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Abstract. Decision tree algorithms such as Random Forest have become a widely adapted method for mapping soil 

properties in geographic space. However, implementing explicit spatialgeographic trendsrelationships into these 

algorithmsmethods has proven problematic. Using x- and y-coordinates as covariates gives orthogonal artefacts in the maps, 

and alternative methods using distances as covariates can be inflexible and difficult to interpret. We propose instead the use 

of coordinates along several axes tilted at oblique angles to provide an easily interpretable method for obtaining a realistic 10 

prediction surface. We test the method on four spatial datasets and compare it to similar methods for mapping topsoil organic 

matter contents in an agricultural field in Denmark. The results show that the method provides accuracies better than or on 

par with the most reliable alternative methods, namely kriging and distance-based covariates the use of buffer distances to 

the training points. Furthermore, the proposed method is highly flexible, scalable and easily interpretable. This makes it a 

promising tool for mapping soil properties with complex spatial variation. We believe that the method will be highly useful 15 

for mapping soil properties in larger areas, and testing it for this purpose is a logical next step. 

1 Introduction 

Machine learning has become a frequently applied means for mapping soil properties in geographic space. The most 

common approach is to train models from soil observations and covariates in the form of geographic data layers. The models 

can often provide reliable predictions of soil properties. Many researchers have used decision tree algorithms, as they are 20 

computationally efficient, do not rely on assumptions about the distributions of the input variables, and can use both numeric 

and categorical data and are immune to correlated and redundant covariates (Quinlan, 1996, Mitchell, 1997, Rokach and 

Maimon, 2005, Tan et al., 2014). Additionally, they effectively handle nonlinear relationships and complex interactions 

(Strobl et al., 2009). 

However, a disadvantage of decision tree models is that they do not explicitly take into account spatial trends in the 25 

datarelationships. Unlike geostatistical methods, such as kriging, the predictions can therefore contain spatial bias.es in the 

form of spatially autocorrelated residuals. 

A number of studies have applied regression-kriging (RK) as a solution (Knotters et al., 1995, Odeh et al., 1995, Hengl et al., 

2004). By kriging the residuals of the predictive model and adding the kriged residuals to the prediction surface, this 
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approach can account for spatial trends and achieve higher accuracies.By kriging the residuals of the predictive model and 30 

adding the kriged residuals to the prediction surface, soil mappers have been able to reduce or remove spatial biases. A 

disadvantage of RKthis approach is that the combination of two models hinders the combination of spatial 

trendsrelationships with the other covariates. Spatial trendsrelationships therefore remain disconnected from other statistical 

relationships in the analysis, leading to difficulties in interpreting the model and its associated uncertainties. 

An obvious solution to this problem would be to use the x- and y-coordinates of the soil observations as covariates. 35 

However, results have shown that this approach can lead to unrealistic orthogonal artefacts in the output maps when used in 

conjunction with decision tree algorithms (Behrens et al., 2018, Hengl et al., 2018, Nussbaum et al., 2018). The cause of this 

problem lies in the splitting procedure of decision tree algorithms, as they use only one covariate for each split. Therefore, a 

dataset containing only the x- and y-coordinates will force the algorithm to make orthogonal splits in geographic space. 

Several researchers have proposed solutions to this problem. Behrens et al. (2018) proposed the use of Euclidean distance 40 

fields (EDF) in the form of distances to the corners and middle of the study area as well as the x- and y-coordinates of the 

soil observations. Their results showed that this approach efficiently integrated spatial trends relationships and that 

accuracies were better than or on par with other methods for integrating spatial context. 

On the other hand, Hengl et al. (2018) suggested an approach referred to as spatial Random Forest (RFsp). This method 

consists of calculating data layers with buffer distances to each of the soil observations in the training dataset. It then trains a 45 

Random Forest model, using the buffer distances as covariates, combined with auxiliary data or on their own. One of the 

main advantages of this approach is that it incorporates distances between observations in a similar manner to geostatistical 

models. The authors assessed the use of demonstrated the methodRFsp on a large number of spatial prediction problems and 

showed that it effectively eliminated spatial autocorrelationtrends in from the residuals. 

Although these two methods are able to integrate spatial trendsrelationships in machine learning models, they can be difficult 50 

to interpret are not without shortcomings. Firstly, t. The distances used in EDF both methods depend either on the geometry 

of the study area, in the case of EDF, orand for RFsp, they depend on the locations of the soil samples, in the case of RFsp. 

The meaning and interpretation of the distances therefore varies depending on the study area and the soil observations. 

Another shortcoming relating to EDF and RFsp also have limited flexibility, as is that both methods specify the number of 

geographic data layers a priori. For EDF, the number of distance fields is seven, and for RFsp, the number of buffer 55 

distances is equal to the number of soil observations. This means that there is no straightforward way to increase the number 

of spatially explicit covariates, if the number is insufficient to account for spatial trendsrelationships. In addition, vVice 

versa, there is no way to decrease the number of spatially explicit covariates, even if a smaller number would suffice. The 

latter is especially relevant for RFsp, as the method is computationally unfeasible for datasets with a large number of 

observations (Hengl et al., 2018). 60 

In this study, we propose an alternative method for including spatially explicit covariates for mapping soil properties. With 

the method, we aim to address directly the cause of the orthogonal artefacts produced witharising from the use of x- and y-
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coordinates as covariates in decision tree models. Furthermore, we aim to improve upon the shortcomings of previous 

methods by developing a method that is both flexible and easily interpretable. 

We refer to the method as Oblique Geographic Coordinates (OGC). In short, it works by calculating coordinates for the 65 

observations along a series of axes, tilted at variousseveral oblique angles relative to the x-axis. By including oblique 

coordinates as covariates, we enable the decision tree algorithm to make oblique splits in geographic space. As this is not 

possible with only x- and y-coordinates as covariates, this addition should allow the model to produce a more realistic 

prediction surface. Furthermore, the number of oblique angles is adjustable, and soil mappers can therefore choose a number 

that suits their purpose. Some mapping tasks may require a higher number of oblique angles than others, and soil mappers 70 

can therefore increase the number as necessary. Alternatively, if a small number of oblique angles suffices, soil mappers can 

reduce their number and thereby shorten computation times.Furthermore, as the number of oblique angles is adjustable, it 

should be possible to optimize it, both in terms of accuracy and computational efficiency. 

We test the method on four spatial datasets. Firstly, we test it for predicting soil organic matter contents in a densely sampled 

agricultural field in Denmark, located in northern Europe. Secondly, we test it on three publicly available spatial datasets 75 

(meuse, eberg and Swiss rainfall). We hypothesise that OGC can provide accuracies on par with previous methods for 

including explicitly spatial covariates. We also hypothesize that it is possible to adjust the number of oblique angles in order 

to optimize accuracy, and that the results allow meaningful interpretations. 

2 Materials and methods 

2.1 Study areas 80 

We test OGC and compare it to other methods based on four spatial datasets. Firstly, we test it for a predicting soil organic 

matter (SOM) for an agricultural field in Denmark (Vindum). Secondly, we test it on three publicly available datasets. For 

Vindum, we will present methods and results in detail. For the other three datasets, we will present methods and results in 

brief, while Appendix A contains a detailed presentation of the methods and results for these datasets. 

2.1.1 Vindum 85 

Thise study area is a 12-ha agricultural field located in Denmark in northern Europe (9.568°E; 56.375°N, ETRS 1989) 

(Figure 1). It lies in a kettled moraine landscape 55 – 66 m above sea level. The parent materials in the field include clay till, 

glaciofluvial sand and peat. The climate is temperate coastal, with mean monthly temperatures ranging from 1°C in January 

to 17°C in July and a mean annual precipitation of 850 mm (Wang, 2013). The field contains 285 measurements of soil 

organic matter (SOM) from the depth interval 0 – 25 cm, located in a 20 m grid. 90 
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Figure 1: A: Location of Denmark in northern Europe. B: Location of the Vindum field study area within Denmark. C: Map of 
the Vindum fieldstudy area, including locations of the samples extracted for soil organic matter (SOM) measurements. The thin 
black lines are 2 m contour lines. The background shows hill shade (northwest, 45° altitude) based a digital elevation model (DEM) 95 
in 1.6x1.6 m resolution (National Survey and Cadastre, 2012). 
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The SOM contents of the topsoil in the field range from 1.3% to 38.8% with a mean value of 3.5% and a median of 2.2%. 

The values have a strong positive skew of 4.7 and are leptokurtic with a kurtosis of 26.9. Logarithmic transformation reduces 

skewness (2.9) and kurtosis (11.1). Pouladi et al. (2019) described that spatial structure of the data with a stable variogram 

with 139 m range, nugget of 0 and sill of 23.8. 100 

2.1.2 Additional datasets 

For additional analyses, we included the meuse dataset, the eberg dataset and the Swiss rainfall dataset. The meuse dataset, 

available through the R package sp (Pebesma et al., 2020), contains 155 measurements of soil heavy metal concentrations 

from a 5-km2 flood plain of the Meuse river near the village of Stein in the Netherlands. For this dataset, we mapped zinc 

concentrations. The eberg dataset, available through the R package plotKML (Hengl et al., 2020) contains 3,670 soil 105 

observations from a 100-km2 area in Ebergötzen near the city Göttingen in Germany. For this dataset, we mapped soil types. 

Lastly, the Swiss rainfall dataset contains 476 rainfall measurements from May 8, 1986 in Switzerland (Dubois et al., 2003). 

Although this is not a soil dataset, we included it because of the high anisotropy of the data, which makes it useful for 

comparing methods on their ability to account for anisotropic spatial problems. We describe these three datasets in more 

detail in Appendix A. 110 

2.2 Oblique geographic coordinates 

The method that we propose consists of calculating coordinates along a number of axes titled at various oblique angles, 

relative to the x-axis. In the following, we show that it is possible to calculate the coordinate of a point (b1, a1) along an axis 

tilted at an angle θ relative to the x-axis, based on θ and the x- and y-coordinates of (b1, a1). We also show that it is possible 

to derive the calculation using basic trigonometry. Equations (1) , (2), (3) and (4) shows the derivation of the calculation of 115 

the oblique geographic coordinate, using Figure 2 for illustration. 

𝑏𝑏2 = 𝑐𝑐 ∗ cos𝐴𝐴2           (1) 

𝑐𝑐 = �𝑎𝑎12 + 𝑏𝑏1
2           (2) 

𝐴𝐴2 = 𝜃𝜃 − 𝐴𝐴1 

𝐴𝐴1 = tan−1 𝑎𝑎1
𝑏𝑏1

           (3) 120 

𝑏𝑏2 = �𝑎𝑎12 + 𝑏𝑏1
2 ∗ cos �𝜃𝜃 − tan−1 𝑎𝑎1

𝑏𝑏1
�        (4) 

OGC = 𝑏𝑏2 = �𝑎𝑎12 + 𝑏𝑏1
2 ∗ cos �𝜃𝜃 − tan−1 𝑎𝑎1

𝑏𝑏1
�       (1) 

, where θ is the angle of the titled axis relative to the x-axis; A1 is the angle between the x-axis and the line c between the 

origin of the coordinate system and the point (b1, a1); A2 is the difference between θ and A1; a1 is the y-coordinate of (b1, a1); 

b1 is the x-coordinate of (b1, a1); b2 is a line with the angle θ between the origin of the coordinate system its intersection with 125 
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a2; a2 is a line perpendicular to b2 going from (b1, a1) to its intersection with b2. The length of b2  (or “OGC”) is equal to the 

coordinate of (b1, a1) along an axis tilted with the angle θ relative to the x-axis. 

 
Figure 2: Illustration for the derivation of the oblique geographic coordinate for the point (b1, a1) along an axis tilted with the 
angle θ from the x-axis. The coordinate is equal to the length of b2. Triangles a1b1c and a2b2c are right triangles with the same 130 
hypotenuse c. The sides a1 and b1 are the x- and y-coordinates of the point (b1, a1), respectively. A1 is the angle between the x-axis 
and the line c between the origin of the coordinate system and the point (b1, a1); A2 is the difference between θ and A1. 

