Dear professor Fiener,

Thank you for your comments on our manuscript. We adopted most of your suggestions in our manuscript. Below we mention
the changes and motivate why we did or did not adopt some of your suggestions. The page and line numbers refer to the

manuscript with marked changes. We hope that, with these modifications, you deem the paper fit for publication.

On behalf of all authors, with best regards,

Marijn van der Meij

Geostatistical terminology

We changed the terminology of the geostatistics and used the proper terms to describe the scale and magnitude of soil and
landscape variability (lines 387-414). We removed the comparison about the shape of the semivariograms from model and
field results (lines 452-466). Instead, we only describe the differences between a natural and an agricultural setting and we
mention why the magnitudes of the range, sill and nugget are different between model and field results. Although the
experimental semivariograms in Fig. 6 should indeed be represented by points as you indicate, we think that using lines gives
a calmer image which allows easier visual comparison. Also, the line types represent the different gradations of rainfall, which
is not possible with points. That is why we decided to use the lines instead. We motivate this choice in the caption of Fig. 6
(line 1060).

Applicability of our findings for different agricultural fields

We agree with your remarks about the limited applicability of our findings and conclusions for all types of agricultural fields.
Although we expect that the identified soil-landscape relations will occur in every tilled field, the variation within a field might
be secondary to variation emerging from other factors such as extensive management and field size, land use history and field
boundaries such as banks or hedges, as you suggest. We added these nuances throughout our manuscript (lines 54-55, 109-
110, 446-451, 484-488, 549-550, 666), and limited our hypotheses and conclusions to large-field settings which are

representative for intensive agricultural use (lines 105-110, 689-691, 700).

Model description

e The simulation of a coarse fraction is a functionality in HydroLorica which is available, but which we did not use in
our simulations. We added this notion to the manuscript (lines 129, 143-146).

o We use the brief discussion of the quality of the used PTF (lines 146-153) to motivate our choice to use this PTF.
Therefore, we think this part is in the right place in the Methodology section.

Minor comments

We adopted your additional suggestions to clarify the manuscript.
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Abstract. Humans have substantially altered soil and landscape patterns and properties due to agricultural use, with severe
impacts on biodiversity, carbon sequestration and food security. These impacts are difficult to quantify, because we lack data
on long-term changes in soils in natural and agricultural settings and available simulation methods are not suitable to reliably
predict future development of soils under projected changes in climate and land management. To help overcome these
challenges, we developed the HydroLorica soil-landscape evolution model, that simulates soil development by explicitly
modelling the spatial water balance as driver of soil and landscape forming processes. We simulated 14500 years of soil -
formation under natural conditions for three scenarios of different rainfall inputs. For each scenario we added a 500-year period
of intensive agricultural land use, where we introduced tillage erosion and changed vegetation type.

Our results show substantial differences between natural soil patterns under different rainfall input. With higher rainfall, soil
patterns become more heterogeneous due to increased tree throw and water erosion. Agricultural patterns differ substantially
from the natural patterns, with higher variation of soil properties over larger distances and larger correlations with terrain
position. In the natural system, rainfall is the dominant factor influencing soil variation, while for agricultural soil patterns
landform explains most of the variation simulated. The cultivation of soils thus changed the dominant factors and processes
influencing soil formation, and thereby also increased predictability of soil patterns. Our study highlights the potential of soil-
landscape evolution modelling for simulating past and future developments of soil and landscape patterns. Our results confirm

that humans have become the dominant soil forming factor in agricultural landscapes.
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1 Introduction

Soils provide valuable functions for nature and society by supporting plant growth and agriculture, managing water and solute
flow, sequestering carbon, preserving archaeological heritage, creating habitats for plants and animals and providing support
for infrastructure (Dominati et al., 2010; Greiner et al., 2017). However, soils are currently degrading by agricultural
intensification and climate change, forming one of the largest threats to global food security and biodiversity (Bai et al., 2008;
Montanarella et al., 2016; Tscharntke et al., 2012). A drastic change in land management is needed to restore healthy soils and
soil functions (IPCC, 2019). Combating soil degradation and promoting sustainable land management therefore stands high
on the agenda of the soil science community (Bouma, 2014; Cowie et al., 2018; Keesstra et al., 2018; Kust et al., 2017; Minasny
etal., 2017).

The first step towards sustainable land management and a return to healthy, natural soils is a fundamental understanding of the
development and characteristics of natural soil patterns, and how these change under human influence. Therefore, we will
focus in this paper on gently to strongly sloping undulating landscapes that are suitable for agricultural use (max slope ~20%,
Bibby and Mackney, 1969). Soil forming processes are controlled by at least five environmental factors: climate, organisms,
relief, parent material and time (the CIORPT model, Jenny, 1941). Different factors dominate in natural and agricultural
settings. In natural settings with flat or undulating settingstopography, soil erosion-by-waterand-titlage generally occurs at
very low rates or is absent (Alewell et al., 2015; Wilkinson, 2005). Some soil redistribution can occur as a consequence of
creep or tree throw (Gabet et al., 2003). More importantly, tree throw creates local pits and mounds, which temporarily change
hillslope hydrology and act as local hotspots for soil development due to a larger influx of water (Samonil et al., 2015; Shouse
and Phillips, 2016). These seemingly random processes create a high degree of heterogeneity in soil patterns, which shows
little to no correlation with relief (Vanwalleghem et al., 2010). In contrast, intensively managed agricultural landscapes show
soil patterns that closely foHewsfollow the relief (Phillips et al., 1999; Van der Meij et al., 2017). EresionThis reflects that

erosion processes are relief-dependent and this propagates into the soil patterns, unless erosion and deposition patterns are

affected by field margins such as hedges or banks. The switch from such natural to agricultural soil systems can occur abruptly,

e.g. by deforestation or the implementation of highly mechanized agriculture in a few decades. Sommer et al. (2008) described
this switch in boundary conditions and its implications with a time-split approach: Over a short time period — relative to
Holocene soil evolution - the soil system changes from natural, progressive pedogenesis, where profile deepening and horizon
formation dominate erosive processes, to regressive pedogenesis, where - vice versa - erosion and deposition dominates
progressive pedogenic processes (Johnson and Watson-Stegner, 1987).

The coexistence of both progressive and regressive processes in a defined period of time has been described by several authors.
In a progressive phase there are also regressive processes that change soils, terrain and hydrological pathways (Phillips et al.,
2017; Samonil et al., 2018). In a regressive phase, progressive processes still have a substantial effect on soil development
(Doetterl et al., 2016; Montagne et al., 2008). Colluvic soils might be influenced by groundwater or subject to continuous clay
illuviation (Leopold and Voélkel, 2007; Van der Meij et al., 2019, SI; Zadorova and Peni zek, 2018). Furthermore, the changes
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in boundary conditions are not always abrupt as e.g. deforestation. Historic erosion processes with rates much lower than
current erosion processes might have given pedogenic processes the time to alter soil and colluvium (Van der Meij et al.,
2019).
To disentangle complex history and causes of soil formation, data is required on both natural and agricultural soils that have
formed under similar conditions, and preferably from the same region. However, there is limited undisturbed natural land left,
often rapidly declining, in places that are unsuitable for agriculture, and/or indirectly influenced by anthropogenic climate
change (e.g. tropical and boreal zones, IPCC, 2019). Moreover, (historical) cultivation occurred in areas and soils most suitable
for agriculture (Pongratz et al., 2008; Vanwalleghem et al., 2017), leaving less suitable land undisturbed. This complicates
comparison and empirical inference. Because of the complex interactions between pedogenic and geomorphic processes, and
the lack of field data, we heavily depend on process knowledge and model simulations for mechanistic inference about how
natural soil patterns develop as function of their environments and how this changes in agricultural settings (Opolot et al.,
2015).
Soil evolution models simulate a range of physical, chemical and biotic processes that affect the properties of soils through
space and time (Minasny et al., 2015; Stockmann et al., 2018; Vereecken et al., 2016). Such models have been developed for
a range of scales, varying from 1D soil profiles to 3D soil landscapes (Finke, 2012; Minasny et al., 2015; Temme and
Vanwalleghem, 2016). One-dimensional soil profile models generally provide a high level of detail and process coverage, but
they lack the simulation of essential feedbacks and interactions that can occur between soils on a landscape scale (Van der
Meij et al., 2018). For example, the spatial redistribution of water or the exchange of soil material through erosion and
deposition processes affect soils differently at different landscape positions. Soil landscape evolution models (SLEMSs) do
simulate lateral distribution of solids by geomorphic processes and consider soils as continua rather than discrete units. Current
SLEMs perform reasonably well in landscapes where lateral soil movement is substantial (e.g. Temme and Vanwalleghem,
2016; Van Oost et al., 2005). However, these models are not developed to simulate soil development in relatively stable
landscapes where lateral water redistribution is the dominant driver causing soil heterogeneity, because this hydrologic control
is not explicitly modeled (Van der Meij et al., 2018).
To summarize, we are currently lacking data and methods that can quantify the effect of changing soil forming factors on soil
development and spatiotemporal soil patterns. This knowledge is essential for the transition to sustainable land management
and adaptation to the changing climate. The objective of this study is to develop a suitable model to quantify the variation and
predictability of soil patterns as a function of varying environmental factors. We will address three questions:

1. What are the basic characteristics of soil patterns in natural and agricultural landscapes?

2. What are the major factors driving soil formation in natural and agricultural landscapes?

3. How does the predictability of soil patterns change through time and after cultivation?

We developed a soil-landscape evolution model that can simulate natural soil and landscape evolution by incorporating

dominant natural processes such as soil creep, tree throw, vegetation dynamics and infiltration-dependent pedogenesis driven
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by the soil forming factors climate, organisms, relief, parent material and time. We simulated soil formation for 14500 years
under three scenarios of rainfall (dry, humid, wet) to quantify the effect of water availability and distribution on soil variation

in natural systems.

erosion—Each run was concluded with 500 years of intensive agricultural land use, where we introduced the process of tillage

erosion. Tillage erosion is a dominant process redistributing soil material in intensively managed agricultural fields (Van Oost

et al., 2005).

