: Volumetric water content (θ – m3 m−3) and electrical conductivity of the soil saturation extract (ECe – dS m−1), in the 

topsoil (0–0.3 m), subsurface (0.3–0.6 m), upper subsoil (0.6–0.9 m), intermediate subsoil (0.9–1.2 m), and lower subsoil (1.2–

1.5 m), measured in the sampling site located at the middle of each transect, at locations 1 to 4, during the study period. Each 

circled number refers to each location. Crosses refer to the dates when there were ECe measurements but no σ measurements, due 195 
to adverse field conditions. 
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4.2. Time-lapse EMCIs  

Figure 4 shows the obtained EMCIs at locations 1 to 4 for each date of the EMI surveys. Globally, σ ranges from 19.44 

mS m−1 to 1431.57 mS m−1 with the lowest values at location 1 and the highest at location 4. A general increasing trend of σ 200 

is quite evident from the north to the south, accompanying the previously known soil salinity gradient. In addition, σ 

increases with depth at locations 2, 3 and 4. At location 1, σ ranges spatiotemporally from 19.44 mS m−1 to 128.08 m−1. At 

location 2, σ ranges from 28.02 mS m−1 to 469.39 mS m−1 with highest values at depth. A similar pattern of σ is evident at 

locations 3 and 4. However, a greater range of σ is seen at location 3 with values from 36.23 mS m−1 to 706.32 mS m−1. 

Location 4 exhibits the largest variations of σ, ranging from 48.57 mS m−1 to 1431.57 mS m−1. 205 
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Figure 4: Time-lapse electromagnetic conductivity images (EMCIs) for locations 1 to 4. 
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4.3 Prediction of ECe using the regional calibration 

For a specific evaluation of the prediction ability of the regional calibration, Table 2 shows the statistical indicators obtained 210 

using global data, i.e., data collected at all locations, from July 2017 to October 2018, and the statistical indicators for each 

date, soil depth, and location. The validation of the regional calibration using global data resulted in a RMSE of 3.14 dS m−1 

and R2 of 0.90, which indicates satisfactory prediction ability, given the large range of ECe (52.35 dS m−1). The high global 

Lin’s CCC of 0.94 shows agreement between measured and predicted ECe. The ME is −1.23 dS m−1, indicating that the 

regional calibration generally overestimates ECe. The statistical indicators discriminated by date of measurement (in this case 215 

we considered only the dates when measurements were done at the four locations – January, June and October 2018), shown 

in Table 2, also indicate that the prediction ability doesn’t vary significantly when comparing the statistical indicators of the 

three dates. The validation procedure used in this study gives slightly lower prediction ability for the regional calibration 

than the previously obtained with the leave-one-out-cross-validation (see section 2.4). This is expected as this dataset is 

completely independent from the dataset used to develop the calibration and was collected over a wider period of time (18 220 

months). During this period, soil properties, which are also known to influence σ, such as temperature and θ, change, which 

introduces larger variability in data. 

In terms of the influence of depth of measurement, prediction ability improves with depth, being weak at top soil, and very 

good from the subsurface to the lower subsoil. We attribute the weak prediction ability at top soil to the smaller range of ECe 

variability (0.35–5.17 dS m-1) and to the larger variability of other soil properties (e.g. θ and temperature), which are due to 225 

different irrigation schemes and cultivated crops at each location. In terms of the influence of each location, prediction 

ability varies considerably. At location 1, prediction ability is very poor, with a low R2, which means the degree of linearity 

between predicted and measured data is low, and a high RMSE within the considered range of ECe. At this location, 

however, the soil is non-saline and the range of ECe, is very small (0.35–1.89 dS m−1) and thus other soil properties such as θ 

and clay content have larger impact on spatiotemporal variability of σ. At locations 2, 3 and 4, prediction ability of the 230 

regional calibration is acceptable at the former two, and good at the latter. We can analyse better these results when 

observing Fig. 5, which shows ECe predicted with the regional calibration versus the measured ECe and the 1:1 line, with 

data identified in terms of date of measurement (Fig. 5a) and depth of measurement (Fig. 5b). Fig. 5c and Fig. 5d display an 

enlargement of the lower left part of the previous figures, displaying ECe values below 15 dS m −1, and data relative to 

locations 1, 2 and 3 at different depths. At location 2, ECe is more overestimated in deeper soil layers (Fig. 5d) which is 235 

likely due to the clay content that consistently increases with depth at this location, while it is rather uniform or declines with 

depth at the other locations (Farzamian et al., 2019). This is probably also the main reason for the very low Lin’s CCC at this 

location. At location 3, ECe is also overestimated (Fig. 5d), most likely due to the influence of θ and cation exchange 

capacity (Paz et al., 2019a) which are higher on average compared to locations 2 and 4. Finally, the ECe ranges of location 4 
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and of the lower subsoil are similar to the ECe range of global data, showing dominance of location 4 and of lower subsoil 240 

data on the calibration. 

