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Abstract 9 

The number of samples used in the calibration dataset affects the quality of the generated predictive models using visible, near 10 

and shortwave infrared (VIS-NIR-SWIR) spectroscopy for soil attributes. Recently, the convolutional neural network (CNN) 11 

is regarded as a highly accurate model for predicting soil properties on a large database.  However, it has not been ascertained 12 

yet how large the sample size should be for CNN model to be effective. This paper investigates the effect of training sample 13 

size on the accuracy of deep learning and machine learning models. It aims at providing an estimate of how much calibration 14 

samples are needed to improve the model performance of soil properties predictions with CNN as compared to conventional 15 

machine learning models. In addition, this paper also looks at a way to interpret the CNN models, which are commonly labelled 16 

as black box. It is hypothesized that the performance of machine learning models will increase with an increasing number of 17 

training samples, but it will plateau when it reached a certain number, while the performance of CNN will keep improving. 18 

The performances of two machine learning models (Partial least squares regression (PLSR) and Cubist) are compared against 19 

the CNN model. A VIS-NIR-SWIR spectral library from Brazil containing 4251 unique sites, with averages of 2-3 samples 20 

per depth (a total of 12,044 samples), was divided into calibration (3188 sites) and validation (1063 sites) sets. A subset of the 21 

calibration dataset was then created to represent smaller calibration dataset ranging from 125, 300, 500, 1000, 1500, 2000, 22 

2500 and 2700 unique sites, or equivalent to sample size approximately 350, 840, 1400, 2800, 4200, 5600, 7000, and 7650. 23 

All three models (PLSR, Cubist, and CNN models) were generated for each sample size of the unique sites for the prediction 24 

of five different soil properties, i.e. cation exchange capacity, organic matter, sand, silt and clay content. These calibration 25 

subset sampling processes and modelling were repeated ten times to provide a better representation of the model performances. 26 

Learning curves showed that the accuracy increased with an increasing number of training sample. At a lower number of 27 
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samples (<1000), PLSR and Cubist performed better than CNN. The performance of CNN outweighed the PLSR and Cubist 28 

model at a sample size of 1500 and 1800 respectively. It can be recommended that deep learning is most efficient for spectral 29 

modelling for sample size above 2000. The accuracy of the PLSR and Cubist model seems to reach a plateau above sample 30 

size of 4200 and 5000, respectively, while the accuracy of CNN has not plateaued. A sensitivity analysis of the CNN model 31 

demonstrated the ability to determine important wavelengths region that affected the predictions of various soil attributes.  32 

Keywords: convolutional neural network, deep learning, machine learning, infrared spectroscopy, soil properties, soil analysis  33 
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1. Introduction 34 

There has been an increasing demand for a rapid and cost-effective method as an alternative for conventional laboratory soil 35 

analysis. Visible, near and shortwave infrared (VIS-NIR-SWIR) spectroscopy has been proposed to be used as an alternative 36 

tool for soil analysis for the last few decades (Bendor and Banin, 1995;Shepherd and Walsh, 2002;Stenberg et al., 2010). This 37 

method enables the simultaneous prediction of various properties and has non-destructive characteristics. 38 

Various machine learning models, such as Partial Least Squares Regression (PLSR), Cubist, random forest, and support vector 39 

machines had been utilized to model spectroscopy data. However, the performances of these regression models are dependent 40 

on the spectra pre-processing methods (Rinnan et al., 2009), as well as the size and representativeness of the calibration samples 41 

(Kuang and Mouazen, 2012;Ng et al., 2018). Different orders and combinations of the spectra pre-processing methods, 42 

developed to remove artefact in the spectral signal, will result in various model performances. Furthermore, the spectra pre-43 

processing techniques developed for a particular dataset might not work for a different dataset. Better generalization can be 44 

made by training the model in a larger dataset. However, several studies demonstrated that the performance of the machine 45 

learning model did not increase significantly or even plateaued as the calibration sample size increased (Figueroa et al., 46 

