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Abstract. Decision tree algorithms such as Random Forest have become a widely adapted method for mapping soil 

properties in geographic space. However, implementing explicit geographic relationships into these methods has proven 

problematic. Using x- and y-coordinates as covariates gives orthogonal artefacts in the maps, and alternative methods using 

distances as covariates can be inflexible and difficult to interpret. We propose instead the use of coordinates along several 

axes tilted at oblique angles to provide an easily interpretable method for obtaining a realistic prediction surface. We test the 10 

method for mapping topsoil organic matter contents in an agricultural field in Denmark. The results show that the method 

provides accuracies on par with the most reliable alternative methods, namely kriging and the use of buffer distances to the 

training points. Furthermore, the proposed method is highly flexible, scalable and easily interpretable. This makes it a 

promising tool for mapping soil properties with complex spatial variation. We believe that the method will be highly useful 

for mapping soil properties in larger areas, and testing it for this purpose is a logical next step. 15 

1 Introduction 

Machine learning has become a frequently applied means for mapping soil properties in geographic space. The most 

common approach is to train models from soil observations and covariates in the form of geographic data layers. The models 

can often provide reliable predictions of soil properties. Many researchers have used decision tree algorithms, as they are 

computationally efficient, do not rely on assumptions about the distributions of the input variables, can use both numeric and 20 

categorical data and are immune to correlated and redundant covariates (Quinlan, 1996, Mitchell, 1997, Rokach and 

Maimon, 2005, Tan et al., 2014). Additionally, they effectively handle nonlinear relationships and complex interactions 

(Strobl et al., 2009). 

However, a disadvantage of decision tree models is that they do not explicitly take into account spatial relationships. Unlike 

geostatistical methods, such as kriging, the predictions can therefore contain biases in the form of spatially autocorrelated 25 

residuals. 

A number of studies have applied regression-kriging as a solution (Knotters et al., 1995, Odeh et al., 1995, Hengl et al., 

2004). By kriging the residuals of the predictive model and adding the kriged residuals to the prediction surface, soil 

mappers have been able to reduce or remove spatial biases. A disadvantage of this approach is that the combination of two 
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models hinders the combination of spatial relationships with the other covariates. Spatial relationships therefore remain 30 

disconnected from other statistical relationships in the analysis, leading to difficulties in interpreting the model and its 

associated uncertainties. 

An obvious solution to this problem would be to use the x- and y-coordinates of the soil observations as covariates. 

However, results have shown that this approach can lead to unrealistic orthogonal artefacts in the output maps when used in 

conjunction with decision tree algorithms (Behrens et al., 2018, Hengl et al., 2018, Nussbaum et al., 2018). The cause of this 35 

problem lies in the splitting procedure of decision tree algorithms, as they use only one covariate for each split. Therefore, a 

dataset containing only the x- and y-coordinates will force the algorithm to make orthogonal splits in geographic space. 

Several researchers have proposed solutions to this problem. Behrens et al. (2018) proposed the use of Euclidean distance 

fields (EDF) in the form of distances to the corners and middle of the study area as well as the x- and y-coordinates of the 

soil observations. Their results showed that this approach efficiently integrated spatial relationships and that accuracies were 40 

better than or on par with other methods for integrating spatial context. 

On the other hand, Hengl et al. (2018) suggested an approach referred to as spatial Random Forest (RFsp). This method 

consists of calculating data layers with buffer distances to each of the soil observations in the training dataset. It then trains a 

Random Forest model, using the buffer distances as covariates, combined with auxiliary data or on their own. The authors 

demonstrated the method on a large number of spatial prediction problems and showed that it effectively eliminated spatial 45 

autocorrelation from the residuals. 

Although these two methods are able to integrate spatial relationships in machine learning models, they are not without 

shortcomings. Firstly, the distances used in both methods depend either on the geometry of the study area, in the case of 

EDF, or on the locations of the soil samples, in the case of RFsp. The meaning and interpretation of the distances therefore 

varies depending on the study area and the soil observations. 50 

Another shortcoming relating to EDF and RFsp is that both methods specify the number of geographic data layers a priori. 