As the x- and y-coordinates of soil observations are known, and θ is given, it is possible to calculate coordinates at oblique 

angles for all soil observations in a dataset. Likewise, as the x- and y-coordinates of the cells in a geographic raster layer are 

known, it is possible to calculate oblique coordinates for the cells. Our approach relies on calculating coordinates along n 135 

axes tilted at angles ranging from 0 to π((n – 1)/n) with increments of π/n between the angles. θ should not be π or greater, as 

coordinates along axes tilted at these angles will correlate with coordinates along axes tilted at angles of 0 to π((n – 1)/n). For 

example, coordinates along an axis with θ = 0.25π (northeast) perfectly correlate with coordinates along an axis with θ = 

1.25π (southwest). Figure 3 shows coordinates along axes tilted at six different angles relative to the x-axis for the Vindum 

study area. The coordinate rasters A and D are equivalent to the x- and y-coordinates, respectively, while the coordinate 140 

rasters B, C, E and F show coordinates at oblique angles. 
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Figure 3: Examples of rasters with coordinates tilted at six different angles for the Vindum study area. Easting and northing for 
UTM Zone 32N, ETRS 1989. 

2.3 ExperimentsMethod comparison 145 

2.3.1 Vindum 

We use the 285 SOM observations from the Vindum study area in order to test the accuracy of predictions made by Random 

Forest models using OGC as covariates. In addition to OGC, we also employed 19 data layers with auxiliary data, which 

Pouladi et al. (2019) derived from a 1.6 m DEM, satellite imagery and electromagnetic induction. Topographic variables 

included the sine and cosine of the aspect, depth of sinks, plan and profile curvature, elevation, flow accumulation, valley 150 

bottom flatness, mid-slope position, standard and modified topographic wetness index, slope gradient, slope length and 

valley depth. Satellite imagery included normalized difference, absolute difference, ratio and soil-adjusted vegetation 

indices. Lastly, we used the apparent electrical conductivity from a DUALEM 1 sensor in perpendicular mode. 

 
Table 1: Auxiliary data variables used as covariates in the study, including name, description, the mean value and the range. 155 
Pouladi et al. (2019) describe the derivation of the variables. 

Predictor variable    Description Mean (range) 

DEM 
  

Cos aspect  Cosine of surface aspect   -0.1 (-1.0 - 1.0) 
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Sin aspect Sine of surface aspect  0.32 (-1.0 - 1.0) 

Depth of sinks   Depth of sinks (m) 0.1  (0.0 - 1.1) 

Plan curvature Shape of the surface in the horizontal plane 0 (-34 - 15) 

Profile curvature Shape of the surface in the vertical plane 0.00 (-0.06 - 0.04) 

Elevation  Elevation from DEM; m above sea level 60.8 (54.6 - 66.2) 

Flow accumulation  Number of upslope cells   74 (3 - 8969) 

MRVBF    Multiresolution index of valley bottom flatness 1.5 (0.0 - 4.9) 

Mid-slope position   Covers the warmer zones of slopes  0.5 (0.0 - 1.0) 

SAGA wetness index   SAGA GIS modified topographic wetness index 4.0 (2.2 - 8.6) 

Slope gradient  Local slope gradient (degrees) 4.9 (0.0 - 17.5) 

SL  Slope length factor  0.4 (0.0 - 2.3) 

TWI   Topographic wetness index 6.6 (3.7 - 14.6) 

Valley depth   Depth of valleys (m) 1.4 (0.1 - 8.1) 

Sentinel 2 
  

DVI   Difference vegetation index  1735 (1202 - 3294) 

NDVI  Normalized difference vegetation index  0.5 (0.3 - 0.7) 

RVI  Ratio vegetation index  2.8 (2.0 - 6.4) 

SAVI Soil-adjusted vegetation index 0.7 (0.5 - 1.1) 

DUALEM 1mPRP 
  

ECa  Apparent electrical conductivity  8.9 (4.9 - 16.0) 

 

In order to optimize the number of raster layers for OGC, we generated datasets with 2 – 100 coordinate rasters. We then 

trained Random Forest models from each dataset, both with and without auxiliary data. In order to assess predictive 

accuracy, we used 100 repeated splits on the SOM observations, each using 75% of the observations for model training and a 160 

25% holdout dataset for accuracy assessment. We trained models using the R package ranger (Wright and Ziegler, 2015) 

and parameterized the models using the R package caret (Kuhn, 2008). For each split, we tested five different values for 

mtry, minimum node sizes of 1, 2, 4 and 8, and two different splitting rules variance and extratrees. We mainly adjusted 

mtry and the minimum node size in order to avoid overfitting. We tested mtry values at even intervals between 2 and the 

total number of covariates, including both auxiliary data and spatially explicit covariates. The tested mtry values therefore 165 

varied depending on the number of covariates. The extratrees splitting rule generates random splits, as opposed to the 

variance splitting rule, which chooses optimal splits. Per default, extratrees generates one random split for each covariate 

and then chooses the random split that gives the largest variance reduction (Geurts et al., 2006). It therefore leads to a greater 

degree of randomizationThe extratrees splitting rule allows suboptimal splits, which can increase randomization relative to 
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the default variance splitting rule (Geurts et al., 2006). We selected the setup that provided the lowest RMSE for the out-of-170 

bag predictions on the training data, and used this setup for predictions on the 25% holdout dataset. 

We used the same 100 repeated splits for each number of coordinate rasters, with and without auxiliary data. We calculated 

accuracy based on Pearson’s R2, RMSE and Lin’s concordance criterion (ccc), and subsequently used the number of 

coordinate rasters that yielded the lowest RMSE. We selected a different number of coordinate rasters with and without 

auxiliary data. 175 

We then compared the accuracies obtained with the optimal numbers of coordinate rasters, with and without auxiliary data, 

to the accuracies obtained with other methods. We tested kriging, Random Forest models trained only on the auxiliary data 

and Random Forest models trained using EDF and RFsp, with and without auxiliary data. We trained the Random Forest 

models using the same procedure outlineds above. For kriging, we used variograms automatically fitted on logarithmic-

transformed SOM observations using the autofitVariogram function of the R package automap (Hiemstra, 2013). A previous 180 

study using the same dataset showed that kriging predicted SOM more accurately than regression-kriging (Pouladi et al., 

2019). We therefore omitted regression-kriging from the analysis, although, without this previous finding, it would have 

been relevant to include it. 

We used the same 100 repeated splits for assessing the accuracies of all methods. This allowed us to carry out pairwise t-

tests between the accuracies of the methods. We used the results of the pairwise t-tests to rank the methods according to their 185 

accuracies according to each of the metrics. If there was no statistical difference (p > 0.05) between the accuracies of two or 

more methods, these methods received the same rank. We calculated separate ranks for the methods for each accuracy 

metric, resulting in three different sets of ranks. 

In order to illustrate the results, we produced maps of SOM with each method, using models trained from all the data. 

 Furthermore, wWe also investigated the covariate importance of models trained with OGC and tested all methods the results 190 

for spatially autocorrelated residuals using experimental variograms. To produce sample variograms of the residuals, we 

produced maps with each method using all observations. We converted both observations and predictions to natural 

logarithmic scale. We then subtracted the predictions from the observations and calculated variograms for these residuals. 

For this purpose, we used the function variogram from the R package gstat (Pebesma and Graeler, 2020) with its default 

parameters. 195 

2.3.1 Additional datasets 

We also compared OGC to other methods based on the three additional datasets meuse, eberg and Swiss rainfall. The 

methods in the comparison depended on the dataset. For the meuse dataset, we tested all the methods tested on the Vindum 

dataset, with the addition of RK using Random Forest models for regression. For the eberg dataset, we tested Random Forest 

models based on auxiliary data (AUX), EDF and OGC, as well as the combined methods (EDF + AUX and OGC + AUX). 200 

For the Swiss rainfall dataset, we tested only purely spatial methods, including ordinary kriging (OK), EDF, RFsp and OGC. 

As for the Vindum dataset, we tested each method based on 100 splits into training and test data and carried out pairwise t-
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tests on the resulting accuracies. Appendix A gives additional details on the methods for each dataset. For the three 

additional datasets, we focused on the accuracies and maps produced with each method. We therefore omitted analyses of 

the residuals and covariate importance for these datasets. 205 

3 Results and discussion 

3.1 Optimal number of coordinate rasters 

3.1 Optimal number of coordinate rasters 

3.1.1 Vindum 

For the Vindum dataset, Without auxiliary data, accuracies of predictions obtained with OGC, without auxiliary data, 210 

increased with the number of coordinate rasters up to an optimum at seven coordinate rasters (Figure 4). However, with 

more than seven coordinate rasters, accuracies deteriorated slightly with the number of coordinate rasters. This pattern was 

the same for all three metrics. On the other hand, with OGC in combination with auxiliary data, accuracies generally 

increased with the number of coordinate rasters. The increase was greatest when the number of coordinate rasters was small, 

while the effect of more coordinate rasters decreased for larger numbers of coordinate rasters. With auxiliary data, the 215 

optimal number of coordinate rasters was 94 for Pearson’s R2, 80 for RMSE and 89 for ccc. Accuracies with auxiliary data 

were almost invariably higher than accuracies achieved without auxiliary data. 



11 
 

 
Figure 4: Effects of the number of coordinate rasters on the accuracy of SOM predictions on the Vindum dataset, calculated as 
Pearson’s R2, root mean square error (RMSE) and Lin’s concordance criterion (ccc). We calculated effects for Random Forest 220 
models trained on only coordinate rasters (OGC) and with coordinate rasters in combination with auxiliary data (OGC + AUX). 
The lines represent mean values obtained from 100 repeated splits (75% training dataset, 25% test dataset) for each number of 
coordinate rasters. 

Figure 5 shows SOM contents mapped for Vindum with increasing the effect of increasing the numbers of coordinate rasters, 

without auxiliary data. The predictions with only two coordinate rasters showed a pattern very typical of predictions with x- 225 

and y-coordinates with very visible orthogonal artefacts. As the number of coordinate rasters increaseds, the patterns of the 

artefacts changed. With coordinate rasters at three different angles, the artefacts hadve a hexagonal pattern, and with 

coordinate rasters at four different angles, the artefacts gained an octagonal pattern. Furthermore, as the number of 

coordinate rasters increaseds, the artefacts becoame less pronounced. Although some artefacts weare visible with coordinate 

rasters at seven different angles, they weare much less visible than the artefacts in the map produced with only two 230 

coordinate rasters. 
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Figure 5: Maps of soil organic matter (SOM) contents in the topsoil at Vindum predicted using Random Forest models trained 
with coordinate rasters at two to seven different angles as covariates. Easting and northing for UTM Zone 32N, ETRS 1989. 

With auxiliary data, the effect of increasing the number of coordinate rasters was less clearly visible for the Vindum dataset 235 

(Figure 6Figure 6). Even with only two coordinate rasters, the predictions had no orthogonal artefacts. However, they 

contained noisy patterns and sharp boundaries in some areas. This is most likely an artefact from the auxiliary data. For 

example, using a high-resolution DEM may have created noise in the predictions. However, with coordinate rasters at 80 

different angles, the spatial pattern of the predicted SOM contents became substantially smoother, with a reduction both in 

noise and in sharp boundaries. Furthermore, some areas with moderately high SOM contents became more clearly visible 240 

and coherent, for example in the area approximately one third of the way from the western to the northern corner of study 

area. The predicted patterns with a higher number of coordinate rasters were therefore not only more accurate, but also more 

realistic. 
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 245 
Figure 6: Maps of soil organic matter (SOM) contents in the topsoil at Vindum predicted using Random Forest models trained 
using auxiliary data in conjunction with coordinate rasters at (A) two and (B) 80 different angles as covariates. Easting and 
northing for UTM Zone 32N, ETRS 1989. 

3.1.2 Additional datasets 

For the three additional datasets, the effect of increasing the number of coordinate rasters without auxiliary data was 250 

generally the same as for the Vindum dataset. In all three cases, there was relatively little, if any increase in accuracy after an 

initially very steep increase. For the meuse dataset, the optimal number of coordinate rasters was six or eight, depending on 

the accuracy metric (Figure A1). For the eberg dataset, the optimal number was 91, but there was only limited improvement 

in accuracy with more than five coordinate rasters (Figure A3). For the Swiss rainfall dataset, the optimal number of 

coordinate rasters was 33 or 50, depending on the accuracy metric (Figure A5). 255 

As for the Vindum dataset, the optimal number of coordinate rasters was generally larger in combination with auxiliary data 

than without auxiliary data. For the meuse dataset, the optimal number of coordinate rasters in combination with auxiliary 

data was 11 or 13, depending on the accuracy metric. For the eberg dataset, the optimal number of coordinate rasters in 

combination with auxiliary data was 22. However, unlike the results for the Vindum dataset, accuracies for these two 

datasets gradually decreased when the number of coordinate rasters was larger than the optimal value. 260 

In summary, the combination of OGC with auxiliary data generally increased the optimal number of coordinate rasters. 

