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Abstract. Machine learning algorithms are good in computing non-linear problems and fitting complex composite functions, 

which makes them an adequate tool to address multiple environmental research questions. One important application is the 

development of pedotransfer functions (PTF). This study aims to develop water retention PTFs for two remote tropical 10 

mountain regions of rather different soil-landscapes, dominated by (1) organic soils under volcanic influence, and (2) 

tropical mineral soils. Two tuning procedures were compared to fit boosted regression tree models: 1) tuning by grid search, 

which is the standard approach in pedometrics and 2) tuning by differential evolution optimization. A nested cross-validation 

approach was applied to generate robust models. The developed area-specific PTFs outrival other more general PTFs. 

Furthermore, the first PTF for typical soils of Páramo landscapes, i.e. organic soils under volcanic influence, is presented. 15 

Overall, results confirmed the differential evolution algorithm’s high potential for tuning machine learning models. While 

models based on tuning by grid search roughly predicted the response variables’ mean for both areas, models applying the 

differential evolution algorithm for parameter tuning explained up to 22 times more of the response variables’ variance. 

1 Introduction 

Machine learning algorithms are good at fitting highly complex non-linear functions (Witten et al., 2011). Major application 20 

fields in soil science investigate the soils’ spatial variability (Heung et al., 2016), relate data from soil sensing to soil 

properties (Viscarra Rossel et al., 2016), or develop pedotransfer functions (PTFs, Botula et al., 2014; Van Looy et al., 

2017). McBratney et al. (2019) give a timeline on developments in pedometrics, that refer to machine learning in multiple 

applications.  

Pedotransfer functions derive laborious and complex soil parameters from more readily available soil properties. Most PTFs 25 

predict soil hydraulic properties. A review on the involved methodology is provided by Pachepsky and Rawls, (2004), Shein 

and Arkhangel’skaya (2006), Vereecken et al. (2010). Machine learning algorithms applied for PTF development include 

e.g. support vector machines (Lamorski et al., 2008), artificial neural networks (Haghverdi et al., 2012) and regression trees 

(Tóth et al., 2015). According to the review by Van Looy et al. (2017), most PTFs are developed for mineral soils, while 

PTFs applicable to organic soils or to soils with specific properties like volcanic ash soils are highly underrepresented. Patil 30 
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and Singh (2016) and Botula et al. (2014) provide reviews of hydrological PTFs for mineral soils of certain tropical and 

temperate regions. With particle size distribution (PSD) being the basic input parameter to derive soil hydrologic properties, 

most PTFs also use bulk density (BD) and soil organic carbon content (SOC) as predictors. As summarized in the review of 

Patil and Singh (2016), the application of existing hydrological PTFs is often restricted by two reasons: 1) The majority of 

PTFs are developed on soils that developed under certain conditions. Often these PTFs cannot be applied sufficiently in 35 

other regions as the site-specific soil-forming conditions can cause considerable differences in physical and chemical soil 

properties. This is for example demonstrated by the studies of Botula et al. (2012) and Moreira et al. (2004) who were able to 

show that, when applied to independent tropical soil data, existing temperate PTFs perform worse than existing tropical 

PTFs. 2) On the other hand, the applicability of existing PTFs is further restricted by the required input data. As stated by 

Morris et al. (2019) hydraulic PTFs developed on mineral soils are often inapplicable to organic soils. The measurement of 40 

the predictor variable PSD may be hampered by high organic matter contents, other organic soils may not include sufficient 

mineral soil material to justify PSD analysis at all. In general, only very few PTFs were developed for organic soils and most 

of them are based on data from specific temperate regions and rely on very specific predictor variables. Korus et al. (2007) 

for example related the water retention of polish peat soils to the predictors ash content, specific surface area, BD, pH, and 

iron content. In Finnland semiempirical water retention PTFs were developed on different predictors including BD, sampling 45 

depth and botanical residues (Weiss et al., 1998). Even though it was never intended to be used for predictions, Rocha 

Campos et al. (2011) provide the only regression model known to us, which relates the soil hydrologic parameters of tropical 

organic soils to independent variables (fiber content, mineral material, BD, organic matter fractionated into humin as well as 

fulvic and humic acids).  

Finally, the application of machine learning algorithms requires them to be adjusted to the specific modelling problem by 50 

parameter tuning. Tuning parameter values cannot be calculated analytically, so in soil science applications, grid search is 

often used as a standard technique (e.g. Babangida et al., 2016; Khlosi et al., 2016; Twarakavi et al., 2009). It works by 

testing a number of predefined parameter values or combinations of parameter values to finally choose the best. 