We expect that before_intensive cultivation, spatial soil heterogeneity will be larger for greater rainfall, due to more intense

erosion and translocation processes, and effects of vegetation. Moreover, we expect that the spatial heterogeneity increases by
erosion processes under cultivation, also resulting in larger correlations between soil properties and topographic properties,
because of the topographic dependence of erosion processes. This would imply that soil patterns become more predictable due
to cultivation:, at least for circumstances without hedges or banks that would modify the spatial distribution of erosion and

deposition areas.
For our simulations, we created a hypothetical loess-covered, hilly landscape with a range of characteristic slope positions as

spatial setting. We choose loess, because it is a relatively homogeneous parent material, widely spread globally and favored
for agricultural practices due to its high water holding capacity and resulting fertility (Catt, 2001). The long-term use of loess

areas for agriculture and unsustainable management has resulted in severe land degradation (e.g. Zhao et al., 2013).
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2 Methods

2.1 Model

Here we describe our model named HydroLorica. HydroLorica is based on the model Lorica (Temme and Vanwalleghem,
2016), but includes explicit simulation of water flow and water availability as drivers of natural soil, landscape and vegetation
change (Van der Meij et al., 2018). HydroLorica is a reduced-complexity model, which means that it simulates-the-mest
important processes affecting soil and landscapes using simplified process descriptions. Reducing model complexity promotes
critical evaluation of essential processes, reduces calculation time and prevents extensive data requirements and over-
parameterization (Hunter et al., 2007; Kirkby, 2018; Marschmann et al., 2019; Snowden et al., 2017; Temme et al., 2011).

2.1.1  Model architecture

HydroL orica is a raster-based model, where a Digital Elevation Model (DEM) determines the shape of the terrain. Below each
raster cell of the DEM there is a predetermined number of soil layers with layer thicknesses variable in space and time. Each
layer eentatnscan contain a specific mixture of gravel, sand, silt and clay and two types of organic matter (quickly and slowly

decomposing, Yoo et al., 2006)-, depending on parent material and occurring pedogenic processes. Pedogenic and geomorphic

processes affect the contents of the layers, leading to differences in soils in space and time. Changes in soil properties and
contents modify layer thicknesses and surface elevation through a pedotransfer function (PTF) of bulk density. The use of a
pedotransfer function allowed the model to calculate variations in layer thicknesses due to pedogenic and geomorphic
processes. We used the same PTF for bulk density as the original Lorica model (Tranter et al., 2007). We refer to Temme and
Vanwalleghem (2016) for more information about the spatial model architecture of Lorica, which we maintained in our
adaptation HydroLorica. In this project, we worked with 25 soil layers, with an initial uniform thickness of 0.15 m. When a
layer got very thick or very thin (55% thicker or thinner than its initial value), the layer was split or combined with another
layer.

The annual changes in texture classes tex [kg] and organic matter classes om [kg] in layer | at location xy and time t are
governed following Egs. (1) and (2) (for abbreviations of processes, see Table 1). The changes in mass of texture and organic
matter are converted to a change in layer thickness [m] using a pedotransfer function (Tranter et al., 2007). We calculated the
bulk density of the fine mineral fraction [kg m-] with Eg. (3) using the sand and silt fraction [-] and the depth below the surface
[m]. We-cerrected-thisHydroL orica includes a correction of bulk density fertaking into account the effects of the coarse fraction
and the organic fraction using Eq. (4), where-we-adeptedusing a density of 2700 kg m™ for the coarse fraction (Temme and

Vanwalleghem, 2016) and a density of 224 kg m3-for the organic fraction (Tranter et al., 2007). In our study, there is no coarse

soil material present. This pedotransfer function does not directly take into account changes in bulk density stemming from
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soil structuring, weathering or bioturbation. Instead, depth below the surface is used as proxy for these factors. The used PTF
has a relatively low fit with the data it was derived from (R? = 0.41, Tranter et al., 2007). However, PTFs that yield a higher
accuracy often require advanced calculation methods (Chen et al., 2018; Ramcharan et al., 2017) or soil properties that are not
readily available in HydroLorica. As we discuss in Van der Meij et al. (2018), the estimation of such properties often gives
biased or highly uncertain results, which would propagate into the calculation of bulk density. Rather than stacking
pedotransfer functions, we decided to use a PTF that required input that is readily available in HydroLorica and could be
calculated within the model itself.

The sum of changes in layer thickness of all layers L calculated through changes in bulk density and mass of the layers result
in the annual change of elevation z (Eqg. (5)). Clay translocation and water erosion are directly driven by the total annual water
flow, while occurrence of tree throw and rates of creep, bioturbation and organic matter accumulation are indirectly driven by
water availability via vegetation controls. Infiltration I is the difference between precipitation P and spatially explicit actual
evapotranspiration ETa, runon ROnn and runoff ROff (Eq.(6). HydroLorica works with dynamic time steps as suggested by
Van der Meij et al. (2018) to capture process dynamics at their relevant scales, while optimizing calculation time. Hydrologic
processes are calculated with a daily, monthly, or yearly time step, with smaller timesteps selected during wetter conditions
for more accurate simulation. Annual sums of infiltration and overland flow are used to drive geomorphic, pedogenic and

biotic processes.

Atexyy,: = Atexcpyy,e + AteXyg xy it + AteXrr gy e + AteXrxy e + AteXcr xy e + AteXpr vyt 1)
Aomyy r = AoMeg gy e + A0Myyp gy e + A0Mpy iy + AOMp 1y + AOMepp xy e + A0MpT vy e 2
BDfinexyit = 1000(1.35 + 0.452(fsang + 0.76fsi1e) + (100(fianag + 0.76f5i1¢) — 44.65)2 * —0.000614 + 0.06 * log,o(depth)) - 3)
mass,
BDsoil,xy,l,t = masSfinexy,lt massco;:;:i;}ll,v:fmassorganic,xy,l,t (4)
BDfinexy,lLt ' 2700 ' 224
Any,t = Z%:l ABDsuil(Z texxy,l,t +2 Omxy,l,t) (5)
Iyyr = Py — ETayy, + ROnnyy, . — ROf fyy, (6)

2.1.2  Process formulation and parameters

In our model we considered only the impact of physical and biological processes on soil properties. The current model
architecture does not facilitate the simulation of soil chemical processes. The selected processes are described below. Drivers
and impacts of each process are summarized in Table 1. We summarized the drivers per soil forming factor. We mostly used
the processes and parameters of Lorica as reported in Temme and Vanwalleghem (2016), which we summarize here. When
we added a new process, or changed its parameters, the adjustments are reported in this Section. We provided a detailed
overview of the equations and selected parameters in Supplement 1.

We aim to understand the functioning of general soil landscape systems. Therefore, we parametrized and calibrated the model

processes using regional data or process rates from literature that are valid for larger regions. We did not calibrate the
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parameters on data from one specific study site to avoid the effect of any idiosyncrasies that can be present in that data. For
other processes where there was no regional data available, we estimated the parameters so that the effects of those processes
were in the same order of magnitude as processes with rates based on literature. An overview of the process parameters is
provided in table S1.

2.1.2.1  Hydrologic processes

The hydrological module partitions spatially uniform rainfall (P) into three spatially explicit components: evapotranspiration
(ET), infiltration (1) and surface flow (Ronn & ROff, Eq. (6)). Potential ET is calculated from prescribed temperature using
the Hargreaves-Samani equation (Hargreaves and Samani, 1985), and corrected for topographical position (Swift Jr, 1976) and
vegetation type (Allen et al., 1998). Surface flow is calculated on a daily basis, and only when rainfall intensity [amount /
duration, mm hr] exceeds the saturated hydraulic conductivity of the topsoil, which is a function of soil properties and slope
(Morbidelli et al., 2018; Wdsten et al., 2001), or precipitation in the form of snow is melting. The excess water is routed over
the surface using the multiple flow algorithm (Holmgren, 1994) and can re-infiltrate in places with higher hydraulic
conductivity, in local surface depressions, or can leave the catchment. HydroLorica can thus deal with DEMs that contain
depressions, and actively forms depression by simulating tree throw. The annual sum of daily surface flow is used to calculate
annual water erosion and deposition using the stream power law. To account for seasonal differences, actual ET is calculated
on a monthly basis from the potential ET and rainfall using the topsoil water budget model of Pistocchi et al. (2008). Infiltration
is the sum of (re-)infiltrated surface water and the monthly difference between rainfall and actual ET (Eq. (6)). The annual
water balance is used as a driver of various geomorphic and pedogenic processes, and to determine vegetation type. The
hydrological module is described in detail in Appendix A of Van der Meij et al. (2018).

