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Abstract. Humans have substantially altered soil and landscape patterns and properties due to agricultural use, with severe 15 

impacts on biodiversity, carbon sequestration and food security. These impacts are difficult to quantify, because we lack data 

on long-term changes in soils in natural and agricultural settings and available simulation methods are not suitable to reliably 

predict future development of soils under projected changes in climate and land management. To help overcome these 

challenges, we developed the HydroLorica soil-landscape evolution model, that simulates soil development by explicitly 

modelling the spatial water balance as driver of soil and landscape forming processes. We simulated 14500 years of soil -20 

formation under natural conditions for three scenarios of different rainfall inputs. For each scenario we added a 500-year period 

of intensive agricultural land use, where we introduced tillage erosion and changed vegetation type.  

Our results show substantial differences between natural soil patterns under different rainfall input. With higher rainfall, soil 

patterns become more heterogeneous due to increased tree throw and water erosion. Agricultural patterns differ substantially 

from the natural patterns, with higher variation of soil properties over larger distances and larger correlations with terrain 25 

position. In the natural system, rainfall is the dominant factor influencing soil variation, while for agricultural soil patterns 

landform explains most of the variation simulated. The cultivation of soils thus changed the dominant factors and processes 

influencing soil formation, and thereby also increased predictability of soil patterns. Our study highlights the potential of soil-

landscape evolution modelling for simulating past and future developments of soil and landscape patterns. Our results confirm 

that humans have become the dominant soil forming factor in agricultural landscapes.  30 
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1 Introduction 

Soils provide valuable functions for nature and society by supporting plant growth and agriculture, managing water and solute 

flow, sequestering carbon, preserving archaeological heritage, creating habitats for plants and animals and providing support 35 

for infrastructure (Dominati et al., 2010; Greiner et al., 2017). However, soils are currently degrading by agricultural 

intensification and climate change, forming one of the largest threats to global food security and biodiversity (Bai et al., 2008; 

Montanarella et al., 2016; Tscharntke et al., 2012). A drastic change in land management is needed to restore healthy soils and 

soil functions (IPCC, 2019). Combating soil degradation and promoting sustainable land management therefore stands high 

on the agenda of the soil science community (Bouma, 2014; Cowie et al., 2018; Keesstra et al., 2018; Kust et al., 2017; Minasny 40 

et al., 2017). 

The first step towards sustainable land management and a return to healthy, natural soils is a fundamental understanding of the 

development and characteristics of natural soil patterns, and how these change under human influence. Therefore, we will 

focus in this paper on gently to strongly sloping undulating landscapes that are suitable for agricultural use (max slope ~20%, 

Bibby and Mackney, 1969). Soil forming processes are controlled by at least five environmental factors: climate, organisms, 45 

relief, parent material and time (the ClORPT model, Jenny, 1941). Different factors dominate in natural and agricultural 

settings. In natural flat or undulating settings soil erosion by water and tillage generally occurs at very low rates or is absent 

(Alewell et al., 2015; Wilkinson, 2005). Some soil redistribution can occur as a consequence of creep or tree throw (Gabet et 

al., 2003). More importantly, tree throw creates local pits and mounds, which temporarily change hillslope hydrology and act 

as local hotspots for soil development due to a larger influx of water (Šamonil et al., 2015; Shouse and Phillips, 2016). These 50 

seemingly random processes create a high degree of heterogeneity in soil patterns, which shows little to no correlation with 

relief (Vanwalleghem et al., 2010). In contrast, agricultural landscapes show soil patterns that closely follows the relief (Phillips 

et al., 1999; Van der Meij et al., 2017). Erosion processes are relief-dependent and this propagates into the soil patterns. The 

switch from such natural to agricultural soil systems can occur abruptly, e.g. by deforestation or the implementation of highly 

mechanized agriculture in a few decades. Sommer et al. (2008) described this switch in boundary conditions and its 55 

implications with a time-split approach: Over a short time period – relative to Holocene soil evolution - the soil system changes 

from natural, progressive pedogenesis, where profile deepening and horizon formation dominate erosive processes, to 

regressive pedogenesis, where - vice versa - erosion and deposition dominates progressive pedogenic processes (Johnson and 

Watson-Stegner, 1987).  

The coexistence of both progressive and regressive processes in a defined period of time has been described by several authors. 60 

In a progressive phase there are also regressive processes that change soils, terrain and hydrological pathways (Phillips et al., 

2017; Šamonil et al., 2018). In a regressive phase, progressive processes still have a substantial effect on soil development 

(Doetterl et al., 2016; Montagne et al., 2008). Colluvic soils might be influenced by groundwater or subject to continuous clay 

illuviation (Leopold and Völkel, 2007; Van der Meij et al., 2019, SI; Zádorová and Pení žek, 2018). Furthermore, the changes 

in boundary conditions are not always abrupt as e.g. deforestation. Historic erosion processes with rates much lower than 65 
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current erosion processes might have given pedogenic processes the time to alter soil and colluvium (Van der Meij et al., 

2019).  

To disentangle complex history and causes of soil formation, data is required on both natural and agricultural soils that have 

formed under similar conditions, and preferably from the same region. However, there is limited undisturbed natural land left, 

often rapidly declining, in places that are unsuitable for agriculture, and/or indirectly influenced by anthropogenic climate 70 

change (e.g. tropical and boreal zones, IPCC, 2019). Moreover, (historical) cultivation occurred in areas and soils most suitable 

for agriculture (Pongratz et al., 2008; Vanwalleghem et al., 2017), leaving less suitable land undisturbed. This complicates 

comparison and empirical inference. Because of the complex interactions between pedogenic and geomorphic processes, and 

the lack of field data, we heavily depend on process knowledge and model simulations for mechanistic inference about how 

natural soil patterns develop as function of their environments and how this changes in agricultural settings (Opolot et al., 75 

2015).  

Soil evolution models simulate a range of physical, chemical and biotic processes that affect the properties of soils through 

space and time (Minasny et al., 2015; Stockmann et al., 2018; Vereecken et al., 2016). Such models have been developed for 

a range of scales, varying from 1D soil profiles to 3D soil landscapes (Finke, 2012; Minasny et al., 2015; Temme and 

Vanwalleghem, 2016). One-dimensional soil profile models generally provide a high level of detail and process coverage, but 80 

they lack the simulation of essential feedbacks and interactions that can occur between soils on a landscape scale (Van der 

Meij et al., 2018). For example, the spatial redistribution of water or the exchange of soil material through erosion and 

deposition processes affect soils differently at different landscape positions. Soil landscape evolution models (SLEMs) do 

simulate lateral distribution of solids by geomorphic processes and consider soils as continua rather than discrete units. Current 

SLEMs perform reasonably well in landscapes where lateral soil movement is substantial (e.g. Temme and Vanwalleghem, 85 

2016; Van Oost et al., 2005). However, these models are not developed to simulate soil development in relatively stable 

landscapes where lateral water redistribution is the dominant driver causing soil heterogeneity, because this hydrologic control 

is not explicitly modeled (Van der Meij et al., 2018).  

To summarize, we are currently lacking data and methods that can quantify the effect of changing soil forming factors on soil 

development and spatiotemporal soil patterns. This knowledge is essential for the transition to sustainable land management 90 

and adaptation to the changing climate. The objective of this study is to develop a suitable model to quantify the variation and 

predictability of soil patterns as a function of varying environmental factors. We will address three questions: 

1. What are the basic characteristics of soil patterns in natural and agricultural landscapes? 

2. What are the major factors driving soil formation in natural and agricultural landscapes? 

3. How does the predictability of soil patterns change through time and after cultivation? 95 

We developed a soil-landscape evolution model that can simulate natural soil and landscape evolution by incorporating 

dominant natural processes such as soil creep, tree throw, vegetation dynamics and infiltration-dependent pedogenesis driven 

by the soil forming factors climate, organisms, relief, parent material and time. We simulated soil formation for 14500 years 
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under three scenarios of rainfall (dry, humid, wet) to quantify the effect of water availability and distribution on soil variation 

in natural systems. Each run was concluded with 500 years of agricultural land use, where we introduced the process of tillage 100 

erosion.  

We expect that before cultivation, spatial soil heterogeneity will be larger for greater rainfall, due to more intense erosion and 

translocation processes, and effects of vegetation. Moreover, we expect that the spatial heterogeneity increases by erosion 

processes under cultivation, also resulting in larger correlations between soil properties and topographic properties, because 

of the topographic dependence of erosion processes. This would imply that soil patterns become more predictable due to 105 

cultivation.  