2012;Ramirez-Lopez et al., 2014;Ng et al., 2018).  47 

Advances in artificial intelligence, such as deep learning enable the possibility of extracting features from data without hand-48 

engineered features (LeCun et al., 2015), such as pre-processing. Various deep learning convolutional neural network (CNN) 49 

model (AlexNet, VGGnet, GoogLeNet, ResNet), had been developed and trained on large volumes of data, which included 50 

over 10 million image data (Krizhevsky et al., 2012;Simonyan and Zisserman, 2014;Szegedy et al., 2015;He et al., 2016). 51 

Although CNN often deals with images as input data, it has recently been successfully applied to vibrational and reflectance 52 

spectroscopy (Acquarelli et al., 2017;Cui and Fearn, 2018;Liu et al., 2018;Ng et al., 2019;Padarian et al., 2019). Acquarelli et 53 

al. (2017) found that the CNN based model outperformed other models (Partial Least Square – Least Discriminant Analysis, 54 

logistic regression and k-nearest neighbour) for the classification of various vibrational spectroscopy data. CNN also has 55 

recently been successfully utilized for regression modelling using reflectance spectroscopy data (Cui and Fearn, 2018;Liu et 56 

al., 2018;Ng et al., 2019;Padarian et al., 2019). Cui and Fearn (2018) compared the performance of CNN and PLSR to predict 57 

protein and ash content of wheat kernels and wheat flour from the NIR-SWIR spectra data with calibration sample size ranging 58 

from 415 – 6,987. Liu et al. (2018) developed one-dimensional CNN model using VIS-NIR-SWIR spectra data to predict soil 59 

clay content with a calibration sample size of 16,000. Other studies had shown that CNN model had the capability to 60 

outperform PLSR and Cubist model for the prediction of various soil properties using VIS-NIR-SWIR (Ng et al., 61 

2019;Padarian et al., 2019), mid-infrared (MIR) and combined VIS-NIR-SWIR with MIR spectra (Ng et al., 2019) with a 62 

calibration sample size greater than 10,000. 63 
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Deep learning such as CNN was developed to handle a large amount of data (millions of images), and clearly soil spectra 64 

libraries these days are not that large yet. For example, a recent study used deep learning on 135 soil samples (Chen et al., 65 

2018). The advantage of using CNN on such a small number of samples is uncertain. A recent review on spectroscopy showed 66 

that there were several studies where deep learning was used with a small calibration sample size (Yang et al., 2019). The 67 

review indicated that increased calibration samples should further improve the calibration performance, however, there is no 68 

guideline how much improvement can be expected and what is the minimum number of samples for it to be effective. 69 

Strategy to select adequate calibration set in terms of representativeness and size is vital in obtaining a model with good 70 

generalization ability. Although various sampling algorithms (Kennard-Stone, conditioned Latin Hypercube sampling, k-71 

means clustering) to select representative samples have been explored (Ramirez-Lopez et al., 2014;Ng et al., 2018), the 72 

question of how much samples are needed for the CNN model to perform better than machine learning models for spectroscopy 73 

data has yet to be determined. It is commonly depicted and hypothesized in a learning curve that as more data are available, 74 

CNN will perform better compared to traditional machine learning models (Mahapatra, 2018) (see Figure 1). Machine learning 75 

models tend to reach a plateau or show marginal improvement with an increasing amount of data as the model has limited 76 

complexity to deal with an increasing amount of data (Zhu et al., 2016). 77 

Thus, the purpose of this study is to assess the amount of calibration data needed for the CNN model to perform better than 78 

machine learning models. PLSR and Cubist are chosen as the representatives of the machine learning models which had been 79 

found to perform well in soil spectra data (e.g., Dangal et al. (2019)). In addition, to be able to predict soil properties accurately, 80 

we need to understand and interpret how a CNN model can predict soil properties from spectra. Specifically, this paper presents 81 

the following specific contributions: 82 

- testing the idea that common machine learning models with reach a plateau in accuracy with an increasing number of 83 

calibration samples, 84 

- establishing the number of calibration samples required for deep learning to be effective for VIS-NIR-SWIR spectra 85 

data, 86 

- establishing how much improvement in accuracy is achieved the number of calibration sample for deep learning and 87 

machine learning models is increased, and 88 

- demonstrating how to interpret deep learning model using a sensitivity analysis. 89 

