Interactive comment on “15N gas-flux method to determine N$_2$ emission and N$_2$O pathways: a comparison of different tracer addition approaches” by Dominika Lewicka-Szczebak and Reinhard Well

Anonymous Referee #1

Received and published: 7 January 2020

This is an informative and relevant study, the experiments are well planned and conclusions are sound. Prior to publication, a few clarifications are needed. The paper would also benefit from language editing (e.g. past and present tense are mixed).

General comments: Both, the introduction and discussion could benefit from including references that support your statements. There are quite a few statements, which are unsupported by references and/or your results. Although this might be the first paper on the effect of 15N tracer approach on the N gas source partitioning, some other papers have investigated the effects of tracer addition on the soil N cycle (Davidson et al., 1991; Gütlein et al., 2016; Kaur et al., 2010). It might be worth looking at those (you do not need to cite those necessarily, but they might contribute to your discussion).

The tracer addition (with a 15N fraction of 73 %), resulted in an initial 15N fraction of soil NO$_3$- of 42.5 % (line 51). This means that soil NO$_3$- content was more than doubled, which is much above common recommendations of tracer addition (10 – 25 % of native soil N). What was the motivation for such a high addition of tracer and what are the consequences for your results? I would like to see a discussion on this. Your comparison of the 15N fraction of NO$_3$- (a$_{NO3}$) with the calculated a$_p$ values (line 127) makes only sense if NO$_3$- was the sole source of N$_2$O and n$_2$, i.e. all gases were produced via denitrification. What supports this assumption? You speculate yourself later about the possibility for hybrid N$_2$ (line 148). And N$_2$O production from nitrification is also possible.

Specific comments: Abbreviations should be introduced at first use and then used consequently. Do not start sentences with abbreviation or chemical symbols (e.g. line 8). Line 11: please be more specific what kind of results. Line 13: “wider range” is unclear, be more specific. Line 40: I suggest you first describe the soil, before describing the treatments, i.e. start this paragraph with text from line 47. Line 49: this is an unusual unit for soil density; maybe use the more common cm$^{-3}$? Line 51: what is “initial condition”? Is this prior to trace addition or immediately after? Please clarify. Line 66: the ap values, are those calculated or measured? I think this part would benefit from showing all equations rather than referring solely to other papers. Line 102: This sentence needs rephrasing; “we may deal with” is unclear. Line 110 (114): The phrase “column heterogeneity” is unclear and might be confusing. As I understand you mean the heterogeneity between different columns, but it sounds like the within column heterogeneity. The latter, you actually cannot conclude about. Line 115: Suggest adding “(Table 2)” at the end of sentence. Line 116: “Very” is imprecise. Avoid such qualitative statements. Line 117: For me it is unclear why the initial NO$_3$- content should differ between the treatments. After all, it is the same soil. Alternatively, it might be due to stimulated nitrification in the mixed soil (see e.g. Kaur et al., 2010).
119-123: This sounds somewhat unlikely to me. If less 15N was injected, you certainly should have noted that during the injections. Line 129 (& 136): Suggest moving the text in parentheses (after colon) to the Methods. Line 131 & 144: The “differences” you refer to, is this the cumulative or mean? Line 171: should rather be “tracer addition” Line 172: here you use for the first time “content” of inorganic N, while otherwise you use concentration. In fact, content is the correct term.

Figure 1, caption: “black dots” Figure 1, caption: Last sentence not needed (as there are no statistical differences) Table 2: Unclear what is compared statistically, within treatment of between? Also, what is the “mean” referring to, mean of what? The “Injection point”, is this for both layers? Table 3: Suggest moving the equations (with additional explanations) to the method section.