Furthermore, in some cases, accuracy deteriorates when the number of coordinate rasters surpasses an optimal value, while 

in other cases it reaches a plateau. The decrease in accuracy past the optimum may be due to correlation between the 

coordinate rasters. Coordinates x and y are perfectly uncorrelated, but the coordinate rasters become increasingly correlated 

as their number increases. The optimal value may therefore be a trade-off between the increased ability of the model to 265 
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account for spatial trends and the adverse effect of increasingly correlated covariates. It is therefore likely that it depends on 

the complexity of the spatial distribution of the target variable as well as the number of observations.  

With OGC in combination with auxiliary data, the process-based covariates in the auxiliary data most likely help to reduce 

the effect of correlation between the coordinate rasters. Furthermore, in this case, the number of coordinate rasters also 

affects the relative weighting between the auxiliary data and the coordinate rasters. When mtry is smaller than the total 270 

number of covariates, a higher number of coordinate rasters increases the chance that a coordinate raster will be available for 

a split. The optimal number of coordinate rasters may therefore depend on the optimal weighting between process-based and 

explicitly spatial covariates. This optimal weighting may depend on the number of covariates in the auxiliary data as well as 

the strength of the relationship between the target variable and the auxiliary data. 

At present, several factors could therefore explain the optimal number of coordinate rasters for each dataset, with and 275 

without auxiliary data. The exact interplay between these factors is unclear, and the best option may therefore be to 

experiment with different numbers of coordinate rasters. 

3.2 Comparison with other methods 

3.2 Method comparison 

3.2.1 Predictive accuracy 280 

For all four datasets, tThere were large overlaps in the accuracies of the methods, as accuracies varied across the 100 

repeated splits (Figure 7, Figure A2, Figure A4, Figure A6), especially for RMSE. However, an analysis on the Vindum 

dataset revealed that the accuracies generally correlated between the methods across the repeated splits. The mean 

correlation coefficient (Pearson's R) was 0.52 (0.19 – 0.88) for R2, 0.71 (0.65 – 0.71) for RMSE and 0.65 (0.41 – 0.89) for 

ccc. This shows that some holdout datasets yielded consistently high accuracies, while others yielded consistently low 285 

accuracies. Furthermore, especially for R2 and ccc, a few holdout datasets yielded much lower accuracies than the other 

holdout datasets, leading to long negative tails (Figure 7, Figure A2, Figure A6). 
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Figure 7: Violin plots showing accuracies of soil organic matter predictions on the Vindum dataset with kriging, and Random 290 
Forest models trained using either auxiliary data (AUX), Euclidean distance fields (EDF), distances to observations (RFsp), 
oblique geographic coordinates (OGC) or EDF, RFsp or OGC in conjunction with AUX. The figure shows Pearson’s R2, room 
mean square error (RMSE) and Lin’s concordance obtained from 100 repeated splits (75% training dataset, 25% test dataset). 

For the Vindum dataset, Kkriging achieved the highest rank for R2 (Table 2). For RMSE, kriging shared the highest rank 

with EDF, RFsp and OGC in combination with auxiliary data. Lastly, OGC and RFsp in combination with auxiliary data 295 

shared the highest rank for ccc. In short, kriging, RFsp with auxiliary data and OGC with auxiliary data all had the highest 

rank for two accuracy metrics out of three. We therefore regard these three methods as the most accurate methods for the 

Vindum dataset. Furthermore, we regard these three methods as equally accurate for this dataset, as none of them was 

universally more accurate than the other two methods.We therefore regard these three methods as most accurate. 

Auxiliary data used on their own, as well as RFsp without auxiliary data had the lowest rank for all three accuracy metrics on 300 

the Vindum dataset. Furthermore, OGC without auxiliary data had the same rank as EDF without auxiliary data for all three 

accuracy metrics. 
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Table 2: Ranks for the accuracies of the methods on the Vindum dataset, calculated as Pearson’s R2, RMSE and ccc, respectively. 
Methods for which a pairwise t-test did not give a significant difference in accuracy (p > 0.05) received equal ranks for the metric 305 
in question. Ranks for the methods therefore differ between the three metrics. AUX: Auxiliary data. EDF: Euclidean distance 
fields. OGC: Oblique geographic coordinates. RFsp: Distances between observations.Spatial Random Forest. 

   R2    RMSE    ccc   
Rank  Method Mean  Method Mean  Method Mean 
1  Kriging 0.87  EDF + AUX 2.0  OGC + AUX 0.89 
     Kriging 2.0  RFsp + AUX 0.89 
     OGC + AUX 1.9    

        RFsp + AUX 1.9      
2  OGC + AUX 0.85  EDF 2.2  EDF + AUX 0.87 
   RFsp + AUX 0.86  OGC 2.2  Kriging 0.87 
3  EDF 0.82  AUX 2.4  AUX 0.84 
  EDF + AUX 0.83  RFsp 2.3  EDF 0.85 
  OGC 0.81     OGC 0.84 
             RFsp 0.84 
4  AUX 0.77       

   RFsp 0.79           
 

Pouladi et al. (2019) tested several methods for predicting SOM on the Vindum datasetwithin the field, including kriging and 

the machine learning algorithms Cubist and Random Forest, with and without kriged residuals. The authors found that 310 

kriging provided the most accurate predictions of SOM. The results in this studyfor Vindum affirm the high accuracy of 

kriging predictions, but they also show that Random Forest models combining auxiliary data with spatial trendsrelationships 

can achieve similar accuracies. 

For the meuse dataset, OGC in combination with auxiliary data achieved the highest rank for R2 and RMSE (Table 3). For 

ccc, OGC in combination with auxiliary data shared the highest rank with EDF in combination with auxiliary data. Without 315 

auxiliary data, OGC received third rank for RMSE and fourth rank with R2 and ccc. OGC without auxiliary data was 

generally on par with models based only on auxiliary data and with EDF. It was less accurate than combined methods and 

OK (R2 and ccc). RFsp without auxiliary data was the least accurate method. 
Table 3: Ranked accuracies obtained with each method on the meuse dataset, calculated as Pearson’s R2, RMSE and ccc. Methods 
received shared ranks if a pairwise t-test revealed no statistically significant difference between their accuracies for the metric in 320 
question. Each t-test used accuracies obtained with 100 repeated splits into training and test datasets. AUX: Auxiliary data. EDF: 
Euclidean distance fields. RFsp: Distances to observations. OGC: Oblique geographic coordinates. OK: Ordinary kriging. RK: 
Regression-kriging. 

    R2     RMSE     ccc   
Rank  Method Mean  Method Mean  Method Mean 
1  OGC + AUX 0.68  OGC + AUX 202  EDF + AUX 0.78 
             OGC + AUX 0.78 
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2  EDF + AUX 0.67  EDF + AUX 204  RFsp + AUX 0.77 
   RFsp + AUX 0.66  RFsp + AUX 206      
3  OK 0.63  AUX 224  OK 0.76 
 

 RK 0.63  EDF 226  RK 0.76 
 

 
  

 OGC 220  
  

 
 

  
 OK 215  

  

        RK 216      
4  AUX 0.61  RFsp 250  AUX 0.74 
 

 EDF 0.59  
  

 OGC 0.74 
 

 OGC 0.61  
  

 
  

5  RFsp 0.50       EDF 0.71 
6               RFsp 0.63 

 

For the eberg dataset, OGC in combination with auxiliary data was the most accurate method (Table 4). Without auxiliary 325 

data, OGC had the third rank. It was less accurate than EDF combined with auxiliary data, but more accurate than EDF 

without auxiliary data and models based only on auxiliary data. Models based only on auxiliary data yielded the lowest 

accuracies. 
Table 4: Ranks of the accuracies (percent cases correctly predicted) obtained with each method on the eberg dataset. Pairwise t-
tests showed that differences between the accuracies of the methods were all statistically significant (p < 0.05). AUX: Auxiliary 330 
data. EDF: Euclidean distance fields. OGC: Oblique geographic coordinates. 

Rank Method Accuracy 
1 OGC + AUX 0.39 
2 EDF + AUX 0.38 
3 OGC 0.37 
4 EDF 0.37 
5 AUX 0.35 

 

For the Swiss rainfall dataset, OGC was the most accurate method for all three metrics (Table 5). RFsp was the second-most 

accurate method, followed by EDF. OK was the least accurate method. 
Table 5: Ranked accuracies on the Swiss rainfall dataset for each method. Pairwise t-test showed statistically significant (p < 0.05) 335 
differences between the methods for all three metrics. The ranks are the same for all three metrics. EDF: Euclidean distance fields. 
RFsp: Distances to observations. OGC: Oblique geographic coordinates. OK: Ordinary kriging. 

Rank Method R2 RMSE ccc 
1 OGC 0.831 4.7 0.902 
2 RFsp 0.822 4.8 0.893 
3 EDF 0.818 4.9 0.891 
4 OK 0.804 5.0 0.887 
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In summary, for Vindum, meuse and eberg, OGC combined with auxiliary data was either the most accurate method or one 

of the most accurate methods. Without auxiliary data, OGC was not one of the most accurate methods for these datasets. 340 

However, for the Swiss rainfall dataset, OGC was the most accurate method, even though we used no auxiliary data. 

It is important to consider that in most cases all methods yielded acceptable accuracies. Although the differences between the 

accuracies of the methods were in many cases statistically significant, they were generally small. However, the results show 

that OGC compares well with other methods for integrating spatial trends in machine learning models. 

3.2.2 Maps 345 

For the Vindum dataset, Kkriging produced a smooth prediction surface, which is very common for this method (Figure 8A). 

The prediction surface with EDF was mostly smooth, but it also contained a distinct “rings in the water” artefact caused by 

the use of the raster with the distance to the middle of the study area as a covariate (Figure 8B). The prediction surface with 

RFsp was smoother than the prediction surface produced by kriging (Figure 8C). The predictions with only auxiliary data 

were very similar to the predictions made with x- and y-coordinates in combination with auxiliary data (compare Figure 8C 350 

to Figure 6Figure 6A). In combination with auxiliary data, both EDF and RFsp produced smoothing effects similar to the 

effect seen with OGC in combination with auxiliary data (compare Figure 8E and Figure 8F to Figure 6Figure 6B). 

However, for EDF the smoothing was less visible than with OGC, and for RFsp it was more visible than with OGC. 

 
Figure 8: Prediction of soil organic matter (SOM) contents for the topsoil at Vindum using A: Kriging, or Random Forest models 355 
trained with  B: Euclidean distance fields (EDF), C: Distances to observations (RFsp), D: Auxiliary data (AUX), E: EDF in 
conjunction with AUX, or F: RFsp in conjunction with AUX. Easting and northing for UTM Zone 32N, ETRS 1989. 
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For the meuse dataset, OK, EDF and RFsp produced smooth prediction surfaces (Figure 9). However, OGC without 

auxiliary data produced a prediction surface with several abrupt, angular artefacts. The accuracy of OGC without auxiliary 

data was on par with some of the other methods, but the maps revealed that the predictions were not realistic. Predictions 360 

with the combined methods (RK, EDF + AUX, RFsp + AUX and OGC + AUX) were mostly similar to predictions with only 

auxiliary data. However, in some places these methods smoothed out the spatial patterns produced with only auxiliary data 

(for example in the northern part of the study area), and in other places they made them more distinct (for example south-

west of the middle of the study area). In this regard, the results are similar to the results from Vindum. 

 365 
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Figure 9: Zinc contents predicted with each method for the meuse dataset. Easting and northing are Rijksdriehoek (RDH) 
(Netherlands topographical map) coordinates. A: Ordinary kriging (OK), B: Regression-kriging (RK), C: Auxiliary data (AUX), 
D: Euclidean distance fields (EDF), E: Distances to observations (RFsp), F: Oblique geographic coordinates (OGC), G: EDF 
combined with AUX, H: RFsp combined with AUX, I: OGC combined with AUX. 

For the eberg dataset, predictions based only on auxiliary data showed a very noisy spatial pattern with many soil types 370 

occupying small incoherent areas (Figure 10C). The spatial patterns produced with OGC and especially EDF were much 

smoother and contained several large, rounded areas with little internal variation in soil types (Figure 10A and Figure 10B). 

The predictions obtained with the combined methods were similar to the spatial pattern obtained with only auxiliary data. 