For our simulations, we created a hypothetical loess-covered, hilly landscape with a range of characteristic slope positions as 

spatial setting. We choose loess, because it is a relatively homogeneous parent material, widely spread globally and favored 

for agricultural practices due to its high water holding capacity and resulting fertility (Catt, 2001). The long-term use of loess 

areas for agriculture and unsustainable management has resulted in severe land degradation (e.g. Zhao et al., 2013). 110 
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2 Methods 

In this section, first we describe the model architecture and process formulations. Second, we describe the general spatial 

setting we developed for our modelling study. Last, we describe how we analyze the extensive model output.  

2.1 Model 115 

Here we describe our model named HydroLorica. HydroLorica is based on the model Lorica (Temme and Vanwalleghem, 

2016), but includes explicit simulation of water flow and water availability as drivers of natural soil, landscape and vegetation 

change (Van der Meij et al., 2018). HydroLorica is a reduced-complexity model, which means that it simulates the most 

important processes affecting soil and landscapes using simplified process descriptions. Reducing model complexity promotes 

critical evaluation of essential processes, reduces calculation time and prevents extensive data requirements and over-120 

parameterization (Hunter et al., 2007; Kirkby, 2018; Marschmann et al., 2019; Snowden et al., 2017; Temme et al., 2011).  

2.1.1 Model architecture 

HydroLorica is a raster-based model, where a Digital Elevation Model (DEM) determines the shape of the terrain. Below each 

raster cell of the DEM there is a predetermined number of soil layers with layer thicknesses variable in space and time. Each 

layer contains a specific mixture of gravel, sand, silt and clay and two types of organic matter (quickly and slowly 125 

decomposing, Yoo et al., 2006). Pedogenic and geomorphic processes affect the contents of the layers, leading to differences 

in soils in space and time. Changes in soil properties and contents modify layer thicknesses and surface elevation through a 

pedotransfer function (PTF) of bulk density. The use of a pedotransfer function allowed the model to calculate variations in 

layer thicknesses due to pedogenic and geomorphic processes. We used the same PTF for bulk density as the original Lorica 

model (Tranter et al., 2007). We refer to Temme and Vanwalleghem (2016) for more information about the spatial model 130 

architecture of Lorica, which we maintained in our adaptation HydroLorica. In this project, we worked with 25 soil layers, 

with an initial uniform thickness of 0.15 m. When a layer got very thick or very thin (55% thicker or thinner than its initial 

value), the layer was split or combined with another layer.  

The annual changes in texture classes tex [kg] and organic matter classes om [kg] in layer l at location xy and time t are 

governed following Eqs. (1) and (2) (for abbreviations of processes, see Table 1). The changes in mass of texture and organic 135 

matter are converted to a change in layer thickness [m] using a pedotransfer function (Tranter et al., 2007). We calculated the 

bulk density of the fine mineral fraction [kg m-3] with Eq. (3) using the sand and silt fraction [-] and the depth below the surface 

[m]. We corrected this bulk density for the coarse fraction and the organic fraction using Eq. (4), where we adopted a density 

of 2700 kg m-3 for the coarse fraction (Temme and Vanwalleghem, 2016) and a density of 224 kg m-3  for the organic fraction 

(Tranter et al., 2007). This pedotransfer function does not directly take into account changes in bulk density stemming from 140 

soil structuring, weathering or bioturbation. Instead, depth below the surface is used as proxy for these factors. The used PTF 

has a relatively low fit with the data it was derived from (R2 = 0.41, Tranter et al., 2007). However, PTFs that yield a higher 
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accuracy often require advanced calculation methods (Chen et al., 2018; Ramcharan et al., 2017) or soil properties that are not 

readily available in HydroLorica. As we discuss in Van der Meij et al. (2018), the estimation of such properties often gives 

biased or highly uncertain results, which would propagate into the calculation of bulk density. Rather than stacking 145 

pedotransfer functions, we decided to use a PTF that required input that is readily available in HydroLorica and could be 

calculated within the model itself. 

The sum of changes in layer thickness of all layers L calculated through changes in bulk density and mass of the layers result 

in the annual change of elevation z (Eq. (5)). Clay translocation and water erosion are directly driven by the total annual water 

flow, while occurrence of tree throw and rates of creep, bioturbation and organic matter accumulation are indirectly driven by 150 

water availability via vegetation controls. Infiltration I is the difference between precipitation P and spatially explicit actual 

evapotranspiration ETa, runon ROnn and runoff ROff (Eq.(6). HydroLorica works with dynamic time steps as suggested by 

Van der Meij et al. (2018) to capture process dynamics at their relevant scales, while optimizing calculation time. Hydrologic 

processes are calculated with a daily, monthly, or yearly time step, with smaller timesteps selected during wetter conditions 

for more accurate simulation. Annual sums of infiltration and overland flow are used to drive geomorphic, pedogenic and 155 

biotic processes.  

𝛥𝑡𝑒𝑥𝑥𝑦,𝑙,𝑡 = 𝛥𝑡𝑒𝑥𝐶𝑅,𝑥𝑦,𝑙,𝑡 + 𝛥𝑡𝑒𝑥𝑊𝐸,𝑥𝑦,𝑙,𝑡 + 𝛥𝑡𝑒𝑥𝑇𝑇,𝑥𝑦,𝑙,𝑡 + 𝛥𝑡𝑒𝑥𝑇𝐼,𝑥𝑦,𝑙,𝑡 + 𝛥𝑡𝑒𝑥𝐶𝑇,𝑥𝑦,𝑙,𝑡 + 𝛥𝑡𝑒𝑥𝐵𝑇,𝑥𝑦,𝑙,𝑡  (1) 

𝛥𝑜𝑚𝑥𝑦,𝑙,𝑡 = 𝛥𝑜𝑚𝐶𝑅,𝑥𝑦,𝑙,𝑡 + 𝛥𝑜𝑚𝑊𝐸,𝑥𝑦,𝑙,𝑡 + 𝛥𝑜𝑚𝑇𝑇,𝑥𝑦,𝑙,𝑡 + 𝛥𝑜𝑚𝑇𝐼,𝑥𝑦,𝑙,𝑡 + 𝛥𝑜𝑚𝐶𝐴𝐵,𝑥𝑦,𝑙,𝑡 + 𝛥𝑜𝑚𝐵𝑇,𝑥𝑦,𝑙,𝑡  (2) 

𝐵𝐷𝑓𝑖𝑛𝑒,𝑥𝑦,𝑙,𝑡 = 1000(1.35 + 0.452(𝑓𝑠𝑎𝑛𝑑 + 0.76𝑓𝑠𝑖𝑙𝑡) + (100(𝑓𝑠𝑎𝑛𝑑 + 0.76𝑓𝑠𝑖𝑙𝑡) − 44.65)2 ∗ −0.000614 + 0.06 ∗ log10(𝑑𝑒𝑝𝑡ℎ))    (3) 

𝐵𝐷𝑠𝑜𝑖𝑙,𝑥𝑦,𝑙,𝑡 =
𝑚𝑎𝑠𝑠𝑡𝑜𝑡𝑎𝑙,𝑥𝑦,𝑙,𝑡

𝑚𝑎𝑠𝑠𝑓𝑖𝑛𝑒,𝑥𝑦,𝑙,𝑡

𝐵𝐷𝑓𝑖𝑛𝑒,𝑥𝑦,𝑙,𝑡
+

𝑚𝑎𝑠𝑠𝑐𝑜𝑎𝑟𝑠𝑒,𝑥𝑦,𝑙,𝑡

2700
+

𝑚𝑎𝑠𝑠𝑜𝑟𝑔𝑎𝑛𝑖𝑐,𝑥𝑦,𝑙,𝑡

224

  (4) 

𝛥𝑧𝑥𝑦,𝑡 = ∑ 𝛥𝐵𝐷𝑠𝑜𝑖𝑙(∑ 𝑡𝑒𝑥𝑥𝑦,𝑙,𝑡 + ∑ 𝑜𝑚𝑥𝑦,𝑙,𝑡) 𝐿
𝑙=1   (5) 

𝐼𝑥𝑦,𝑡 = 𝑃𝑡 − 𝐸𝑇𝑎𝑥𝑦,𝑡 + 𝑅𝑂𝑛𝑛𝑥𝑦,𝑡 − 𝑅𝑂𝑓𝑓𝑥𝑦,𝑡  (6) 

2.1.2 Process formulation and parameters 

In our model we considered only the impact of physical and biological processes on soil properties. The current model 

architecture does not facilitate the simulation of soil chemical processes. The selected processes are described below. Drivers 

and impacts of each process are summarized in Table 1. We summarized the drivers per soil forming factor. We mostly used 160 

the processes and parameters of Lorica as reported in Temme and Vanwalleghem (2016), which we summarize here. When 

we added a new process, or changed its parameters, the adjustments are reported in this Section. We provided a detailed 

overview of the equations and selected parameters in Supplement 1.  

