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Abstract. Soil classification has traditionally been developed by combining the interpretation of taxonomic rules related with

soil information, and integrated with the pedologist tacit knowledge. A more quantitative approach is necessary to obtain

a new way to characterize the soils with less subjectivity. The objective was to develop a soil grouping system based on

spectra, climate and terrain variables looking towards a quantitative way to classify the soils. The spectra data was applied to

obtain information about the soil, as climate and terrain variables to simulate the pedologist knowledge in soil-environment5

interactions. We used a data set of 2287 soil profiles from 5 Brazilian regions. The soil classes of World Reference Base

system were predicted using the three variables and the result showed that they were able to correctly classify the soils with

an overall accuracy of 88%. To derive a new system, we applied the spectra, climatic and terrain variables, which by clusters

analysis defined 8 groups. Thus, these groups were not generated by taxonomic method but by grouping areas with similar

characteristics expressed by the indicated variables, and denominated as Soil Environment Grouping (SEG). The SEG system10

facilitated the identification of groups with equivalent characteristics using not only soil but environmental variables for their

distinction. Finally, the conceptual characteristics of the 8 SEG were described. The new system conducted to incorporate

applicable soil data for agricultural management, with less interference of personal/subjective/empirical knowledge (such as

traditional taxonomic systems), and more reliable on automation measurements by sensors.
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1 Introduction

The knowledge in soil has gain importance since man learned to cultivate the land about ten thousand years ago. These ex-

periences over the years must be converted into applied knowledge to solve modern issues involving the soil. In this respect,

pedology plays a fundamental role in the understanding of soil formation factors and their spatial distribution. The pedologist20

uses his tacit and empirical knowledge to represent the soil by names. The basis of this nomenclature is performed by a taxo-

nomic classification system with several rules. Soil classification nomenclature has traditionally been achieved by combining

the interpretation of soil properties, soil-landscape relations along with the support of maps, aerial or satellite images, and with

the pedologist knowledge on soil (Demattê and Terra, 2014). The formative elements of most soil classes’ nomenclature do not

consider climate or terrain data, which are important factors in the soil formation. Therefore, most of the times there seems to25

be no coherence and the comparison is impaired when we try to associate the name of the soil with the landscape. This happens

because of two factors: a) the pedologist’s knowledge is inherent, acquired with years of learning, which demands time and it

is extremely difficult to extract in a quantitative way, and b) pedologist has to follow taxonomic rules. As an alternative, we

need to seek sources that aggregate the soil-landscape information into a classification system.

One source for soil-landscape features can come from remote sensing (RS) images. In the last decades, RS was gradually30

being applied in a more quantitative technique for soil classes interpretation (Demattê et al., 2004; Mulder et al., 2011; Teng

et al., 2018; Viscarra Rossel et al., 2016). By the digital elevation model is possible to extract several terrain attributes that are
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taken into consideration in the soil survey (Florinsky, 2012) by the pedologist. In addition, climate can contribute to a general

understanding of the soil (Brevik et al., 2018) and also, can assist its quantification considering the scale of the study. Climate

plays a fundamental role in weathering and soil formation. Terrain attributes present high influence in the soil genesis. Thus,35

these variables are an essential ally in the search for a better grouping and comprehension of the soil.

Another issue is that traditional soil classification data is turning increasingly challenging to obtain because of the necessity

of the pedologist’s knowledge. The complexity and the large number of soil characteristics that should be considered, in

order to classify the soil profile, are another complication. Furthermore, soil classification information is becoming scarce

in soil libraries, since they are greedy for quantitative data. As the traditional approach to obtain the soil classification data40

is insufficient, it is necessary to introduce new procedures of acquiring soil information in a more measurable way. With

the advent of sensors, the collection and determination of soil data from spectra has become more agile and, with the soil

researches advancement, also more accurate. The application of a quantitative technique is necessary to obtain a new system

to characterize the soils.

How to combine a system that aggregates several soil formation factors without becoming trapped in a taxonomy? From45

this question emerged the need for the soil series system. The concept of soil series is a group of soils with homogeneous

characteristics in a system at the lowest possible level. The name of a soil series is the common reference term, used to name

soil mapping units. The USDA Soil Taxonomy (Soil Survey Staff, 2014) is the only classification system hierarchy that has

established the soil series. The descriptions contain properties that define the soil series and provide a record of soil properties

needed to prepare soil interpretations. Also, a soil series is an area established by similar characteristics of landscape, climate,50

soils and therefore, does not involve taxonomy. As pedology got stuck for years in the taxonomy, it had difficulty in creating

the soil series due to the specificity of this new denomination, besides the fear of not being easily comprehensible by the user.