2.1.2.2  Determination of vegetation type

We considered two types of natural vegetation: grassland and forest. The vegetation type depends on the water availability;
where rainfall plus re-infiltration exceeds potential evapotranspiration, there is no water stress and forests can grow. Otherwise,
there is water stress and there will be grassland. This threshold is based on a hypothesis from Thompson et al. (2010), who
used the Budyko curve (Budyko and Miller, 1974) to estimate vegetation type. By extending this relationship with re-
infiltration, this relation can be used to assess local, but spatially explicit vegetation type. Vegetation type thus has a climatic
control and a topographic control in the form of hillslope aspect and local convergence of water flow in gulleysgullies and
depressions (e.g. Metzen et al., 2019). This variation in moisture and vegetation can occur very locally, especially in semi-arid
regions. Vegetation type influences evapotranspiration (Allen et al., 1998), bioturbation and creep rate (Gabet et al., 2003), the
occurrence of tree throw, and also controls organic matter input. Under intensive agricultural use, we convert the vegetation
type ehanges-to arable crops. We assume that soil and landscape processes are similar to landscapes under grassland vegetation.
The differences are that arable crops have lower potential evapotranspiration and the process of tillage is introduced.

Our method of estimating vegetation type can lead to annual changes in vegetation type depending on water availability,
because we do not consider ecological processes such as resilience or succession. The portion of years with grassland and

forest vegetation aggregated over longer time spans (> 100 a) provides an estimate for the forest cover of that specific location

8
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(see the animations in Supplement 2). The vegetation distribution should thus be considered on an aggregated level rather than
an annual level to yield meaningful results. This implementation suffices for our focus on long-term changes in soils and

terrain, but should not be used to study systems on annual to decadal time scales.

2.1.2.3 (Bio-)geomorphic processes

The main (bio-)geomorphic processes affecting topography in loess areas are soil creep, tree throw, water erosion and tillage
erosion. Soil creep is a bio-geomorphic process that causes a diffuse movement of soil material on a hillslope, driven by various
factors such as (micro)climate, organisms and terrain (Pawlik and Samonil, 2018; Regmi et al., 2019; Roering et al., 2002).
The potential creep rate is a function of vegetation type and slope (Gabet et al., 2003). We adopt higher creep rates in forested
areas, because of the deeper rooting depth and higher root abundance. We divided the potential creep rate at a certain location
over all soil layers, with exponentially decreasing rates deeper in the soil. The transport of soil material from a layer to layers
in its lower lying neighboring cells is proportional to the surface slope and shared layer boundaries.

Tree throw is a bio-geomorphic process that has a distinct effect on the terrain and water routing; the created pit can act as
hotspot for soil formation by the increased infiltration of water (Samonil et al., 2018). We simulated tree throw as a random
process, with on average 0.2 trees falling per hectare per year. This rate is lower than other rates found in natural forests around
the world (0.3-1.5 trees ha-1 a-1, Finke et al., 2013; Gallaway et al., 2009; Phillips et al., 2017), because some factors
controlling tree uprooting like shallow rooting depths due to impermeable layers or steep slopes are not present in our spatial
setting. The dimensions of the root clump that is transported by tree throw were scaled with the age of the falling tree, which
was also randomly selected. We assumed that tree growth occurs in the first 150 years of a tree’s existence, after which size
remains stable until a maximum age of 300 years. These numbers and trends are loosely based on Rozas (2003). A pit and
mound topography is only formed when the dimensions of the root clump exceed the size of the raster cell (1.5 m in our case)
and that material is transported to a cell downslope. When the root clump is smaller than the cell size, or when the slope of the
terrain does not lead to downward transport of the material, tree throw will only cause a (partial) turbation of the upper layers
in the affected raster cells.

Water erosion and deposition are calculated using the same approach as the original Lorica model (Temme and Vanwalleghem,
2016). Sediment uptake and deposition are calculated as function of discharge and surface gradients (Schoorl et al., 2002).
Sediment uptake is simulated as a selective_process, where smaller particles are easier to erode and more difficult to deposit.
Organic matter behaves the same as clay under erosion, because we assumed that organic matter occurs in associations with
clay particles. Water erosion is limited by the occurrence of coarse soil particles (surface armoring) and vegetation. The role
of water erosion in forested loess catchments is limited (Vanwalleghem et al., 2010); the vegetation protects the soil below
from erosion. However, disturbances such as forest fires can temporarily increase erodibility of the soil. Therefore, we did
simulate water erosion in forested landscapes, but with lower rates than in grassland. We simulated this by including a high
vegetation protection constant (value of 1) in forested sites. In grasslands we used the aridity index between 0 and 1 as

vegetation protection constant.
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Tillage erosion was simulated as a diffusive process, similar to creep, with some differences: tillage homogenized the soil over
the reach of the plough depth, erosion only occurred from the top layer contrary to the whole soil profile as with creep, and the
erosion rates were much higher due to the intensive land management.

2.1.2.4  (Bio-)pedogenic processes

We simulated three dominant (bio-)pedogenic processes that change texture and organic matter properties in loess landscapes.
These are clay translocation, bioturbation and soil organic matter accumulation and breakdown.

We adapted a new way of simulating clay translocation, using the advection equation of Jagercikova et al. (2017). The diffusive
part of clay translocation as described by Jagercikova et al. (2017) is separately modeled by bioturbation. We scaled the
parameters of clay translocation with local infiltration to develop an infiltration-dependent equation. Not all clay in the soil is
available for translocation. Part of it is not available to the percolating water, because it is bonded to other minerals and organic
matter. We used the equations of Brubaker et al. (1992) to estimate the part of the clay that is water-dispersible, i.e. that is
available for translocation by water. We estimated the required CEC with a pedotransfer function from Ellis and Foth (1996),
as a function of clay content and organic matter content. Following from these equations, the fraction of non-dispersible
(remaining) clay is 5.9% in soils without SOM and increases with 1.2% for every extra percent of SOM. This approach is
similar to the one used in soil profile model SoilGen2 (Finke, 2012).

Bioturbation works as a diffusive processes, homogenizing the soil vertically (Yoo et al., 2011). We used the same rates for
bioturbation as for creep, because these processes are driven by the same organisms reworking the soil. The potential
bioturbation rate was divided over each soil layer by integrating the exponential depth function over the layer thickness, and
then dividing by the integration of the function over the entire soil profile. Every layer exchanges a certain fraction of its
contents, based on initial bioturbation rate and depth, with all other layers. The amount of exchange between two layers
decreases with increasing distance.

Soil organic matter (SOM) accumulation and breakdown was simulated as in earlier soil-landscape evolution models (Minasny
et al., 2008; Temme and Vanwalleghem, 2016; Vanwalleghem et al., 2013; Yoo et al., 2006). Accumulation of SOM is
controlled by the potential input and depth in the soil. The accumulation is divided over a young and old SOM pool using a
fractionation factor. These pools differ in their rate of decomposition. We calibrated the SOM cycle in agricultural settings
with the average depth distribution of organic carbon in agricultural soils on the Chinese loess plateaus (Liu et al., 2011). We
simulated 5000 years of soil development using different process parameters. We selected the parameter set that simulated an
organic matter distribution most similar to the reference distributions from Liu et al. (2011). The reported depth distributions
for pasture and forest soils by Liu et al. (2011) were not useful for this project. Soils under these vegetation types on the
Chinese loess plateau generally contain lower SOM stocks than natural landscapes, because these positions often have recently
been replanted to combat soil erosion or because they occur on topographic positions which are not favorable for plant growth
and agriculture. Instead, we calculated reference carbon stocks for forest and grassland soils by adjusting the agricultural

carbon stocks of Liu et al. (2011) with changes in carbon stocks after conversion from forest to crop and from forest to pasture
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(Guo and Gifford, 2002). With the resulting reference carbon stocks for natural vegetation we ran additional calibrations to

calculate the potential SOM input for forest and grassland.

2.2 Experimental setup

We developed an artificial topographic setting in which we performed our simulations. The use of an artificial setting rather
than a field setting avoids the effect of local disturbances and idiosyncrasies which can disturb general signals we look for in
the model results.