Accordingly, the predominant part of the multivariate parameter space cannot be searched in the case of real-valued 

parameters and the optimum might not be found. To overcome this limitation, mathematical optimisation is a promising 55 

alternative. Commonly applied optimisation algorithms include artificial bee colony, simulated annealing, particle swarm 

optimisation, the nelder-mead method or evolutionary and genetic strategies. Their applications range from pattern 

recognition (e.g. Jayanth et al., 2015; Liu and Huang, 1998), through solving combinatorial problems (e.g. Kang-Ping Wang 

et al., 2003; Reeves, 1993) to parameter tuning in machine learning (e.g. Imbault and Lebart, 2004; Ozaki et al., 2017). We 

would like to particularly emphasize the differential evolution algorithm. It has been applied to diverse optimisation 60 

problems including the prediction of stable metallic clusters (Yang et al., 2018), the navigation of robots (Martinez-Soltero 

and Hernandez-Barragan, 2018), the classification of microRNA targets (Bhadra et al., 2012), parity-P problems (Slowik and 

Bialko, 2008), the parameter tuning of machine learning models trained to e.g. predict landslides (Tien Bui et al., 2017), and 

last but not least the first successful application in pedometrics (Gebauer et al., 2019). Compared to the other algorithms 
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mentioned above, it usually leads to better results and a comparatively low computing time (Price et al., 2005).   65 

This study first of all aims to develop water retention PTFs for two tropical soil-landscapes dominated by organic soils under 

volcanic influence, like they are commonly occurring in Páramo regions, and tropical soils of a dry climate. Currently, PTFs 

suitable for the soils of these regions are at best very few, if any, at all. As we assume the parameter tuning technique to 

affect the performance of the machine learning based PTFs, our second and equally important aim is to test the power of 

differential evolution optimization for tuning by comparing it to the grid search approach usually applied in pedometrics. We 70 

assume that the pre-eminence of optimization for parameter tuning in machine learning will particularly show when applying 

it to a machine learning algorithm that requires the fitting of numerous real-valued parameters. This is why we have chosen 

to fit boosted regression tree models. According to our knowledge, this is the first time both parameter tuning techniques are 

directly compared for a machine learning application in soil science. 

2 Material and methods 75 

2.1 Research areas 

The two investigated soil-landscapes are situated in southern Ecuador (Fig. 1). The Quinuas Catchment encompasses an area 

of about 93 km2, including parts of the Cajas National Park (Fig. 1c). Being located between 3000 and 4400 m above sea 

level (a.s.l.), the mean annual temperature ranges between 5.3 and 8.7 °C with no seasonality (Carrillo-Rojas et al., 2016). 

With peaks in March/May and October (Celleri et al., 2007) mean annual precipitation varies between 900 and 1600 mm 80 

(Crespo et al., 2011). Due to volcanic ash deposits and the cold and wet climate, soils with a low bulk density and high SOC 

contents are typical (Buytaert et al., 2007). The Quinuas Catchment can be allocated to the Páramo ecosystem (Guio Blanco 

et al., 2018), which plays a major role in the water supply of the inter-Andean region (Buytaert et al., 2006a, 2006b, 2007).  

The Laipuna dry forest region is part of the “Laipuna Conservation and Development Area” and covers approximately 16 

km² (Fig. 1d). Its temperature profile shows little seasonal variability, while there is a rain period from January to May. 85 

Depending on the altitude ranging between 400 and 1500 m a.s.l., the mean annual temperature varies between 16 and 23 °C 

and mean annual precipitation between 540 mm and 630 mm (Peters and Richter, 2011b, 2011a). Additionally, El Niño-

Southern Oscillation influences the area (Bendix et al., 2003, 2011). Laipuna is part of an ecosystem with high biodiversity 

and many endemic species (Best and Kessler, 1995; Linares-Palomino et al., 2009), which are strongly adapted to the 

ecosystem and may be threatened by possible climate-induced changes of the water supply. 90 
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Fig. 1. Research areas. a) Ecuador within South America; b) Research areas within Ecuador; c) Quinuas. d) Laipuna (overlaid hillshading 

with a light source from north). Adapted from Ließ (2015). Topographical data use with permission from the Ecuadorian Geographical 

Institute (2013, national base, scale 1:50.000), further GIS data provided by NCI and ETAPA. 