2. Materials and Methods 90 

2.1. Dataset and chemical analysis 91 

This dataset comprises of 12,044 soil samples from 4,251 unique sites. The soil samples, collected from several regions of 92 

Brazil, i.e., states of Sao Paulo, Minas Gerais, Goias, and Mato Grosso do Sul. This dataset is part of The Brazilian Soil Spectral 93 
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Library and extracted from Terra et al. (2018) and Bellinaso et al. (2010). The soils were derived mostly from basalt (volcanic 94 

rock) and sedimentary ones (sandstone). Each site has up to seven samples measurements from the surface up to 1 m depth. 95 

The measured properties include soil texture (sand, silt, and clay), organic matter (OM) content and cation exchange capacity 96 

(CEC). The soil particle size was quantified by the pipette method, as described in Donagema et al. (2011). The method consists 97 

of using a 0.1 M NaOH solution as dispersing agent under high-speed mechanical stirring during 10 min. Then, the sand 98 

fraction was separated by sieving and the clay portion by sedimentation. The silt was quantified based on pre- and post-99 

difference.  Organic carbon (OC) was determined by the Walkley and Black method (Walkley and Black, 1934), in which OC 100 

was oxidised using K2Cr2O7 in a wet environment and then measured by titration with 0.1 M ammonium iron sulphate. After 101 

that, the organic matter (OM) was calculated by multiplying the OC quantified per the Van Bemmelen factor of 1.724. As 102 

described in Donagemma et al. (2011), a 1 M KCl solution was used to extracted aluminium, exchangeable calcium and 103 

magnesium. The atomic absorption spectrophotometry was used to quantify Ca and Mg concentrations. Aluminium 104 

concentration was determined by titrating with 0.025 M NaOH. Potassium and phosphorus contents were extracted using 105 

Mehlich-1 (0.05 M HCl with 0.0125 M H2SO4) solution. The concentration of P was quantified by colourimetry and the K 106 

concentration by flame photometry. Afterwards, CEC was determined as the sum of exchangeable cations. The descriptive 107 

statistics of the soil properties measured are included in Table 1. 108 

2.2. Spectral measurements 109 

The VIS-NIR-SWIR spectra of the soil samples were obtained with FieldSpec3 spectroradiometer (Analytical Spectral 110 

Devices, Boulder, Colorado) with a spectral range of visible to shortwave infrared (350 – 2500 nm) and spectral resolution of 111 

1 nm from 350 to 700 nm, 3 nm from 700 to 1400 nm, and 10 nm from 1400 to 2500 nm. The sensor scanned an area of 112 

approximately 2 cm2, and a light source was provided by two external 50-W halogen lamps. These lamps were positioned at a 113 

distance of 35 cm from the sample (non-collimated rays and a zenithal angle of 30°) with an angle of 90° between them. A 114 

Spectralon (Labsphere Inc., North Sutton, NH) standard white plate was scanned every 20 min during calibration. The samples 115 

were oven-dried at 45°C for 48 hours before being ground and sieved ≤ 2 mm. The sample was distributed homogeneously in 116 

Petri dishes for spectra measurement. Three replicates (involving a 180° turn of the Petri dish) were obtained for each sample. 117 

Each spectrum was averaged from 100 readings over 10 s.  118 

2.3. Training and validation 119 

To better represent the soil distribution, we split and subset the data based on sites. The dataset is first randomly split into 75% 120 

calibration (3188 sites) and 25% validation (1063 sites) based on the unique sites. 121 
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From the calibration dataset, smaller sample sizes ranging from 125, 300, 500, 1000, 1500, 2000, 2500 and 2700 unique sites 122 

were created, which is equivalent to a sample size of approximately 350, 840, 1400, 2800, 4200, 5600, 7000, and 7650. Better 123 

representations of model performances were provided by ten replicates of these sizes. Each sampling for the same number of 124 

sites could generate a slightly different number of samples since the number of measurements varied from one site to another. 125 