However, they were much smoother, as the soil types occupied mostly coherent areas. The effect for predictions of soil types 

therefore appears similar to the effect for numeric variables seen for Vindum and meuse. 375 

 
Figure 10: Soil types predicted with each method for the eberg dataset. Easting and northing are coordinates according to DHDN / 
Gauss-Krueger zone 3 (German coordinate system). A: Euclidean distance fields (EDF). B: Oblique geographic coordinates 
(OGC). C. Auxiliary data (AUX). D: EDF combined with AUX. E: OGC combined with AUX. 

For the Swis rainfall dataset, OK produced a smooth, highly anisotropic prediction surface (Figure 11A). The prediction 380 

surfaces of EDF, RFsp and OGC also showed anisotropy, but they were generally smoother and more rounded. For example, 

with OK, some individual observations showed an effect on the prediction surface as elongated spots in the direction of the 

anisotropy. With the other three methods, a few individual observations showed an effect in the prediction surface, but their 

effects are more rounded and less distinct. The predictions with EDF, RFsp and OGC therefore appear more general than the 

OK predictions. Moreover, the prediction surfaces of EDF, RFsp and OGC appear very similar. 385 
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Figure 11: Maps of rainfall on 1986-05-08 in Switzerland predicted with each method. Northing and easting are coordinates 
according to the Swiss coordinate system LV95. A: Ordinary kriging (OK). B: Euclidean distance fields (EDF). C: Distances to 
observations (RFsp). D: Oblique geographic coordinates (OGC). 

3.2.3 Residuals 390 

For the Vindum dataset, the residuals of the SOM predictionsFor all methods except kriging, the residuals of the SOM 

predictions had some degree of spatial dependence for all methods except kriging (Figure 12Figure 9). This finding contrasts 

with Hengl et al. (2018) who found that there was no spatial trend in the residuals of predictions with RFsp. EDF, RFsp and 

OGC used without auxiliary data had the most spatially dependent residuals., with nugget-to-sill ratios of 0.40. On the other 

hand, EDF and OGC in combination with auxiliary data had the least spatially dependent residuals after kriging, with 395 

nugget-to-sill ratios of 0.65 and 0.64, respectively. However, the residuals of the combined methods (EDF + AUX, RFsp + 

AUX and OGC + AUX) had less spatial dependence than the residuals of models based only on auxiliary data. OGC + AUX 

was the machine learning method with the least spatially dependent residuals, although the residuals still had more spatial 

dependence than kriging residuals. 
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Figure 12: Experimental variograms for the residuals of the SOM predictions made with each method for the Vindum dataset. 
The variograms use residuals from natural logarithmic-transformed SOM measurements and predictions. AUX: Auxiliary data. 
EDF: Euclidean distance fields. RFsp: Spatial Random Forest. OGC: Oblique geographic coordinates. 

3.3 Covariate importance 405 

For the Vindum dataset, Tthe most important covariate from the auxiliary data was the depth of sinks (Table 6Table 3). The 

most likely reason for its high importance is the presence of a large sink with very high SOM contents northwest of the 

middle of thise study area (Figure 1). As sinks trap surface runoff, they often have wet conditions, which give rise to peat 

accumulation. 

  410 
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Table 6: Covariate importance for the model using OGC in combination with auxiliary data for Vindum. The importance for 
OGC represents the sum of the importance of the coordinate rasters at 80 different angles. 

Covariate Importance (variance) 
OGC 2689 
Depth of sinks 2003 
MRVBF 476 
SAGA wetness index  170 
Elevation 166 
Valley depth 157 
ECa 123 
Slope gradient 101 
Mid-slope position   84 
NDVI 76 
Plan curvature 74 
SL 64 
SAVI 58 
Cos aspect  44 
DVI 42 
TWI 38 
RVI 34 
Flow accumulation  32 
Sin aspect 32 
Profile curvature 21 

 

When used in combination with the auxiliary data, the importance of the individual coordinate rasters varied from 0.6% to 

3.1% of the importance of the depth of sinks, with mean value of 1.7%. The most important coordinate raster had θ = 0.48π 415 

(close to a north-south axis) and was the 12th most important covariate. The sum of the importance of the coordinate rasters 

was equal to 134.3% of the importance of the depth of sinks (Table 6Table 3). Therefore, with coordinate rasters at 80 

different angles, the effect of the individual rasters on the predictions was subtle, but their combined effect was strong. 

Figure 13Figure 10 shows the importance of the coordinate rasters relative to θ, in a way similar to a wind rose. The plots 

repeat the bars for θ ≥ π, as the importance for a given angle is directionless. For example, the importance of θ = 0 (East) is 420 

equal to the importance of θ = π (West). 

Without auxiliary data, the most important coordinate rasters had a general northwest to southeast angle (Figure 13Figure 

10). On the other hand, the coordinate rasters with angles between a north-south and a northeast-southwest axis had low 

importance. The most likely reason for this pattern is the location of the sink with very high SOM contents to the northwest 

of the middle of thise study area. This creates a large difference in the SOM contents of the northwestern and southeastern 425 

parts of the study area, giving large importance to covariates that can explain this difference. Additionally, the northwest side 
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of the sink has a very steep slope, creating a steep gradient in SOM contents in this direction. A stable variogram showed 

anisotropy along a north-north-east to south-south-west axis (θ = 0.34π) with a major range of 136 m and a minor range of 

118 m. The direction of the anisotropy therefore coincided with the direction of the least important coordinate rasters. 

 430 
Figure 13: Covariate importance of the coordinate rasters at various angles for Vindum. A: Importance of coordinate rasters at 
seven different angles. B: Importance of coordinate rasters at 80 different angles used with auxiliary data (importance of auxiliary 
data not shown). The sizes of the bars show the importance of the coordinate rasters at a given angle. Bars in B show the sum of 
the importance for coordinate rasters aggregated into 0.125π intervals. 

On the other hand, with OGC in combination with auxiliary data, the most important coordinate rasters had tilt angles close 435 

to a north-south axis (θ = 0.5π). At the same time, the least important coordinate rasters had tilt angles close to a northeast-

southwest axis (θ = 0.25π). The residuals from the predictions with only auxiliary data only also displayed a degree of 

anisotropy. A stable variogram showed anisotropy along a northeast to southwest axis (θ = 0.21π), with a major range of 52 

m and a minor range of 38 m. Again, the angle of the anisotropy coincided with the angle of the least important coordinate 

rasters. The spatial pattern of the residuals therefore differed from the spatial pattern of the SOM contents in the Vindum 440 

study area. Apparently, there are unaccounted-for processes decreasing the spatial variation along a northeast-southwest axis 

relative to other angles. 

A possible cause of the anisotropy in the residuals may be the ploughing direction. The main ploughing direction in the 

Vindum study area is along an east-north-east to west-south-west axis (θ = 0.18π). This angle is nearly parallel to the angle 

of the least important coordinate rasters (Figure 14Figure 11). The ploughing direction, combined with the topography, has a 445 

large impact on soil movement, as ploughing displaces soil both along and across its direction (Lindstrom et al., 1990, De 

Alba, 2003, Heckrath et al., 2006). Most of the study area has the same ploughing direction, irrespective of the topography, 

resulting in up-, down- and cross-slope ploughing in various parts of the field. This creates in a complex pattern of soil 
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redistribution, which likely affects the SOM contents of the topsoil. As downslope soil movement is strongest in the 

ploughing direction, variation in soil properties parallel to this direction is likely to be smaller than the variation 450 

perpendicular to the ploughing direction. This corresponds to the low importance of coordinate rasters with angles close to 

the ploughing direction.  However, none of the auxiliary data accounted for the ploughing direction. This indicates that OGC 

can add information on the most likely processes affecting soil properties in an area. 

 
Figure 14: Orthophoto of the study area from September 27, 2016 (Esri, 2019). Sources: Esri, DigitalGlobe, Earthstar 455 
Geographics, CNES/Airbus DS, GeoEye, USDA FSA, USGS, Aerogrid, IGN, IGP, and the GIS User Community. 

3.4 Choice of method 

At Vindum, Tthe three most accurate methods were kriging, RFsp with auxiliary data and OGC with auxiliary data. For 

meuse, OGC and EDF combined with auxiliary data were most accurate, and for eberg, OGC combined with auxiliary data 

was most accurate. For the Swiss rainfall dataset, OGC was the most accurate method. 460 

Although kriging was in most cases less accurate than other methods, Manysome soil mappers would probably still choose 

krigingit for mapping SOM in this fieldsoil properties, givendue to its computational efficiency and conceptual simplicity. 

However, aside from accuracy, anThe advantage of the methods based on machine learning instead lies in the fact that they 

provide larger amounts of information than geostatistical models their interpretability. Kriging in itself does not provide 

information on the processes that control spatial variation in soil properties, but researchers can interpret machine learning 465 

models can include covariates related to soil processes, providing information on the processes that are most likely to affect 

in order to discover the most likely processes affecting the spatial distribution of a soil property.  

With spatial approaches such as EDF, RFsp and OGC, researchers can incorporate feature space and geographic space in a 

machine learning model. Of the previously used approaches, OGC is most similar to EDF, as it used the x- and y-
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coordinates, and the distances to the corners of the study area resemble coordinates. On the other hand, RFsp is more similar 470 

to geostatistical models, as it relies on distances between observations. However, this similarity comes at the cost of 

calculating a large number of distance rasters. 

The benefit One advantage of using spatially explicit covariates (EDF, RFsp or OGC) is that researchers can interpret local 

and spatial effects at once. In this regard, OGC has an advantage over EDF and RFsp, as it is clear what the coordinate 

rasters represent. On the other hand, iIt is less clear how researchers should interpret distances to the corners of the study 475 

area or the distance to a specific observation. We have also shown that it is straightforward to illustrate covariate importance 

for OGC. 

While kriging, RFsp with auxiliary data and OGC with auxiliary data yielded equally accurate predictions, it is likely that it 

is due to the high sampling density of the study area. For larger, less densely sampled areas, OGC and RFsp with auxiliary 

data are likely to provide higher relative accuracies. 480 

Furthermore, an advantage of OGC relative to RFsp is that OGC required fewer covariates to achieve the same accuracy. In 

fact, without auxiliary data, OGC achieved a higher accuracy with a smaller number of covariates for the data sets Vindum, 

meuse and Swiss rainfall. This demonstrates a clear advantage of OGC, as it is possible to adjust the number of coordinate 

rasters. EDF and RFsp do not presently have similar options. 

We will stress that, as a rule, soil mappers should not use machine learning models relying only on spatial 485 

trendsrelationships, as EDF, RFsp and OGC all yielded lower accuracies without auxiliary data for the soil datasets 

(Vindum, meuse and eberg). Moreover, surprisingly, these methods had the most spatially autocorrelated residuals for the 

Vindum dataset, although they relied exclusively on spatial trendsrelationships. The results therefore suggest that soil 

mappers should primarily use these methods in combination with auxiliary data, and not on their ownare best suited for 

integrating spatial relationships with auxiliary data. If no auxiliary data are available, kriging is likely to be a better option.If 490 

the purpose requires a purely spatial method, kriging is a better option. However, results from the Swiss rainfall dataset show 

that, for other spatial problems, auxiliary data may be unnecessary. 

4 Conclusions 

We have shown in this study that the use of oblique geographic coordinates (OGC) is a reliable method for integrating 

auxiliary data with spatial trendsrelationships for modelling and mapping soil properties. In most cases, the method 495 

eliminated the orthogonal artefacts that arise from the use of x- and y-coordinates and achieved higher accuracies than maps 

created with only two coordinate rasters. However, for meuse, without auxiliary data, OGC still produced abrupt angular 

artefacts in the final map. ItSoil mappers should therefore combine OGC with auxiliary data, as this gives higher accuracies 

and spatial patterns with a higher degree of realism. 

OGC is more interpretable than previous similar approaches, and more flexible, as it is possible to adjust the number of 500 

coordinate rasters. This should allow soil mappers to find a good compromise between accuracy and computational 
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efficiency for mapping soil properties, as the optimal number of coordinate rasters may vary depending on the study area and 

the soil property in question. 

At this point, we have only tested the method for one soil property in one areathree soil datasets and one meteorological 

dataset. , and iIt will therefore be highly relevant to test the method for other soil properties and areas. It will especially be 505 

relevant to test the method in larger, less densely sampled areas. Previous studies have shown that machine learning is likely 

to provide higher accuracies in such areas (Zhang et al., 2008, Greve et al., 2010, Keskin et al., 2019), and it will be relevant 

to test if this is also the case for oblique geographic coordinatesas it may have its greatest relative advantages in these cases. 