The input DEM is an artificially created U-shaped valley of 150 by 150 meters, with a cell size of 1.5 meters (Figure 1). The
slopes facing north- and southward have a sinusoid form, and valley depth increases eastward, from 0 to 9 meters. Random
noise of max 1 cm was added. The maximum slope is 12° (21%), which reaches the limit for agricultural use (Bibby and
Mackney, 1969). The small cell size of 1.5 meters is required to simulate the effect of pit and mound topography created by
tree throw on spatial infiltration patterns. The landscape was designed to display typical topographic features present in loess
areas, but we exaggerated the spatial variation of slope positions to limit catchment size and reduce calculation time.

As parent material we chose a homogeneous loess without carbonates and a soil texture of 15% sand, 75% silt and 10% clay,
which falls in the typical range of loess deposits (Muhs, 2007; Pécsi, 1990). We assumed an infinite loess thickness to avoid
any effects of layers underneath with different lithologies. However, for computational reasons, we worked with an initial
loess layer of 3 m with free leaching of water and dispersed clay at the lower boundary. This approach reduced the amount of
soil layers and prevented numerical instability from the pedotransfer function for depth-dependent bulk density. The selected
thickness left sufficient soil material so that the bottom of the loess was not reached by erosion during any of the model runs.
The model requires a latitude to calculate solar inclination on the slopes. We selected the latitude of 50 degrees north, which
is in the center of the range for loess occurrence reported by Muhs (2007, 40-60°N). We selected the rainfall scenarios based
on most common rainfall in loess areas. For this, we made an overlay of a coarse resolution global loess map (Durr et al.,
2005) with a global annual rainfall map (Fick and Hijmans, 2017). The distribution of rainfall from the overlay showed peaks
at ~600 and ~900 mm (Figure 1). We selected these annual quantities of rainfall as input for our scenarios and we added a
scenario of 300 mm to capture a wider range of climates. The model requires as input daily data on rainfall [m], rainfall
duration [h], and minimum, mean and maximum temperature [°C]. Rainfall amount is required to calculate how much water
flows through the soil landscape. Rainfall intensity is required to determine whether and how much overland flow occurs, by
comparing rainfall intensity with soil hydraulic conductivity. Rainfall intensity is calculated by dividing the rainfall amount
by the daily duration [m hr]. Temperature data is required to calculate potential evapotranspiration (Hargreaves and Samani,
1985). As we want to simulate general trends in soil and landscape evolution, we do not need site-specific data for the different
scenarios. Instead, an arbitrary weather dataset was scaled to the total amount of rainfall from the different climate scenarios.
We used weather data from the German weather station Griinow, which is located at 53.3°N, 13.9°E (DWD Climate Data
Center (CDC), 2018a, b). The potential evapotranspiration is around 600 mm a* for this dataset and is applied to all

simulations. Combined with the rainfall scenarios, the scenarios can roughly be classified as dry (300 mm rainfall), humid
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(600 mm rainfall) and wet (900 mm rainfall). In the rest of this paper, we will use the terms dry, humid and wet to refer to the
different rainfall scenarios.

We simulated the development of soils and landscapes for 15000 years, resembling the age of most post-glacial soils. In the
first 14500 years of the simulations, soil and landscape development occurred under natural conditions and land cover. In the
last 500 years of the simulations, we introduced agricultural land use by changing vegetation type and introducing tillage
erosion. This duration was selected because it loosely reflects the onset of Medieval intense agriculture in many areas (Van
der Meij et al., 2019) and should be seen as upper limit of onset of intensive tillage. Each of our simulations assumes a constant
climate throughout the 15000 simulated years. Although we expect our model to be suitable to investigate the effects of a

changing climate on soil and landscape evolution, this is beyond the scope of this study.

2.3 Analysis and evaluation

The model potentially outputs all soil properties for each layer at each location at each time step. Additionally, elevation change
resulting from all processes at each location at each time step can be saved. In order to be able to interpret the results, we had
to aggregate the results in several ways. We focused on select soil and terrain properties. The selected soil properties are soil
organic matter stock [kg m], which is the total amount of SOM in a soil column, and the depth to the Bt horizon [m], which
we defined as the depth where the clay content first exceeds the initial clay fraction of the soil. The selected terrain properties
are slope [degrees], topographic position index (TPI [m]), calculated with square windows 15*15 cells (22.5*22.5 m), and the
topographic wetness index (TWI [-]). In most figures, we present two moments in time. These are the end of the natural phase
(t = 14500) and the end of the agricultural phase (t = 15000). We present the results in the following ways:

e To show the development of soils and catenae, we show transects across the catchment (Figure 2), and plots of soil
profile evolution, for three landscape positions and three rainfall scenarios (Figure 3);

e To compare natural and agricultural soil properties, we show catchment-averaged depth distributions of clay and
SOM fractions (Figure 4).

e To show the impact of geomorphic processes on the terrain, we show cumulative elevation changes at the end of the
natural and agricultural phase, and we show contributions to elevation change for each geomorphic process over
time (Figure 5).

e To quantify the spatial heterogeneity of the selected soil and terrain properties, we calculated empiricalexperimental
semivariograms (Figure 6), using the gstat package in R (Pebesma, 2004). EmpiricalExperimental semivariograms
give a measure of the variation between properties of soils as a function of distance between soils. We compared the
semivariograms of depth to the Bt horizon with semivariograms made from field observations in a natural and

agricultural site. The experimental semivariograms from the model results were calculated with a lag of 2 m, while

the experimental semivariograms from the field data were calculated with a lag of 20 m.
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To visualize soil-landscape relations, we show how the selected soil properties and terrain properties are correlated
and how these correlations change through time (Figure 7).

To disentangle the effect of various factors on soil properties, we performed an analysis of variance (Table 3). We
selected the depth to Bt and the carbon stock at the end of the natural and agricultural phase as dependent variables.
As independent variables we selected climate [three rainfall classes], land cover or use [natural or agricultural], and

landforms [three elevation classes with equal elevation ranges, representing plateau, slope and valley (Figure 1)].
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3  Results

Here we present the results from the HydroLorica model. Section 3.1 shows the patterns, distributions and changes of soil and
terrain properties in space and time. Section 3.2 shows the results from the statistical analyses to quantify and summarize
spatial and temporal soil and terrain patterns. In the Supplements 2 and 3 we provided two animations to help visualize the
simulated soil and landscape evolution. The animations show 1) maps of soil and terrain properties and forest cover and their

changes through time, and 2) maps of elevation change by each geomorphic process and their changes through time.

3.1  Simulated soil and landscape evolution

The results of HydroLorica show clear differences in the development of soil profiles at different landscape positions, for the
different rainfall and land cover/land use scenarios (Figure 2, Figure 3). In the natural phase, the forest cover shows a clear
climatic and topographic dependence (animation in Supplement 2). For greater rainfall, there is a higher forest cover. The
spatial pattern is mainly controlled by slope orientation. The north-facing slopes display a higher forest cover due to lower
evapotranspiration. The valley and the hillslope depressions show a higher forest cover due to the higher moisture availability
as consequence of surface runoff. Higher rainfall also leads to deeper eluviation of clay at each landscape position, showing
more pronounced Bt horizons. Also, the soil profiles get more disturbed by tree throw with higher rainfall, as can be seen by
the fluctuations in elevation and SOM stocks. The depth to the Bt horizon remains at the same position below the surface at
the eroding position. At all locations, SOM stocks reach an equilibrium after ~3000 years, but most of the SOM is generated
in the first 500 years.

In the agricultural phase, relief changes much faster, leading to truncation of the eroding soil profile (Figure 3). Also, SOM
stocks decrease substantially in the soil profiles due to lower input. At the deposition site, there is a small increase in SOM
stocks at the end of the agricultural phase, caused by the continuous input of soil material. The increased elevation change is
well visible in Figure 2. After the natural phase, there is limited elevation change on the slopes, with some water erosion at the
valley bottom forming a v-shaped gulley. After the agricultural phase, the hillslopes are heavily eroded, while the valley bottom
is filled with colluvium. The high erodibility of clay that we simulated in the model affected the clay distributions in the model
results. In the natural phase, topsoil clay gets laterally relocated from the hillslopes to tree throw pits and the valley bottom.
This clay was partly replenished from the subsurface by bioturbation. This led to a net loss of clay from the entire depositional
profile in the wet scenario, due to higher water flow and erosion potential (Figure 3). In the agricultural phase, clay does not
get trapped in tree throw pits anymore, but leaves the catchment with the water. This reduced the clay contents even more at
the valley bottom (Figure 2).

Figure 4 shows how clay and SOM fractions vary with depth throughout the entire catchment. The presented Probability
Density Functions (PDFs) show multi-modal distributions of the soil properties, which cannot simply be captured using
summary statistics. Both higher rainfall and agricultural land use increase the heterogeneity of clay profiles in the landscape,
as can be seen by the wider ranges of the different PDFs throughout the entire depth profile. Also the occurrence of Bt horizons

decreases with higher rainfall, due to losses of clay by lateral erosion rather than vertical transport as mentioned in the previous
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paragraph. With higher rainfall, the percentages of soils with a Bt horizon occurring in the natural settings are 98%, 93% and
62%. For the SOM profiles, higher rainfall also leads to more heterogeneity. Especially in the topsoil a larger spread is
simulated. Cultivation reduces the fraction and the topsoil variation, due to lower input and vertical and lateral topsoil
homogenization (Figure 4 & Table 2).