2.2 Soil data 95 

To select representative datasets for the two areas, random stratified sampling was applied using the algorithm “QC-arLUS” 

(Ließ, 2015). It allows representing a research area`s complete landscape structure in sampling site selection while actual site 

selection is limited to the accessible area. Two sites were sampled per landscape stratum, resulting in 46 sites for Quinuas 

and 55 for Laipuna. Water retention at pF 0, 0.5, 1.5 and 2.5 was measured applying hanging water columns of increasing 

length to undisturbed samples of 100 cm³. For BD measurements, the samples were oven-dried at 105 °C for three days. For 100 

Laipuna, disturbed samples were oven-dried at 40 °C, sieved to 2 mm and PSD was determined according to DIN ISO 

11277:2002-08 in two (sand fractions) and three (clay and silt fractions) replicate samples. Measurements distinguish the 

following particle size classes: clay (< 2 µm), fine silt (2 – 6.3 µm), medium silt (6.3 – 20 µm), coarse silt (20 – 62 µm), fine 

sand (62 – 200 µm), medium sand (200 – 630 µm) and coarse sand (630 – 2000 µm). Sieved samples were ground and tested 
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for carbonates prior to the SOC determination using dry combustion. Multivariate outlier removal was carried out using the 105 

“hclust” function from R-package “fastcluster” (Müller, 2018), version 3.4.4. 

2.3 Boosted regression trees 

The BRT algorithm combines the machine learning techniques regression trees and boosting. Tree models use decision rules, 

which involve the predictor variables to recursively partition the response variable data into increasingly similar subgroups 

until terminal nodes are reached (Kuhn and Johnson, 2013). The values of the terminal nodes are averaged to be used for 110 

prediction (James et al., 2017). The boosting machine learning technique improves the overall model accuracy by combining 

a number of simple models (Witten and Frank, 2005). To develop the PTFs, BRT models were trained using the “gbm” R-

package, version 2.1.3 (Ridgeway, 2017), which is based on Friedman's (2002) stochastic gradient boosting. This boosting 

technique iteratively fits a number of simple regression tree models to random data subsets to finally make them form a 

linear combination. Thereby, each new regression tree is fitted to explain most of the previous model’s residuals. To apply a 115 

BRT model, usually up to four parameters are tuned: number of trees (n.trees), shrinkage, interaction depth, and bag fraction 

(e.g. Ottoy et al., 2017; Wang et al., 2017; Yang et al., 2016). Elith et al. (2008) provide a detailed analysis of their function: 

The n.trees parameter describes the number of regression tree models to be iteratively fitted. Shrinkage defines the model’s 

learning rate by scaling the outcome of each simple regression tree, thereby controlling their contribution to the final 

prediction. The interaction depth parameter controls the number of splits in each tree to divide the response variable data into 120 

subgroups. The bag fraction parameter determines the size of the randomly selected data subsets. This is able to reduce the 

risk of overfitting (Friedman, 2002), but may lower the model robustness (Elith et al., 2008). To develop PTFs for Quinuas 

and Laipuna, these four parameters were tuned following the steps described in Section 2.4 and 2.5. 

2.4 Parameter tuning 

Parameter tuning was done in two different ways: (1) by grid search and (2) by optimization applying the differential 125 

evolution algorithm. In order to reduce computing time, the number of values to be compared by grid search was limited to 

five for each of the 𝑘 parameters. The selected values were based on the recommendations of Elith et al. (2008) and 

Ridgeway (2012). They are summarised in Table 1. Finally, k5 different combinations of tuning parameter values, i.e. 625 

four-dimensional vectors were compared. In contrast to this, the mathematical optimization algorithm “differential 

evolution” by Storn and Price (1995) is able to search the multivariate space between defined upper and lower parameter 130 

limits. The parameter values are optimized by minimizing an objective function, which defines their suitability. The 

objective function is allowed to be stochastic and noisy and does not need to be differentiable or continuous (Mullen et al., 

2011). Following evolutionary theory, this is done by repeating three steps for i iterations: mutation, crossover, and selection 