We aim to understand the functioning of general soil landscape systems. Therefore, we parametrized and calibrated the model 

processes using regional data or process rates from literature that are valid for larger regions. We did not calibrate the 165 

parameters on data from one specific study site to avoid the effect of any idiosyncrasies that can be present in that data. For 

other processes where there was no regional data available, we estimated the parameters so that the effects of those processes 
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were in the same order of magnitude as processes with rates based on literature. An overview of the process parameters is 

provided in table S1.  

2.1.2.1 Hydrologic processes 170 

The hydrological module partitions spatially uniform rainfall (P) into three spatially explicit components: evapotranspiration 

(ET), infiltration (I) and surface flow (Ronn & ROff, Eq. (6)). Potential ET is calculated from prescribed temperature using 

the Hargreaves-Samani equation (Hargreaves and Samani, 1985), and corrected for topographical position (Swift Jr, 1976) and 

vegetation type (Allen et al., 1998). Surface flow is calculated on a daily basis, and only when rainfall intensity [amount / 

duration, mm hr-1] exceeds the saturated hydraulic conductivity of the topsoil, which is a function of soil properties and slope 175 

(Morbidelli et al., 2018; Wösten et al., 2001), or precipitation in the form of snow is melting. The excess water is routed over 

the surface using the multiple flow algorithm (Holmgren, 1994) and can re-infiltrate in places with higher hydraulic 

conductivity, in local surface depressions, or can leave the catchment. HydroLorica can thus deal with DEMs that contain 

depressions, and actively forms depression by simulating tree throw. The annual sum of daily surface flow is used to calculate 

annual water erosion and deposition using the stream power law. To account for seasonal differences, actual ET is calculated 180 

on a monthly basis from the potential ET and rainfall using the topsoil water budget model of Pistocchi et al. (2008). Infiltration 

is the sum of (re-)infiltrated surface water and the monthly difference between rainfall and actual ET (Eq. (6)). The annual 

water balance is used as a driver of various geomorphic and pedogenic processes, and to determine vegetation type. The 

hydrological module is described in detail in Appendix A of Van der Meij et al. (2018).  

2.1.2.2 Determination of vegetation type 185 

We considered two types of natural vegetation: grassland and forest. The vegetation type depends on the water availability; 

where rainfall plus re-infiltration exceeds potential evapotranspiration, there is no water stress and forests can grow. Otherwise, 

there is water stress and there will be grassland. This threshold is based on a hypothesis from Thompson et al. (2010), who 

used the Budyko curve (Budyko and Miller, 1974) to estimate vegetation type. By extending this relationship with re-

infiltration, this relation can be used to assess local, but spatially explicit vegetation type. Vegetation type thus has a climatic 190 

control and a topographic control in the form of hillslope aspect and local convergence of water flow in gulleys and depressions 

(e.g. Metzen et al., 2019). This variation in moisture and vegetation can occur very locally, especially in semi-arid regions. 

Vegetation type influences evapotranspiration (Allen et al., 1998), bioturbation and creep rate (Gabet et al., 2003), the 

occurrence of tree throw, and also controls organic matter input. Under agricultural use, the vegetation type changes to arable 

crops. We assume that soil and landscape processes are similar to landscapes under grassland vegetation. The differences are 195 

that arable crops have lower potential evapotranspiration and the process of tillage is introduced.  

Our method of estimating vegetation type can lead to annual changes in vegetation type depending on water availability, 

because we do not consider ecological processes such as resilience or succession. The portion of years with grassland and 

forest vegetation aggregated over longer time spans (> 100 a) provides an estimate for the forest cover of that specific location 

(see the animations in Supplement 2). The vegetation distribution should thus be considered on an aggregated level rather than 200 
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an annual level to yield meaningful results. This implementation suffices for our focus on long-term changes in soils and 

terrain, but should not be used to study systems on annual to decadal time scales.  

  

2.1.2.3 (Bio-)geomorphic processes 

The main (bio-)geomorphic processes affecting topography in loess areas are soil creep, tree throw, water erosion and tillage 205 

erosion. Soil creep is a bio-geomorphic process that causes a diffuse movement of soil material on a hillslope, driven by various 

factors such as (micro)climate, organisms and terrain (Pawlik and Šamonil, 2018; Regmi et al., 2019; Roering et al., 2002). 

The potential creep rate is a function of vegetation type and slope (Gabet et al., 2003). We adopt higher creep rates in forested 

areas, because of the deeper rooting depth and higher root abundance. We divided the potential creep rate at a certain location 

over all soil layers, with exponentially decreasing rates deeper in the soil. The transport of soil material from a layer to layers 210 

in its lower lying neighboring cells is proportional to the surface slope and shared layer boundaries.  

Tree throw is a bio-geomorphic process that has a distinct effect on the terrain and water routing; the created pit can act as 

hotspot for soil formation by the increased infiltration of water (Šamonil et al., 2018). We simulated tree throw as a random 

process, with on average 0.2 trees falling per hectare per year. This rate is lower than other rates found in natural forests around 

the world (0.3-1.5 trees ha-1 a-1, Finke et al., 2013; Gallaway et al., 2009; Phillips et al., 2017), because some factors 215 

controlling tree uprooting like shallow rooting depths due to impermeable layers or steep slopes are not present in our spatial 

setting. The dimensions of the root clump that is transported by tree throw were scaled with the age of the falling tree, which 

was also randomly selected. We assumed that tree growth occurs in the first 150 years of a tree’s existence, after which size 

remains stable until a maximum age of 300 years. These numbers and trends are loosely based on Rozas (2003). A pit and 

mound topography is only formed when the dimensions of the root clump exceed the size of the raster cell (1.5 m in our case) 220 

and that material is transported to a cell downslope. When the root clump is smaller than the cell size, or when the slope of the 

terrain does not lead to downward transport of the material, tree throw will only cause a (partial) turbation of the upper layers 

in the affected raster cells.  

Water erosion and deposition are calculated using the same approach as the original Lorica model (Temme and Vanwalleghem, 

2016). Sediment uptake and deposition are calculated as function of discharge and surface gradients (Schoorl et al., 2002). 225 

Sediment uptake is selective, where smaller particles are easier to erode and more difficult to deposit. Organic matter behaves 

the same as clay under erosion, because we assumed that organic matter occurs in associations with clay particles. Water 

erosion is limited by the occurrence of coarse soil particles (surface armoring) and vegetation. The role of water erosion in 

forested loess catchments is limited (Vanwalleghem et al., 2010); the vegetation protects the soil below from erosion. However, 

disturbances such as forest fires can temporarily increase erodibility of the soil. Therefore, we did simulate water erosion in 230 

forested landscapes, but with lower rates than in grassland. We simulated this by including a high vegetation protection 

constant (value of 1) in forested sites. In grasslands we used the aridity index between 0 and 1 as vegetation protection constant.  
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Tillage erosion was simulated as a diffusive process, similar to creep, with some differences: tillage homogenized the soil over 

the reach of the plough depth, erosion only occurred from the top layer contrary to the whole soil profile as with creep, and the 

erosion rates were much higher due to the intensive land management.  235 

2.1.2.4 (Bio-)pedogenic processes 

We simulated three dominant (bio-)pedogenic processes that change texture and organic matter properties in loess landscapes. 

These are clay translocation, bioturbation and soil organic matter accumulation and breakdown.  

We adapted a new way of simulating clay translocation, using the advection equation of Jagercikova et al. (2017). The diffusive 

part of clay translocation as described by Jagercikova et al. (2017) is separately modeled by bioturbation. We scaled the 240 

parameters of clay translocation with local infiltration to develop an infiltration-dependent equation. Not all clay in the soil is 

available for translocation. Part of it is not available to the percolating water, because it is bonded to other minerals and organic 

matter. We used the equations of Brubaker et al. (1992) to estimate the part of the clay that is water-dispersible, i.e. that is 

available for translocation by water. We estimated the required CEC with a pedotransfer function from Ellis and Foth (1996), 

as a function of clay content and organic matter content. Following from these equations, the fraction of non-dispersible 245 

(remaining) clay is 5.9% in soils without SOM and increases with 1.2% for every extra percent of SOM. This approach is 

similar to the one used in soil profile model SoilGen2 (Finke, 2012).  

Bioturbation works as a diffusive processes, homogenizing the soil vertically (Yoo et al., 2011). We used the same rates for 

bioturbation as for creep, because these processes are driven by the same organisms reworking the soil. The potential 

bioturbation rate was divided over each soil layer by integrating the exponential depth function over the layer thickness, and 250 

then dividing by the integration of the function over the entire soil profile. Every layer exchanges a certain fraction of its 

contents, based on initial bioturbation rate and depth, with all other layers. The amount of exchange between two layers 

decreases with increasing distance.  