For EDF, the number of distance fields is seven, and for RFsp, the number of buffer distances is equal to the number of soil 

observations. This means that there is no straightforward way to increase the number of spatially explicit covariates, if the 

number is insufficient to account for spatial relationships. In addition, vice versa, there is no way to decrease the number of 

spatially explicit covariates even if a smaller number would suffice. The latter is especially relevant for RFsp, as the method 55 

is computationally unfeasible for datasets with a large number of observations (Hengl et al., 2018). 

In this study, we propose an alternative method for including spatially explicit covariates for mapping soil properties. With 

the method, we aim to address directly the cause of orthogonal artefacts arising from the use of x- and y-coordinates as 

covariates in decision tree models. Furthermore, we aim to improve upon the shortcomings of previous methods by 

developing a method that is both flexible and easily interpretable. 60 

We refer to the method as Oblique Geographic Coordinates (OGC). In short, it works by calculating coordinates for the 

observations along a series of axes, tilted at various oblique angles relative to the x-axis. By including oblique coordinates as 

covariates, we enable the decision tree algorithm to make oblique splits in geographic space. As this is not possible with only 
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x- and y-coordinates as covariates, this addition should allow the model to produce a more realistic prediction surface. 

Furthermore, as the number of oblique angles is adjustable, it should be possible to optimize it, both in terms of accuracy and 65 

computational efficiency. 

We test the method for predicting soil organic matter contents in a densely sampled agricultural field in Denmark, located in 

northern Europe. We hypothesise that OGC can provide accuracies on par with previous methods for including explicitly 

spatial covariates. We also hypothesize that it is possible to adjust the number of oblique angles in order to optimize 

accuracy, and that the results allow meaningful interpretations. 70 

2 Materials and methods 

2.1 Study area 

The study area is a 12-ha agricultural field located in Denmark in northern Europe (9.568°E; 56.375°N, ETRS 1989) (Figure 

1). It lies in a kettled moraine landscape 55 – 66 m above sea level. The parent materials in the field include clay till, 

glaciofluvial sand and peat. The climate is temperate coastal, with mean monthly temperatures ranging from 1°C in January 75 

to 17°C in July and a mean annual precipitation of 850 mm (Wang, 2013). The field contains 285 measurements of soil 

organic matter (SOM) from the depth interval 0 – 25 cm, located in a 20 m grid. 

 

Figure 1: A: Location of Denmark in northern Europe. B: Location of the study area within Denmark. C: Map of the study area, 

including locations of the samples extracted for soil organic matter (SOM) measurements. The background shows hill shade 80 
(northwest, 45° altitude) based a digital elevation model (DEM) in 1.6x1.6 m resolution (National Survey and Cadastre, 2012). 
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The SOM contents of the topsoil in the field range from 1.3% to 38.8% with a mean value of 3.5% and a median of 2.2%. 

The values have a strong positive skew of 4.7 and are leptokurtic with a kurtosis of 26.9. Logarithmic transformation reduces 

skewness (2.9) and kurtosis (11.1). Pouladi et al. (2019) described that spatial structure of the data with a stable variogram 

with 139 m range, nugget of 0 and sill of 23.8. 85 

2.2 Oblique geographic coordinates 

The method that we propose consists of calculating coordinates along a number of axes titled at various oblique angles, 

relative to the x-axis. In the following, we show that it is possible to calculate the coordinate of a point (b1, a1) along an axis 

tilted at an angle θ relative to the x-axis, based on θ and the x- and y-coordinates of (b1, a1). We also show that it is possible 

to derive the calculation using basic trigonometry. Equations (1), (2), (3) and (4) show the derivation of the calculation of the 90 

oblique coordinate, using Figure 2 for illustration. 

𝑏2 = 𝑐 ∗ cos𝐴2           (1) 

𝑐 = √𝑎1
2 + 𝑏1

2
           (2) 

𝐴2 = 𝜃 − 𝐴1 

𝐴1 = tan−1
𝑎1

𝑏1
           (3) 95 

𝑏2 = √𝑎1
2 + 𝑏1

2 ∗ cos (𝜃 − tan−1
𝑎1

𝑏1
)        (4) 

, where θ is the angle of the titled axis relative to the x-axis; A1 is the angle between the x-axis and the line c between the 

origin of the coordinate system and the point (b1, a1); A2 is the difference between θ and A1; a1 is the y-coordinate of (b1, a1); 

b1 is the x-coordinate of (b1, a1); b2 is a line with the angle θ between the origin of the coordinate system its intersection with 

a2; a2 is a line perpendicular to b2 going from (b1, a1) to its intersection with b2. The length of b2 is equal to the coordinate of 100 

(b1, a1) along an axis tilted with the angle θ relative to the x-axis. 