All scenarios show a net elevation loss in the natural phase (Figure 5a). Creep transported hillslope material to the valley
bottom, which water erosion partly removed from the catchment. The terrain becomes rougher with higher rainfall, due to
increased water erosion and a higher occurrence of tree throw. Indirectly, the rougher terrain leads to increased creep rates,
because of the locally increased relief gradients. Tillage erosion has had by far the largest impact on the terrain (Figure 5),

overprinting the effects of natural geomorphic processes.

3.2 Statistical analysis of soil and terrain properties
Semivariograms summarize the spatial variatienautocorrelation of soil and terrain properties as a function of distance between

soil locations (Figure 6). SemivarianceThe semivariogram contains three parameters. The nugget is a-measurethe intercept

with the y-axis, representing the local variability of the variationdata and (in empirical studies) measurement uncertainty. The
sill is the asymptote of the semivariogram and represents the maximum variability between properties-of sols-asafunetionpairs
of observations at a distance between-soils—An-increasing-semivariance-with-where their proximity no longer matters. The

range is that distance indicates-strongerspatial-autocorrelation—where the semivariogram levels off, approaching the sill. The
range thus represents the maximum distance over which properties from two locations are autocorrelated.

In the natural phase, higher rainfall substantially increases the semivarianeesill of soil and terrain properties regardless of

distance; soils and terrain are thus more variable in space for higher rainfall-, but do not display stronger spatial autocorrelation.

Especially the SOM stock shows high semivariance over all distances in the wet scenario, due to a larger spatial redistribution
by water.

In the agricultural phase, the differences between the rainfall scenarios are much less pronounced; the variations in the
properties are similar for each rainfall scenario. The local variation, expressed by the nugget-(intercept-of-the-semivariogram
with-the—y-axis), decreases in the agricultural phase because of short-range homogenization by ploughing. For the soil
properties (Figure 6A&B), the variation—overlarger—distances—generaly—increases—abeverange and sill general increase

compared to the natural levelssituation, while the topographic properties show semivarianeesills and ranges similar to or lower

than the natural settings. The differences in semivariance of the depth to Bt horizons in natural and agricultural settings appear

also in semivariograms calculated from field data (Figure 6AC). The data from Meerdaal (a natural forest in the loess belt in

Belgium) shows a semivariancesemivariogram that fluctuates around a constant value, while the data from agricultural field
CarboZALF-D (agricutturat-field-located on glacial till in NE Germany) shows increasing semivariance with distance. The

shapes of the field semivariograms match those of the model results, but the-distances-of-the-field-data-are-five-times-larger
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heterogeneity—but-inereases-sot-heteregeneity-note that the distances of the field data are five times larger than those of the

model results, while the sills are about half.

The correlations between soil and terrain properties also differ between rainfall and land use options (Figure 7). In the natural
phase, soil-landscape correlations are generally limited to 0.25%;, with exception of the correlation between depth to Bt and
slope in the humid scenario. In the agricultural phase, the correlations initially increase for each combination of soil and terrain
property, up to 80%-0.8. The correlations generally approach constant values in the agricultural phase. An exception to these
patterns are the same correlations between slope and depth to the Bt horizon in the humid scenario. Those correlations increase
to 40%0.4, and decline again in the agricultural phase. These large correlations in the natural phase appear from relatively
little disturbance by tree throw and sufficient water to redistribute in the landscape. The small wiggles in the correlation lines
are caused by minor uncertainties in our algorithm to derive soil properties from the model results.

Table 3 shows the results from the analysis of variance, which shows how much of the variance in soil properties at the end of
the natural and agricultural phases can be explained by different factors (Table 3). The variance in depth to the Bt horizon can
be partly explained by rainfall (18%) and landscape position (23%), when considering all data together. However, the largest
part of the variance remains unexplained. For the SOM stocks, most of the variance can be explained by the land use (72%).
When grouped per land cover/use, about half of the variance of depth to Bt can be explained by either rainfall (natural phase)
or landform (agricultural phase). For the SOM stocks the dominant factors are the same, but the variance in the natural soil-

landscape can only be partly explained by rainfall (14%) and a large part remains unexplained.
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4  Discussion
4.1  Soil patterns and properties
411 Soil patterns

Soils have been affected by humans for over thousands of years, either directly by agricultural use, or indirectly by adjusting
factors that form the soil, such as vegetation or climate (Amundson et al., 2015; Bajard et al., 2017; Dotterweich, 2008;
Stephens et al., 2019). Therefore it is difficult, if not impossible, to find locations where truly natural soils can be observed
and compared to agricultural soils in similar settings. Model simulations enable this comparison, as we show in this study.
Unfortunately, there is limited field data to calibrate and verifyvalidate the model. To our knowledge, the dataset from
Vanwalleghem et al. (2010) is the only dataset that enables quantification of the spatial distribution of natural soils and link it

to terrain propertles at a local to regional scale, similar to the settlng we simulated. tn-this-Section—we-rely-mainly-on-this

modelk:In this Section, we rely mainly on this

dataset to discuss and evaluate the patterns of natural soils we simulated with our model. For the agricultural soil patterns, we

use an extensive dataset from an intensively managed agricultural field in northeastern Germany (CarboZALF-D, Van der

Meij et al., 2017). In our model simulations, we simplified the agricultural conversion by assuming a single vegetation type in

the entire catchment and direct intensive management with tillage. This enabled us to isolate the role of tillage erosion on the

development of agricultural soil and landscape patterns. We did not consider a slow historical development of the agricultural

system with increasing management intensity and upscaling of agricultural field sizes. The results of our simulations should

be considered as within-field variation in soil and landscape properties. In smaller scale farming, the within-field soil-landscape

relations will also be present, but they are probably secondary to variation between fields caused by different management

(history), vegetation type or anthropogenic structures such as hedges, banks and roads (e.g. Follain et al., 2006; Peukert et al.,
2016; Yemefack et al., 2005).

We used semivariograms to illustrate the spatial autocorrelation of soil and landscape properties (Figure 6). Semivariograms

are very case study-specific, because the range, sill and nugget are affected by the scale of topographic and lithogenic variation,

different rates of pedogenic and geomorphic processes and different types of human disturbances in the landscape. Therefore,

we only compare the trends in the semivariograms from model and field results to evaluate the type of spatial autocorrelation

of soil properties in such settings.

Figure 6B&C shows experimental semivariograms of depths to Bt horizons in model and field data. In both panes, the

agricultural settings show higher spatial autocorrelation compared to the natural settings, expressed by the higher sill and

range. This indicates that in agricultural fields the depths to Bt horizons are more spatially organized (higher large scale

variability), with larger differences between different landscape positions. In natural areas, the spatial differences in depth to

Bt horizon are lower and there is less spatial organization of the depth distributions. The model and field results show different

magnitudes in nugget, range and sill. This can be explained by 1) the high density of data points in the model results which

enabled us to calculate the semivariance over very short distances reducing the nugget, and 2) the fact that we used a very
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condensed DEM with high local variation in topographic properties as input for the model results which led to high local

variation in soil properties too. Nonetheless, the similar trends in the field and model semivariograms indicate that the general

soil patterns from model and field results agree. Also, the correlations between soil and landscape properties are similar for

field and model results. Vanwalleghem et al. (2010) found correlations between different horizon depths and topographic

properties with R?s ranging between 0.02 and 0.1, which are the same order as most correlations we calculated in Figure 7.

These similarities indicate that our model HydroLorica simulated the essential processes that form these natural soil patterns.

Our simulations show a large diversity of natural soil patterns, influenced by the amount of rainfall and associated vegetation
type. The available water leads to a regionally higher rate of soil development, for example in the form of deeper clay eluviation
(Figure 3), and also to a greater lateral redistribution of soil material by water erosion and tree throw (Figure 5) and spatially
varying infiltration rates. With more rainfall, the higher rates and interactions between these processes lead to a spatially more

heterogeneous soil pattern, as expressed in higher semivarianeesranges and sills in the semivariograms (Figure 6). This local

variation in pedogenesis due to different water input has been recognized and partly accounted for in other modelling studies
(Finke et al., 2013; Saco et al., 2006; Shepard et al., 2017), but had not emerged from soil-landscape evolution studies. Also
the terrain, summarized by slope, TPl and TWI, becomes more heterogeneous with higher rainfall. Water flow thus affects soil

and terrain patterns in a similar way.