However, since almost all surveys today are quantitative, including environmental data, the possibility of a soil series system

can gain potential. At the moment when homogeneous areas are delimited carrying numerous information about environmental,

terrain and soil, the taxonomic nomenclature of the soil classes will no longer be necessary. In this aspect, the soil spectroscopy55

is essential. The soil spectrum carries information about soil characteristics such as soil organic matter (OM), minerals, texture,

nutrients, water, pH, and heavy metals (Stenberg et al., 2010; Viscarra Rossel and McBratney, 2008). The proximal sensing

has presented significant contributions to the soil classification (Viscarra-Rossel et al., 2010) and should play a leading role

in the development of the new soil series. However, the spectra data is limited when regarding all information needed in the

soil classification systems. For this reason, environmental data can contribute to supply the inherent pedologist’s knowledge in60

relation to soil-landscape. Besides that, the color, mineralogy, humidity, texture, organic carbon, among others soil properties

can be acquired in any part of the world with the same measurement protocol and equipment. Combining this with climatic

and terrain data, it is possible to identify areas with homogeneous characteristics.

The general objective of this study was to create a system that indicates how to group homogeneous soils based on spectral

information, climate and terrain variables, looking towards a quantitative way for their classification. We expect that the spectra65

aggregated with climate and terrain data can provide sufficient information of a specific soil that will indicate a group, which

is more representative than a taxonomic classification system.

3



2 Material and Methods

2.1 Soil data

The soil database consists of 2287 soil profiles from all 5 regions of Brazil. The data was extracted from the Brazilian Soil70

Spectral Library (Demattê et al., 2019). The database includes profiles of 10 soil classes, classified according to World Refer-

ence Base (WRB) - FAO (IUSS, 2015): Arenosol, Cambisol, Ferralsol, Gleysol, Histosol, Lixisol, Luvisol, Nitisol, Planosol,

and Regosol. Each soil profile had three depths, A: 0-20 cm, B: 20-60 cm and C: 60-100 cm. For the statistical analyzes, the

spectrum of three depths were averaged to compose a single spectrum per profile. In order to balance the number of sam-

ples of each soil class, the synthetic minority over-sampling technique (SMOTE) algorithm were applied to avoid unbalanced75

problems in the analyzes (Chawla et al., 2002).

2.2 Spectral data

The spectral data were obtained in the Geotechnologies in Soil Science group (GeoCIS), São Paulo, Brazil, using the Fieldspec

3 spectroradiometer (Analytical Spectral Devices - ASD, Boulder, CO). The spectral sensor, which was used to capture light

through a fiber-optic cable, was allocated 8 cm from the sample surface. The sensor scanned an area of approximately 2 cm2,80

and a light source was provided by two external 50W halogen lamps. These lamps were positioned a distance of 35 cm from the

sample (non-collimated rays and a zenithal angle of 30°) with an angle of 90°between them. A Spectralon standard white plate

was scanned every 20 min during calibration. Two replications (one involving a 180°turn of the Petri dish) were obtained for

each sample. Each spectrum was averaged from 100 readings over 10 s. The mean values of two replicates were used for each

sample. The spectral data ranged from the visible to near infrared (Vis-NIR) (350 – 2500 nm). The Savitzky-Golay derivative85

(Savitzky and Golay, 1964) was applied in the spectra with following configuration (polynomial order of 2 and window size of

15). Since the spectrum is highly collinear, we kept only the wavelength in every 10 nm, resulting in 213 wavelengths for the

analysis. The soil color variables, which comprises Hue angle (Ha), Value (v) and Chroma (c), were derived from the spectrum.

We applied the principal component analysis (PCA) in the spectral data to select the scores of principal components (PC)

and applied them in the modeling. The PC eigenvectors were utilized to indicate the wavelengths of highest contribution in90

the PCA. The data was not standardized because all of the wavelengths are in the same units and the differences in variation

between them are inherently important. The number of PCs applied in the modeling were selected in order to capture high

percentage of the variance explained and the maximal spectral details as possible, since the spectral data present absorption

points in different areas of the spectral curve and with distinct intensities.

2.3 Climatic and terrain variables95

The climatic and terrain variables, applied in the modeling, were extracted from different sources in order to represent the

environmental variability. The climatic variables were the Potential EvapoTranspiration (PotEvapoTransp), Soil Water Bal-

ance (SWB), Annual Temperature (AnnualTem), and Annual Precipitation (AnnualPre). The terrain variables were Slope, As-
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pect, Hillshade, Topographic Position Index (TPI), Terrain Ruggedness Index (TRI), Roughness, and Digital Elevation Model

(DEM). The terrain variables were extracted from the DEM (90 m spatial resolution). Figure 1 shows the locations of the soil100

sites in Brazil and the variations of annual temperature.