 

Figure 2: Illustration for the derivation of the coordinate for the point (b1, a1) along an axis tilted with the angle θ from the x-axis. 

The coordinate is equal to the length of b2. Triangles a1b1c and a2b2c are right triangles with the same hypotenuse c. The sides a1 
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and b1 are the x- and y-coordinates of the point (b1, a1), respectively. A1 is the angle between the x-axis and the line c between the 105 
origin of the coordinate system and the point (b1, a1); A2 is the difference between θ and A1. 

As the x- and y-coordinates of soil observations are known, and θ is given, it is possible to calculate coordinates at oblique 

angles for all soil observations in a dataset. Likewise, as the x- and y-coordinates of the cells in a geographic raster layer are 

known, it is possible to calculate oblique coordinates for the cells. Our approach relies on calculating coordinates along n 

axes tilted at angles ranging from 0 to π((n – 1)/n) with increments of π/n between the angles. θ should not be π or greater, as 110 

coordinates along axes tilted at these angles will correlate with coordinates along axes tilted at angles of 0 to π((n – 1)/n). For 

example, coordinates along an axis with θ = 0.25π (northeast) perfectly correlate with coordinates along an axis with θ = 

1.25π (southwest). Figure 3 shows coordinates along axes tilted at six different angles relative to the x-axis for the study 

area. The coordinate rasters A and D are equivalent to the x- and y-coordinates, respectively, while the coordinate rasters B, 

C, E and F show coordinates at oblique angles. 115 

 

Figure 3: Examples of rasters with coordinates tilted at six different angles for the study area. Easting and northing for UTM Zone 

32N, ETRS 1989. 

2.3 Experiments 

We use the 285 SOM observations from the study area in order to test the accuracy of predictions made by Random Forest 120 

models using OGC as covariates. In addition to OGC, we also employed 19 data layers with auxiliary data, which Pouladi et 

al. (2019) derived from a 1.6 m DEM, satellite imagery and electromagnetic induction. Topographic variables included the 
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sine and cosine of the aspect, depth of sinks, plan and profile curvature, elevation, flow accumulation, valley bottom flatness, 

mid-slope position, standard and modified topographic wetness index, slope gradient, slope length and valley depth. Satellite 

imagery included normalized difference, absolute difference, ratio and soil-adjusted vegetation indices. Lastly, we used the 125 

apparent electrical conductivity from a DUALEM 1 sensor in perpendicular mode. 

 

Table 1: Auxiliary data variables used as covariates in the study, including name, description, the mean value and the range. 

Pouladi et al. (2019) describe the derivation of the variables. 

Predictor variable    Description Mean (range) 

DEM 
  

Cos aspect  Cosine of surface aspect   -0.1 (-1.0 - 1.0) 

Sin aspect Sine of surface aspect  0.32 (-1.0 - 1.0) 

Depth of sinks   Depth of sinks (m) 0.1  (0.0 - 1.1) 

Plan curvature Shape of the surface in the horizontal plane 0 (-34 - 15) 

Profile curvature Shape of the surface in the vertical plane 0.00 (-0.06 - 0.04) 

Elevation  Elevation from DEM; m above sea level 60.8 (54.6 - 66.2) 

Flow accumulation  Number of upslope cells   74 (3 - 8969) 

MRVBF    Multiresolution index of valley bottom flatness 1.5 (0.0 - 4.9) 

Mid-slope position   Covers the warmer zones of slopes  0.5 (0.0 - 1.0) 

SAGA wetness index   SAGA GIS modified topographic wetness index 4.0 (2.2 - 8.6) 

Slope gradient  Local slope gradient (degrees) 4.9 (0.0 - 17.5) 