(Fig. 2). At first, an initial parent population of 𝑣  𝑘-dimensional parameter vectors is generated randomly. With each 

iteration i, these vectors are changed by mutation and randomly mixed by crossover to generate a new population. Selection 135 

compares the objective function values belonging to the parent and the new vector to decide whether a new vector replaces 
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its parent vector. Differential evolution was applied using the R-package “DEoptim”, version 2.2.4 (Ardia et al., 2016). For 

each tuning parameter, optimization limits correspond to the smallest and largest grid search values (Table 1). The number of 

vectors of size 𝑘 = 4 tuning parameters was set to 𝑣 = 100. The R-package’s default mutation strategy was used, which 

changes each parent vector by adding two summands: (1) the difference between two random parent vectors and (2) the 140 

difference between the vector to be perturbed and the best vector found in the parent population. Summands were scaled by 

the factor 0.8. During crossover the probability of randomly mixing the parent and the mutated vectors’ elements was set to 

50%. To reduce computing time, the optimisation process was stopped after imax = 10 iterations without improving the 

objective function or a maximum number of 200 iterations, respectively. Prior to the selection step, the discrete tuning 

parameter values (n.trees, interaction depth) were rounded, as the differential evolution algorithm treats all values as real 145 

numbers during mutation and crossover. To select the final tuning parameter values, grid search and differential evolution 

both minimised the cross validated RMSET as objective function. RMSET calculation is explained in Section 2.5.  

 

 

Fig. 2. Flowchart of the differential evolution algorithm. OBJ = objective function, p = parent population, n = new population, i = 150 
iteration, imax = maximum number of iterations, v = number of vectors, BRT = boosted regression trees. Adapted from Gebauer et al. 

(2019). 

 

 

 155 
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Table 1. Tuning parameter values to be tested by grid search and optimization limits required by the differential evolution 

algorithm.  

Tuning parameter Grid search values Lower and upper differential evolution limits 

n.trees 100; 1000; 2000; 3000; 4000 100 4000 

shrinkage 0.001; 0.005; 0.01; 0.05; 0.1 0.001 0.1 

interaction depth 1; 2; 3; 4; 5 1 5 

bag fraction 0.5; 0.6; 0.7; 0.8; 0.9 0.5 0.9 

2.5 Performance evaluation 

In order to build robust models, we followed a nested cross-validation approach. Stratified five-fold cross-validation (CV) 160 

was applied for two purposes: (1) to conduct robust parameter tuning on resampled data subsets by either grid search or the 

differential evolution algorithm and (2) to evaluate the final performance of models built on tuned parameter values. CV 

provides error metrics with good bias and variance properties, is beneficial for small datasets and avoids overfitting (Arlot 

and Celisse, 2009; James et al., 2017). Following the steps shown in Fig. 3, the stratified five-fold CV was implemented with 

five repetitions for model evaluation and one repetition for parameter tuning. In Step 1, the complete dataset (n = 100%) was 165 

split into five folds with each of them (n = 20%) once used as the test set, leaving the remaining folds as the model training 

set. For resampling in parameter tuning (Step 2), each model training set was again subdivided, similar to Step 1. Each 

tuning parameter vector in grid search and the differential evolution algorithm was evaluated by the cross-validated RMSET 

(Step 3, Step 4). By comparing the RMSET, the best vector of tuning parameter values for each model evaluation training set 

was selected and applied (Step 5, Step 6). To assess model performance, the coefficient of determination (R²E) and the root 170 

mean squared error (RMSEE) of model evaluation were calculated by predicting the associated test set data (Step 7). To 

divide the datasets into folds, the function “partition_cv_strat” from R-package “sperrorest”, version 2.0.0 (Brenning et al., 

2017) was applied, with three equal probability strata of the response variable’s density function. 
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Fig. 3. Nested cross-validation approach comprising model evaluation and parameter tuning. Adapted from Guio Blanco et al. 175 
(2018). The tree icons symbolize BRT models, which are repeatedly (circular arrows) trained and tested on different data sets. The 

numbers within black circles belong to the modeling steps’ description. RMSET = root mean squared error of parameter tuning, RMSEE = 

root mean squared error of model evaluation, R2
E = coefficient of determination of model evaluation, GS = grid search, DE = differential 

evolution. 