2.4 Supervised modeling to predict soil classes

In order to evaluate the performance of predicting soil classes, we applied a supervised classification method. Random Forest

(RF) was the algorithm selected with 10-fold cross-validation setting. In the first modeling approach, with only the PCs (derived

from the spectra) were applied as independent variables. In the second approach, we added the climatic and terrain variables105

with the PCs and applied the RF to predict the soil classes. The purpose was to evaluate the improvement when adding climatic

and terrain variables to the model. The results were shown by the confusion matrix and the overall accuracy of the model. From

the RF model, we were able to obtain the importance of each variable in the classification.

2.5 Unsupervised modeling for the new classification

To derive the classification system, we needed to select the optimal number of classes. The unsupervised classification was110

performed by the k-means clustering analysis. In the first approach, we applied only the spectral data in the k-means clustering.

Thereafter, we added climatic and terrain variables with the spectra and performed the k-means clustering again. With this

procedure, we were able to explore the advantages/disadvantages of adding climate and terrain data to aggregate the groups.

To determine which number of clusters appears to best describe the data, i.e. the optimal number of clusters, the Akaike

information criterion (AIC) was performed. To calculate the AIC, we applied the function kmeansAIC from kmeansstep R115

package. It calculates the AIC value of a specific k-means cluster and it specified centroids. The AIC was implemented using

the values from 1 to 15 clusters. The analysis was performed by data driven 30 times. The overall modal cluster with the lowest

AIC value was selected and assumed to be the optimal number of clusters, which can represent the most appropriate number

of spectral classes.

2.6 Soil Environmental Classification120

The number of optimal clusters, performed by the k-means clustering analysis, was referred as Soil Environment Grouping

(SEG). The association between traditional soil classes (WRB) and SEG was showed by projecting the discriminant coordi-

nates. This procedure allowed to identify the homogeneity of the classes and additionally, the proximity of the classes and the

relation between them. The correlation between soil classification and SEG was arranged in a table. The characterization of

each SEG was performed by PCA to evaluate the relationship between categorical variables, including soil, climate and terrain125

variables. The spectral curves for each SEG were represented by averaging the soils classified in the same class.
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Figure 1. Location of soil sites (soil data set) in Brazil.

3 Results

3.1 Extracting the principal components of the spectral data

The discrimination by PCA revealed that the first 10 PCs accounted for 94.5% of the variance explained (Figure A1, supple-

mentary data). In order to capture the maximum variation of spectral data, the first 10 PCs were considered as the spectral130

information to predict the traditional soil classification and to develop the SEG. Vasques et al. (2014) applied 20 PCs to derive

the classification models. The eigenvectors of PC1 to PC10 represent the important spectral features and the contributions of

the absorbance at individual wavelengths (Figure A2, supplementary data). According to Viscarra Rossel and Webster (2011),

the functional groups of minerals and organic components that were most useful in the discrimination of soil classes were those

that are related to iron oxides (hematite and goethite: 430, 495 and 570 nm) O – H - O in 2:1 clay mineral (illite and smectite:135

1420 and 1900 nm), organics and clay minerals (2150 nm), and Al – OH clay minerals (gibbsite: 2250 nm). The wavelengths

for these absorption are approximate. For Bishop et al. (2008), the reason they may shift from the expected wavelengths is

because real molecules do not behave totally harmonically when they vibrate and also for the reason that the differences in

measurement conditions and instrumentation.
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3.2 Predicting traditional soil classes140

The performance of RF model showed an overall accuracy of 83% using only spectral data (Table A1, supplementary data).

The confusion matrix and accuracy deriving from the RF analysis applying spectral, climatic and terrain variables are shown

in Table 1. The overall accuracy for this classification model by RF was superior reaching 88%. The values in the matrix

are the number of samples in each class allocated by the RF model. Three soil classes had an improvement of 10% or more

in the prediction when climatic and terrain variables were added to the model. The overall accuracy of Cambisol went from145

73.8% to 83.8%, Gleysol from 84.2% to 94.3%, and Ferralsol, which presented the largest improvement, from 56.3% to

72.5%. The RF model with spectral, climatic and terrain data was able to assign the correct soil class in a very prominent

accuracies for Histosol, Luvisol, Planosol, Nitisol, and Gleysol reaching values higher than 94.3%. The Ferralsol was the most

misclassified class, where the accuracy reached only 72.5% and, consequently 27.8% were re-allocated to other classes but

mostly in Arenosol (14%), Lixisol (7%) and Regosol (3%) (Table 1). Regosol showed a class accuracy of 72.9%, and most150

of its misclassification were re-allocated in Cambisol (13%) and Ferralsol (7%). Cambisol presented relatively moderate class

accuracy (83.8%) with most of errors re-allocated in Regosol (6%). Both Cambisol and Regosol classes presented similarities.