Furthermore, the. rResults from the Vindum and the Swiss rainfall datasets also suggest that the method can be useful for 

predicting mapping properties variables with anisotropic spatial distributions, and it will therefore be relevant to test it on 510 

datasets with a high degree of anisotropy. Lastly, one should note that we carried out this study for relatively small areas 

using “flat” coordinate systems. Using OGC for larger areas and other coordinate systems may require alterations to the 

method. 

We call upon researchers within digital soil mapping to aid us in testing oblique geographic coordinates as covariates for 

additional datasetsthis endeavour, and we have therefore made the function for generating oblique geographic coordinates 515 

available as an R package. Moreover, to allow other researchers to test methods on the dataset that we usedVindum dataset, 

we have made it available as well as part of the same package. 

5 Code and data availability 

The function for generating oblique geographic coordinates is available as an R package at 

https://bitbucket.org/abmoeller/ogc/src/master/rPackage/OGC/. The package also contains the SOM observations and 520 

auxiliary data used in this study.from the Vindum dataset. 

Furthermore, we have made the R code used in this study available in a public repository at 

http://dx.doi.org/10.5281/zenodo.3496935http://dx.doi.org/10.5281/zenodo.3820068. 

6 Appendix A: Methods and results for additional datasets 

6.1 Methods 525 

6.1.1 meuse 

We mapped zinc contents for the meuse dataset (155 points). The meuse dataset contains covariates including the flooding 

frequency and the distance to the river. We added two covariates in the form of a digital elevation model (DEM, 

https://www.ahn.nl/) and surface water occurrence (Pekel et al., 2016). We converted the categorical raster of flooding 

frequency to indicator variables and transformed all the covariates to principal components. This resulted in six principal 530 

components. 

https://bitbucket.org/abmoeller/ogc/src/master/rPackage/OGC/
https://www.ahn.nl/
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We tested all the methods applied to the Vindum dataset, with the addition of regression-kriging (RK). We used Random 

Forest models trained on the auxiliary data for regression and then kriged the residuals using the function krige.conv from 

the R package geoR (Ribeiro Jr et al., 2020). As for the Vindum dataset, we tested each method with 100 repeated splits into 

training (75%) and test (25%) data. For each split, we calculated Pearson’s R2, RMSE and ccc. We carried out pairwise t-test 535 

on the accuracies obtained with each method in order to asses if the differences between their accuracies were statistically 

significant. We also produced maps with each of the nine methods in order to compare results. 

6.1.2 eberg 

We mapped soil types for the eberg dataset. The eberg dataset contains 3,670 soil observations. We removed points outside 

the coverage of the covariates and points without a soil type classification. Furthermore, we removed the soil types “Moor” 540 

and “HMoor”, as only one observation was available for each soil type. This reduced the dataset to 2,552 observations. 

The eberg dataset contains covariates including the parent material, a DEM, the SAGA GIS topographic wetness index and 

the Thermal Infrared reflectance from satellite imagery. We converted the parent material classes to indicators and converted 

all covariates to principal components. This   resulted in 11 principal components. 

The dataset is highly clustered, which is likely to affect accuracy assessments, as some areas have much higher point 545 

densities than others. To counter this effect, we organized the data in 100 groups using k-means clustering on their 

coordinates. We then produced 100 splits into training and test data based on these groups. In each split, the training data 

contained observations from 75 groups, and the test data contained observations from the remaining 25 groups. 

As we aimed to predict a categorical variable, we did not use kriging. Furthermore, due to the large size of the dataset, we 

did not use RFsp, as this would require us to produce more than 2,000 raster layers with buffer distances. Hengl et al. (2018) 550 

avoided this by calculating only buffer distances to each soil type. However, we did not choose this solution, as it would 

create problems for accuracy assessment. If a raster layer contains distances to test observations as well as training 

observations, the result would be circular logic, invalidating the accuracy assessment. Buffer distances based only on the 

training data would be less problematic. However, as we used 100 repeated splits, this was not an option. 

We therefore tested only five methods for the eberg dataset: Models based on auxiliary data (AUX), Euclidean distance 555 

fields (EDF), OGC, as well as EDF and OGC combined with auxiliary data. 

Due to the large size of the dataset, model training was slower than for the other datasets. We therefore tuned a Random 

Forest model only once for each method and used the resulting parameterization for all 100 data splits. For each split, we 

calculated accuracy on the test data as the fraction of observations correctly predicted. We carried out pairwise t-tests on the 

accuracies obtained with each method in order to assess if the differences between their accuracies were statistically 560 

significant. 

We produced maps of soil types with each of the five methods in order to compare results. 
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6.1.3 Swiss rainfall 

The Swiss rainfall dataset contains 467 rainfall observations from Switzerland from May 8, 1986. We did not use any 

covariates for this dataset, and we therefore tested only purely spatial methods. We tested ordinary kriging with correction 565 

for anisotropy, EDF, RFsp and OGC. As for the Vindum dataset, we tested each method with 100 repeated splits into 

training data (75%) and test data (25%). For each split, we calculated Pearson’s R2, RMSE and ccc. We carried out pairwise 

t-tests on the accuracies obtained with each method in order to assess if the differences between their accuracies were 

statistically significant. Lastly, we produced maps of rainfall with each of the four methods in order to compare results. 

6.2 Results 570 

6.2.1 meuse 

For the meuse dataset, the accuracy of OGC combined with auxiliary data was consistently higher than the accuracy of OGC 

without auxiliary data, irrespective of the accuracy metric and the number of coordinate rasters (Figure A1). The accuracy of 

OGC initially increased quickly with the number of coordinate rasters up to an optimum, after which there was no further 

improvement. For OGC + AUX, the increase in accuracy was more gradual, up to an optimum, after which accuracy 575 

deteriorated slightly. The optimal number of coordinate rasters without auxiliary data was six for RMSE and ccc and eight 

for R2. With auxiliary data, the optimal number of coordinate rasters was 11 for RMSE and 13 for R2 and ccc. In the 

subsequent analysis, we used six coordinate rasters for OGC without auxiliary data and 11 coordinate rasters for OGC with 

auxiliary data. 
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 580 
Figure A1: Accuracy of predictions on the meuse dataset (zinc contents) versus the number of coordinate rasters with oblique 
geographic coordinates, with and without auxiliary data. The values are averages obtained with 100 splits into training and test 
data. 

For the meuse dataset, as for the Vindum dataset, the differences between the accuracies of the methods was relatively small 

relative to the variation in accuracy between the test splits (Figure A2). Furthermore, most methods had long tails with lower 585 

accuracies. 
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Figure A2: Violin plots showing the accuracies obtained on the meuse dataset (zinc contents) with each method. The plots show 
values obtained with 100 splits into training and test datasets. 

6.2.2 eberg 590 

For the eberg dataset, accuracy for OGC without auxiliary data first increased sharply up to five coordinate rasters. Past this 

point, there was little improvement in accuracy, and some numbers of coordinate rasters produced sharp, irregular drops in 

accuracy (Figure A3). Combined with auxiliary data, the accuracy of OGC increased up to 22 coordinate rasters, after which 

it gradually declined. Without auxiliary data, the optimal number of coordinate rasters was 91. However, the highly irregular 

pattern of the accuracies did not justify any number past the initial increase, and we therefore used only five coordinate 595 

rasters. For OGC combined with auxiliary data, we used 22 coordinate rasters. 
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Figure A3: Accuracy (percent of cases correctly predicted) of predictions on the eberg dataset versus the number of coordinate 
rasters with oblique geographic coordinates (OGCs), with and without auxiliary data (AUX). The values are averages obtained 
with 100 splits into training and test data. 600 

For the eberg dataset, as for the Vindum dataset, variation in accuracy between the splits into training and test data was in 

most cases greater than variation between the methods (Figure A4). However, unlike the other datasets, the distributions of 

the accuracies were mostly symmetric. 

 
Figure A4: Violin plot showing the accuracies obtained on the eberg dataset (percent correctly predicted) with each method. The 605 
plot shows values obtained with 100 splits into training and test datasets. 
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6.2.3 Swiss rainfall 

For the Swiss rainfall dataset, the accuracy of OGC generally increased with the number of coordinate rasters (Figure A5). 

The increase in accuracy was steep at first, then gradual. For Pearson’s R2, the optimal number of coordinate rasters was 33, 

and for RMSE and ccc, it was 50. There was little change in accuracy past the optimal number of coordinate rasters. 610 

 
Figure A5: Accuracy of predictions on the Swiss rainfall dataset versus the number of rasters with oblique geographic coordinates. 
The values are averages obtained with 100 splits into training and test data. 

As for the other datasets, variation in accuracies on the Swiss rainfall dataset was greater between the splits into training and 

test data than between the methods (Figure A6). The distributions of RMSE were mostly symmetric, but the distributions of  615 

R2 and ccc had long negative tails, as some splits yielded much lower accuracies than other splits. 
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Figure A6: Violin plots showing the accuracies obtained on the Swiss rainfal dataset with each method. The plots show values 
obtained with 100 splits into training and test datasets. 
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Replies to comments on our manuscript 
“Oblique geographic coordinates as 
covariates for digital soil mapping” 
We here present our replies to the comments on our manuscript from the Editor, from the two 
anonymous referees and from Dr. Alaxandre Wadoux. In addition to our replies, we also 
outline the changes in the manuscript occasioned by each comment. We have previously 
presented most of these replies in the open discussion. However, we have changed some of 
the replies due to the revision requested by the editor. 

1 Editor’s comments 
COMMENT 1 
We have now studied the reports of 3 reviewers. All of them are very positive and agree that 
your approach is a novel and interesting addition to DSM. There are many smaller issues 
raised that will require your attention while revising your ms. I would like to highlight that 
the first 2 reviewers strongly suggest to demonstrate that your approach has 'global' merit and 
we would like to see this reflected in the revised ms. Thanks for considering SOIL and we are 
looking forward receiving your updated study! 

K Van Oost 

REPLY 
We thank the editor for taking the time to consider our manuscript. We acknowledge the 
consensus that our manuscript should include additional datasets, and we consider this in the 
revised manuscript. Furthermore, we will address the smaller issues as described in our 
replies to the referees and to Dr. Alexandre Wadoux. 

CHANGES 
In addition to the Vindum dataset, the revised manuscript will include three other, publicly 
available datasets: 

1. meuse: For this dataset, we map soil zinc contents using all methods applied to 
Vindum, with the addition of regression kriging. 

2. eberg: For this dataset, we map soil types. As this is a classification problem, we omit 
kriging. Furthermore, due to the large number of observations (>2000), we omit 
RFsp. 

3. Swiss rainfall: For this dataset, we map rainfall on 1986-05-08 in Switzerland. This is 
not a soil dataset, but we include it due to its high anisotropy. We use no auxiliary 
data. We therefore compare only purely spatial approaches (Kriging, EDF, RFsp and 
OGC). 

In the revised manuscript, we mainly focus on the Vindum dataset in order to provide an in-
depth demonstration of OGC. We present a detailed account of the methods and results from 
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the additional datasets in Appendix A. However, we include a short overview of the results 
from the additional datasets in the main results section in order to compare methods. 

2 Comments from Referee #1 
We thank Referee #1 for the well-thought and qualified comments on our manuscript. In the 
following, we will address the referee’s comments and describe the changes that they have 
occasioned in the manuscript. 

COMMENT 1 
The present paper is well written and structured. Moreover, the study aims to make a 
contribution to the field of DSM by providing a novel methodological framework based on 
the usage of coordinates. This is something that can be considered as rather ‘out of the box 
thinking’, because most attention in the international literature goes either to the use of 
advanced geostatistical methods (e.g. capturing the spatial autocorrelation through kriging) or 
external drift fitting based on ‘(environmental) co-variates’ or a combination of both. Hence, 
the work certainly merit respect for its originality and the methodological framework seems 
to provide useful thoughts to be considered in future DSM-studies. However, I also see some 
shortcomings which should be addressed/considered in order to maximize its potential to be 
applied widely, and as such, I am looking forward receiving the authors replies on the 
associated comments and suggestions presented below. 

REPLY 
We thank the referee for seeing the value in our research. We will address the shortcomings 
listed by the referee in the following. 