3 Results and discussion 180 

3.1 Model input 

After removing multivariate outliers, the dataset contained 51 and 46 values for Laipuna and Quinuas, respectively. A 

summary of the data is shown in Fig. 4 and 5. As expected both areas show huge differences regarding the values of 

response and predictor variables.  BD values in Quinuas range from 64 to 807 kg m-3, while SOC values vary between 8.8 

and 46.4 wt. %. SOC values are normally distributed, while BD data is skewed right. Averagely decreasing by 22%, water 185 

retention ranges from 0.25 cm3 cm-3 (pF 2.5) to 0.94 cm3 cm-3 (pF 0). While the data is skewed to the right for pF 0, the data 

distribution for the other pF values is left-skewed. For Laipuna, BD ranges between 1157 and 1727 kg m-3, displaying a 

right-skewed distribution. The SOC content is normally distributed and varies between 0.4 and 3.8 wt. %. Clay content 

ranges between 17 and 48 %, silt between 24 and 45 % and sand between 14 and 50 %. Especially fine and medium silt 

show a skewed distribution. Water retention values are ranging between 0.25 cm3 cm-3 (pF 2.5) and 0.61 cm3 cm-3 (pF 0). On 190 

average, they decrease by 37 ± 0.09 % with increasing water tension. Data is skewed right for pF 0 and skewed left for pF 

0.5.   

Quinuas soils go along with the low density, porous soils, rich in organic material, that are found throughout the Paute river 

basin (Buytaert et al., 2007; Poulenard et al., 2003). Loosely bedded volcanic ash deposits further explain the low bulk 
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density values (Buytaert et al., 2007). High SOC contents are caused by low redox potential and the presence of 195 

organometallic complexes inhibiting degradation processes (Buytaert et al., 2006a). Comparatively high water retention 

values can be attributed to the porous structure of Páramo soils being able to retain a lot of water (Buytaert et al., 2007). The 

relatively small decrease in water retention with increasing water tension is assumed to be caused by the high amounts of 

organic matter being characterized by a high water holding capacity (Buytaert et al., 2007). Measured BD and SOC content 

are in accordance with data observed for other Páramo regions (e.g. Buytaert et al., 2007, 2006b). The water retention values 200 

are also comparable to data obtained in other Páramo areas (Buytaert et al., 2005) and soils with high organic matter content 

(Schwärzel et al., 2002, 2006). Extreme values in BD and water retention (Fig. 4 and Fig. 5) correspond to soil samples with 

a higher proportion of mineral components or andic properties (Guio Blanco et al., 2018). Expecting these values to be 

reliable, they were not removed from the model input. The BD and SOC data measured for the Laipuna soil samples 

correspond to other dry forest ecosystems (e.g. Conti et al., 2014; de Araújo Filho et al., 2017; Singh et al., 2015), whereas 205 

the PSD shows higher clay content compared to the dry forest soils investigated by Cotler and Ortega-Larrocea (2006), Jha 

et al. (1996) and Sagar et al. (2003). Measured water retention values are higher than those obtained in a tropical dry forest 

in Brazil (Vasques et al., 2016), probably caused by the higher clay content enhancing the water holding capacity. 

 

Fig. 4. Predictor variables. 4.1 Quinuas, 4.2 Laipuna, a) SOC content, b) bulk density, c) particle size distribution displayed as a 210 
cumulative distribution function. 
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Fig. 5. Response variables. 5.1 Quinuas, 5.2 Laipuna, water retention at a) pF 0, b) pF 0.5, c) pF 1.5, d) pF 2.5. 

3.2 Model performance 

The performance of the final models built on parameters selected by grid search and the differential evolution algorithm is 215 

demonstrated by the error metrics R²E and RMSEE in Fig. 6 (Quinuas) and 7 (Laipuna) as well as by scatterplots comparing 

observed and predicted water retention values in Fig. 8 (Quinuas) and 9 (Laipuna). Models optimized by the differential 

evolution algorithm show a better predictive performance than models tuned by grid search.  Based on scaled water retention 

values, all grid search models resulted in very similar RMSEE values (mean 0.20 ± 0.01) for Quinuas, while for Laipuna 

mean RMSEE range between 0.19 ± 0.00 (pF 2.5) and 0.25 ± 0.00 (pF 0 and pF 0.5). Looking at both error metrics, the 220 

performance of the differential evolution based Quinuas models worsens with increasing pF values, whereas for Laipuna 

model performance improves: final models with parameter tuning by differential evolution correspond to mean RMSEE 

values ranging from 0.11 ± 0.01 (pF 0) to 0.17 ± 0.01 (pF 2.5) for Quinuas and from 0.15 ± 0.01 (pF 2.5) to 0.26 ± 0.01 (pF 