SL  Slope length factor  0.4 (0.0 - 2.3) 

TWI   Topographic wetness index 6.6 (3.7 - 14.6) 

Valley depth   Depth of valleys (m) 1.4 (0.1 - 8.1) 

Sentinel 2 
  

DVI   Difference vegetation index  1735 (1202 - 3294) 

NDVI  Normalized difference vegetation index  0.5 (0.3 - 0.7) 

RVI  Ratio vegetation index  2.8 (2.0 - 6.4) 

SAVI Soil-adjusted vegetation index 0.7 (0.5 - 1.1) 

DUALEM 1mPRP 
  

ECa  Apparent electrical conductivity  8.9 (4.9 - 16.0) 

 130 

In order to optimize the number of raster layers for OGC, we generated datasets with 2 – 100 coordinate rasters. We then 

trained Random Forest models from each dataset, both with and without auxiliary data. In order to assess predictive 

accuracy, we used 100 repeated splits on the SOM observations, each using 75% of the observations for model training and a 

https://doi.org/10.5194/soil-2019-83
Preprint. Discussion started: 7 November 2019
c© Author(s) 2019. CC BY 4.0 License.



7 

 

25% holdout dataset for accuracy assessment. We trained models using the R package ranger (Wright and Ziegler, 2015) 

and parameterized the models using the R package caret (Kuhn, 2008). For each split, we tested five different values for 135 

mtry, minimum node sizes of 1, 2, 4 and 8, and two different splitting rules variance and extratrees. We mainly adjusted 

mtry and the minimum node size in order to avoid overfitting. The extratrees splitting rule allows suboptimal splits, which 

can increase randomization relative to the default variance splitting rule (Geurts et al., 2006). We selected the setup that 

provided the lowest RMSE for the out-of-bag predictions on the training data, and used this setup for predictions on the 25% 

holdout dataset. 140 

We used the same 100 repeated splits for each number of coordinate rasters, with and without auxiliary data. We calculated 

accuracy based on R2, RMSE and Lin’s concordance criterion (ccc), and subsequently used the number of coordinate rasters 

that yielded the lowest RMSE. We selected a different number of coordinate rasters with and without auxiliary data. 

We then compared the accuracies obtained with the optimal numbers of coordinate rasters, with and without auxiliary data, 

to the accuracies obtained with other methods. We tested kriging, Random Forest models trained only on the auxiliary data 145 

and Random Forest models trained using EDF and RFsp, with and without auxiliary data. We trained the Random Forest 

models using the same procedure outlines above. For kriging, we used variograms automatically fitted on logarithmic-

transformed SOM observations using the autofitVariogram function of the R package automap (Hiemstra, 2013). 

We used the same 100 repeated splits for assessing the accuracies of all methods. This allowed us to carry out pairwise t-

tests between the accuracies of the methods. We used the results of the pairwise t-tests to rank the methods according to their 150 

accuracies according to each of the metrics. If there was no statistical difference (p > 0.05) between the accuracies of two or 

more methods, these methods received the same rank. We calculated separate ranks for the methods for each accuracy 

metric, resulting in three different sets of ranks. 

In order to illustrate the results, we produced maps of SOM with each method, using models trained from all the data. 

Furthermore, we investigated the covariate importance of models trained with OGC and tested the results for spatially 155 

autocorrelated residuals using experimental variograms. 

3 Results and discussion 

3.1 Optimal number of coordinate rasters 

Without auxiliary data, accuracies of predictions obtained with OGC increased with the number of coordinate rasters up to 

an optimum at seven coordinate rasters (Figure 4). However, with more than seven coordinate rasters, accuracies deteriorated 160 

slightly with the number of coordinate rasters. This pattern was the same for all three metrics. On the other hand, with OGC 

in combination with auxiliary data, accuracies generally increased with the number of coordinate rasters. The increase was 

greatest when the number of coordinate rasters was small, while the effect of more coordinate rasters decreased for larger 

numbers of coordinate rasters. With auxiliary data, the optimal number of coordinate rasters was 94 for R2, 80 for RMSE and 