Regosols comprise soils in unconsolidated deposits that hardly show signs of pedogenesis with no B horizon and Cambisols

present beginning of soil formation with weak horizon differentiation. As for the Arenosols (class accuracy of 76%), the

misclassification was predominantly observed with Ferralsol, Lixisol and Planosol. The Lixisol (class accuracy of 79.9%)155

misclassification was also occurred with Ferralsol (9%) and Arenosol (7%), indicating that these three classes present common

soil properties. The Arenosols are soils with little or no profile differentiation with texture class of loamy sand or coarser. The

majority of Ferralsols in the current data set contained high sand content. The same occurred with Lixisols. These two soil

classes presented the sandy characteristic because they are predominantly derived from sandstone rocks. This was the reason

why these three classes were not well distinguished by the modeling. Overall, not all misclassifications are negative and some160

classes are very similar in properties and use, while other classes are radically different.

3.3 Variable importance from the soil classification model

The variables importance derive from the RF model were represented in Figure 2. The variable importance for the spectral

data is represented by the 10 PCs. PC1 presented an importance by more than 50% to discriminate almost all soil classes, with

the exception of Cambisol. PC1 showed significant contribution to distinguish soils with absorption effect on visible region165

(380 to 740 nm), where the characteristics of iron oxide are present (Figure A2, supplementary data). The PC1 also exhibited

important bands related to hydroxyl bonds (1420 and 1900 nm) and with organics and clay minerals peaks (2150 and 2250

nm). The remaining PCs showed important bands in the same features but with variation in intensity. Ferralsols and Nitisols are

associated with iron oxides in the visible region of the spectrum, which the PC1 showed high contribution. Planosols contain

high clay in the subsurface horizon, which indicates the presence of clay minerals. Histosols are rich in organic minerals, which170

are presented in the PC1. These soil classes were the ones with the higher variable importance considering the spectral data
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Table 1. Confusion matrix and accuracy of soil classification model (World Reference Base - WRB) using spectral, climatic and terrain data.

WRB Arenosol Cambisol Ferralsol Gleysol Histosol Lixisol Luvisol Nitisol Planosol Regosol

Arenosol 180 1 31 0 0 15 0 0 0 1

Cambisol 0 192 7 9 0 3 0 0 0 30

Ferralsol 27 6 166 0 0 21 0 1 0 16

Gleysol 0 4 1 215 0 1 0 0 2 6

Histosol 0 1 0 1 229 0 0 0 0 2

Lixisol 13 4 16 2 0 183 0 1 1 3

Luvisol 0 1 0 0 0 3 228 0 0 0

Nitisol 0 4 7 0 0 2 0 226 0 0

Planosol 9 2 0 1 0 1 0 0 223 4

Regosol 0 14 1 0 0 0 0 0 3 167

Total number of profiles 229 229 229 228 229 229 228 228 229 229

Class Accuracy (%) 78.6 83.8 72.5 94.3 100 79.9 100 99.1 97.4 72.9

Overall Accuracy (%) 88

(PC1 had 47% of variance explained). As the variance explained in the PCs was dropping, its importance in the classification

was reducing as well.

The soil color is one of the main soil properties that influence soil spectral response. The variables expressing the color char-

acteristic are Ha, v and c. The color, specifically Ha and v, was important to discriminate Nitisols, which are heavy weathered175

tropical soils showing a red color with lower overall reflectance. Hillshade, TPI, roughness, aspect and TRI showed relatively

low to median importance for all classes, and they were most significant to distinguish the Planosols. As this class present

impermeable subsoil with significantly more clay in the subsurface horizon and typically located in seasonally waterlogged flat

lands, these terrain variables were able to discriminate it. DEM showed high importance for Lixisols and low for Ferralsols,

what indicates that the Ferralsols are located in different sections of the landscape and are not limited to just a certain altitude.180

The high DEM range affected negatively the importance of this variable to predict Ferralsol. The PotEvapoTransp was most

important for Arenosols. Since this soil class present a high sand content, especially in the surface horizon, the PotEvapoTransp

is elevated, which contributed to discriminate them. SWB was important variable to discriminate the Lixisols and Arenosols.