0) for Laipuna. Mean R²E values resulting from grid search, are varying between 0.04 ± 0.03 (pF 0) and 0.09 ± 0.07 (pF 1.5) 

for Quinuas and between 0.03 ± 0.04 (pF 0.5) and 0.05 ± 0.05 (pF 1.5) for Laipuna. The differential evolution algorithm 225 

resulted in mean R²E values ranging from 0.58 ± 0.09 (pF 2.5) to 0.79 ± 0.04 (pF 0) for Quinuas and from 0.27 ± 0.08 (pF 0) 

to 0.61 ± 0.04 (pF 2.5) for Laipuna. In comparison to grid search, models tuned by differential evolution show a higher 

predictive performance for all Quinuas models and the Laipuna models for pF 1.5 and pF 2.5: mean R²E values are up to 22 

(Quinuas, pF 0) and 18 (Laipuna, pF 2.5) times higher, while RMSEE values are up to 1.9 (Quinuas, pF 0) and 1.3 (Laipuna, 

pF 2.5) times lower than those obtained by grid search. This corresponds to the scatterplots (Fig. 11 and 12): the largest 230 
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difference between grid search and differential evolution can be recognized for the pF 0 (Quinuas) and pF 2.5 (Laipuna) 

models. Additionally, as demonstrated by the scatterplots, the grid search models roughly predict the water retention values’ 

mean, while the models with parameter tuning by differential evolution are able to explain more of the observations’ 

variance. However, the five grid search predictions for each observation (Fig. 9 a-d and 10 a-d), cover a smaller range than 

the differential evolution predictions. Especially the differential evolution results of the Laipuna pF 0 and pF 0.5 models are 235 

characterized by comparatively high variance.   

Probably caused by the better adjustment to the modeling problem, differential evolution models are able to explain more of 

the water retention’s variance than the models tuned by grid search. The higher variability of the differential evolution 

predictions corresponds to the differential evolution tuning parameter values covering a wider range than those achieved by 

applying grid search (Section 3.2). For Laipuna, the improvement of the differential evolution models with increasing pF 240 

values is assumed to be caused by the used predictors. With increasing pF values the influence of PSD on water retention 

increases. At the same time the influence of BD decreases, which improves model performance as BD measurements were 

not corrected for stone content and are, therefore, not as good a predictor as they could be. For Quinuas the decreasing 

predictive performance with increasing pF values can probably be attributed to the lack of further predictors related to the 

soil matrix. PSD measurements were not conducted due to the prevalence of soils with organic properties in this area. 245 

Overall, the predictive power of all differential evolution based Quinuas models and the Laipuna pF 2.5 models are 

comparable to other studies. Botula et al. (2013) for example obtained R² ranging from 0.32 to 0.68 (pF 0) and from 0.60 to 

0.68 (pF 1.5) by using k-nearest neighbor for soil data originating from the Lower Congo. Keshavarzi et al. (2010) used an 

artificial neural network to predict water retention at different pF values for soils from the Qazvin province in Iran. 

Haghverdi et al. (2012) used the same machine learning technique on soils from northeastern and northern Iran. While 250 

Keshavarzi et al. (2010) gained R2 of 0.77 (pF 2.5) and 0.72 (pF 4.2), Haghverdi et al. (2012) reached R2 ranging from 0.81 

to 0.95.   

Applying existing PTFs on the Laipuna dataset confirmed the good performance of the differential evolution BRT models. 

PTFs were selected based on four criteria: (1) developed for tropical soils, (2) similar predictor variables, (3) regression 

equation provided and (4) included in the peer-reviewed Clarivate Analytics’ Web of Science database. Following the 255 

approach of Shang (2013), soil texture was previously converted to the USDA classification system by spline interpolation. 

Mean RMSEE values of the differential evolution tuned BRT models were between 1.5 times (pF 2.5, Minasny and 

Hartemink (2011) and Tomasella et al. (2000)) and 8.8 times (pF 1.5, Barros et al. (2013) better (Table 2). Because of 

differences in the predictors, it is difficult to find organic PTFs applicable to the Quinuas dataset. An exhaustive literature 

search revealed only the PTF of Boelter (1969), who related water retention at pF 0 to BD for temperate peat soils in 260 

northern Minnesota. Water retention values predicted by the existing PTF differed a lot from measured values. For BD 

higher than 370 kg m-3 predictions became even negative. While applying differential evolution BRT models resulted in a 

mean RMSEE of 0.032 (unscaled), applying the Minnesota PTF resulted only in an RMSE of 1.860. The high RMSE value is 
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assumed to be caused by large differences between the Minnesota and Quinuas soils and underlines the necessity of 

developing water retention PTFs specifically for tropical organic soils.  265 

In general, we expect BRT model performance to improve further by removing extreme values in the model input or by 

using larger datasets. Especially for Quinuas, low water retention values are underrepresented in the dataset. According to 

Guio Blanco et al. (2018), these values are primarily observed in the lower part of the river valley and include measurements 

from mineral soils.  