Agriculturalintensively managed agricultural soils display entirely different patterns—characterized-by-heterogeneity—over
larger—distanees: compared to natural soils. There is fesslower small-distance—+andom-variation scale variability due to the
absence of tree throw and local homogenization by tillage, while variatien-inthe semivariograms of soil properties evertarger

distances-has—nereasedsuggest higher sills, i.e. higher large scale variability and spatial autocorrelation of soil properties

compared to natural soil properties. This is due to the slope-dependent intensity of tillage erosion (Phillips et al., 1999). This

erosion leads to truncation of soils at convex positions, while concave positions have a net accumulation of material (De Alba
et al., 2004). This truncation is visible in many agricultural landscapes, because subsurface horizons with different colors get
exposed at the surface on heavily eroded locations (e.g. Smetanova, 2009; Van der Meij et al., 2017). In contrast, terrain
properties seem to become-more-homogeneousdisplay lower spatial variation in agricultural landscapes. The smoothing effect

of tillage on the terrain removed local pits and rills created in the natural phase. We hypothesized earlier that a smoother terrain

would have higher hillslope connectivity, leading to increased water erosion (Van der Meij et al., 2017). However, we observed
the contrary in our model results (Figure 5). The export of sediments from the catchment might be higher, but the uptake and

local redistribution of sediments on the hillsope is lower, because local steep gradients are removed. Tillage is thus the
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dominant process forming agricultural soil patterns. The effect of anthropogenic soil erosion on soil heterogeneity far exceeds

effects of changes in for example rainfall, which shows the huge impact we have as humans on soil-landscape development.

41.2 Process calibration and verification

The rates of the simulated processes were difficult to calibrate and verifyvalidate. This is mainly due to a lack of field data that
covers a range of climatic, topographic, chronologic and geographic settings (\Van der Meij et al., 2018). Such data are essential
for formulating pedogenic functions that are applicable in a wide range of settings instead of only in case studies, or for
verifying model results. The chronosequence collection of Shepard et al. (2017) is a global dataset of soils in various settings
covering different time steps. This dataset could be a good starting point for developing such functions owing to its large
coverage. But as chronosequences are generally situated in relatively flat, stable landscapes, they often do not contain
information about variations of soil properties at small distances, as function of local terrain (Harden, 1988; Sauer, 2015) —
with the exception of some pro-glacial soil chronosequences whose use is limited because of their extreme climate and parent
material (Egli et al., 2006; Temme and Lange, 2014). Such more complete information is essential for understanding the
formation of soil patterns, as illustrated in the previous Section. Therefore, we suggest to include topographic variation in
future chronosequence studies (Temme, 2019). A dataset covering different geographies could also raise the comparison of
model and field results beyond the case study-level.

In this study, we worked with an artificial landscape to avoid effects of uncertainties and local variations in initial and boundary
conditions that are often present in data from field settings (e.g. Van der Meij et al., 2017). This allowed us to investigate the
universal effects of changes in rainfall and land use in the model results, as a function of terrain morphology. Although
uncertainties in boundary conditions appear to have a limited effect on the outcomes of soil evolution models, uncertainties in
initial conditions can strongly influence the results (Keyvanshokouhi et al., 2016).

One soil property for which there is plenty of data on the spatiotemporal variation is soil organic matter or carbon, due to the
current interest in its potential to store atmospheric carbon (Minasny et al., 2017). We used a regional dataset from the loess
plateau to calibrate our SOM cycle in agricultural landscapes and we used carbon sequestration rates for adjusting the SOM
balances for forest and grassland areas. The modelled SOM stocks for agricultural sites match the field data fairly well (Table
2), but stocks for natural areas are estimated higher than often observed. For example, in Bavaria, Germany, carbon stocks in
the first meter, including the optional litter layer, are 9.8-11.8 kg m2 (Wiesmeier et al., 2012), where we simulated 15.7-17.1
kg m2 in our natural settings without consideration of a litter layer. Also the depth distributions are different. De Vos et al.
(2015) found that 50% of the carbon stock occurs in the top 20 cm in European forests on various parent materials. In our
results this is around 20%. This implies that agriculturally-derived SOM depth functions are not suitable to calibrate natural
SOM depth functions, probably because input, vertical redistribution, litter quality and decay of SOM behave differently in
natural and agricultural sites. To calibrate these parameters, data from agricultural and natural sites in close vicinity are needed,

to avoid effects of geographic and climatic differences. We are currently not able to simulate and calibrate these processes
properly.
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4.2 Drivers of soil formation
4.2.1  Soil forming factors

Different soil forming factors dominate the variance in soil properties in natural and agricultural systems (Table 3). In natural
systems, rainfall is the dominant factor explaining the variance. In scenarios with greater rainfall, rates of soil and landscape
change are larger, leading to more complex patterns. Although we did not simulate a changing climate, the results suggest that
we can expect more stable conditions with similar pedogenesis rates throughout the landscape in periods with lower rainfall,
while periods with greater rainfall may induce landscape change and spatially varying rates of pedogenesis. The major driver
for this increased landscape change is the higher occurrence of tree throw. The higher water availability increases forest cover,
leading to more tree throws (see animations in the Supplements 2 and 3).

Although our vegetation module is very simple, it was able to simulate the climatic and topographic control on vegetation
patterns which affect geomorphic and pedogenic processes. We would expect similar results to be obtained if a more complex
vegetation module that does justice to ecological complexity (i.e. resilience, succession) would be incorporated.

In intensive agricultural systems with large fields, landform is the dominant factor explaining the variance (Table 3). This shift
from external factors in natural systems to internal factors in agricultural systems marks the importance of geomophic processes
on agricultural soil patterns. Although relief controls rates and directions of geomorphic processes, the type of process is
human-controlled. Humans have a massive impact on soil development (Amundson and Jenny, 1991; Dudal, 2005). Direct
effects include agricultural use, excavations, introduction of organisms and creation of new parent materials (Richter et al.,
2015), while indirectly anthropogenic changes in climate can have severe effects on soil properties (Nearing et al., 2004;
Schuur et al., 2015). We have focussed on the main of these anthropogenic changes in loess landscapes: removal of forest and

complete introduction of tillage, even though intermediate forms with incomplete clearing, smaller fields and forested borders

may have historically existed. Humans as soil forming factor form new catenae (anthroposequences) and soil patterns, where

the ultimate pattern only depends little on the initial variation (Figure 6). In our model results, we observe four of the six
anthropogenic changes to soils, as described by Dudal (2005): human-made soil horizons, deep soil disturbance, topsoil
changes and changes in landforms. These changes substantially affect soil functions, such as biodiversity and food security.

Our simulations thus support that humans are the dominant factor for forming soils in agricultural landscapes.

4.2.2  Soil-landscape (co-)evolution

The development of soils and landscapes is not merely a collection of individual processes, but also of interactions between
different processes. When processes interact, and when changes to soils and landscapes are in the same order of magnitude,
soil-landscape co-evolution can occur. This co-evolution can amplify or diminish certain processes, or can completely change
the direction of soil and landscape evolution (Van der Meij et al., 2018). Often, co-evolution is used to describe soil and
landscape processes with similar rates, but that do not necessarily interact (e.g. Willgoose, 2018). This would imply that these

processes would co-occur rather than co-evolve. In this Section we evaluate some co-occurring processes in HydroLorica to
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see whether co-evolution occurred. There are different co-occurring processes in the natural phase of slow landscape change
compared to the agricultural phase of intense landscape change.

4.2.2.1 Lateral and vertical transport

We will first consider vertical and lateral soil transport processes. Soils and hillslopes can be considered as a series of transport
ways or conveyor belts (Roman-Sanchez et al., 2019). Vertical transport or mixing occurs by bioturbation including tree throw
and clay translocation, whereas lateral transport occurs by creep, tree throw, water erosion and tillage erosion. Interactions
between processes can occur where transport ways affect the same material. Two examples we will discuss here are the vertical
and lateral transport of clay and the interaction between creep and water erosion in the valley bottom.

The vertical translocation of clay is simulated in our model by an advection-diffusion equation, where the advective part is the
downward transport by water flow and the diffusive part a homogenization by bioturbation (Jagercikova et al., 2017). When
the rates of advection and diffusion are equal, the upward transport of clay by bioturbation equals the amount of downward
translocation by water; the clay-depth profile of the soil occurs in steady state and will not change substantially. Steady-state
circumstances are however rare in natural soil systems (Phillips, 2010). Our simulations do not show steady-state
circumstances, because in our simulations there is always lateral transport of soil material that continuously changes slope and
terrain properties and affects the soil’s clay balance, complicating the achievement of a steady state. Periodic water erosion
can remove substantial amounts of clay that have been transported to the surface by bioturbation. This is well visible in the
results of the wet scenario (P = 900 mm), where only 62% of the soils developed a Bt horizon. The other 38% had insufficient
clay left to be classified as Bt according to our criteria. These results are quite extreme for such a small catchment as ours,
probably due to too high simulated rates of water erosion, but they do show how pedogenic and geomorphic processes can
interact in sloping terrain. In the natural phase the rates of clay translocation are similar to those of geomorphic processes. The
recovery of the clay-depth profiles after disturbance of e.g. tree throw takes similar times (~1000s of years) as the re-occurrence
of a sequential tree throw event in the vicinity (Figure 3). Tree throw also temporarily changes rates of clay translocation by
concentrating infiltration in the created pits. In the agricultural phase the rates of geomorphic processes far exceed the rates of
clay translocation. This causes truncation of the soils, exposing the Bt horizons at the surface, and burying these horizons
elsewhere in the landscape. The clay profiles at eroded sites do not have time to react to the geomorphic disturbances. However,
clay illuviation can start as a new pedogenic process in older depositional areas (supplementary information of Leopold and
Volkel, 2007; Van der Meij et al., 2019; Z&dorova and Peni Zek, 2018).