89 for ccc. Accuracies with auxiliary data were almost invariably higher than accuracies achieved without auxiliary data. 165 
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Figure 4: Effects of the number of coordinate rasters on the accuracy of SOM predictions, calculated as R2, root mean square 

error (RMSE) and Lin’s concordance criterion (ccc). We calculated effects for Random Forest models trained on only coordinate 

rasters (OGC) and with coordinate rasters in combination with auxiliary data (OGC + AUX). The lines represent mean values 

obtained from 100 repeated splits (75% training dataset, 25% test dataset) for each number of coordinate rasters. 170 

Figure 5 shows the effect of increasing the number of coordinate rasters without auxiliary data. The predictions with only 

two coordinate rasters show a pattern very typical of predictions with x- and y-coordinates with very visible orthogonal 

artefacts. As the number of coordinate rasters increases, the patterns of the artefacts change. With coordinate rasters at three 

different angles, the artefacts have a hexagonal pattern, and with coordinate rasters at four different angles, the artefacts gain 

an octagonal pattern. Furthermore, as the number of coordinate rasters increases, the artefacts become less pronounced. 175 

Although some artefacts are visible with coordinate rasters at seven different angles, they are much less visible than the 

artefacts in the map produced with only two coordinate rasters. 
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Figure 5: Maps of soil organic matter (SOM) contents in the topsoil predicted using Random Forest models trained with 

coordinate rasters at two to seven different angles as covariates. Easting and northing for UTM Zone 32N, ETRS 1989. 180 

With auxiliary data, the effect of increasing the number of coordinate rasters was less clearly visible (Figure 6). Even with 

only two coordinate rasters, the predictions had no orthogonal artefacts. However, they contained noisy patterns and sharp 

boundaries in some areas. This is most likely an artefact from the auxiliary data. For example, using a high-resolution DEM 

may have created noise in the predictions. However, with coordinate rasters at 80 different angles, the spatial pattern of the 

predicted SOM contents became substantially smoother, with a reduction both in noise and in sharp boundaries. 185 

Furthermore, some areas with moderately high SOM contents became more clearly visible and coherent, for example in the 

area approximately one third of the way from the western to the northern corner of study area. The predicted patterns with a 

higher number of coordinate rasters were therefore not only more accurate, but also more realistic. 
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 190 

Figure 6: Maps of soil organic matter (SOM) contents in the topsoil predicted using Random Forest models trained using auxiliary 

data in conjunction with coordinate rasters at (A) two and (B) 80 different angles as covariates. Easting and northing for UTM 

Zone 32N, ETRS 1989. 

3.2 Comparison with other methods 

There were large overlaps in the accuracies of the methods, as accuracies varied across the 100 repeated splits (Figure 7), 195 

especially for RMSE. However, accuracies generally correlated between the methods across the repeated splits. The mean 

correlation coefficient (Pearson's R) was 0.52 (0.19 – 0.88) for R2, 0.71 (0.65 – 0.71) for RMSE and 0.65 (0.41 – 0.89) for 

ccc. This shows that some holdout datasets yielded consistently high accuracies, while others yielded consistently low 

accuracies. Furthermore, especially for R2 and ccc, a few holdout datasets yielded much lower accuracies than the other 

holdout datasets, leading to long negative tails. 200 
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Figure 7: Violin plots showing accuracies of soil organic matter predictions with kriging, and Random Forest models trained using 

either auxiliary data (AUX), Euclidean distance fields (EDF), distances to observations (RFsp), oblique geographic coordinates 

(OGC) or EDF, RFsp or OGC in conjunction with AUX. The figure shows R2, room mean square error (RMSE) and Lin’s 205 
concordance obtained from 100 repeated splits (75% training dataset, 25% test dataset). 

Kriging achieved the highest rank for R2 (Table 2). For RMSE, kriging shared the highest rank with EDF, RFsp and OGC in 

combination with auxiliary data. Lastly, OGC and RFsp in combination with auxiliary data shared the highest rank for ccc. 

In short, kriging, RFsp with auxiliary data and OGC with auxiliary data all had the highest rank for two accuracy metrics out 

of three. We therefore regard these three methods as most accurate. 210 

Auxiliary data used on their own, as well as RFsp without auxiliary data had the lowest rank for all three accuracy metrics. 