 270 

Table 2. Unscaled root mean squared errors for the tested PTFs. The best results for each matric potential are underlined. BRT PTF 

results are averaged. 

PTF [data origin] Theta 0 Theta 0.5 Theta 1.5 Theta 2.5 

BRT PTF [Laipuna]  0.031 0.029 0.032 0.030 

Barros et al. (2013) [Brazil] * 0.176 0.118 0.280 0.071 

Gaiser et al. (2000) [Brazil and Niger] - - - 0.062 

Minasny and Hartemink (2011) [various 

tropical regions] 

- - - 0.044 

Nguyen et al. (2014) [Vietnam] - - 0.047 0.070 

Obalum and Obi (2012) [Nigeria] - - - 0.150 

Pollacco (2008) [USA] - - - 0.068 

Tomasella et al. (2000) [Brazil] * 0.080 0.071 0.053 0.044 

* applied to predict parameters of the Van Genuchten equation first. 

   

Fig. 6. Error metrics of the Quinuas BRT models. 6.1 RMSEE, 6.2 R²E, a) pF 0, b) pF 0.5, c) pF 1.5, d) pF 2.5. Each boxplot is based on 275 
five values resulting from five CV repetitions. GS = grid search, DE = differential evolution algorithm. 
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Fig. 7. Error metrics of the Laipuna BRT models. 7.1 RMSEE, 7.2 R²E, a) pF 0, b) pF 0.5, c) pF 1.5, d) pF 2.5. Each boxplot is based on 

five values resulting from five CV repetitions. GS = grid search, DE = differential evolution algorithm. 

   280 
Fig. 8. Comparison of predicted and observed water retention values for Quinuas. 8.1 Models with tuning by grid search, 8.2 Models 

with parameter tuning by differential evolution, a) pF 0, b) pF 0.5, c) pF 1.5, d) pF 2.5. Each boxplot is based on five values resulting from 

five CV repetitions. 
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Fig. 9. Comparison of predicted and observed water retention values for Laipuna. 9.1 Models with tuning by grid search, 9.2 Models 285 
with parameter tuning by differential evolution, a) pF 0, b) pF 0.5, c) pF 1.5, d) pF 2.5. Each boxplot is based on five values resulting from 

five CV repetitions. 

3.3 Model parameters 

The final tuning parameter values obtained by grid search and the differential evolution algorithm are summarised in Fig. 10 

(Quinuas) and 11 (Laipuna). The displayed boxplots show the selected 25 tuning parameter values corresponding to the 290 

models built by five-fold CV with five repetitions. Grid search compared 625 previously defined parameter vectors, while 

the differential evolution algorithm tested at least 1000 parameter vectors in the defined ranges of the four-dimensional 

parameter space. Differences between the two parameter tuning techniques are most distinct for n.trees and shrinkage for 

both research areas. Neglecting outliers, values obtained by the differential evolution algorithm cover a wider range than 

those resulting from grid search: while n.trees was in most cases set to the lowest tested value (100) by grid search, the 295 

differential evolution algorithm resulted in mean n.trees values ranging from 310 ± 321 (pF 0) to 810 ± 1132 (pF 1.5) for 

Quinuas and from 727 ± 851 (pF 0) to 1688 ± 1345 (pF 2.5) for Laipuna. Thereby, the mean n.trees values obtained by 

differential evolution parameter tuning are more than five (Quinuas) and more than ten times (Laipuna) higher than the mean 

grid search values. Neglecting extreme values, the shrinkage values resulting from the differential evolution algorithm also 

cover a wider range than the values obtained by the grid search tuning technique. For both areas, the shrinkage values were  300 

usually set to 0.001 or 0.01 by grid search, while applying the differential evolution algorithm resulted in mean shrinkage 

values ranging from 0.040 ± 0.028 (pF 0.5) to 0.047 ± 0.030 (pF 2.5) for Quinuas and from 0.034 ± 0.03 (pF 0) to 0.062 ± 

0.027 (pF 2.5) for Laipuna. On average, the differential evolution shrinkage values are approximately 14 (Quinuas) and 17 

(Laipuna) times higher than those obtained by grid search. The observed pattern is more complex for the other two tuning 
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parameters: interaction depth and bag fraction. Although the selected parameter ranges differ for most pF values, the median 305 

interaction depth values are the same for half of the cases for grid search and tuning by the differential evolution algorithm. 