Lixisols are soils with subsurface accumulation of low activity clay and high base saturation with moderately drained (because

of the argic horizon), they may present a low water retention capacity. SWB refers to the amount of water held in the soil.185

Because Lixisols are soils that can hold a limited amount of water, there is a risk of percolation in depth or runoff in high pre-

cipitations. For the Arenosols, the high content of sand fraction in the entire profile contributed for a high importance of SWB

to predict this class. The temperature was important to discriminate the Cambisols, since these soils were located mostly in the

South and Southeast regions of Brazil were the average annual temperature was low. The annual precipitation was important

variable for Lixisols and Gleysols. As high precipitation is associated to high soil moisture content and these two soils have an190

impermeable subsurface horizon condition, superficial water retention and consequently high soil moisture.
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Figure 2. Variable importance for each soil class derived from the model using spectral, climatic and terrain data.

3.4 Developing the soil environmental classification

The lowest value of AIC was found with 8 clusters (Figure A3, supplementary data), which represent the best spectra cate-

gorization. This means that the optimal number of cluster for the current data set is 8. Subsequently, the k-means clustering

was performed as the unsupervised classification method applying 8 groups. Firstly, the discriminant coordinates projection,195

from the clustering analysis using only the spectral data, showed the distribution of the 8 SEG (Figure 3). The soil classes

located in the left side were soils with less weathering, which is the case of Histosols and Regosols, following by Planosols,

Gleysols and Cambisols. In the right side, we can find Ferralsols and Nitisols as more weathered soils. In general, the inter-

mediates weathered soils, such as Luvisols, Lixisols, and Arenosols were located in the center. This tendency proves that the

spectral data were able to discriminate soils in different stages of weathering. Arenosols can be considered soils with low level200

of weathering. However, in the Figure 3, they were close to the classes of Ferralsols and Nitisols (Figure 3). This happened

because both Arenosols and Ferralsols have high levels of sand content. For this reason, the spectra curves of both soil classes

present soil properties with high similarity.

Because the number of soil classes is greater than the number of SEG, it is expected that some soil classes will be allocated in

the same SEG. The association between traditional soil classes with SEG is observed in Table 2. The highest correspondence of205

SEG 1 was with Arenosols. SEG 2 was associated with Cambisols. SEG 3 presented three soils with high correlation, Regosols,
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Figure 3. Projection of the discriminant coordinates showing the Soil Classification and Soil Environment Grouping (SEG) applying only

spectral data for all samples. The circle with the number represents the center of the SEG.

Planosols and Gleysols. The SEG 4 presented high correspondence with Nitisols. SEG 5 had high equivalence with Planosols

followed by the Gleysols. SEG 6 was high correlated with Histosols. SEG 7 was correlated with Ferralsols but a great quantity

of Nitisols samples was also correlated with this SEG. Lastly, SEG 8 presented the highest correspondence with Luvisols.

The Lixisols had no predominant SEG, however presented a high correlation with SEG 1. The SEG 3 and 5 were associated210

involving three soil classes Regosol, Planosol and Gleysol. The SEG 4 and 7 also presented correlation but in this case with

only Ferralsol and Nitisol.

Subsequently, the clustering analysis using spectral, climatic and terrain data were performed. The projection of the dis-

criminant coordinates showed that climate and terrain data revealed that the SEG were more gathered (Figure 4), compared

to the clustering analysis with only spectral data (Figure 3). The SEG 1 and 3, which correspond mainly to soil classes of215

Ferralsol, Nitisol and Lixisol, had a more widespread distribution of samples (Figure 4). This arrangement was also observed

in the correlation between soil class and SEG using only spectral data (SEG 7, Table 2). Two soils presented association with

SEG 2, Luvisols and Planosols (Table 3). SEG 3 showed correlation with Cambisols and Nitisols. The SEG 4 presented only

42 observations, mostly belonging to Gleysols and few to Histosols. These soils were grouped in a specific SEG because they

are located in flat lands with DEM close to sea level, with great annual temperature and precipitation, compared to the Gleysols220

clustered in SEG 6. SEG 5 presented high correspondence with Arenosols and as in the analysis with only the spectra also

showed correlation with Ferralsols (SEG 1, Table 2). SEG 6 showed high association with Gleysols. SEG 7 was formed by
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Table 2. Correlation between Soil Classification (World Reference Base - WRB) and Soil Environment Grouping (SEG) using only spectral

data.

SEG / WRB Arenosol Cambisol Ferralsol Gleysol Histosol Lixisol Luvisol Nitisol Planosol Regosol

1 113 54 47 26 0 63 0 6 0 20

2 32 53 12 23 0 22 26 0 23 21

3 15 24 1 74 8 5 0 2 105 116

4 28 8 40 4 0 42 0 113 0 4

5 16 53 4 58 54 21 0 0 71 26

6 1 9 0 27 167 2 0 0 12 33

7 23 5 123 16 0 47 0 107 0 3

8 1 23 2 0 0 27 202 0 18 6

Table 3. Correlation between Soil Classification (World Reference Base - WRB) and Soil Environment Grouping (SEG) using spectral,

climatic and terrain data.