Soil organic matter (SOM) accumulation and breakdown was simulated as in earlier soil-landscape evolution models (Minasny 

et al., 2008; Temme and Vanwalleghem, 2016; Vanwalleghem et al., 2013; Yoo et al., 2006). Accumulation of SOM is 255 

controlled by the potential input and depth in the soil. The accumulation is divided over a young and old SOM pool using a 

fractionation factor. These pools differ in their rate of decomposition. We calibrated the SOM cycle in agricultural settings 

with the average depth distribution of organic carbon in agricultural soils on the Chinese loess plateaus (Liu et al., 2011). We 

simulated 5000 years of soil development using different process parameters. We selected the parameter set that simulated an 

organic matter distribution most similar to the reference distributions from Liu et al. (2011). The reported depth distributions 260 

for pasture and forest soils by Liu et al. (2011) were not useful for this project. Soils under these vegetation types on the 

Chinese loess plateau generally contain lower SOM stocks than natural landscapes, because these positions often have recently 

been replanted to combat soil erosion or because they occur on topographic positions which are not favorable for plant growth 

and agriculture. Instead, we calculated reference carbon stocks for forest and grassland soils by adjusting the agricultural 

carbon stocks of Liu et al. (2011) with changes in carbon stocks after conversion from forest to crop and from forest to pasture 265 
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(Guo and Gifford, 2002). With the resulting reference carbon stocks for natural vegetation we ran additional calibrations to 

calculate the potential SOM input for forest and grassland. 

2.2 Experimental setup 

We developed an artificial topographic setting in which we performed our simulations. The use of an artificial setting rather 

than a field setting avoids the effect of local disturbances and idiosyncrasies which can disturb general signals we look for in 270 

the model results. 

The input DEM is an artificially created U-shaped valley of 150 by 150 meters, with a cell size of 1.5 meters (Figure 1). The 

slopes facing north- and southward have a sinusoid form, and valley depth increases eastward, from 0 to 9 meters. Random 

noise of max 1 cm was added. The maximum slope is 12° (21%), which reaches the limit for agricultural use (Bibby and 

Mackney, 1969). The small cell size of 1.5 meters is required to simulate the effect of pit and mound topography created by 275 

tree throw on spatial infiltration patterns. The landscape was designed to display typical topographic features present in loess 

areas, but we exaggerated the spatial variation of slope positions to limit catchment size and reduce calculation time.  

As parent material we chose a homogeneous loess without carbonates and a soil texture of 15% sand, 75% silt and 10% clay, 

which falls in the typical range of loess deposits (Muhs, 2007; Pécsi, 1990). We assumed an infinite loess thickness to avoid 

any effects of layers underneath with different lithologies. However, for computational reasons, we worked with an initial 280 

loess layer of 3 m with free leaching of water and dispersed clay at the lower boundary. This approach reduced the amount of 

soil layers and prevented numerical instability from the pedotransfer function for depth-dependent bulk density. The selected 

thickness left sufficient soil material so that the bottom of the loess was not reached by erosion during any of the model runs. 

The model requires a latitude to calculate solar inclination on the slopes. We selected the latitude of 50 degrees north, which 

is in the center of the range for loess occurrence reported by Muhs (2007, 40-60°N). We selected the rainfall scenarios based 285 

on most common rainfall in loess areas. For this, we made an overlay of a coarse resolution global loess map (Dürr et al., 

2005) with a global annual rainfall map (Fick and Hijmans, 2017). The distribution of rainfall from the overlay showed peaks 

at ~600 and ~900 mm (Figure 1). We selected these annual quantities of rainfall as input for our scenarios and we added a 

scenario of 300 mm to capture a wider range of climates. The model requires as input daily data on rainfall [m], rainfall 

duration [h], and minimum, mean and maximum temperature [°C]. Rainfall amount is required to calculate how much water 290 

flows through the soil landscape. Rainfall intensity is required to determine whether and how much overland flow occurs, by 

comparing rainfall intensity with soil hydraulic conductivity. Rainfall intensity is calculated by dividing the rainfall amount 

by the daily duration [m hr-1]. Temperature data is required to calculate potential evapotranspiration (Hargreaves and Samani, 

1985). As we want to simulate general trends in soil and landscape evolution, we do not need site-specific data for the different 

scenarios. Instead, an arbitrary weather dataset was scaled to the total amount of rainfall from the different climate scenarios. 295 

We used weather data from the German weather station Grünow, which is located at 53.3°N, 13.9°E (DWD Climate Data 

Center (CDC), 2018a, b). The potential evapotranspiration is around 600 mm a-1 for this dataset and is applied to all 

simulations. Combined with the rainfall scenarios, the scenarios can roughly be classified as dry (300 mm rainfall), humid 
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(600 mm rainfall) and wet (900 mm rainfall). In the rest of this paper, we will use the terms dry, humid and wet to refer to the 

different rainfall scenarios.  300 

We simulated the development of soils and landscapes for 15000 years, resembling the age of most post-glacial soils. In the 

first 14500 years of the simulations, soil and landscape development occurred under natural conditions and land cover. In the 

last 500 years of the simulations, we introduced agricultural land use by changing vegetation type and introducing tillage 

erosion. This duration was selected because it loosely reflects the onset of Medieval intense agriculture in many areas (Van 

der Meij et al., 2019) and should be seen as upper limit of onset of intensive tillage. Each of our simulations assumes a constant 305 

climate throughout the 15000 simulated years. Although we expect our model to be suitable to investigate the effects of a 

changing climate on soil and landscape evolution, this is beyond the scope of this study. 

2.3 Analysis and evaluation 

The model potentially outputs all soil properties for each layer at each location at each time step. Additionally, elevation change 

resulting from all processes at each location at each time step can be saved. In order to be able to interpret the results, we had 310 

to aggregate the results in several ways. We focused on select soil and terrain properties. The selected soil properties are soil 

organic matter stock [kg m-2], which is the total amount of SOM in a soil column, and the depth to the Bt horizon [m], which 

we defined as the depth where the clay content first exceeds the initial clay fraction of the soil. The selected terrain properties 

are slope [degrees], topographic position index (TPI [m]), calculated with square windows 15*15 cells (22.5*22.5 m), and the 

topographic wetness index (TWI [-]). In most figures, we present two moments in time. These are the end of the natural phase 315 

(t = 14500) and the end of the agricultural phase (t = 15000). We present the results in the following ways: 

• To show the development of soils and catenae, we show transects across the catchment (Figure 2), and plots of soil 

profile evolution, for three landscape positions and three rainfall scenarios (Figure 3); 

• To compare natural and agricultural soil properties, we show catchment-averaged depth distributions of clay and 

SOM fractions (Figure 4).  320 

• To show the impact of geomorphic processes on the terrain, we show cumulative elevation changes at the end of the 

natural and agricultural phase, and we show contributions to elevation change for each geomorphic process over 

time (Figure 5). 

• To quantify the spatial heterogeneity of the selected soil and terrain properties, we calculated empirical 

semivariograms (Figure 6), using the gstat package in R (Pebesma, 2004). Empirical semivariograms give a 325 

measure of the variation between properties of soils as a function of distance between soils. We compared the 

semivariograms of depth to the Bt horizon with semivariograms made from field observations in a natural and 

agricultural site. 

• To visualize soil-landscape relations, we show how the selected soil properties and terrain properties are correlated 

and how these correlations change through time (Figure 7). 330 
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• To disentangle the effect of various factors on soil properties, we performed an analysis of variance (Table 3). We 

selected the depth to Bt and the carbon stock at the end of the natural and agricultural phase as dependent variables. 

As independent variables we selected climate [three rainfall classes], land cover or use [natural or agricultural], and 

landforms [three elevation classes with equal elevation ranges, representing plateau, slope and valley (Figure 1)].  

  335 



13 

 

3 Results 

Here we present the results from the HydroLorica model. Section 3.1 shows the patterns, distributions and changes of soil and 

terrain properties in space and time. Section 3.2 shows the results from the statistical analyses to quantify and summarize 

spatial and temporal soil and terrain patterns. In the Supplements 2 and 3 we provided two animations to help visualize the 

simulated soil and landscape evolution. The animations show 1) maps of soil and terrain properties and forest cover and their 340 

changes through time, and 2) maps of elevation change by each geomorphic process and their changes through time.  

3.1 Simulated soil and landscape evolution 

The results of HydroLorica show clear differences in the development of soil profiles at different landscape positions, for the 

different rainfall and land cover/land use scenarios (Figure 2, Figure 3). In the natural phase, the forest cover shows a clear 

climatic and topographic dependence (animation in Supplement 2). For greater rainfall, there is a higher forest cover. The 345 

spatial pattern is mainly controlled by slope orientation. The north-facing slopes display a higher forest cover due to lower 

evapotranspiration. The valley and the hillslope depressions show a higher forest cover due to the higher moisture availability 

as consequence of surface runoff. Higher rainfall also leads to deeper eluviation of clay at each landscape position, showing 

more pronounced Bt horizons. Also, the soil profiles get more disturbed by tree throw with higher rainfall, as can be seen by 

the fluctuations in elevation and SOM stocks. The depth to the Bt horizon remains at the same position below the surface at 350 

the eroding position. At all locations, SOM stocks reach an equilibrium after ~3000 years, but most of the SOM is generated 

in the first 500 years. 