Furthermore, OGC without auxiliary data had the same rank as EDF without auxiliary data for all three accuracy metrics. 
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Table 2: Ranks for the accuracies of the methods, calculated as R2, RMSE and ccc, respectively. Methods for which a pairwise t-

test did not give a significant difference in accuracy (p > 0.05) received equal ranks for the metric in question. Ranks for the 215 
methods therefore differ between the three metrics. AUX: Auxiliary data. EDF: Euclidean distance fields. OGC: Oblique 

geographic coordinates. RFsp: Spatial Random Forest. 

   R2    RMSE    ccc   

Rank  Method Mean  Method Mean  Method Mean 

1  Kriging 0.87  EDF + AUX 2.0  OGC + AUX 0.89 

     Kriging 2.0  RFsp + AUX 0.89 

     OGC + AUX 1.9    

        RFsp + AUX 1.9      

2  OGC + AUX 0.85  EDF 2.2  EDF + AUX 0.87 

   RFsp + AUX 0.86  OGC 2.2  Kriging 0.87 

3  EDF 0.82  AUX 2.4  AUX 0.84 

  EDF + AUX 0.83  RFsp 2.3  EDF 0.85 

  OGC 0.81     OGC 0.84 

             RFsp 0.84 

4  AUX 0.77       

   RFsp 0.79           

 

Pouladi et al. (2019) tested several methods for predicting SOM within the field, including kriging and the machine learning 

algorithms Cubist and Random Forest, with and without kriged residuals. The authors found that kriging provided the most 220 

accurate predictions of SOM. The results in this study affirm the high accuracy of kriging predictions, but they also show 

that Random Forest models combining auxiliary data with spatial relationships can achieve similar accuracies. 

Kriging produced a smooth prediction surface, which is very common for this method (Figure 8A). The prediction surface 

with EDF was mostly smooth, but it also contained a distinct “rings in the water” artefact caused by the use of the distance to 

the middle of the study area as a covariate (Figure 8B). The prediction surface with RFsp was smoother than the prediction 225 

surface produced by kriging (Figure 8C). The predictions with only auxiliary data were very similar to the predictions made 

with x- and y-coordinates in combination with auxiliary data (compare Figure 8C to Figure 6A). In combination with 

auxiliary data, both EDF and RFsp produced smoothing effects similar to the effect seen with OGC in combination with 

auxiliary data (compare Figure 8E and Figure 8F to Figure 6B). However, for EDF the smoothing was less visible than with 

OGC, and for RFsp it was more visible than with OGC. 230 
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Figure 8: Prediction of soil organic matter (SOM) contents for the topsoil using A: Kriging, or Random Forest models trained with  

B: Euclidean distance fields (EDF), C: Distances to observations (RFsp), D: Auxiliary data (AUX), E: EDF in conjunction with 

AUX, or F: RFsp in conjunction with AUX. Easting and northing for UTM Zone 32N, ETRS 1989. 

For all methods except kriging, the residuals of the SOM predictions had some degree of spatial dependence (Figure 9). 235 

EDF, RFsp and OGC used without auxiliary data had the most spatially dependent residuals, with nugget-to-sill ratios of 

0.40. On the other hand, EDF and OGC in combination with auxiliary data had the least spatially dependent residuals after 

kriging, with nugget-to-sill ratios of 0.65 and 0.64, respectively. 
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Figure 9: Experimental variograms for the residuals of the SOM predictions made with each method. The variograms use 240 
residuals from natural logarithmic-transformed SOM measurements and predictions. AUX: Auxiliary data. EDF: Euclidean 

distance fields. RFsp: Spatial Random Forest. OGC: Oblique geographic coordinates. 

3.3 Covariate importance 

The most important covariate from the auxiliary data was the depth of sinks (Table 3). The most likely reason for its high 

importance is the presence of a large sink with very high SOM contents northwest of the middle of the study area (Figure 1). 245 

As sinks trap surface runoff, they often have wet conditions, which give rise to peat accumulation. 
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Table 3: Covariate importance for the model using OGC in combination with auxiliary data. The importance for OGC represents 

the sum of the importance of the coordinate rasters at 80 different angles. 