However, the model performance was evaluated on the common validation dataset using a total of 1063 sites (sample size N 126 

= 3017). Thus, we create a learning curve of the accuracy of the models of the validation dataset as a function of the number 127 

of calibration samples. 128 

2.4. Chemometrics model  129 

Prior to the development of machine learning models (PLSR and Cubist), the spectra data were subjected to some pre-130 

processing methods: (i) conversion to absorbance followed by (ii) Savitzky - Golay smoothing filter with window size of 11 131 

and second-order polynomial (Savitzky and Golay, 1964), (iii) spectral trimming to discard region that has low signal to noise 132 

ratio (<500 nm and between 2450 – 2500 nm)  and (iv) standard-normal-variate (SNV) transformation (Barnes et al., 1989).  133 

For the CNN model, the spectra were only normalized with SNV before being fed into the model. Our previous research (Ng 134 

et al., 2019) found that CNN has its own filtering algorithm that made pre-processing not necessary. This filtering approach 135 

will be discussed in the results section. 136 

2.4.1. PLSR model 137 

PLSR is one of the standard and most commonly used models with the spectroscopy data. It is a linear chemometric regression 138 

model that projects spectra data into latent variables that explain the variances within the spectra data and the response variables 139 

(Wold et al., 1983). The optimal number of latent variables used in the PLSR regression that resulted in the smallest root mean 140 

square error (RMSE) using the cross-validation approach was used to create the models. PLSR was implemented in the R 141 

statistical software (R Core Team, 2019)  using the “pls” package (Mevik et al., 2018). 142 

2.4.2. Cubist model 143 

Cubist is a rule-based data mining model, which is an extension of the M5 model tree by Quinlan (1993). Cubist has been used 144 

successfully in soil spectroscopy studies and in many cases found to perform better than PLSR and other machine learning 145 

models (Dangal et al., 2019). Cubist creates one or more rules, in which if the rules are met, a certain linear model can be 146 

utilized to predict the target task.  The model was evaluated using the "Cubist" package (Kuhn and Quinlan, 2018) in R. 147 

2.4.3. CNN model 148 
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The CNN model is composed of three types of layers: convolutional, pooling and fully-connected layer. The convolutional 149 

layer extracts feature from the inputs, the pooling layer reduces the dimensionality of the input feature, and the fully connected 150 

layer connects the outputs from previous layers to the desired target outputs. The CNN model utilized in this study was derived 151 

from our previous study (Ng et al., 2019), where the spectra data were fed into the model as a one-dimensional data. The 152 

architecture of the CNN model is included in Table 2 and Figure 2. Some of the layers within the network are shared to enable 153 

simultaneous output predictions.  154 

The CNN model was trained with an initial learning rate of 0.001 and Adam optimizer (Kingma and Ba, 2014). The network 155 

was trained a batch size of 50, and a maximum epoch of 200. For model optimization purposes, the calibration data is further 156 

divided into 75% train and 25% test set. Dropout, early stopping and reduced learning rates are used as a regularization 157 

technique to prevent network overfitting. For further details of the CNN model, the reader is referred to Ng et al. (2019). The 158 

CNN model was implemented in Python (v3.5.1; Python Software Foundation, 2017) using Keras library (v2.1.2; Chollet, 159 

2015) and Tensorflow (v1.4.1; Abadi et al., 2015) backend.  160 

All the model performances are compared in terms of coefficient of determination (R2), and the root mean square error 161 

(RMSE), bias and ratio of performance to inter-quartile distance (RPIQ) values based on the validation dataset. Generally, 162 

larger values of R2 and RPIQ and smaller bias and RMSE indicate better model performance. 163 

2.5. Sensitivity analysis: evaluating important wavelengths 164 

To uncover how CNN predicts different soil properties, a sensitivity analysis was conducted to assess the importance of each 165 

wavelength in contributing to predictions. Evaluating the sensitivity of the model can be done in several ways, for example, 166 

Cui and Fearn (2018) calculated the sensitivity of a CNN model for NIR by taking a numerical partial derivative of the output 167 

with respect to each wavelength. For wavelength i, the sensitivity S was calculated as: 168 