SEG / WRB Arenosol Cambisol Ferralsol Gleysol Histosol Lixisol Luvisol Nitisol Planosol Regosol

1 53 8 146 13 18 160 0 114 9 15

2 21 6 0 0 0 42 228 0 174 2

3 0 121 11 23 34 6 0 109 0 24

4 0 0 0 30 10 0 0 0 0 2

5 155 12 69 0 0 16 0 5 0 13

6 0 31 2 137 16 0 0 0 0 18

7 0 12 1 24 150 4 0 0 5 10

8 0 39 0 1 1 1 0 0 41 145

Histosols and SEG 8 by Regasols. The climate and terrain variables were able to discriminate SEG more properly, but some

soils were located far from the center of the class. These may have similar properties to other groups but not enough to fit into

them.225

4 Discussion

The Vis-NIR spectroscopy is a technique with the advantages of being faster and cheaper than the traditional soil analysis,

with important soil classification prediction and enable to be acquired in situ (Debaene et al., 2017). Teng et al. (2018) also

demonstrated the benefit of the technique when updated the Australian Soil Classification with spectroscopic predictions with

similar or better correspondence for some classes. In this study, the 10 PCs carried sufficient spectral information to suitably230

classify the soil as indicated by the overall accuracy (83%) of RF calibration model. Vasques et al. (2014) applied 20 PCs

in their study to classify the soil order, and achieved an overall accuracy of 91.6% and 67.4%, for calibration and validation,
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Figure 4. Projection of the discriminant coordinates showing the Soil Classification (World Reference Base - WRB) and Soil Spectral

Classification (SEG) applying spectral, climatic and terrain data. The circle with the number represents the center of the SEG.

respectively. The prediction of traditional soil classes applying only the spectral data is considered an excellent prediction

performance. However, when we added climatic and terrain data into the calibration model, complementary data with the

objective of incorporating the Pedologist’s impersonal knowledge on environmental, provided an improvement in the prediction235

of soil classes (overall accuracy of 88%). This result showed that aggregate the soil-landscape information into a classification

system assists traditional soil system. Depending on the size of the study area and the characteristic of the study, such addition

may not be beneficial, since climatic and terrain data are time-consuming to assemble and are not in a practical sense. Chen

et al. (2019) verified the potential of adding auxiliary soil information including color, OM and texture for modeling at the soil

order levels. They concluded that including such information improved the accuracy of the classification model, although more240

auxiliary information might be needed for better classification. In general, elevation, slope and relief were the most important

terrain predictors in the soil classification for Teng et al. (2018), and elevation was the most important for hydromorphic soils.

This corroborate the findings of the current study where elevation was important variable for Gleysols and Planosols.

Ferralsols, Nitisols and Lixisols presented similarity and were misclassified, and therefore were grouped in the same SEG.

However, according to International Soil Classification system of FAO (IUSS, 2015), these two soils are distinct in terms of245

diagnostic horizons, properties and materials. For instance, Nitisols have nitic horizon, low-activity clay, P fixation, many Fe

oxides, strongly structured, and Ferralsols present ferralic horizon, dominance of kaolinite and iron oxides. These classification

differences are considered challenging, requiring careful observation by the Pedologist in the field survey. This happens be-
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cause both are very similar soils in terms of properties, and spectra tend to have similar shape. The spectral features of Ferralsol

and Nitisol showed remarkable similarities in the entire spectral shape and position of absorbance features. In consequence,250

Vis-NIR spectroscopy was not able to recognize the underlying spectral patterns of each soil class. The main properties that

influence their spectral response is the soil colour, which is an important characteristic used as a criterion in soil type identifica-

tion (Marques et al., 2019). The colour is usually determined visually in the field by a soil expert. As soil spectral measurements

at visible range are related to attributes such as soil OM, minerals, texture, nutrients and water, soil colour can be determined

using spectroscopic data. In general, resulting from strong weathering, tropical soils are rich in iron oxides with high contents255

of hematite, and consequently, showing a red colour with lower overall reflectance. Besides, the majority of the studied soils

are developed from Sandstones (sedimentary rock). According to Bellinaso et al. (2010), the distinction between Ferralsols and

Nitisols based on the spectrum is very difficult and their differences are mostly in morphology. This agrees with Terra et al.