Covariate Importance (variance) 

OGC 2689 

Depth of sinks 2003 

MRVBF 476 

SAGA wetness index  170 

Elevation 166 

Valley depth 157 

ECa 123 

Slope gradient 101 

Mid-slope position   84 

NDVI 76 

Plan curvature 74 

SL 64 

SAVI 58 

Cos aspect  44 

DVI 42 

TWI 38 

RVI 34 

Flow accumulation  32 

Sin aspect 32 

Profile curvature 21 

 250 

When used in combination with the auxiliary data, the importance of the individual coordinate rasters varied from 0.6% to 

3.1% of the importance of the depth of sinks, with mean value of 1.7%. The most important coordinate raster had θ = 0.48π 

(close to a north-south axis) and was the 12th most important covariate. The sum of the importance of the coordinate rasters 

was equal to 134.3% of the importance of the depth of sinks (Table 3). Therefore, with coordinate rasters at 80 different 

angles, the effect of the individual rasters on the predictions was subtle, but their combined effect was strong. 255 

Figure 10 shows the importance of the coordinate rasters relative to θ, in a way similar to a wind rose. The plots repeat the 

bars for θ ≥ π, as the importance for a given angle is directionless. For example, the importance of θ = 0 (East) is equal to the 

importance of θ = π (West). 

Without auxiliary data, the most important coordinate rasters had a general northwest to southeast angle (Figure 10). On the 

other hand, the coordinate rasters with angles between a north-south and a northeast-southwest axis had low importance. The 260 

most likely reason for this pattern is the location of the sink with very high SOM contents to the northwest of the middle of 

the study area. This creates a large difference in the SOM contents of the northwestern and southeastern parts of the study 

area, giving large importance to covariates that can explain this difference. Additionally, the northwest side of the sink has a 
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very steep slope, creating a steep gradient in SOM contents in this direction. A stable variogram showed anisotropy along a 

north-north-east to south-south-west axis (θ = 0.34π) with a major range of 136 m and a minor range of 118 m. The direction 265 

of the anisotropy therefore coincided with the direction of the least important coordinate rasters. 

 

Figure 10: Covariate importance of the coordinate rasters at various angles. A: Importance of coordinate rasters at seven different 

angles. B: Importance of coordinate rasters at 80 different angles used with auxiliary data (importance of auxiliary data not 

shown). The sizes of the bars show the importance of the coordinate rasters at a given angle. Bars in B show the sum of the 270 
importance for coordinate rasters aggregated into 0.125π intervals. 

On the other hand, with OGC in combination with auxiliary data, the most important coordinate rasters had tilt angles close 

to a north-south axis (θ = 0.5π). At the same time, the least important coordinate rasters had tilt angles close to a northeast-

southwest axis (θ = 0.25π). The residuals from the predictions with auxiliary data only also displayed a degree of anisotropy. 

A stable variogram showed anisotropy along a northeast to southwest axis (θ = 0.21π), with a major range of 52 m and a 275 

minor range of 38 m. Again, the angle of the anisotropy coincided with the angle of the least important coordinate rasters. 

The spatial pattern of the residuals therefore differed from the spatial pattern of the SOM contents in the study area. 

Apparently, there are unaccounted-for processes decreasing the spatial variation along a northeast-southwest axis relative to 

other angles. 

A possible cause of the anisotropy in the residuals may be the ploughing direction. The main ploughing direction in the study 280 

area is along an east-north-east to west-south-west axis (θ = 0.18π). This angle is nearly parallel to the angle of the least 

important coordinate rasters (Figure 11). The ploughing direction, combined with the topography, has a large impact on soil 

movement, as ploughing displaces soil both along and across its direction (Lindstrom et al., 1990, De Alba, 2003, Heckrath 

et al., 2006). Most of the study area has the same ploughing direction, irrespective of the topography, resulting in up-, down- 

and cross-slope ploughing in various parts of the field. This creates in a complex pattern of soil redistribution, which likely 285 
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affects the SOM contents of the topsoil. As downslope soil movement is strongest in the ploughing direction, variation in 

soil properties parallel to this direction is likely to be smaller than the variation perpendicular to the ploughing direction. 