COMMENT 2 
Major Comments: I believe that the main issue with this research is that it considers only one 
rather small field characterized by 1 remarkable / specific spatial structure as regards the 
variation of SOM (i.e. one spot/area with clearly higher values) in order to test the validity of 
the present new methodology, whereas the authors claim that the method will be highly 
useful for mapping soil properties in larger areas. Hence, I believe that the present 
methodology requires further testing by considering larger areas (e.g. catchment-regional 
scale) with more complex spatial patterns in SOM in order to prove the validity of the 
statements that have been made in this respect. Moreover, it would also be interesting to 
consider other key soil variables (besides SOM) to check whether the usages of oblique 
geographic coordinates as covariates could be seen as a universal DSM approach. In this 
context, I believe that using a national soil inventory database could be a good way forward. I 
may understand that this might not be possible in this study, but I still believe that this should 
be mentioned clearly (as a critical note) in the discussions (and maybe be picked up by the 
authors in future research). 

REPLY 
We agree with the referee that it is a shortcoming that we only tested the method on one 
dataset. 
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CHANGES 
As stated in the reply to the editor, we have included three additional datasets in the revised 
manuscript. 

COMMENT 3 
When I have a look at the performance of the different mapping methods (as presented in the 
Violin plots in figure 7), it seems to me that your new OGC (+AUX) method only results in 
(very) small improvements as compared to some other (more commonly used) methods such 
as Kriging. Hence, I was wondering whether this improvement is statistically significant? 
And if this might still be the case when either (i) another field (characterized by a different 
spatial pattern), (ii) another soil variable or (iii) larger geographical extent are considered? 

REPLY 
Some of the differences in accuracy are statistically significant and some are not. We used the 
same 100 repeated training/test splits for all methods, and this allowed us to carry out 
pairwise t-tests between the accuracies of the methods. We then ranked the methods using the 
results of these t-tests. Methods that did not have statistically significant differences for a 
given metric received the same rank for that metric, but methods with statistically significant 
accuracies received different ranks. For example, for the Vindum dataset, OGC + AUX and 
RFsp + AUX always received the same rank, as there were no statistically significant 
differences in the accuracies. Meanwhile, kriging always received a higher rank than AUX, 
because the differences in their accuracies were statistically significant. 

For Vindum, kriging, RFsp + AUX and OGC + AUX all received the highest rank for two 
out of three accuracy metrics. We therefore regard these three methods as equally accurate. 
We already state in the manuscript that we regard these three methods as most accurate. 
However, we see that we have not explicitly stated that we regard them as equally accurate. 

In the revised manuscript, we have carried out pairwise t-tests for the three additional 
datasets. For meuse, the tests show that EDF + AUX and OGC + AUX share the highest 
rank. For eberg, OGC + AUX has the highest rank, as its accuracy is statistically significantly 
higher than the accuracies of the other methods. Lastly, for the Swiss rainfall dataset, OGC 
has the highest rank, with statistically significant differences to the other methods. 

CHANGES 
We have rephrased L210 to state explicitly that we regard the three methods as equally 
accurate: 

“We therefore regard these three methods as the most accurate methods for the Vindum 
dataset. Furthermore, we regard these three methods as equally accurate for this dataset, as 
none of them was universally more accurate than the other two methods.” 

We will also include the results of the t-tests for the additional datasets in the revised 
manuscript. 
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COMMENT 4 
Minor Comments: I’m not too sure if it is entirely appropriate to use R2 as a measure to 
compare the different methods, because (i) a very high R2 value may also mean an ‘overfit’ 
and (ii) each method has it own degree of (model) complexity. Hence, I guess that it could be 
a good idea to take (also) another statistical measure into consideration that specifically aims 
to evaluate the methods’ performance taking into account its complexity (in order to avoid 
overfitting)? 

REPLY 
We understand the referee’s concern, as a very high R2 on a training dataset can indicate 
overfitting of a model. However, we report R2 for 25% holdout datasets not used in the 
models. Our R2 values therefore indicate the predictive capabilities of the models rather than 
their fit on the training data. Furthermore, we are not aware of any measures of accuracy that 
account for complexity in Random Forest models. We are even less aware of any accuracy 
measures capable of comparing complexities of conceptually very different models, such as 
Random Forest and kriging. We think most readers will be aware that kriging is much 
simpler method than Random Forest. In fact, we explicitly stated this in the first version of 
the manuscript (L295 – L296). 

COMMENT 5 
Figure 1 - Subpanel C: Showing hill shade is not enough to give the reader an insight into the 
topographical configuration of the field. Hence, I suggest adding contour lines. 

REPLY 
We thank the referee for this helpful comment. We agree that adding contour lines improves 
the visualization of the topography of the study area. 

CHANGES 
Due to the referee’s comment, we have prepared a new version of Figure 1, where we have 
added 2 m contour lines. We will include this updated figure in the final version of the 
manuscript: 
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3 Comments from Referee #2 
We thank the referee for the qualified and insightful comments on our manuscript. In the 
following, we will address the referee’s comments and describe the changes that we have 
made to the manuscript because of the comments. 

COMMENT 1 
The manuscript “Oblique geographic coordinates as covariates for digital soil mapping” from 
Møller et al. presents a valuable contribution to integrate predictor information on spatial 
position into machine learning approaches for digital soil mapping. It, thereby, seeks to 
overcome the known problem of orthogonal artefacts sometimes introduced by the usage of 
xy-coordinates as covariates in recursive partitioning algorithms. While commonly applied 
covariates usually relate to site characteristics that approximate the soil forming factors, the 
inclusion of coordinates provides a chance to reflect further spatial patterns we are not 
necessarily aware of. The authors show that the usage of a multitude of oblique spatial 
coordinates reflects spatial anisotropy. Major spatial axes identified through predictor 
importance measures may then give a hint on the geographic direction of the underlying 
processes as the authors demonstrate. The article compares the new approach (OGC) to 
existing approaches such as Euclidean distance fields (EDF) and spatial Random Forest 
(RFsp). The article is written using adequate language and it follows a clear structure. The 
figures are well prepared. Furthermore, it is a rare, but highly welcome choice of the authors 
to provide the R code of their approach. While the authors very clearly demonstrate the 
power of their approach particularly due to the clear figures and the comparison to similar 
approaches, certain aspects would require reconsideration: 

REPLY 
We thank the referee for the support for our manuscript. Furthermore, we are happy that the 
referee appreciates our choice to share the code for our study. We will consider the issues that 
the referee raises in the following. 
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COMMENT 2 
- I do not understand why the OGC+AUX approach is not directly compared to regression 
kriging, but to ordinary kriging. Ordinary kriging would require a stationary mean which is 
not given in this particular research setting. Accordingly, a regression model would first have 
to be fitted to model the trend from covariate data, while then spatial autocorrelation in the 
residuals will be accounted for by ordinary kriging of the residuals. While the regression 
model is fitted by random forest, this would also allow for direct comparability. The authors 
provide rather vague arguments against regression kriging (lines 27-32). 

REPLY 
Our study focuses on one-step methods, as one of the goals in developing OGC is to create a 
feasible one-step method. Two-step approaches such as regression-kriging require researchers 
to interpret two models at once, which can confound analyses of uncertainty and the 
processes that govern the spatial distribution of soil properties. We believe that this is a 
relevant consideration, but it is not our main reason for omitting regression-kriging. Our first 
reason for this choice is that a previous study carried out in the same area showed that kriging 
predicted SOM more accurately than regression-kriging using both Cubist and Random 
Forest models (Pouladi et al., 2019). When a relatively simple method outperforms complex 
approaches, we believe that it is right to consider the complex approaches as redundant. 
Without this previous finding, we believe that it would have been relevant to include 
regression-kriging in the comparison. 

CHANGES 
We see that the manuscript does not clearly state our reasons for omitting regression-kriging. 
We will therefore add the following paragraph to section 2.3: 

“A previous study using the same dataset showed that kriging predicted SOM more 
accurately than regression-kriging (Pouladi et al., 2019). We therefore omitted regression-
kriging from the analysis, although, without this previous finding, it would have been 
relevant to include it.” 

COMMENT 3 
The data in this study display spatial autocorrelation. Specifically, a range of 139 m is 
mentioned. This is not surprising due to the high spatial data density. Furthermore, the 
authors mention a couple of processes that may have caused this spatial dependency. 
However, this aspect is not accounted for in the evaluation approach. 100 random splits 75/25 
(training/ test set) make it very likely that spatially autocorrelated sampling points will end up 
in the test and training set for the majority of the 100 splits. As a consequence, the test sets 
are not independent of the training sets and will lead to overly optimistic error values. This 
aspect at least needs to be mentioned. Particularly, in the context of Figure 7. The 
argumentation line of the introduction requires some improvement. 

REPLY 
Our main priority in the study is to compare the accuracies of several methods, not to assess 
their accuracies in absolute terms. Furthermore, we do not consider the issue of spatial 
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autocorrelation to be as grievous as to warrant attention in the manuscript. Firstly, 
geostatistical approaches such as kriging would be useless if there was no spatial 
autocorrelation in the data. Secondly, the sample distribution in the field is very even, and as 
a result, only very few areas in the field are more than 20 meters from the nearest sample, and 
all areas are within the range of spatial autocorrelation. Therefore, having training and test 
samples within the range of spatial autocorrelation actually represents the general conditions 
in the field quite well. We therefore do not believe that our accuracy metrics are very much 
overly optimistic. If we were to extrapolate our results to a larger area, spatial autocorrelation 
would be an issue to consider, but this is not the goal of our study. 

COMMENT 4 
Certain aspects need to be better clarified: 

- The main advantage of OGC+AUX over using only XY+AUX is the high number of 
coordinates, as the usage of only two oblique coordinates would lead to similar artefacts as 
demonstrated in the results. - The usage of coordinates as predictors in a regression model 
differs from fitting a geostatistical model to the residuals of a regression model. The approach 
closest to fitting a semivariogram is RFsp, as it accounts for the distance between points. 
However, it comes at the cost of introducing a high number of covariates as the authors state, 
correctly. It is important that the authors also compare their approach to RFsp, but the 
difference in calculating a different set of coordinates and taking the distance between points 
into account should be explicitly mentioned. In contrast, OGC+AUX and EDF+AUX really 
follow a similar approach in calculating a set of different coordinates. OGC+AUX is 
demonstrated to be superior to EDF+AUX. - Overall, whether it is worse to make the effort 
of calculating a high number of oblique coordinates could only be decided while being 
compared to regression kriging. 

REPLY 
We agree with the referee, and we see the need for further clarification. We will add several 
statements to the final version of the manuscript for this purpose. 

CHANGES 
We will add the following statements: 

L44: “One of the main advantages of this approach [RFsp] is that it incorporates distances 
between observations in a similar manner to geostatistical models”. 

L301: “Of the previous approaches, OGC is most similar to EDF, as it used the x- and y-
coordinates, and the distances to the corners of the study area resemble coordinates. On the 
other hand, RFsp is more similar to geostatistical models, as it relies on distances between 
observations. However, this similarity comes at the cost of calculating a large number of 
distance rasters.” 

L319: “The method eliminated the orthogonal artefacts that arise from use of x- and y-
coordinates and also achieved higher accuracies than maps created with only two coordinate 
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rasters. However, for meuse, without auxiliary data, OGC still produced angular artefacts in 
the final map.” 

COMMENT 5 
There are a couple of statements that are problematic. Please consider rephrasing: 

- lines 19-21 “…decision tree algorithms…are immune to correlated and redundant 
covariates”. There are a couple of publications that show the contrary. 

REPLY 
Our experience has shown that decision trees are less vulnerable to correlated and redundant 
covariates than other model types, such as artificial neural networks. However, we admit that 
this does not constitute a full immunity. 

CHANGES 
We see that our statement is not correct, and we will therefore remove it from the final 
version of the manuscript. 

COMMENT 6 
- line 29 “By kriging the residuals…soil mappers have been able to reduce or remove spatial 
bias”. We usually fit a geostatistical model to explain spatial autocorrelation not to remove 
spatial bias. Please also correct throughout the manuscript, e.g. lines 45/46. 

REPLY 
We agree with the referee that our phrasing is incorrect, and we will therefore change it (see 
below). However, the phrasing in lines 45 – 46 is in line with the study to which we refer. We 
quote the authors: “Further analysis shows that in both cases there is no remaining spatial 
autocorrelation in the residuals […]. Hence, both methods have fully accounted for the spatial 
structure in the data” (Hengl et al., 2018). The authors of this study refer to a figure, which 
shows a pure nugget variogram for the residuals of their model. 

CHANGES 
We will rephrase the sentence in question: 

“By kriging the residuals of the predictive model and adding the kriged residuals to the 
prediction surface, soil mappers have been able to explain spatial autocorrelation and achieve 
higher accuracies.” 