These results show that spatial variability of data has a much stronger influence on the prediction ability of the regional 

calibration, than temporal variability of data. This spatial sensitivity of the regional calibration can be improved by studying 

new locations across the study area to include a wider variability of soil properties and ranges of ECe in the calibration 

process. On the other hand, longer observation periods and more frequent EMI surveying and soil sampling, as well as 245 

monitoring of other soil dynamic properties that influence σ (i.e. θ, soil temperature, level and salinity of groundwater) and 

finding ways to quantitatively account for their impact on time-lapse EMCIs, can improve the temporal sensitivity of 

regional calibration. 

 

 250 
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Table 2 – RMSE, ME, Lin’s CCC, R2, minimum, maximum and range of ECe, and the number of data used to 

calculate these statistical indicators, discriminated in terms of global, date of measurement, depth of measurement and 

location.  

 RMSE (dS m−1) ME (dS m−1) Lin's CCC R2 ECe min (dS m−1) ECe max (dS m−1) ECe range (dS m−1) Number of data 

Global 3.14 −1.23 0.94 0.90 0.35 52.70 52.35 103 

Jan 2018 2.79 −1.33 0.96 0.93 0.59 35.90 35.31 30 

Jun 2018 4.27 −0.08 0.94 0.94 0.35 52.70 52.35 20 

Oct 2018 3.11 −0.71 0.96 0.93 0.44 42.50 42.06 19 

0–0.3 m 1.79 −0.39 0.39 0.19 0.35 5.17 4.82 21 

0.3–0.6 m 1.74 −0.34 0.78 0.67 0.42 8.86 8.44 21 

0.6–0.9 m 2.40 −1.61 0.89 0.91 0.42 16.72 16.30 21 

0.9–1.2 m 4.77 −3.25 0.89 0.89 0.49 32.10 31.61 21 

1.2–1.5 m 4.71 −0.87 0.95 0.93 0.60 52.70 52.10 20 

Location 1 1.23 −0.59 −0.05 0.02 0.35 1.89 1.54 35 

Location 2 3.22 −2.40 0.23 0.56 0.91 3.86 2.95 24 

Location 3 3.88 −2.56 0.44 0.47 1.98 9.85 7.87 24 

Location 4 4.63 0.65 0.94 0.90 2.33 52.70 50.37 20 

 275 
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Figure 5: Plots of predicted ECe versus measured ECe and the 1:1 line, obtained for locations 1 to 4, identified in terms of date of 280 
measurement (a) and depth of measurement (b). Plots (c) and (d) show enlargements of the lower left part of plots (a) and (b), 

respectively. 

 

4.4 Generation of soil salinity cross sections from time-lapse EMCI 

Figure 6 shows the soil salinity cross sections (ECe predicted using the regional calibration) at locations 1 to 4 for each date 285 

of the EMI surveys, categorized into 6 salinity classes, ranging from non-saline to severely-saline. The measured ECe and the 

groundwater level at the sampling site located in the middle of each EMI transect are also shown.  
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Figure 6: Cross sections of soil salinity (predicted ECe) for locations 1 to 4, with representation of measured ECe (in circles) and 290 
groundwater level (blue triangles) at the sampling sites located in the middle of each transect. Note that in June 2018 at location 3 

and in July 2017 at location 4 there was no soil sampling. 
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The salinity cross sections for location 1 show that the soil is generally non-saline, with slightly saline zones in all dates 

except for October 2018. These saline zones occur in the top soil layers until 0.9 m depth (topsoil, subsurface and upper 295 

subsoil), and represent an overestimation of the soil salinity when compared to the measured ECe of the sampling point 

(which is invariably non-saline). This overestimation tendency is in agreement with Fig. 5d, where the very low range of 

spatiotemporal variations of soil salinity at this location can also be observed. In such conditions, other soil properties, such 

as θ, dominate the small variations of σ, and therefore the ability to predict salinity from σ at this location was reduced. Our 

previous studies with both location-specific and regional calibrations tested at this location showed similar results 300 

(Farzamian et al., 2019).  

At location 2 the salinity cross sections show an increase of salinity with depth from non-saline at the topsoil to highly-saline 

in the lower subsoil, with exception of July 2018, where the entire soil profile is moderately saline. The increase of soil 

salinity in upper soil layers in July 2018 can be attributed to fertigation practices for the maize cultivation that introduced 

salts into the soil profile. The salinity cross sections also show the overestimation of salinity occurring mainly at deeper soil 305 

layers, which agrees with the results presented in Fig. 5d and discussed in section 4.3.  

At location 3 soil salinity is well predicted in May 2017 but tends to be slightly overestimated in the remaining dates, 

especially in July 2018. The salinity cross sections show that salinity increases with depth reaching severely-saline in 

May 2017 and October 2017. This can be due to the influence of the saline groundwater (as seen in Fig. 3, the intermediate 

and lower subsoil layers are permanently saturated). The groundwater level is above 1.5 m in January 2018, although the 310 

salinity of the deeper soil layers (>0.9 m) decreases compared to May and October 2017, which could be due to washing of 

the profile by rainfall. The increase of soil salinity in upper soil layers in July 2018, similarly to location 2 on the same date, 

can be attributed to fertigation practices for the maize cultivation. 