𝑆𝑆𝑖𝑖 =
𝑓𝑓(𝑿𝑿1, … ,𝑿𝑿𝑖𝑖 + 𝜀𝜀, … ,𝑿𝑿𝑛𝑛) − 𝑓𝑓(𝑿𝑿) 

𝜀𝜀
 (Eq. 1) 

where 𝑿𝑿 is the reflectance spectra, and 𝑓𝑓(𝑿𝑿) is the CNN prediction using the spectra, 𝜀𝜀 is a small number. The idea is that if 169 

wavelength i has an important contribution to the prediction, a small perturbation to the reflectance value will create a large 170 

change in the prediction. 171 

In our previous study (Ng et al., 2019), we calculated the sensitivity as a function of the variance of the model for each window 172 

of spectra. Here, we calculate the sensitivity based on the variance principle as an alternative approach: 173 
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𝑆𝑆𝑖𝑖 =
𝑉𝑉𝑉𝑉𝑉𝑉 (𝑓𝑓(𝑿𝑿1, … ,𝑿𝑿𝑖𝑖, … ,𝑿𝑿𝑛𝑛)− 𝑓𝑓(𝑿𝑿�)) 

𝑉𝑉𝑉𝑉𝑉𝑉 (𝒀𝒀)
 (Eq. 2) 

Where 𝑉𝑉𝑉𝑉𝑉𝑉 is the variation calculation, 𝑓𝑓(𝑿𝑿1, … ,𝑿𝑿𝑖𝑖 , … ,𝑿𝑿𝑛𝑛) is the prediction of spectra due to variation in wavelength 𝑖𝑖 with 174 

other wavelengths held constant at their mean values, and 𝑓𝑓(𝑿𝑿�) is the prediction value using the mean values of the spectra 175 

and 𝒀𝒀 is the observed values of the target variable. In essence, we calculated how the model varied in comparison to the 176 

observations as a function of wavelength. 177 

The current sensitivity analysis (Eq. 2) considers the actual variance of the data for a better approximation of wavelengths 178 

sensitivity. To calculate the variance sensitivity, two new data frames are created. The first data frame contains data which is 179 

the average of all the validation spectra data (𝑿𝑿�) and the second contains modified average spectra data ( 𝑿𝑿�𝑖𝑖), in which some 180 

of the average measurements are replaced with the actual spectral reflectance at a wavelength width of 5 nm.   181 

The illustrations of the process of deriving new data frames are included in Figure 6. Both data frames are then fed into the 182 

pre-trained CNN model (𝑓𝑓()). The variance between the average and modified average spectra are then compared to the actual 183 

variance of the target properties as a measure of the model sensitivity (Eq. 2).  184 

3. Results 185 

3.1. VIS-NIR-SWIR spectral characteristics 186 

Large variability within the soil properties and texture could potentially influence the soil spectral characteristics (shown in 187 

Figure 3). In general, there was an increase in reflectance between 400 - 1000 nm, with several prominent absorption features 188 

at 1400, 1900 and 2200nm. Absorption features in the VIS-NIR (400 - 1000 nm)  which is related to iron oxides, such as 189 

haematite (Fe2O3) and goethite (FeOOH) (Clark, 1999). Absorption near 1400 nm is associated with the first overtone of an 190 

O-H stretch vibration of water or metal-O-H vibration, while absorption is 1900 nm is combination vibrations of water related 191 

to H-O-H bend and O-H stretch (Viscarra Rossel et al., 2009). Absorption in the 2100-2400 nm region is related to the 192 

combination vibrations of minerals. Generally, spectra that have a higher clay content would show smaller reflectance (greater 193 

absorption) values in comparison to those with lower clay content. The representative samples of the VIS-NIR-SWIR spectra 194 

before and after pre-processing were included in Figure 3.  195 

3.2. Visualization of the spectra within CNN model 196 

An attempt to take a look at what the CNN model actually learns was conducted. As the raw reflectance spectrum was fed into 197 