COMMENT 7 
- line 47 “...methods are able to integrate spatial relationships…” I am not convinced that by 
the mere consideration of coordinates we account for spatial relationships, leave alone spatial 
autocorrelation. Please explain or rephrase. 

REPLY 
We agree that our use of the term “spatial relationships” is inaccurate. 
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CHANGES 
We will replace the term “spatial relationships” with the term “spatial trends” throughout the 
manuscript. 

COMMENT 8 
- lines 51-56 “Another shortcoming relating to EDF and RFsp is that…” As EDF and RFsp 
did not intend to keep the number of coordinate covariates variable I would suggest “reduced 
flexibility” instead of “shortcoming”.  

REPLY 
We agree with the referee, and we will rephrase as requested. 

CHANGES 
We will rephrase L51: 

“EDF and RFsp also have limited flexibility as both methods specify the number of 
geographic data layers a priori.” 

COMMENT 9 
- line 65-66. “…it should be possible to optimise it” Please be specific: is it possible or not? 
Does it make sense to optimise it? Why did the authors then merely test all numbers of 
coordinate covariates? 

REPLY 
We see that the sentence is not very clear. We will therefore rephrase it. 

CHANGES 
We will rephrase lines 65 – 66: 

“Furthermore, the number of oblique angles is adjustable, and soil mappers can therefore 
choose a number that suits their purpose. Some mapping tasks may require a higher number 
of oblique angles than others, and soil mappers can therefore increase the number as 
necessary. Alternatively, if a small number of oblique angles suffices, soil mappers can 
reduce their number and thereby shorten computation times.” 

COMMENT 10 
Further comments: 

- Please delete equations (1) – (3). This is simple trigonometry. 

REPLY 
We agree with the referee. 

CHANGES 
We will delete equations 1 – 3. 
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COMMENT 11 
Please also consider adapting the symbology: b2 is the knew oblique coordinate that replaces 
b1 (=x) and a1 (=y) not only b1 as somehow suggested by naming it b2. 

REPLY 
Our reason for naming b2 is that it forms one of the sides of the right triangle a2b2c. We will 
therefore not rename it, as it would obscure interpretation of Figure 2. However, we see that 
the equations and the figure do not sufficiently stress the fact that the length of b2 is equal to 
the new oblique coordinate. 

CHANGES 
We will add “OGC” to equation 4, to stress that OGC is equal to the length of b2: 

𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑏𝑏2 = �𝑎𝑎12 + 𝑏𝑏1
2 ∗ cos �𝜃𝜃 − tan−1

𝑎𝑎1
𝑏𝑏1
� 

COMMENT 12 
- lines 135-136. Please add the tested mtry values 

REPLY 
In each model, we tested five mtry values at even intervals between 2 and NC, where NC is 
the total number of covariates (counting both auxiliary data and spatially explicit covariates). 
The tested mtry values therefore depended on the method, and the number of covariates 
differed between methods. 

CHANGES 
We will add this explanation to the paragraph, starting at line 137: 

“We tested mtry values at even intervals between 2 and the total number of covariates, 
including auxiliary data and spatially explicit covariates. The tested mtry values therefore 
varied depending on the number of covariates.” 

COMMENT 13 
- line 136. Please explain how extratrees allows for suboptimal splits 

REPLY 
We will rephrase the sentence to better clarify how extratrees works. 

CHANGES 
We will rephrase the sentence as follows: 

“The extratrees splitting rule generates random splits, as opposed to the variance splitting 
rule, which chooses optimal splits. Per default, extratrees generates one random split for each 
covariate and then chooses the random split that gives the largest variance reduction (Geurts 
et al., 2006). It therefore leads to a greater degree of randomization.” 



11 
 

COMMENT 14 
- Does the approach work on any type of coordinate system? I suppose coordinates have to be 
projected? 

REPLY 
This is a very interesting question, which we have given some though, although we have not 
included these thoughts in the first version of the manuscript. In the study, we use UTM 
coordinates, which have the advantage that the x- and y-coordinates have the same unit. 
Furthermore, it is reasonable to treat relatively small study areas as two-dimensional planes. 
In practical terms, OGC may also work reasonably well for larger areas with other coordinate 
systems, such as latitude/longitude systems. However, interpretation would not be as 
straightforward as in this study. 

Using OGC at a global extent would probably require changes to the method. Because 
longitude is circular, points located on different sides of 180° L would have drastically 
different coordinates, even if the actual distances between them were short. One solution to 
this problem could be to replace the present version of OGC with latitudes rotated at various 
angles around a pair of equatorial axes. However, the implementation and testing of such an 
approach is far outside the scope of this study. 

Due to the interest of this question, we will shortly address it in the conclusions section of the 
revised manuscript. 

CHANGES 
We will add the following statement to the conclusions section: 

“One should note that we carried out this study for relatively small areas using “flat” 
coordinate systems. Using OGC for larger areas and other coordinate systems may require 
alterations to the method.” 

4 Comments from Dr. Alexandre Wadoux 
General reply 
We thank Dr. Alexandre Wadoux for the insightful comments on our manuscript “Oblique 
geographic coordinates as covariates for digital soil mapping” (Møller et al., 2019, Wadoux, 
2019). We have found the comments very helpful in improving the manuscript, and we would 
like to give our replies to the comments. 

We will start with a general reply to the commenter’s use of “pseudocovariates” as a label for 
oblique geographic coordinates. We see this label as misplaced. We believe the term 
“pseudocovariates” is only appropriate for covariates, which are clearly unsuited for the 
purpose, and this is not the case for oblique geographic coordinates. 

Notable examples of pseudocovariates in the statistical literature have included randomly 
generated covariates for testing variable selection (Wu et al., 2007, Sandri and Zuccolotto, 
2008, Sandri and Zuccolotto, 2009, Ghosal et al., 2019). In the mapping literature, recent 
studies have used pictures projected in geographic space as cautionary tales (Fourcade et al., 
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2018, Wadoux et al., 2019). The commenter correctly asserts that pseudocovariates with a 
spatial pattern can predict properties in geographic space with moderate success. However, 
we do not believe this to mean that researchers should disregard covariates that explicitly 
account for spatial position. 

In fact, the digital soil mapping literature has a rich number of studies, which have included 
spatial position as a covariate. The scorpan approach to digital soil mapping presented by 
McBratney et al. (2003) explicitly includes spatial position as a component. Although most 
studies in the review include spatial position through kriging or regression-kriging, the 
authors are open to the use of covariates to account for spatial position. We quote: 

“As was discussed in Section 2, soil can be predicted from spatial coordinates alone. […] 
This may indeed reflect some other environmental variable such as climate, and because of 
this it can be argued that n is not really a factor, but simply putting the coordinates is a simple 
way to ensure that spatial trends not included in the other environmental variables are not 
missed. Therefore, n could also be described by some linear or nonlinear (nonaffine) 
transformation of the original spatial coordinates,” (McBratney et al., 2003). 

Oblique geographic coordinates represent such a transformation of the spatial coordinates. As 
one may expect from the previous reference, several studies have included x- and y-
coordinates as covariates (Poggio and Gimona, 2014, Nussbaum et al., 2018, Koch et al., 
2019, Lagacherie et al., 2019). Other studies have included spatial position in the form of 
distance-based covariates, for example using distances to the coastline (Holmes et al., 2015) 
or rivers (Rudiyanto et al., 2018). 

Recently, studies have included additional distance-based covariates, including distances to 
the corners and middle of the study area (Behrens et al., 2018), and distances to observations 
(Hengl et al., 2018). We hope therefore to have demonstrated that the use of covariates to 
account for spatial position is a theoretically sound, well-established practice, which does not 
warrant the label “pseudocovariates”. Using covariates to include spatial position in machine 
learning models is in itself not new. Oblique geographic coordinates are simply a new 
method for doing this, with some advantages over previous methods. 

In addition to this general reply, we would like to address the specific comments in the 
following. 

Specific replies 
We structure our replies by first showing the comment in question, then our reply to the 
comment. 

COMMENT 1 
This study tries to account for residuals spatial autocorrelation of a machine learning model 
by adding a set of pseudo-covariates. I have a few comments on the paper. I hope the authors 
find them useful and that it helps them to improve their manuscript. Overall, the study would 
benefit from a test of the method on several case studies, using different scales, different 
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calibration sampling designs. A single case study at local scale and predicting a single soil 
property is in my opinion not enough to draw general conclusions. 

REPLY 
We agree that it would be beneficial to test the method on additional datasets. 

CHANGES 
In the revised manuscript, we include three additional datasets. For details, see our reply to 
the editor’s comment and the revised manuscript. 

COMMENT 2 
About the methodology:1) Any set of covariates with spatial pattern added to the original set 
of covariates may result in higher accuracy with a ML algorithm. This is because ML 
algorithms can find relevant patterns even when the covariates are meaningless and not 
related to any soil forming process. The increase of accuracy that the authors obtain with the 
RF OGC + AUX model may well be obtained by adding any set of covariates with a spatial 
structure (see Fourcade et al., 2018). 

REPLY 
We concur that it would probably be possible to obtain the accuracies obtained with OGC + 
AUX with other (but not just any) sets of covariates. For example, RFsp + AUX achieves 
similar accuracies, although with a larger number of covariates. However, we will also 
remind the commenter that OGC do not simply have spatial structure – they have only spatial 
structure and nothing more. As we have already stated in our general reply, using covariates 
to account for spatial position is a well-established practice. OGC account for spatial position 
in a clear and systematic way, which is useful for decision tree algorithms and easily yields to 
interpretation. 

COMMENT 3 
2) Spatial autocorrelation in the raw data is not a problem per se and one should rather focus 
on remaining spatial autocorrelation on the residuals. I am strongly in favor of using only 
pedologically relevant covariates in a RF model. If the residuals of a model built using 
pedologically relevant covariates present autocorrelation, then one should consider making a 
map of the residuals because he may see a clear pattern of why this happens. The authors 
might then see that they are missing an important spatial process not included in the analysis. 
In this case one can add additional pedologically relevant covariates that could explain this 
pattern, and refit the model. 

REPLY 
We agree that it is important to use pedologically relevant covariates in machine learning 
models when mapping soil properties. We do not intend OGC to be used on their own, but in 
combination with auxiliary data of this form. As we hope to have demonstrated in our general 
reply, several studies have used spatially explicit covariates in combination with the other six 
components of the scorpan concept for digital soil mapping. Other studies have accounted for 
spatial autocorrelation in the residuals by means of regression-kriging, another well-
established practice. 
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The commenter’s dedication to purely pedologically relevant covariates has merit. However, 
due to the complexity of soil-forming processes, the hunt for a set of covariates that perfectly 
explain spatial variation in soil properties, is in many cases likely to be fruitless. 

COMMENT 4 
3) In case one made the previous step and admits that there is unexplained residual variation, 
one could consider using additional pseudo-covariates because there is no better proxy to 
explain the soil spatial variation. I stress here that these pseudocovariates should not correlate 
with the pedological covariates because there would be redundancy (see next comment). In 
this case the pseudo-covariates should be covariates computed based on the remaining 
residuals. This would effectively tackle the problem of the residual autocorrelation and the 
authors would ensure that the pseudocovariates do not interfere with the pedologically 
relevant covariates. 

REPLY 
Redundancy is generally not a risk for decision tree models, as they simply choose the 
optimal covariate in each split (Breiman, 2001). See also our reply to the next comment. 

Furthermore, we doubt if the approach, which the commenter suggests, would be useful. We 
are not sure how the commenter would create a covariate based on the residuals. However, 
the attempt would create a serious risk of circular logic, which could invalidate model fitting 
and the assessment of model accuracy. Models should be based on covariates, not vice versa. 

COMMENT 5 
4) In this study, the authors include the set of pseudo-covariates with the set of pedologically 
relevant covariates. This is in my opinion very harmful because they can have pseudo-
covariates which integrate over several of the pedologically relevant covariates, making them 
in some cases even better predictors. This is unrealistic and undesirable. This also makes the 
model less interpretable in terms of variable importance. 

REPLY 
Firstly, we refer to our general reply. Secondly, we will state that we see the commenter’s 
allegation of “harmfulness” as a misunderstanding. We see the integration of spatial and 
environmental covariates as one of the strengths of using oblique geographic coordinates. 
Firstly, it allows the machine learnings model to map complex processes characterized by 
spatial dependence as well as environmental effects (Behrens et al., 2018). This has an 
advantage over regression-kriging, where separate, mostly incomparable models treat 
environmental and spatial effects. 