(2018), and also Vasques et al. (2014) who found the same misclassification of Nitisols for Ferralsols in 80% of the profiles.

Some classes share many soil properties and even environmental characteristics and are more difficult to distinguish. How-260

ever, other soils are relatively distinctive and, consequently, it is possible to categorize them in a particular SEG. Soil type

differentiation based on the Vis-NIR spectra takes into consideration, predominantly, the soil properties such as colour, iron

oxides, clay minerals, carbonates and OM. According to Viscarra Rossel and Webster (2011), Vis–NIR can be used for the

discrimination and identification of soils, when distinguishable mineral and organic characteristics are present in the spectra.

The Planosols and Gleysols could be arranged in the same SEG because of their soil properties resemblance. However, they265

were assembled in distinct SEG. Both soils occurred with seasonally waterlogged areas, poorly drained, saturated with water

for long periods, showing greyish, blueish, reddish, yellowish colors. The main distinction between them is that the Planosols

have an abrupt textural difference in the first 100 cm of soil surface. Gleysols have gleyic properties throughout the entire

profile. The Histosols were discriminated in a particular SEG. This demonstrates that organic soils are very unique, since they

present surface horizons rich in OM and B horizons dominated by accumulated organic compounds, characterizing dark col-270

ored soils. In the discrimination of Australian soil classes applying Vis-NIR spectra, Viscarra Rossel and Webster (2011) were

also successfully able to differentiate Histosols from the other soils.

For practical applications (land use and agricultural management), the arrangement of certain classes with similar chemical,

physical and/or morphological characteristics is not detrimental, since the decisions about these soils are usually very similar,

suffering only minor changes in specific situations (Vasques et al., 2014). Some of the differences between the traditional soil275

classes are mainly based on specific soil properties and others more on the morphological field determination. For instance, the

difference between Ferralsols and Nitisols is minimal and for the new generation of Pedologists this distinction is somewhat

tricky. We are not claiming that the role of the Pedologist is not important. On the contrary, there is no way to eliminate it.

When is the case of field evaluation to relate the soil-environment formation, the importance of empirical process increases,

then when it comes to modeling or digital mapping, this significance diminishes. In terms of agricultural management in natural280

conditions, Nitisols can provide greater agricultural production, but this may vary for a number of reasons, and therefore these

two classes present practically no management distinctions. For some other classes, such as Cambisols, its classification is
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intrinsic by the Pedologist to distinguish whether there is or not a presence of sufficient pedogenesis in the subsurface layer to

qualify it as Cambic horizon.

The current soil classification system are quite specific to our set of soil classes. We understand the importance of covering285

the greatest possible number of soil classes. We encourage further research with a larger and diverse types of soil, possibly in

a global level. Despite this, the SEC demonstrated substantial findings regarding the grouping of soils and the utilization of

climatic and terrain variables that relates soil-environmental information. As the soil formation is dependent on environmental

factors, we included climatic and terrain data to simulate the tacit knowledge of the soil-landscape relationship that is taken by

Pedologists, who derive traditional soil classification. Indeed, a taxonomic system has as vantage on communication between290

community but fails on describing a homogeneous area where environmental factors occur. This led us to indicate the impor-

tance of grouping areas with similar characteristics, and deal with the taxonomic situation by the strong computational systems

available. Thus, there is a difference between taxonomic classification as is currently used and the grouping areas, which is

more related to the soil series.

This study sought to develop a quantitative system to group similar soils as an alternative to taxonomic strategy. The addition295

of climate and terrain data was beneficial and collaborated to better distinguish the SEG. Certainly, this is an important indica-

tive of discrepancies in-which pedologist observe in field. In many situations, a same taxonomic soil can be in very different

reliefs. This is a typical situation where soil series would distinguish them, and SEG as well. Moreover, the 8 SEG can be indi-

vidually categorized by observing their soil, climate and terrain properties. The generalised relationship between SEG classes

and these properties are shown in Figure 5. The outcomes showed that this classification system proposition could group soil300

with similar properties. This study can assist the universal soil system, which demand less interference of soil analysis, less

personal/subjective data, s and more use of automated devices, such as sensors. Figure 6 is showing the shapes of each spectral

curve for all SEG. Lastly, we described the concept and characterization of each SEG.

• SEG 1: Soils with high sand, medium clay and low silt contents, medium organic carbon, low fertility, annual temperature

around 22°C, high annual precipitation, soil water balance and potential evapotranspiration and located in medium elevation.305

• SEG 2: Soils with low sand and medium clay and silt contents, medium organic carbon content, low fertility, annual

temperature around 23°C, low annual precipitation and soil water balance, with medium potential evapotranspiration and

located in medium elevation.