The median of the selected bag fraction is at the upper limit for the Quinuas models that were tuned by the differential 

evolution algorithm, while grid search resulted in median bag fraction values at the lower limit in two cases. Laipuna bag 

fraction values do not show this pronounced difference between grid search and tuning by the differential evolution 

algorithm.   310 

The selected tuning parameter values correspond to the differential evolution based models having more predictive power 

than those adapted by the common grid search approach. Usually higher n.trees values, as received from the differential 

evolution algorithm, are known to improve model performance (Elith et al., 2008). However, according to the results of Elith 

et al. (2008), by using more trees the shrinkage parameter gets smaller. The comparatively high differential evolution 

shrinkage values might be an indication of the n.trees values still being too small. For both areas, the differential evolution 315 

values for n.trees and shrinkage, covering a wider range than the grid search results, might be explained by the differential 

evolution optimization not being completed or being stuck in a local optimum. This corresponds to the high prediction 

variability of the final differential evolution models (Section 3.2). As n.trees and shrinkage control how precisely the model 

learns the input data’s structure, these parameters are assumed to be more important than interaction depth and bag fraction. 

In this case, there might not even be an optimum for the latter two parameters. Especially for Laipuna, this might explain the 320 

interaction depth and bag fraction values of both tuning techniques covering the whole range of possible values. For Laipuna 

the bag fraction differences between differential evolution and grid search tuning remain unexplained. The results of both 

tuning techniques might be improved by testing more parameter values. For grid search, this can be realized by increasing 

the number of values to be compared for each tuning parameter. Increasing the number of iterations and starting with larger 

and thereby more heterogeneous initial populations is expected to do the same for differential evolution. This might also 325 

result in less variable differential evolution results. Besides increasing the number of iterations and the number of initial 

vectors, the risk of getting stuck in a local optimum can also be reduced by changing the parameters “crossover probability” 

and the “mutation scaling factor” as well as applying another mutation strategy (Das and Suganthan, 2011). To overcome the 

problem of choosing the right control parameters as well as the mutation strategy, self-adaptive differential evolution 

algorithms (e.g. Nahvi et al., 2016; Pierezan et al., 2017; Qin et al., 2009), which are able to automatically adjust their 330 

settings during the optimisation process, could be applied in future studies. In general, the superiority of differential 

evolution needs to be verified by applying it to further machine learning algorithms and applications. 
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Fig. 10. Selected tuning parameter values for Quinuas. 10.1 n.trees, 10.2 shrinkage, 10.3 interaction depth, 10.4 bag fraction, a) pF 0, b) 

pF 0.5, c) pF 1.5, d) pF 2.5. Each boxplot is based on 25 values corresponding to the five-fold CV with five repetitions. Dashed grey lines 335 
are indicating the chosen optimization limits. GS = grid search, DE = differential evolution algorithm. 
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Fig. 11. Selected tuning parameter values for Laipuna. 11.1 n.trees, 11.2 shrinkage, 11.3 interaction depth, 11.4 bag fraction, a) pF 0, b) 

pF 0.5, c) pF 1.5, d) pF 2.5. Each boxplot is based on 25 values corresponding to the five-fold CV with five repetitions. Dashed grey lines 340 
are indicating the chosen optimization limits. GS = grid search, DE = differential evolution algorithm. 

4 Conclusions 

We successfully developed new PTFs for two tropical mountain regions. The comparison with ready available PTFs showed 

their high performance to predict soil water retention for the soils in these areas. This is of particular importance for soil 

process and hydrological modeling. Whether the two PTFs may also be applied to other areas of similar soils still has to be 345 

tested. The developed PTF for the Páramo area provides a novelty since PTFs for tropical organic soils under volcanic 

influence were unavailable until now. Furthermore, our study presents the first successful application of parameter tuning by 

differential evolution in PTF development. The comparison with the standard grid search technique revealed the superiority 

of the differential evolution algorithm and emphasizes the importance of parameter tuning for the successful application of 

machine learning models. Of course, this finding has to be confirmed by further applications in pedometrics including 350 
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different types of machine learning algorithms. We, therefore, hope to promote the implementation of optimization for 

parameter tuning within the pedometrics community by this study.  

 To sum up, especially for parameter tuning of real-valued machine learning algorithms future applications of the differential 

evolution algorithm are highly recommended. 
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