In the agricultural phase, relief changes much faster, leading to truncation of the eroding soil profile (Figure 3). Also, SOM 

stocks decrease substantially in the soil profiles due to lower input. At the deposition site, there is a small increase in SOM 

stocks at the end of the agricultural phase, caused by the continuous input of soil material. The increased elevation change is 355 

well visible in Figure 2. After the natural phase, there is limited elevation change on the slopes, with some water erosion at the 

valley bottom forming a v-shaped gulley. After the agricultural phase, the hillslopes are heavily eroded, while the valley bottom 

is filled with colluvium. The high erodibility of clay that we simulated in the model affected the clay distributions in the model 

results. In the natural phase, topsoil clay gets laterally relocated from the hillslopes to tree throw pits and the valley bottom. 

This clay was partly replenished from the subsurface by bioturbation. This led to a net loss of clay from the entire depositional 360 

profile in the wet scenario, due to higher water flow and erosion potential (Figure 3). In the agricultural phase, clay does not 

get trapped in tree throw pits anymore, but leaves the catchment with the water. This reduced the clay contents even more at 

the valley bottom (Figure 2). 

Figure 4 shows how clay and SOM fractions vary with depth throughout the entire catchment. The presented Probability 

Density Functions (PDFs) show multi-modal distributions of the soil properties, which cannot simply be captured using 365 

summary statistics. Both higher rainfall and agricultural land use increase the heterogeneity of clay profiles in the landscape, 

as can be seen by the wider ranges of the different PDFs throughout the entire depth profile. Also the occurrence of Bt horizons 

decreases with higher rainfall, due to losses of clay by lateral erosion rather than vertical transport as mentioned in the previous 
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paragraph. With higher rainfall, the percentages of soils with a Bt horizon occurring in the natural settings are 98%, 93% and 

62%. For the SOM profiles, higher rainfall also leads to more heterogeneity. Especially in the topsoil a larger spread is 370 

simulated. Cultivation reduces the fraction and the topsoil variation, due to lower input and vertical and lateral topsoil 

homogenization (Figure 4 & Table 2). 

All scenarios show a net elevation loss in the natural phase (Figure 5a). Creep transported hillslope material to the valley 

bottom, which water erosion partly removed from the catchment. The terrain becomes rougher with higher rainfall, due to 

increased water erosion and a higher occurrence of tree throw. Indirectly, the rougher terrain leads to increased creep rates, 375 

because of the locally increased relief gradients. Tillage erosion has had by far the largest impact on the terrain (Figure 5), 

overprinting the effects of natural geomorphic processes.  

3.2 Statistical analysis of soil and terrain properties 

Semivariograms summarize the spatial variation of soil and terrain properties as a function of distance between locations 

(Figure 6). Semivariance is a measure of the variation between properties of soils as a function of distance between soils. An 380 

increasing semivariance with distance indicates stronger spatial autocorrelation. In the natural phase, higher rainfall 

substantially increases the semivariance of soil and terrain properties regardless of distance; soils and terrain are thus more 

variable in space for higher rainfall. Especially the SOM stock shows high semivariance over all distances in the wet scenario, 

due to a larger spatial redistribution by water.  

In the agricultural phase, the differences between the rainfall scenarios are much less pronounced; the variations in the 385 

properties are similar for each rainfall scenario. The local variation, expressed by the nugget (intercept of the semivariogram 

with the y-axis) decreases in the agricultural phase because of short-range homogenization by ploughing. For the soil properties 

(Figure 6A&B), the variation over larger distances generally increases above the natural levels, while the topographic 

properties show semivariance similar to or lower than the natural settings. The differences in semivariance of the depth to Bt 

horizons in natural and agricultural settings appear also in semivariograms calculated from field data (Figure 6A). The data 390 

from Meerdaal (a natural forest in the loess belt in Belgium) shows a semivariance that fluctuates around a constant value, 

while the data from agricultural field CarboZALF-D (agricultural field located on glacial till in NE Germany) shows increasing 

semivariance with distance. The shapes of the field semivariograms match those of the model results, but the distances of the 

field data are five times larger than those of the model results, while semivariance is about half. Distance and semivariance are 

a function of soil and landscape heterogeneity. Natural landscapes are not as condensed as our DEM, leading to larger distances 395 

of spatial autocorrelation. The differences in semivariance are caused by lower values of depth to Bt and smaller differences 

therein. Values of semivariograms are thus very case study-specific, but the shape of the semivariogram can tell something 

about the distribution of the property in the landscape. In summary, the transition from a natural to an agricultural setting 

reduces terrain heterogeneity, but increases soil heterogeneity.  

The correlations between soil and terrain properties also differ between rainfall and land use options (Figure 7). In the natural 400 

phase, soil-landscape correlations are generally limited to 25%, with exception of the correlation between depth to Bt and slope 
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in the humid scenario. In the agricultural phase, the correlations initially increase for each combination of soil and terrain 

property, up to 80%. The correlations generally approach constant values in the agricultural phase. An exception to these 

patterns are the same correlations between slope and depth to the Bt horizon in the humid scenario. Those correlations increase 

to 40%, and decline again in the agricultural phase. These large correlations in the natural phase appear from relatively little 405 

disturbance by tree throw and sufficient water to redistribute in the landscape. The small wiggles in the correlation lines are 

caused by minor uncertainties in our algorithm to derive soil properties from the model results.  

Table 3 shows the results from the analysis of variance, which shows how much of the variance in soil properties at the end of 

the natural and agricultural phases can be explained by different factors (Table 3). The variance in depth to the Bt horizon can 

be partly explained by rainfall (18%) and landscape position (23%), when considering all data together. However, the largest 410 

part of the variance remains unexplained. For the SOM stocks, most of the variance can be explained by the land use (72%). 

When grouped per land cover/use, about half of the variance of depth to Bt can be explained by either rainfall (natural phase) 

or landform (agricultural phase). For the SOM stocks the dominant factors are the same, but the variance in the natural soil-

landscape can only be partly explained by rainfall (14%) and a large part remains unexplained.  

  415 
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4 Discussion 

4.1 Soil patterns and properties 

4.1.1 Soil patterns 

Soils have been affected by humans for over thousands of years, either directly by agricultural use, or indirectly by adjusting 

factors that form the soil, such as vegetation or climate (Amundson et al., 2015; Bajard et al., 2017; Dotterweich, 2008; 420 

Stephens et al., 2019). Therefore it is difficult, if not impossible, to find locations where truly natural soils can be observed 

and compared to agricultural soils in similar settings. Model simulations enable this comparison, as we show in this study. 

Unfortunately, there is limited field data to calibrate and verify the model. To our knowledge, the dataset from Vanwalleghem 

et al. (2010) is the only dataset that enables quantification of the spatial distribution of natural soils and link it to terrain 

properties at a local to regional scale, similar to the setting we simulated. In this Section, we rely mainly on this dataset to 425 

discuss and verify the patterns of natural soils we simulated with our model.  

Our simulations show a large diversity of natural soil patterns, influenced by the amount of rainfall and associated vegetation 

type. The available water leads to a regionally higher rate of soil development, for example in the form of deeper clay eluviation 

(Figure 3), and also to a greater lateral redistribution of soil material by water erosion and tree throw (Figure 5) and spatially 

varying infiltration rates. With more rainfall, the higher rates and interactions between these processes lead to a spatially more 430 

heterogeneous soil pattern, as expressed in higher semivariances (Figure 6). This local variation in pedogenesis due to different 

water input has been recognized and partly accounted for in other modelling studies (Finke et al., 2013; Saco et al., 2006; 

Shepard et al., 2017), but had not emerged from soil-landscape evolution studies. Also the terrain, summarized by slope, TPI 

and TWI, becomes more heterogeneous with higher rainfall. Water flow thus affects soil and terrain patterns in a similar way. 