• SEG 3: Soils with similar sand and clay contents (medium) and low silt content, high organic carbon, medium fertility,

annual temperature about 20°C, high annual precipitation and soil water balance, with medium potential evapotranspiration310

and located in high elevation (in irregular/roughness areas).

• SEG 4: Soils with low sand, medium clay and silt contents, low organic carbon, high fertility, high annual temperature

around 26°C and annual precipitation, high soil water balance and potential evapotranspiration and located in low elevation.

• SEG 5: Soils with high sand and low clay and silt contents, low organic carbon content, low fertility, annual temperature

around 22°C, high annual precipitation and soil water balance, with high potential evapotranspiration and located in high315

elevation.
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Figure 5. Generalised relationship between the variable and Soil Environment Grouping (SEG).

• SEG 6: Soils with low sand, high clay and medium silt contents, low organic carbon content, high fertility, annual temper-

ature around 21°C, high annual precipitation and soil water balance, with medium potential evapotranspiration and located in

low elevation areas.

• SEG 7: Soils high sand and low clay and silt contents, high organic carbon content and fertility, high annual temperature320

around 23°C, medium annual precipitation, high soil water balance, with low potential evapotranspiration and located in low

altitudes.

• SEG 8: Soils with relatively balanced sand, silt and clay contents, high organic carbon content, low fertility, low annual

temperature (19°C), high annual precipitation and soil water balance, with low potential evapotranspiration and located in low

elevation.325

5 Conclusions

We proposed a quantitative soil grouping system that takes into consideration spectra, climate and terrain variables. The system

was designated as Soil Environment Grouping (SEG). The system firstly indicated strong relationship with current soil classifi-

cation (WRB classification system). On the other hand, we observed that many different soil classes were inserted in the same
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Figure 6. Generalised continuum removal reflectance curve of each Soil Environment Grouping (SEG).

group after running the SEG. This happened because taxonomic system is plastered and thus, can indicate inconsistencies on330

what is really been observed. SEG could define 8 groups according to AIC criteria as with clustering analysis. Soil classes such

as Ferralsols and Nitisols share many soil and environmental characteristics, which are difficult to distinguish. However, other

soil classes, such as Histosols, are relatively distinctive from the others and, consequently, it was possible to categorize in a

particular SEG. This innovative soil system facilitated the identification and grouping of soils with similar characteristics due to

the use of environmental variables. We believe that this classification system can provide extra information needed for the bet-335

ter understanding and sustainable management of soil. The development of soil systems such SEG can assist in the distinction

of soil types and serve as a new soil data source. The present system follows the already existing soil series system which did

not go forward because of the several difficulties to be repeated by users and on its communication between communities. On

the other hand, with the current strong computing systems, algorithms, statistical packages, spectral libraries, remote sensing

and environmental data (free or open sources), quantitative knowledge has become possible. Therefore, we believe that a soil340

series system (as proposed here) can gain potential to group and discriminate soils.
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Figure A1. Cumulative variance explained for the 10 principal components.

Viscarra Rossel, R. A. and Webster, R.: Discrimination of Australian soil horizons and classes from their visible-near infrared spectra, Euro-

pean Journal of Soil Science, 62, 637–647, https://doi.org/10.1111/j.1365-2389.2011.01356.x, http://doi.wiley.com/10.1111/j.1365-2389.

2011.01356.x, 2011.
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Figure A2. The important spectral features and the contributions of individual wavelengths for PC1 to PC10.

Figure A3. The AIC criteria showing that the lowest value was found with 8 clusters.
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Table A1. Confusion matrix and accuracy of soil classification model (World Reference Base - WRB) using only spectral data.

WRB Arenosol Cambisol Ferralsol Gleysol Histosol Lixisol Luvisol Nitisol Planosol Regosol

Arenosol 174 4 29 0 0 17 0 0 0 1

Cambisol 4 169 8 9 0 5 0 0 0 30

Ferralsol 18 14 129 4 0 21 0 4 0 11

Gleysol 5 10 3 192 0 5 0 0 0 10

Histosol 0 3 0 4 228 1 0 0 0 4

Lixisol 20 3 33 1 0 167 0 1 1 5

Luvisol 1 0 0 0 0 5 228 0 0 0

Nitisol 0 4 26 0 0 3 0 222 0 0

Planosol 7 4 0 9 1 5 0 0 228 4

Regosol 0 18 1 9 0 0 0 0 3 164

Total number of profiles 229 229 229 228 229 229 228 228 229 229

Class Accuracy (%) 76.0 73.8 56.3 84.2 100 72.9 100 97.4 99.6 71.6

Overall Accuracy (%) 83.14
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