This corresponds to the low importance of coordinate rasters with angles close to the ploughing direction.  However, none of 

the auxiliary data accounted for the ploughing direction. This indicates that OGC can add information on the most likely 

processes affecting soil properties in an area. 290 

 

Figure 11: Orthophoto of the study area from September 27, 2016 (Esri, 2019). Sources: Esri, DigitalGlobe, Earthstar 

Geographics, CNES/Airbus DS, GeoEye, USDA FSA, USGS, Aerogrid, IGN, IGP, and the GIS User Community. 

3.4 Choice of method 

The three most accurate methods were kriging, RFsp with auxiliary data and OGC with auxiliary data. Many soil mappers 295 

would probably choose kriging for mapping SOM in this field, given its computational efficiency and conceptual simplicity. 

The advantage of the methods based on machine learning instead lies in their interpretability. Kriging in itself does not 

provide information on the processes that control spatial variation in soil properties, but researchers can interpret machine 

learning models in order to discover the most likely processes affecting the spatial distribution of a soil property. With 

spatial approaches such as EDF, RFsp and OGC, researchers can incorporate feature space and geographic space in a 300 

machine learning model. The benefit is that researchers can interpret local and spatial effects at once. In this regard, OGC 

has an advantage over EDF and RFsp, as it is clear what the coordinate rasters represent. On the other hand, it is less clear 

how researchers should interpret distances to the corners of the study area or the distance to a specific observation. We have 

also shown that it is straightforward to illustrate covariate importance for OGC. 
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While kriging, RFsp with auxiliary data and OGC with auxiliary data yielded equally accurate predictions, it is likely that it 305 

is due to the high sampling density of the study area. For larger, less densely sampled areas, OGC and RFsp with auxiliary 

data are likely to provide higher relative accuracies. 

Furthermore, an advantage of OGC relative to RFsp is that OGC required fewer covariates to achieve the same accuracy. In 

fact, without auxiliary data, OGC achieved a higher accuracy with a smaller number of covariates. This demonstrates a clear 

advantage of OGC, as it is possible to adjust the number of coordinate rasters. EDF and RFsp do not presently have similar 310 

options. 

We will stress that soil mappers should not use machine learning models relying only on spatial relationships, as EDF, RFsp 

and OGC all yielded low accuracies without auxiliary data. Moreover, surprisingly, these methods had the most spatially 

autocorrelated residuals, although they relied exclusively on spatial relationships. The results therefore suggest that these 

methods are best suited for integrating spatial relationships with auxiliary data. If the purpose requires a purely spatial 315 

method, kriging is a better option. 

4 Conclusions 

We have shown in this study that the use of oblique geographic coordinates is a reliable method for integrating auxiliary data 

with spatial relationships for modelling and mapping soil properties. It is more interpretable than previous similar 

approaches, and more flexible, as it is possible to adjust the number of coordinate rasters. This should allow soil mappers to 320 

find a good compromise between accuracy and computational efficiency for mapping soil properties, as the optimal number 

of coordinate rasters may vary depending on the study area and the soil property in question. 

At this point, we have only tested the method for one soil property in one area, and it will therefore be highly relevant to test 

the method for other soil properties and areas. It will especially be relevant to test the method in larger, less densely sampled 

areas, as it may have its greatest relative advantages in these cases. Furthermore, the results also suggest that the method can 325 

be useful for predicting properties with anisotropic spatial distributions, and it will therefore be relevant to test it on datasets 

with a high degree of anisotropy.  

We call upon researchers within digital soil mapping to aid us in this endeavour, and we have therefore made the function for 

generating oblique geographic coordinates available as an R package. Moreover, to allow other researchers to test methods 

on the dataset that we used, we have made it available as well. 330 

5 Code and data availability 

The function for generating oblique geographic coordinates is available as an R package at 

https://bitbucket.org/abmoeller/ogc/src/master/rPackage/OGC/. The package also contains the SOM observations and 

auxiliary data used in this study. 

https://doi.org/10.5194/soil-2019-83
Preprint. Discussion started: 7 November 2019
c© Author(s) 2019. CC BY 4.0 License.



19 

 

Furthermore, we have made the R code used in this study available in a public repository at 335 

http://dx.doi.org/10.5281/zenodo.3496935. 
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