The commenter fears a scenario where a coordinate raster gains a higher importance than 
environmental covariates in a model. If this were the case, it would indeed be a cause of 
worry, but not for the reasons stated by the commenter. If a coordinate raster gains a higher 
importance than an environmental covariate, it suggests that the pedological process 
represented by the environmental covariate is probably not highly relevant for the soil 
property in this specific area. Therefore, if all environmental covariates turn out to be less 
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important than coordinate rasters, it would show that the environmental covariates did not 
adequately account for spatial variation in the soil property. 

In our case, for the Vindum dataset, the most important coordinate raster was the 12th most 
important covariate. OGC only became the second most important covariate, when we 
summed their importance. This shows that spatial effects have a large influence on SOM in 
the study area. However, it also shows that the model did not discard environmental 
covariates when we included OGC. Instead, it successfully integrated the two sets of 
covariates and their combined effects. 

COMMENT 6 
5) It is concluded that adding a set of pseudo-covariates effectively accounts for spatial 
autocorrelation in the data. This is clearly not the case as shown in Fig. 9 and admitted by the 
authors at line 315 ‘the models built exclusively on spatial relationships had the most 
autocorrelated residuals.’ The reason for this is that the covariates have a spatial pattern but 
are not related to the raw data and either to the residuals of the prediction made by a RF 
model. When the authors compared the sample variograms of kriging and RF residuals, it is 
visible that kriging do much better. The method would work if the sample variogram of RF 
OGC would be close to that of kriging. We can also see in Fig. 9 that the model with OGC 
covariates only have strong residual autocorrelation. The reduction in terms of residual 
autocorrelation in the OGC + AUX model is obtained by adding the pedologically relevant 
covariates. This is also a contradiction with the conclusion that OGC covariates account for 
the spatial autocorrelation. 

REPLY 
We never claim in the manuscript that oblique geographic coordinates fully account for 
spatial autocorrelation in the data. This comment would be more helpful if the commenter 
provided the lines where we allegedly state this. 

We once refer to Hengl et al. (2018), who found that RFsp fully accounted for spatial 
autocorrelation in the data, but it is quite clear from the sentence that we refer to results in 
another study, not our own results. Our own results contrast with this earlier finding, and we 
will include a comment on this in the final paper. 

Furthermore, the commenter appears to reverse the interpretation of Figure 9. We intend soil 
mappers to use OGC as an addition to environmental covariates, not on their own. The figure 
shows that the addition of OGC greatly reduces spatial autocorrelation in the residuals 
relative to the model relying only on environmental covariates. We mainly include OGC, 
EDF and RFsp on their own to demonstrate more clearly the effects of these sets of 
covariates. We do not recommend that researchers use them on their own. 

CHANGES 
In the revised manuscript, we clearly state that our results contrast with earlier findings: 

“This finding contrasts with Hengl et al. (2018) who found that there was no spatial trend in 
the residuals of predictions with RFsp.” 
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COMMENT 7 
6) Fig. 9 shows that there is still autocorrelation in the residuals of the RF model. This 
violates the assumption made in RF modelling, i.e. independence between the data points. 
Since this assumption is not satisfied, the calibrated RF model is potentially flawed. The 
authors have potentially missed important soil processes which could be added to the model 
as covariates. I would be interested to see a measure of the bias in the prediction. 

REPLY 
We believe that it is quite an overstatement to say that any Random Forest model with 
spatially autocorrelated residuals is potentially “flawed”. Such a conclusion would most 
likely invalidate a very large portion of Random Forest models used in digital soil mapping. 
However, we agree that it is not an optimal situation, and that it might be useful to add more 
environmental covariates. 

As per the commenter’s request, we have calculated bias as mean error (ME) for each 
method. We have based this calculation on residuals from models using all observations: 

Method ME 
Kriging -0.011 
AUX 0.040 
EDF 0.041 
EDF + AUX 0.042 
RFsp 0.011 
RFsp + AUX 0.028 
OGC 0.029 
OGC + AUX 0.036 

 

The values show that kriging has lower bias than the other methods except RFsp, but all 
methods have low bias. 

COMMENT 8 
Other considerations: Nugget to sill ratio should not be used to compare sample variograms, 
see Section 3.3. in https://doi.org/10.1016/j.catena.2013.09.006 

REPLY 
We see the error. In the final paper, we will remove mentions of the nugget-to-sill ratio when 
comparing the variograms. 

CHANGES 
We have removed mention of the nugget-to-sill ratio from the final version of the manuscript. 

COMMENT 9 
Very surprised to read at Line 297 that the advantage of ML algorithms is their 
interpretability. 

https://doi.org/10.1016/j.catena.2013.09.006
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I think the authors refer to the variable importance of the RF algorithm for the interpretability 
of the ML models. There is in my opinion a misunderstanding of the difference between ML 
and geo-statistical methods such as kriging. In ML you do not do inference and so you should 
not directly interpret the fitted model, or at least with caution. In geostatistics you can 
interpret because you make inference on the process that generated the data. 

ML are also mostly black boxes. For example, is it impossible to interpret all the trees in a RF 
model, or all the neurons in a neural network model. This is in consequence not justified to 
claim that ML algorithms have the advantage to be interpretable. 

REPLY 
This comment is confusing. The commenter appears to assert that (1) machine learning 
models are not interpretable, but that, on the other hand, (2) geostatistical models are 
interpretable. The commenter seems to conflate interpretation and inference, but we believe 
that one should understand these two as separate terms. 

Furthermore, it gives the impression of a contradiction when the commenter states that 
machine learning models should not include spatial relationships, but also states that 
geostatistical models are interpretable. Likewise, the statement that machine learning models 
are not interpretable contrasts with the commenter’s insistence that they should only contain 
covariates that represent pedological processes. If spatial position matters, even to the point 
where a geostatistical model is exclusively interpretable, why should we not use it in a 
model? Moreover, if we cannot interpret a machine learning model, then why does it matter 
what sort of covariates we use? 

In themselves, geostatistical models only inform us on the spatial structure of the data. We 
agree that this can be useful, but any sort of interpretation would rely almost exclusively on 
the user’s knowledge of the target variable and the processes that affect it. On the other hand, 
machine learning models are potentially far more informative. 

Researchers should exert caution when interpreting any form of statistical model, but we 
agree with the commenter that it is especially relevant for machine learning models. Machine 
learning models are more complex than geostatistical models, and their interpretation is 
therefore also more complex and requires a higher level of abstraction. Tools to interpret 
machine learning models include covariate importance, which we use, but other tools exist,  
for example partial dependency plots (Friedman, 2001). Irrespective of the tools that 
researchers use, it is important that they critically use their knowledge of soils and the study 
area as well as the machine learning algorithm. 

We can see that our statement that geostatistical models and machine learning models differ 
in interpretability is misleading. In the final paper, we will change the phrasing to state that 
the difference lies in the information content provided by the models. 

CHANGES 
We have rephrased part of the discussion to reflect the fact that the difference between 
geostatistical models and machine learning lies in the information that they provide: 
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“The advantage of the methods based on machine learning instead lies in the fact that they 
provide larger amounts of information than geostatistical models. Kriging in itself does not 
provide information on the processes that control spatial variation in soil properties, but 
machine learning models can include covariates related to soil processes, providing 
information on the processes that are most likely to affect the spatial distribution of a soil 
property.” 

COMMENT 10 
L 305: I would disagree with this conclusion; this would need to be justified by the literature 
or comparison between different case studies. 

REPLY 
We cannot see why the commenter would outright disagree with this conclusion, as the 
commenter also states that spatial coverage sampling favors kriging. However, we do see the 
need for justification from the literature. Several studies have shown that machine learning 
models using environmental covariates are more accurate than geostatistical models for large, 
less densely sampled areas, including Zhang et al. (2008), Greve et al. (2010) and Keskin et 
al. (2019). We will include these references in the final paper. 

CHANGES 
We have rephrased part of the conclusion: 

“Previous studies have shown that machine learning is likely to provide higher accuracies in 
large, sparsely sampled areas (Zhang et al., 2008, Greve et al., 2010, Keskin et al., 2019), and 
it will be relevant to test if this is also the case for oblique geographic coordinates.” 

COMMENT 11 
L 313: It is quite high accuracy a minimum CCC = 0.83. 

REPLY 
We agree. In the revised manuscript we will rephrase this sentence.  

CHANGES 
In the revised manuscript, we have rephrased this sentence: “as EDF, RFsp and OGC all 
yielded lower accuracies without auxiliary data”. 

COMMENT 12 
L. 315. The authors have contradictory statements in the last paragraph of the Discussion. 

REPLY 
We do not see the contradiction, but we agree that the sentences are not quite clear enough. 

CHANGES 
In the revised manuscript, we have rephrased the last two sentences of the discussion to 
improve clarity: 
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“The results therefore suggest that soil mappers should primarily use these methods in 
combination with auxiliary data, and not on their own. If no auxiliary data are available, 
kriging is likely to be a better option.” 

COMMENT 13 
The last sentence is not very clear. Dealing with spatial data, which are auto correlated, a 
spatial methods is always needed otherwise you miss an important process and the fitted 
model is probably flawed because of the i.i.d assumption of the errors. 

REPLY 
We agree on the lack of clarity. Please see our reply to the previous comment. 

COMMENT 14 
How did the authors compute the R2? A R2 can either indicate the closeness of the predicted 
values to the fitted regression line or the proportion of variance explained by the predictors. 
Authors should check that the R-square was computed against the 1:1 line and not against the 
fitted linear regression between observed and predicted, see https://doi.org/10.5194/soil-4-1-
2018, Section 3.8 where the authors called it a skill score. 

REPLY 
We used Pearson’s R2, this is, closeness to a fitted regression line. We see that we did not 
include this information in the manuscript, and we will make sure to include it in the final 
paper. 

We will not change the way we calculate R2, as Pearson’s R2 indicates if the predictions have 
the same trend as the observations, which we believe is relevant in itself. We rely on several 
accuracy metrics, including also RMSE and CCC. CCC gives information on closeness to a 
1:1 line, which the commenter requests. Furthermore, the skill score, to which the commenter 
refers, uses on the mean square error (MSE) of the predictions, and the variance in the 
dataset. It is very useful for comparing accuracies across different regression problems. 
However, for any single regression problem, as in our study, the variance in the dataset will 
be constant, and variation in the skill score will depend only on variation in MSE. As we 
already provide RMSE, this information would be redundant. 

CHANGES 
In the revised manuscript, we clearly state that we use Pearson’s R2. 

COMMENT 15 
Impact of the sampling design is not considered. A spatial coverage design is very poor for 
random forest, while it is very efficient for kriging (assuming the variogram parameters are 
known). You should also consider that the sampling designs affect greatly the way the sample 
variograms are computed. 

REPLY 
We agree that the sampling design favors kriging. In fact, we already state in the manuscript 
that an earlier study in the same area (Pouladi et al., 2019) found that kriging yielded higher 
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accuracies than machine learning models. It is therefore quite remarkable that OGC + AUX 
and RFsp + AUX allow Random Forest models to achieve accuracies on par with kriging. 

COMMENT 16 
How did the authors compute the sample variograms? The authors gave no information about 
it. 

REPLY 
Firstly, we produced maps with each method using all observations. Secondly, we converted 
both observations and predictions to natural logarithmic scale. We then subtracted the 
predictions from the observations and calculated variograms for these residuals. For this 
purpose, we used the function ‘variogram’ from the R package ‘gstat’ with its default 
parameters. 

CHANGES 
In the revised manuscript we include information on the method that we used for the sample 
variograms. 

Furthermore, we have discovered an error in our code, which caused us to use only 75% of 
the observations when calculating the variograms. We have therefore recalculated the 
variograms using all observations and produced a new version of Figure 9. We will include 
this updated figure in the revised manuscript: 

 

COMMENT 17 
It seems that the sample variogram for ordinary kriging is not at the same scale. It is either a 
much better model or the authors did not back-transformed the log-transformed observations. 
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The authors mentioned that they log-transformed the observations prior to variogram fitting, 
it is not clear whether they also did it for the RF model. 

REPLY 
The variograms are all on the same scale. Kriging has smaller residuals than the other 
methods, as the variogram had a very small nugget, but we do not believe that this shows it to 
be a “better” model. For example, with inverse distance weighting interpolation, the residuals 
would be zero, but it would not necessarily by a very good model. We will also point out to 
the commenter that the residuals for OGC + AUX show nearly no trend. So the residuals are 
larger, but they have very little spatial dependence. 
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