The data from Meerdaal forest largely match model results. The semivariogram of depth to Bt from Meerdaal (P = 800 mm) 435 

is most similar to the semivariograms from the humid and wet scenarios, while the terrain correlations from Meerdaal resemble 

most correlations simulated in the natural phase. The correlations in the model results are a bit larger than the ones from the 

Meerdaal dataset. This can be due to small variations and disturbances, for instance in parent material or human intervention, 

that we did not simulate. Nonetheless, the general soil patterns from model and field results agree, which indicates that our 

model HydroLorica simulated the essential processes that form natural soil patterns.  440 

Agricultural soils display entirely different patterns, characterized by heterogeneity over larger distances. There is less small-

distance, random variation due to the absence of tree throw and local homogenization by tillage, while variation in soil 

properties over larger distances has increased due to the slope-dependent intensity of tillage erosion (Phillips et al., 1999). This 

erosion leads to truncation of soils at convex positions, while concave positions have a net accumulation of material (De Alba 

et al., 2004). This truncation is visible in many agricultural landscapes, because subsurface horizons with different colors get 445 

exposed at the surface on heavily eroded locations (e.g. Smetanová, 2009; Van der Meij et al., 2017). In contrast, terrain 

properties seem to become more homogeneous in agricultural landscapes. The smoothing effect of tillage on the terrain 

removed local pits and rills created in the natural phase. We hypothesized earlier that a smoother terrain would have higher 
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hillslope connectivity, leading to increased water erosion (Van der Meij et al., 2017). However, we observed the contrary in 

our model results (Figure 5). The export of sediments from the catchment might be higher, but the uptake and local 450 

redistribution of sediments on the hillsope is lower, because local steep gradients are removed. Tillage is thus the dominant 

process forming agricultural soil patterns. The effect of anthropogenic soil erosion on soil heterogeneity far exceeds effects of 

changes in for example rainfall, which shows the huge impact we have as humans on soil-landscape development.  

4.1.2 Process calibration and verification 

The rates of the simulated processes were difficult to calibrate and verify. This is mainly due to a lack of field data that covers 455 

a range of climatic, topographic, chronologic and geographic settings (Van der Meij et al., 2018). Such data are essential for 

formulating pedogenic functions that are applicable in a wide range of settings instead of only in case studies, or for verifying 

model results. The chronosequence collection of Shepard et al. (2017) is a global dataset of soils in various settings covering 

different time steps. This dataset could be a good starting point for developing such functions owing to its large coverage. But 

as chronosequences are generally situated in relatively flat, stable landscapes, they often do not contain information about 460 

variations of soil properties at small distances, as function of local terrain (Harden, 1988; Sauer, 2015) – with the exception of 

some pro-glacial soil chronosequences whose use is limited because of their extreme climate and parent material (Egli et al., 

2006; Temme and Lange, 2014). Such more complete information is essential for understanding the formation of soil patterns, 

as illustrated in the previous Section. Therefore, we suggest to include topographic variation in future chronosequence studies 

(Temme, 2019). A dataset covering different geographies could also raise the comparison of model and field results beyond 465 

the case study-level.  

In this study, we worked with an artificial landscape to avoid effects of uncertainties and local variations in initial and boundary 

conditions that are often present in data from field settings (e.g. Van der Meij et al., 2017). This allowed us to investigate the 

universal effects of changes in rainfall and land use in the model results, as a function of terrain morphology. Although 

uncertainties in boundary conditions appear to have a limited effect on the outcomes of soil evolution models, uncertainties in 470 

initial conditions can strongly influence the results (Keyvanshokouhi et al., 2016).  

One soil property for which there is plenty of data on the spatiotemporal variation is soil organic matter or carbon, due to the 

current interest in its potential to store atmospheric carbon (Minasny et al., 2017). We used a regional dataset from the loess 

plateau to calibrate our SOM cycle in agricultural landscapes and we used carbon sequestration rates for adjusting the SOM 

balances for forest and grassland areas. The modelled SOM stocks for agricultural sites match the field data fairly well (Table 475 

2), but stocks for natural areas are estimated higher than often observed. For example, in Bavaria, Germany, carbon stocks in 

the first meter, including the optional litter layer, are 9.8-11.8 kg m-2 (Wiesmeier et al., 2012), where we simulated 15.7-17.1 

kg m-2 in our natural settings without consideration of a litter layer. Also the depth distributions are different. De Vos et al. 

(2015) found that 50% of the carbon stock occurs in the top 20 cm in European forests on various parent materials. In our 

results this is around 20%. This implies that agriculturally-derived SOM depth functions are not suitable to calibrate natural 480 

SOM depth functions, probably because input, vertical redistribution, litter quality and decay of SOM behave differently in 
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natural and agricultural sites. To calibrate these parameters, data from agricultural and natural sites in close vicinity are needed, 

to avoid effects of geographic and climatic differences. We are currently not able to simulate and calibrate these processes 

properly. 

4.2 Drivers of soil formation 485 

4.2.1 Soil forming factors 

Different soil forming factors dominate the variance in soil properties in natural and agricultural systems (Table 3). In natural 

systems, rainfall is the dominant factor explaining the variance. In scenarios with greater rainfall, rates of soil and landscape 

change are larger, leading to more complex patterns. Although we did not simulate a changing climate, the results suggest that 

we can expect more stable conditions with similar pedogenesis rates throughout the landscape in periods with lower rainfall, 490 

while periods with greater rainfall may induce landscape change and spatially varying rates of pedogenesis. The major driver 

for this increased landscape change is the higher occurrence of tree throw. The higher water availability increases forest cover, 

leading to more tree throws (see animations in the Supplements 2 and 3).  

Although our vegetation module is very simple, it was able to simulate the climatic and topographic control on vegetation 

patterns which affect geomorphic and pedogenic processes. We would expect similar results to be obtained if a more complex 495 

vegetation module that does justice to ecological complexity (i.e. resilience, succession) would be incorporated.  

In agricultural systems, landform is the dominant factor explaining the variance (Table 3). This shift from external factors in 

natural systems to internal factors in agricultural systems marks the importance of geomophic processes on agricultural soil 

patterns. Although relief controls rates and directions of geomorphic processes, the type of process is human-controlled. 

Humans have a massive impact on soil development (Amundson and Jenny, 1991; Dudal, 2005). Direct effects include 500 

agricultural use, excavations, introduction of organisms and creation of new parent materials (Richter et al., 2015), while 

indirectly anthropogenic changes in climate can have severe effects on soil properties (Nearing et al., 2004; Schuur et al., 

2015). We have focussed on the main of these anthropogenic changes in loess landscapes: removal of forest and introduction 

of tillage. Humans as soil forming factor form new catenae (anthroposequences) and soil patterns, where the ultimate pattern 

only depends little on the initial variation (Figure 6). In our model results, we observe four of the six anthropogenic changes 505 

to soils, as described by Dudal (2005): human-made soil horizons, deep soil disturbance, topsoil changes and changes in 

landforms. These changes substantially affect soil functions, such as biodiversity and food security. Our simulations thus 

support that humans are the dominant factor for forming soils in agricultural landscapes.  

4.2.2 Soil-landscape (co-)evolution 

The development of soils and landscapes is not merely a collection of individual processes, but also of interactions between 510 

different processes. When processes interact, and when changes to soils and landscapes are in the same order of magnitude, 

soil-landscape co-evolution can occur. This co-evolution can amplify or diminish certain processes, or can completely change 
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the direction of soil and landscape evolution (Van der Meij et al., 2018). Often, co-evolution is used to describe soil and 

landscape processes with similar rates, but that do not necessarily interact (e.g. Willgoose, 2018). This would imply that these 

processes would co-occur rather than co-evolve. In this Section we evaluate some co-occurring processes in HydroLorica to 515 

see whether co-evolution occurred. There are different co-occurring processes in the natural phase of slow landscape change 

compared to the agricultural phase of intense landscape change.  

4.2.2.1 Lateral and vertical transport 

We will first consider vertical and lateral soil transport processes. Soils and hillslopes can be considered as a series of transport 

ways or conveyor belts (Román-Sánchez et al., 2019). Vertical transport or mixing occurs by bioturbation including tree throw 520 

and clay translocation, whereas lateral transport occurs by creep, tree throw, water erosion and tillage erosion. Interactions 

between processes can occur where transport ways affect the same material. Two examples we will discuss here are the vertical 

and lateral transport of clay and the interaction between creep and water erosion in the valley bottom. 

The vertical translocation of clay is simulated in our model by an advection-diffusion equation, where the advective part is the 

downward transport by water flow and the diffusive part a homogenization by bioturbation (Jagercikova et al., 2017). When 525 

the rates of advection and diffusion are equal, the upward transport of clay by bioturbation equals the amount of downward 

translocation by water; the clay-depth profile of the soil occurs in steady state and will not change substantially. Steady-state 

circumstances are however rare in natural soil systems (Phillips, 2010). Our simulations do not show steady-state 

circumstances, because in our simulations there is always lateral transport of soil material that continuously changes slope and 

terrain properties and affects the soil’s clay balance, complicating the achievement of a steady state. Periodic water erosion 530 

can remove substantial amounts of clay that have been transported to the surface by bioturbation. This is well visible in the 

results of the wet scenario (P = 900 mm), where only 62% of the soils developed a Bt horizon. The other 38% had insufficient 

clay left to be classified as Bt according to our criteria. These results are quite extreme for such a small catchment as ours, 

probably due to too high simulated rates of water erosion, but they do show how pedogenic and geomorphic processes can 

interact in sloping terrain. In the natural phase the rates of clay translocation are similar to those of geomorphic processes. The 535 

recovery of the clay-depth profiles after disturbance of e.g. tree throw takes similar times (~1000s of years) as the re-occurrence 

of a sequential tree throw event in the vicinity (Figure 3). Tree throw also temporarily changes rates of clay translocation by 

concentrating infiltration in the created pits. In the agricultural phase the rates of geomorphic processes far exceed the rates of 

clay translocation. This causes truncation of the soils, exposing the Bt horizons at the surface, and burying these horizons 

elsewhere in the landscape. The clay profiles at eroded sites do not have time to react to the geomorphic disturbances. However, 540 

clay illuviation can start as a new pedogenic process in older depositional areas (supplementary information of Leopold and 

Völkel, 2007; Van der Meij et al., 2019; Zádorová and Pení žek, 2018).  