Another interaction that emerged from the simulations occurred at the valley bottom. Soil creep transported hillslope material
downslope, whence the concentrated water flow in the valley removed it from the catchment, creating a v-shaped valley bottom
(Figure 2). This constant removal of material maintained the gradients that were used by soil creep to deliver new material.
This interaction can be observed in various small hillslope catchments, which display typical v-shaped gulleys in the valley
bottoms (e.g. Swanson and Swanston, 1977; West et al., 2013). Although this is not an interaction between pedogenic and
geomorphic processes, it determines to a large extent how soil material gets redistributed along a hillslope and eventually gets

exported from the catchment. In the agricultural phase, diffusive transport in the form of tillage erosion dominates over
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advective transport by water. As a consequence, the typical v-shapes fill up and are replaced by u-shaped valleys. These valley
fillings consist of coarse material from which most clay was eroded (Figure 2). In agricultural areas, such infillings can
temporarily remove erosion gulleys, but due to local water availability, they remain weak spots for future water erosion
(Poesen, 2011).

4.2.2.2  Soil organic matter dynamics

Rates of SOM accumulation and decomposition far exceed rates of clay translocation. SOM stocks recover quickly after a
disturbance by tree throw and can keep up with intense landscape change by tillage (Figure 3). Freshly exposed, reactive soil
material at eroding sites quickly accumulates new SOM, whereas SOM gets buried at depositional positions. Meanwhile, SOM
decomposition increases during transport (Doetterl et al., 2012). In our simulations, the SOM stocks decrease substantially in
the agricultural phase, mainly due to lower SOM input (Figure 3). Carbon stocks show relatively homogeneous distributions
throughout the catchment (Figure 4), despite large spatial differences in erosion and deposition. This indicates that landscape
change in both natural and agricultural systems did not induce substantial heterogeneity in SOM stocks. The small differences
in SOM stocks in agricultural settings depend on landform (Table 3). These differences mainly emerge from differences in
soil thickness at erosion and deposition positions. Deposition positions show a slight increase in SOM stocks after cultivation,
while erosion positions show continually decreasing SOM stocks (Figure 3). The differences in SOM stocks in the model
results are thus related to burial of colluvium in the valley bottom. SOM cycling is heavily influenced by erosion processes,
but erosion rates do not depend on the SOM cycling. In tillage-dominated systems, erosion rates do not depend on SOM content
or SOM dynamics in the soil. The co-occurrence of SOM cycling and tillage erosion in agricultural settings thus does not lead
to co-evolution.

The interactions between erosion and the SOM cycle are currently under debate, especially whether agricultural redistribution
provides a carbon source or sink through affecting biogeochemical cycles and exporting carbon from fields and catchments
(Berhe et al., 2018; Chappell et al., 2015; Doetterl et al., 2016; Harden et al., 1999; Lal, 2019; Lugato et al., 2018; Van Oost
etal., 2007; Wang et al., 2017), which shows the importance of considering landscape processes in pedogenic studies and vice
versa. Moreover, intensive agriculture has been practiced for over 1000s of years in parts of the world (Stephens et al., 2019),
emphasizing the need to consider centennial to millennial time periods in studies on anthropogenic forcing on soil systems.
4.2.2.3 Did co-evolution occur?

The co-occurrence of processes does not necessarily implicate co-evolution. The analysis in this Section showed that soil and
landscape processes co-occurred in both natural and agricultural settings, but that interactions between processes only occurred
in natural settings. Rates of soil and landscape change are controlled by drivers such as water availability and vegetation type,
and these drivers are influenced by soil, landscape and climate properties. Changes in one domain in the landscape have effects
on the formation of all other domains. These interactions, or co-evolution, occur on both short and long timescales in the
natural system. There are already considerable differences between the soil patterns from each scenario after 500 years of
natural soil formation, due to the role of water and vegetation in soil-landscape co-evolution. These differences become more

pronounced over time, due to progressive soil and landscape formation (Supplement 2).
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In comparison, the differences between the patterns of each scenario after 500 years of agricultural land use are much smaller
(Supplement 2). This is because anthropogenic processes such as tillage erosion occur at such high rates that most natural

processes cannot keep up, and lead to more similar soil landscapes. Anthropegenicln settings with uniform parent material

such as we simulated, anthropogenic processes do not show co-evolution, because the rates of for example tillage erosion far

exceed any rates of natural soil and landscape change (Figure 5) and the rates of the anthropogenic processes are not influenced
by soil properties. Tillage can introduce new processes or accelerate other processes e.g. by breaking up aggregates. However,
these processes do not affect the rate at which a plough transports sediments through a landscape. If interactions between
processes do not occur on shorter timescales, they will also not emerge over longer timescales as is the case with natural
processes as described before. The occurrence of possible co-evolution of soils and landscapes thus depends on the type of
processes that affect the system, not on the duration over which these processes change soils and landscapes. In other words,
co-evolution is not time-dependent, but process-dependent.

Co-evolution of soils and landscapes can also occur via intrinsic thresholds which do not depend on changes in external drivers
such as rainfall and land use. An example is the development of stagnating layers in the soil, which change the subsurface
partitioning of water and can introduce reducing conditions. But, as we explain in Van der Meij et al. (2018), such intrinsic
thresholds can currently not be modelled, because we lack the methods for estimating accurate soil hydraulic properties which
drive this threshold behavior. Ideally, a model shows such threshold behavior without explicitly incorporating these thresholds
in the model code as such imposed hard thresholds can cause problems when calibrating the model by creating sharp
discontinuities in the model results as a response to slight variations in parameters (Barnhart et al., 2019). For these reasons
we focused on heterogeneity and (co-)evolution related to external drivers in this research.

The soil and landscape interactions in natural settings emphasize the need of studying natural soil formation in a landscape
context rather than a pedon context. Only when landscape are stable, flat and free of trees, changes in soil properties are not
influenced by changes in terrain. In such settings, a 1D soil profile evolution model would suffice to simulate soil development
in different landscape positions (Finke, 2012; Minasny et al., 2015). When rates of geomorphic processes far exceed those of
pedogenic processes, for example in tillage-dominated systems, a landscape evolution model would suffice (e.g. Temme et al.,
2017). In undulating landscapes where various hillslope processes occur, soils should be considered 3D bodies and soil-

landscape evolution models are essential to simulate spatial drivers of soil and landscape evolution (Willgoose, 2018).

4.3  Predictability of soil patterns

In digital soil mapping, empirical relations between soil properties and their environment are used to predict soil properties
through space (McBratney et al., 2003). In order to predict soil properties with environmental variables, the environmental
variables should show variation over the same spatial scale as the variable to be predicted. On a hillslope scale, this variation
often occurs in terrain properties (Gessler et al., 2000), while external factors such as climate often do not vary spatially at
these scales. The shift from dominant external to dominant internal soil forming factors in explaining variance in observed soil

properties (Table 3) thus has large implications for our ability to predict and map soil patterns. Human activity has created
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soil-landscapes that are well-suited for digital soil mapping. The correlations between simulated soil and several terrain
properties all give the same signal (Figure 7): the correlations in the natural phase are limited, but increase rapidly in the
agricultural phase. The switch from a natural to agricultural phase thus increases soil heterogeneity, but also soil predictability-
One-should-thus, which can be used to predict the soil properties in large-field settings. One should be careful extrapolating

soil-terrain relationships from agricultural areas to natural areas, as these correlations depend on land management and can

give wrong results_under different land cover.