At location 4 the trend of increasing salinity with depth is accurate in all dates, but it tends to be slightly underestimated. The 

salinity cross sections show that salinity increases from non-saline in topsoil to severely-saline in lower subsoil. This is 315 

probably related to the saline groundwater level above 1.5 m. During the dry period of the year, salinity of the lower subsoil 

reaches the highest values (June 2018). 
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Comparison of the salinity cross sections between locations confirms the previously known north-south soil salinity spatial 

gradient of the study area, that is, from location 1 to 4, soil salinity generally increases. Soil salinity dynamics at each 

location reveals fluctuations in time related to the input of salts and water either through irrigation, precipitation or 320 

groundwater level and salinity. Location 1 tends to have non-saline characteristics, which can be attributed to good quality 

irrigation. In addition, this location is far from the estuary, making it less prone to the presence of saline groundwater. At 

locations 2 and 3, the salinity cross sections show an increase of soil salinity in the upper layers during the dry season (when 

irrigation occurs), which decreases in the following months with increased rainfall (Fig. 2). At the rainfed location 4, it is 

also visible an increment of salinity along the entire profile during the dry season. This is likely due to the influence of the 325 

saline groundwater and capillary rise along the profile. 

5 Conclusions 

In this study, EMI and soil sampling data collected between May 2017 and October 2018 were used, together with a 

previously developed regional calibration, to predict soil salinity. This procedure allowed further validation of the regional 

calibration with an independent dataset and a preliminary qualitative analysis of soil salinity dynamics in the study area. 330 

Based on the comprehensive analysis of the statistical indicators obtained from the validation process, and the obtained soil 

salinity cross sections, the following main conclusions can be drawn: 

1. The validation performed in this study resulted in a RMSE of 3.14 dS m−1, which is acceptable given the large 

range of ECe (52.35 dS m−1). This validation resulted in lower prediction ability than that previously resulting 

from cross-validation. This is because the test set was independent, and also because it was collected over a wider 335 

period of time, with a larger variation of soil properties. In addition, prediction ability of the regional calibration 

does not vary significantly over time. As a result, the regional calibration approach still stands as an expeditious 

method to predict soil salinity from EMI surveys at any new location in the study area. However, prediction 

ability of the regional calibration in assessing variability of soil salinity at different locations and depths varies 

significantly due to variability of soil properties at each location and depth. Our investigation shows that 340 

significantly larger variations of ECe and σ at location 4 dominated the regional regression calibration, suggesting 

a good prediction ability of the regional calibration in the south of the study area and close to location 4 where the 

soil salinization is of major concern and can compromise agricultural activity.  

2. The methodology used in this study allowed the generation of soil salinity cross sections displaying the patterns 

of soil salinity at different dates, at four locations in the study area. The salinity cross sections show a qualitative 345 

response of soil salinity to the input of salts and water either through irrigation, precipitation or level and salinity 
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of groundwater. In a regional perspective, soil salinity dynamics in the study area may be preliminarily explained 

by a combination of spatial distribution of the marine fraction of soil, with irrigation practices in the study area 

and saline groundwater in the southern part. 

Application of time-lapse EMCI and calibration for assessing soil salinity dynamics is a developing methodology that can 350 

further support the evaluation and adoption of proper agricultural management strategies in irrigated regions. Some aspects 

can and will be addressed in future studies so to improve its performance. From this study, we identify some of these aspects. 

First, relatively to the inversion process, and in the absence of a time-lapse inversion algorithm, ECa data was inverted 

independently. This method can distort the inversion results, since the reference model and a priori information are not 

considered. Further research involves time-lapse inversion algorithms that are being developed to invert data collected with 355 

EMI sensors, which can generate EMCIs of higher precision. Secondly, the influence of static soil properties (i.e., that do not 

vary in time), such as clay content and cation exchange capacity, could be tackled with the use of cross sections of the 

variation of soil salinity between two consecutive dates, which allows removing the static effect from the time-lapse EMCIs. 

Finally, temporal soil salinity assessment can be optimized by quantitatively taking into account the influence of soil 

dynamic properties on the time-lapse EMCIs. Specifically, in Lezíria, regional calibrations can be improved by studying new 360 

locations across the study area for a longer period of time with more frequent surveying and sampling, and also by including 

new parameters, such as θ, soil temperature, level and salinity of groundwater. However, the temporal variations of these 

properties are connected to location specific conditions. For instance, θ can vary significantly in the study area, particularly 

in the root zone, due to different irrigation practices, rootup take of different crops, and fluctuation of groundwater level. 

These facts highlight the necessity of using location-specific calibrations for a more precise assessment of soil salinity 365 

changes at each location. 
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