Another interaction that emerged from the simulations occurred at the valley bottom. Soil creep transported hillslope material 

downslope, whence the concentrated water flow in the valley removed it from the catchment, creating a v-shaped valley bottom 

(Figure 2). This constant removal of material maintained the gradients that were used by soil creep to deliver new material. 545 

This interaction can be observed in various small hillslope catchments, which display typical v-shaped gulleys in the valley 
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bottoms (e.g. Swanson and Swanston, 1977; West et al., 2013). Although this is not an interaction between pedogenic and 

geomorphic processes, it determines to a large extent how soil material gets redistributed along a hillslope and eventually gets 

exported from the catchment. In the agricultural phase, diffusive transport in the form of tillage erosion dominates over 

advective transport by water. As a consequence, the typical v-shapes fill up and are replaced by u-shaped valleys. These valley 550 

fillings consist of coarse material from which most clay was eroded (Figure 2). In agricultural areas, such infillings can 

temporarily remove erosion gulleys, but due to local water availability, they remain weak spots for future water erosion 

(Poesen, 2011).  

4.2.2.2 Soil organic matter dynamics 

Rates of SOM accumulation and decomposition far exceed rates of clay translocation. SOM stocks recover quickly after a 555 

disturbance by tree throw and can keep up with intense landscape change by tillage (Figure 3). Freshly exposed, reactive soil 

material at eroding sites quickly accumulates new SOM, whereas SOM gets buried at depositional positions. Meanwhile, SOM 

decomposition increases during transport (Doetterl et al., 2012). In our simulations, the SOM stocks decrease substantially in 

the agricultural phase, mainly due to lower SOM input (Figure 3). Carbon stocks show relatively homogeneous distributions 

throughout the catchment (Figure 4), despite large spatial differences in erosion and deposition. This indicates that landscape 560 

change in both natural and agricultural systems did not induce substantial heterogeneity in SOM stocks. The small differences 

in SOM stocks in agricultural settings depend on landform (Table 3). These differences mainly emerge from differences in 

soil thickness at erosion and deposition positions. Deposition positions show a slight increase in SOM stocks after cultivation, 

while erosion positions show continually decreasing SOM stocks (Figure 3). The differences in SOM stocks in the model 

results are thus related to burial of colluvium in the valley bottom. SOM cycling is heavily influenced by erosion processes, 565 

but erosion rates do not depend on the SOM cycling. In tillage-dominated systems, erosion rates do not depend on SOM content 

or SOM dynamics in the soil. The co-occurrence of SOM cycling and tillage erosion in agricultural settings thus does not lead 

to co-evolution.  

The interactions between erosion and the SOM cycle are currently under debate, especially whether agricultural redistribution 

provides a carbon source or sink through affecting biogeochemical cycles and exporting carbon from fields and catchments 570 

(Berhe et al., 2018; Chappell et al., 2015; Doetterl et al., 2016; Harden et al., 1999; Lal, 2019; Lugato et al., 2018; Van Oost 

et al., 2007; Wang et al., 2017), which shows the importance of considering landscape processes in pedogenic studies and vice 

versa. Moreover, intensive agriculture has been practiced for over 1000s of years in parts of the world (Stephens et al., 2019), 

emphasizing the need to consider centennial to millennial time periods in studies on anthropogenic forcing on soil systems. 

4.2.2.3 Did co-evolution occur? 575 

The co-occurrence of processes does not necessarily implicate co-evolution. The analysis in this Section showed that soil and 

landscape processes co-occurred in both natural and agricultural settings, but that interactions between processes only occurred 

in natural settings. Rates of soil and landscape change are controlled by drivers such as water availability and vegetation type, 

and these drivers are influenced by soil, landscape and climate properties. Changes in one domain in the landscape have effects 

on the formation of all other domains. These interactions, or co-evolution, occur on both short and long timescales in the 580 
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natural system. There are already considerable differences between the soil patterns from each scenario after 500 years of 

natural soil formation, due to the role of water and vegetation in soil-landscape co-evolution. These differences become more 

pronounced over time, due to progressive soil and landscape formation (Supplement 2).  

In comparison, the differences between the patterns of each scenario after 500 years of agricultural land use are much smaller 

(Supplement 2). This is because anthropogenic processes such as tillage erosion occur at such high rates that most natural 585 

processes cannot keep up, and lead to more similar soil landscapes. Anthropogenic processes do not show co-evolution, 

because the rates of for example tillage erosion far exceed any rates of natural soil and landscape change (Figure 5) and the 

rates of the anthropogenic processes are not influenced by soil properties. Tillage can introduce new processes or accelerate 

other processes e.g. by breaking up aggregates. However, these processes do not affect the rate at which a plough transports 

sediments through a landscape. If interactions between processes do not occur on shorter timescales, they will also not emerge 590 

over longer timescales as is the case with natural processes as described before. The occurrence of possible co-evolution of 

soils and landscapes thus depends on the type of processes that affect the system, not on the duration over which these processes 

change soils and landscapes. In other words, co-evolution is not time-dependent, but process-dependent. 

Co-evolution of soils and landscapes can also occur via intrinsic thresholds which do not depend on changes in external drivers 

such as rainfall and land use. An example is the development of stagnating layers in the soil, which change the subsurface 595 

partitioning of water and can introduce reducing conditions. But, as we explain in Van der Meij et al. (2018), such intrinsic 

thresholds can currently not be modelled, because we lack the methods for estimating accurate soil hydraulic properties which 

drive this threshold behavior. Ideally, a model shows such threshold behavior without explicitly incorporating these thresholds 

in the model code as such imposed hard thresholds can cause problems when calibrating the model by creating sharp 

discontinuities in the model results as a response to slight variations in parameters (Barnhart et al., 2019). For these reasons 600 

we focused on heterogeneity and (co-)evolution related to external drivers in this research.  

The soil and landscape interactions in natural settings emphasize the need of studying natural soil formation in a landscape 

context rather than a pedon context. Only when landscape are stable, flat and free of trees, changes in soil properties are not 

influenced by changes in terrain. In such settings, a 1D soil profile evolution model would suffice to simulate soil development 

in different landscape positions (Finke, 2012; Minasny et al., 2015). When rates of geomorphic processes far exceed those of 605 

pedogenic processes, for example in tillage-dominated systems, a landscape evolution model would suffice (e.g. Temme et al., 

2017). In undulating landscapes where various hillslope processes occur, soils should be considered 3D bodies and soil-

landscape evolution models are essential to simulate spatial drivers of soil and landscape evolution (Willgoose, 2018).  

4.3 Predictability of soil patterns 

In digital soil mapping, empirical relations between soil properties and their environment are used to predict soil properties 610 

through space (McBratney et al., 2003). In order to predict soil properties with environmental variables, the environmental 

variables should show variation over the same spatial scale as the variable to be predicted. On a hillslope scale, this variation 

often occurs in terrain properties (Gessler et al., 2000), while external factors such as climate often do not vary spatially at 
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these scales. The shift from dominant external to dominant internal soil forming factors in explaining variance in observed soil 

properties (Table 3) thus has large implications for our ability to predict and map soil patterns. Human activity has created 615 

soil-landscapes that are well-suited for digital soil mapping. The correlations between soil and several terrain properties all 

give the same signal (Figure 7): the correlations in the natural phase are limited, but increase rapidly in the agricultural phase. 