Digital soil mapping performs well when predicting the spatial distribution of agricultural soils, but their applicability in time
is limited because of limited temporal data (Gasch et al., 2015; Grunwald, 2009). The limited observations in space and time
can be supplemented or extrapolated by incorporating biogeochemical process descriptions to improve DSM (Angelini et al.,
2016; Christakos, 2000, pp. 22; Heuvelink and Webster, 2001). However, the response of soils and terrains to changes in soil
forming factors takes longer (decades to millennia) than the timespan over which we have observations (days to decades).
Process-based models thus become increasingly essential for understanding how soils might change under projected scenarios
of land use and climate change (Keyvanshokouhi et al., 2016; Opolot et al., 2015), and HydroLorica shows a promising first
example of such a model on a landscape scale that responds to changes in all five soil-forming factors, and by extension the

human control on these factors.
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5 Conclusions

Soils undergo substantial changes in the transition from a natural land cover to agricultural land use. Although these changes
can be described conceptually, quantitative data to describe the changes in soil pattern are scarce. We developed a soil-
landscape evolution model, named HydroLorica, which is able to simulate the evolution of soils and landscapes in both natural
and agricultural settings, by simulating spatially varying infiltration as driver of soil formation and by inclusion of essential
natural and agricultural processes such as soil creep, tree throw and tillage. We used this model to simulate soil and landscape
development in varying climatic settings, under changing land use, to quantify changes in variation and predictability of soil
patterns. We reached the following conclusions:
o Natural and agricultural landscapes display different soil patterns. Natural soil patterns are more chaotic and

random with higher precipitation. Their formation is dominated by local processes such as tree throw and spatially

varying infiltration. Agricultural-seiSoil patterns in intensively managed fields are dominantly formed by tillage
erosion processes.-Fhe-patterns-show-low-local-variation-that-substantially-inereases-with-distance- Also,
agricultural soil properties show larger correlations with terrain properties.

e In natural systems, rainfall is the main factor influencing soil variation. In agricultural systems, landform explains
the largest part of variation. The most important factor affecting total soil variation is the human factor. Agricultural
land use increases erosion rates, which changes soil patterns and creates and amplifies the topographic dependence
of soil properties.

e Innatural and agricultural settings there are different sets of processes that change soils and landscape with similar
rates. In natural systems, these processes often interact and amplify or diminish each other, leading to soil-landscape
co-evolution. In agricultural systems, these interactions are often missing and processes co-occur rather than co-
evolve.

e Agricultural soil patterns_in a large-field setting are easier to predict than natural soil patterns, due to the shift from

dominant external to internal factors that explain soil variation, which manifests itself in larger correlations between

soil and terrain properties.

Soil-landscape evolution models are increasingly equipped to simulate soil landscape development in a variety of settings. Our
contribution shows the added value of using water availability as spatially varying driver of pedogenesis to simulate soil and
landscape development in natural settings. These developments are essential to study the vulnerability and resilience of soil
systems under the increasing pressure from land use intensification and the changing climate, but can also assist in
understanding the long-term effects of management strategies such as reduced tillage or no-till on soil properties such as carbon

stocks.
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11 Tables

Table 1: Overview of processes simulated in HydroLorica, including driving soil forming factors in the model, and landscape variable that is affected by each process. Humans are
considered as additional soil forming factor (Amundson and Jenny, 1991; Richter et al., 2015).

Process

Abbreviation

Soil forming factor

Organisms

Climate [vegetation

[rainfall] type]

Relief

Parent
material
[soil

texture]

Humans

Landscape variable affected

Topography

Soil

properties

Water

balance

Vegetation

type

Bioturbation

Carbon accumulation and breakdown
Clay translocation

Creep

Pedon scale water partitioning
Surface flow

Tillage

Tree throw

Vegetation selection

Water erosion

BT
CAB
CcT
CR
WP
SF
T
TT
VS
WE

33



Table 2: Model and field organic carbon stocks (kg m-2) for different depth ranges, averaged over the catchment (average +
standard deviation). The model results were converted from SOM to SOC by multiplying the SOM stocks with 0.58 (Wolff, 1864).

Natural phase (t 14500) Agricultural phase (t 15000)
Scenario | Dry Humid Wet Dry Humid Wet (Liu et al,

Depth range (grassland) (mixed) (forest) 2011)

0-0.2 4.7£0.3 4.6+£0.9 4.1+2.1 2.9+0.1 2.9+0.3 2.8+0.4 3.0£1.9
0-0.4 8.7£0.4 8.5+1.1 7.8£2.8 5.5+0.2 5.4+0.5 5.3+0.6 5.4+3.2

0-1 17.1+04 16.8+1.2 15.7£3.5 10.9+0.6 10.8+0.8 10.6+0.8 8.8+4.4

0-2 24.1+0.4 23.7£1.3 22.3£3.8 15.7+¢1.2 15.6+1.2 15.4+1.1 14.545.2
Complete profile 27.7£1.3 27.1£1.7 253485 18.6+16.1 18.4+9.1 17.8+10.1 -
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Table 3: Results from the analysis of variance, indicating the proportion of variance in soil properties explained by the different
soil forming factors. The data is both considered in total, and grouped per land use (natural or agricultural). The bold numbers
indicate the largest part of the variance, either explained by one of the factors, or unexplained. All responses are significant

(p<0.05).
Depth Bt SOM stock
Total Natural Agricultural Total Natural Agricultural
Rainfall 0.18 0.49 0.08 0.02 0.14 0.02
Landform 0.23 0.04 0.51 0.04 0.01 0.56
Land use 0.01 - - 0.72 - -
Unexplained 0.58 0.47 0.41 0.22 0.85 0.42

35



12 Figures
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Figure 1: Left: Annual rainfall in loess areas, derived from WorldClim. Red lines indicate the rainfall scenarios in this study: 300

1025 (dry), 600 (humid) & 900 (wet) mm per year. Right: Maps of input DEM with corresponding slope map. Extent of the DEM is
150*150 meter, with a cell size of 1.5 meter. The different classes indicate elevation classes used in the ANOVA (Table 3). The blue
dots and line indicate the location of the soil profiles and transect displayed in Figure 2 and Figure 3.
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1030 Figure 2: Transect through the catchment at the end of the natural phase and the end of the agricultural phase for the humid
scenario (P = 600 mm). The black line indicates initial topography. See Figure 1 for location of the transect.
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Figure 3: Evolution of soil profiles through time (x-axis) on a stable, eroding and depositing position (rows), for the different
rainfall scenarios (columns). The colored bars atop the plots indicate land cover (natural) and land use (agricultural). The points
indicate the SOM stocks (right y-axis). Note that the natural and agricultural system have different x-axes scales to visualize both
systems. In the agricultural system, an observation is shown each 500 years. In the agricultural phase each 50 years. See Figure 1
for locations of the soil profiles. See Figure 2 for the soil color legend.
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Figure 4: Probability Density Functions (PDFs) showing the multi-modal distributions of soil properties throughout the catchment
per 10 cm depth increment. We only show probabilities larger than 5% for clarity. The presented soil properties are clay fraction
(top) and SOM fraction (bottom), for the different rainfall scenarios (columns). Grey colors represent the natural soils, while red
colors represent agricultural soils. The horizontal dotted line indicates the ploughing depth used for simulations (20 cm).
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Figure 5: Left: average erosion rates throughout the catchment for the different geomorphic processes over time. The colors
represent different geomorphic processes, and the line types represent different rainfall scenarios. Note that the y-axis is log
scaled. Right: cumulative elevation change at the end of the natural and agricultural phase compared to the initial DEM for the

different rainfall scenarios.

40



Semivariance

10 20 30 40 50 60

0

(A) SOM stock [kg m ™

T T T T T T T T
0 10 20 30 40 50 60 70

(C) slope [deg]

T T T T T T T T
0 10 20 30 40 50 60 70

005 010 0.15

0.00

0.010 0.020

0.000

0 50 100

Distance field [m]
200

(B) Depth to Bt [m] 3
o
o B Natural
o = .
g m  Agricultural
é Dry scenario
38 ---- Humid scenario
°8 —— Wetscenario
g§ —e— Meerdaal (field)
(=] —e— CarboZALF-D (field)
o
......................... Q
T T T T T T T T [=4
0 10 20 30 40 50 60 70
<
« (E) TWI
0
[aY]
o
I
w

1.0

00 05

0 10 20 30 40 50 60 70

Distance [m]

41

10 20 30 40 50 60 70




- (A) SOM stock [kg m (B) Depth to Bt [m] - € | (C)Deptn to Bt [m] ,',‘
@ y = field data
e | ;!
87 °© 8 4 I
g o pe
= P /
8 ° = oSy ¢
S 8 | . . seod
o e s | o
° 1 e T 8 |
T T T T T T T T . T T T T T T T S T T T T T T T
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 50 100 150 200 250 300 350
g
@© P~ 2
5 o - (F) TWI
= w - a4
£ (=1
[ul]
w w - w
S -
< [=]
[=]
™ - S
[=]
o w
S
N o
o
o A 8 -
T T T T T T T T [=]
0 10 20 30 40 50 60 70
Matural: === Dry ---  Humid — Wet —e— Meerdaal
Agricultural:  ------ Dry ---  Humid — Wet -#- CarboZALF-D
Distance [m]

1055  Figure 6: Experimental semivariograms of the model results showing semivariance {spatial-autocorrelation)-for different soil (A,
B) and terrain properties (S-ED-F) with different precipitation scenarios (line types) at the end of the natural (black) and
agricultural (red) phases. FheFor comparison, panel with-depth-to-BtincludesC shows experimental semivariograms ferof depth
to Bt from a natural area (Meerdaal forest, P = 800 mm, Vanwalleghem et al., 2010) and an agricultural area (CarboZALF-D, P =
500 mm, Van der Meij et al., 2017). Note that these field data are presented with separatedifferent axes-te-compare-shapes-ofthe.

1060 The experimental semivariograms. are displayed with lines rather than points for easier visual comparison.
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Figure 7: Correlations (R2) between selected soil properties (line types) and topographic properties (colors) through time (left to

right), for the different rainfall scenarios (top to bottom). In the natural system, the correlations are presented every 500 years,

while in the agricultural system, the correlations are presented every 50 years. Note that for the latter phase the x-axis is stretched.
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