The switch from a natural to agricultural phase thus increases soil heterogeneity, but also soil predictability. One should thus 

be careful extrapolating soil-terrain relationships from agricultural areas to natural areas, as these correlations depend on land 

management and can give wrong results. 620 

Digital soil mapping performs well when predicting the spatial distribution of agricultural soils, but their applicability in time 

is limited because of limited temporal data (Gasch et al., 2015; Grunwald, 2009). The limited observations in space and time 

can be supplemented or extrapolated by incorporating biogeochemical process descriptions to improve DSM (Angelini et al., 

2016; Christakos, 2000, pp. 22; Heuvelink and Webster, 2001). However, the response of soils and terrains to changes in soil 

forming factors takes longer (decades to millennia) than the timespan over which we have observations (days to decades). 625 

Process-based models thus become increasingly essential for understanding how soils might change under projected scenarios 

of land use and climate change (Keyvanshokouhi et al., 2016; Opolot et al., 2015), and HydroLorica shows a promising first 

example of such a model on a landscape scale that responds to changes in all five soil-forming factors, and by extension the 

human control on these factors.  

  630 
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5 Conclusions 

Soils undergo substantial changes in the transition from a natural land cover to agricultural land use. Although these changes 

can be described conceptually, quantitative data to describe the changes in soil pattern are scarce. We developed a soil-

landscape evolution model, named HydroLorica, which is able to simulate the evolution of soils and landscapes in both natural 

and agricultural settings, by simulating spatially varying infiltration as driver of soil formation and by inclusion of essential 635 

natural and agricultural processes such as soil creep, tree throw and tillage. We used this model to simulate soil and landscape 

development in varying climatic settings, under changing land use, to quantify changes in variation and predictability of soil 

patterns. We reached the following conclusions: 

• Natural and agricultural landscapes display different soil patterns. Natural soil patterns are more chaotic and 

random with higher precipitation. Their formation is dominated by local processes such as tree throw and spatially 640 

varying infiltration. Agricultural soil patterns are dominantly formed by tillage erosion processes. The patterns 

show low local variation that substantially increases with distance. Also, agricultural soil properties show larger 

correlations with terrain properties. 

• In natural systems, rainfall is the main factor influencing soil variation. In agricultural systems, landform explains 

the largest part of variation. The most important factor affecting total soil variation is the human factor. Agricultural 645 

land use increases erosion rates, which changes soil patterns and creates and amplifies the topographic dependence 

of soil properties.  

• In natural and agricultural settings there are different sets of processes that change soils and landscape with similar 

rates. In natural systems, these processes often interact and amplify or diminish each other, leading to soil-landscape 

co-evolution. In agricultural systems, these interactions are often missing and processes co-occur rather than co-650 

evolve.  

• Agricultural soil patterns are easier to predict than natural soil patterns, due to the shift from dominant external to 

internal factors that explain soil variation, which manifests itself in larger correlations between soil and terrain 

properties. 

Soil-landscape evolution models are increasingly equipped to simulate soil landscape development in a variety of settings. Our 655 

contribution shows the added value of using water availability as spatially varying driver of pedogenesis to simulate soil and 

landscape development in natural settings. These developments are essential to study the vulnerability and resilience of soil 

systems under the increasing pressure from land use intensification and the changing climate, but can also assist in 

understanding the long-term effects of management strategies such as reduced tillage or no-till on soil properties such as carbon 

stocks.  660 
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6 Model availability 

Model code is available on request via the corresponding author. 

7 Supplementary information 

We provided the following supplements: 665 

• Supplement 1: Model equations and parameters (document) 

• Supplement 2: Maps of soil and terrain properties through time (animation) 

• Supplement 3: Maps of elevation change due to the different geomorphic processes through time (animation) 
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11 Tables 

Table 1: Overview of processes simulated in HydroLorica, including driving soil forming factors in the model, and landscape variable that is affected by each process. Humans are 

considered as additional soil forming factor (Amundson and Jenny, 1991; Richter et al., 2015). 

  
Soil forming factor Landscape variable affected 

Process Abbreviation 

Climate 

[rainfall] 

Organisms 

[vegetation 

type] Relief 

Parent 

material 

[soil 

texture] Humans Topography 

Soil 

properties 

Water 

balance 

Vegetation 

type 

Bioturbation BT          

Carbon accumulation and breakdown CAB          

Clay translocation CT          

Creep CR          

Pedon scale water partitioning WP          

Surface flow SF          

Tillage TI          

Tree throw TT          

Vegetation selection VS          

Water erosion WE          
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Table 2: Model and field organic carbon stocks (kg m-2) for different depth ranges, averaged over the catchment (average ± 

standard deviation). The model results were converted from SOM to SOC by multiplying the SOM stocks with 0.58 (Wolff, 1864).  

 Natural phase (t 14500) Agricultural phase (t 15000) 

Scenario 

Depth range 

Dry 

(grassland) 

Humid 

(mixed) 

Wet  

(forest) 

Dry  Humid Wet (Liu et al., 

2011) 

0-0.2 4.7±0.3 4.6±0.9 4.1±2.1 2.9±0.1 2.9±0.3 2.8±0.4 3.0±1.9 

0-0.4 8.7±0.4 8.5±1.1 7.8±2.8 5.5±0.2 5.4±0.5 5.3±0.6 5.4±3.2 

0-1 17.1±0.4 16.8±1.2 15.7±3.5 10.9±0.6 10.8±0.8 10.6±0.8 8.8±4.4 

0-2 24.1±0.4 23.7±1.3 22.3±3.8 15.7±1.2 15.6±1.2 15.4±1.1 14.5±5.2 

Complete profile  27.7±1.3 27.1±1.7 25.3±8.5 18.6±16.1 18.4±9.1 17.8±10.1 - 
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 960 

Table 3: Results from the analysis of variance, indicating the proportion of variance in soil properties explained by the different 

soil forming factors. The data is both considered in total, and grouped per land use (natural or agricultural). The bold numbers 

indicate the largest part of the variance, either explained by one of the factors, or unexplained. All responses are significant 

(p<0.05).  

 Depth Bt SOM stock 

 Total Natural Agricultural Total Natural Agricultural 

Rainfall 0.18 0.49 0.08 0.02 0.14 0.02 

Landform 0.23 0.04 0.51 0.04 0.01 0.56 

Land use 0.01 - - 0.72 - - 

Unexplained 0.58 0.47 0.41 0.22 0.85 0.42 
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12 Figures 

 

Figure 1: Left: Annual rainfall in loess areas, derived from WorldClim. Red lines indicate the rainfall scenarios in this study: 300 

(dry), 600 (humid) & 900 (wet) mm per year. Right: Maps of input DEM with corresponding slope map. Extent of the DEM is 970 
150*150 meter, with a cell size of 1.5 meter. The different classes indicate elevation classes used in the ANOVA (Table 3). The blue 

dots and line indicate the location of the soil profiles and transect displayed in Figure 2 and Figure 3. 
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Figure 2: Transect through the catchment at the end of the natural phase and the end of the agricultural phase for the humid 975 
scenario (P = 600 mm). The black line indicates initial topography. See Figure 1 for location of the transect.  
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Figure 3: Evolution of soil profiles through time (x-axis) on a stable, eroding and depositing position (rows), for the different 

rainfall scenarios (columns). The colored bars atop the plots indicate land cover (natural) and land use (agricultural). The points 980 
indicate the SOM stocks (right y-axis). Note that the natural and agricultural system have different x-axes scales to visualize both 

systems. In the agricultural system, an observation is shown each 500 years. In the agricultural phase each 50 years. See Figure 1 

for locations of the soil profiles. See Figure 2 for the soil color legend. 
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 985 

Figure 4: Probability Density Functions (PDFs) showing the multi-modal distributions of soil properties throughout the catchment 

per 10 cm depth increment. We only show probabilities larger than 5% for clarity. The presented soil properties are clay fraction 

(top) and SOM fraction (bottom), for the different rainfall scenarios (columns). Grey colors represent the natural soils, while red 

colors represent agricultural soils. The horizontal dotted line indicates the ploughing depth used for simulations (20 cm). 
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Figure 5: Left: average erosion rates throughout the catchment for the different geomorphic processes over time. The colors 

represent different geomorphic processes, and the line types represent different rainfall scenarios. Note that the y-axis is log 

scaled. Right: cumulative elevation change at the end of the natural and agricultural phase compared to the initial DEM for the 

different rainfall scenarios.  995 
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Figure 6: Experimental semivariograms showing semivariance (spatial autocorrelation) for different soil (A,B) and terrain 

properties (C-E) with different precipitation scenarios (line types) at the end of the natural (black) and agricultural (red) phases. 

The panel with depth to Bt includes experimental semivariograms for a natural area (Meerdaal forest, P = 800 mm, 1000 
Vanwalleghem et al., 2010) and an agricultural area (CarboZALF-D, P = 500 mm, Van der Meij et al., 2017). Note that these field 

data are presented with separate axes to compare shapes of the semivariograms.  
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Figure 7: Correlations (R2) between selected soil properties (line types) and topographic properties (colors) through time (left to 

right), for the different rainfall scenarios (top to bottom). In the natural system, the correlations are presented every 500 years, 1005 
while in the agricultural system, the correlations are presented every 50 years. Note that for the latter phase the x-axis is stretched.  

 