the CNN model, it passed through a convolutional layer which extracted information from the spectra. Filters from the first 198 

two convolutional layers were included in Figure 4. Though only raw spectra were fed into the CNN model, we could see that 199 
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the spectra underwent some spectra pre-processing within each filters of the layers. Some of the filters shown in the first 200 

convolution layer looked like the input spectra pattern (filter #3, 4 and 10), and some of them mimicked like transformation 201 

pattern: absorbance (filter #1, 5, 6, 7, 9, 13 and 16) and derivatives (filter # 2, 8, 11, 12, 14 and 15). The spectrum became 202 

smoother when they passed through the second convolutional layer, where some filters only accentuated certain peaks (Figure 203 

4).  204 

3.3. Prediction of soil properties and model comparison 205 

The model performances for the validation dataset using the full calibration data (nsite= 3188, N=9027) for various soil 206 

properties and chemometrics model were presented in Table 3. CNN model outperformed both Cubist and PLSR model (in 207 

terms of  higher R2 and RPIQ and lower RMSE). 208 

The performance achieved using the CNN model with the prediction of sand (R2= 0.85; RPIQ =1.52), silt (R2=0.58; RPIQ 209 

=0.75), clay (R2=0.86; RPIQ =1.05), organic matter (R2=0.69; RPIQ =0.91) and CEC (R2=0.68; RPIQ =0.69). Both the PLSR 210 

and Cubist had similar performance for the prediction of the various properties. PLSR model achieved R2 of 0.79, 0.47, 0.80, 211 

0.48 and 0.52, and RPIQ of 1.29, 0.67, 0.87, 0.70, and 0.57 for the prediction of sand, silt, clay, organic matter, and CEC 212 

respectively. Meanwhile, Cubist model achieved R2 of 0.78, 0.45, 0.81, 0.54 and 0.52 and RPIQ of 1.19, 0.67, 0.92, 0.70 and 213 

0.59 for the prediction of sand, silt, clay, organic matter, and CEC respectively. Nonetheless, on some cases, the CNN model 214 

prediction yielded higher bias on the prediction of some soil properties, such as OM and CEC (bias = -0.11 and -0.76 215 

respectively), than PLSR model (bias = 0.04 and -0.17) for the same properties. The Cubist model yielded bias of -0.22 and -216 

0.17 for the prediction of OM and CEC respectively. 217 

Among all the properties predicted, the sand and clay content showed the best performance with R2 values greater than 0.75 218 

regardless of the types of model used ranging from (0.78 – 0.85 and 0.8 – 0.86) respectively. This finding is in agreement with 219 

the ones from Demattê et al. (2016), who observed good predictions for sand and clay content with R2 of 0.86 and 0.85.   220 

Pinheiro et al. (2017) reported the prediction accuracy of 0.62 and 0.78 for the sand and clay content, respectively. The low 221 

performance of the silt predicted can be linked to error associated with the laboratory analysis method, where the silt content 222 

is derived from the difference of the soil mass after the sand and clay content are determined. The prediction for OM content 223 

in our study ranges from R2 of 0.48 – 0.69. Shibusawa et al. (2001) reported R2 of 0.65 for the prediction of OM using slightly 224 

different wavelength region (400-2400nm).  Our prediction of CEC ranges from R2 of 0.52 – 0.68. Chang et al. (2001)  and 225 

Islam et al. (2003) reported R2 of 0.81 and 0.88, respectively for the prediction of CEC. Although some prediction accuracies 226 

are slightly lower than other studies, they are still within an acceptable range. 227 

3.4. Effect of sample training size: learning curve 228 
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A total of nine subset models based on the unique sample sizes were generated to investigate the effect of training sample size. 229 

The performance comparison of all the models expressed as average R2 values is illustrated as a learning curve in Figure 5. 230 

The depicted R2 values are the average performance prediction for all five properties of all ten replicates, except for the largest 231 

sample size (N = 9027) where a single data random split for validation of the data is used. The learning curve generally follows 232 

the common pattern found in machine learning studies (Figueroa et al., 2012), the performance increased rapidly with an 233 

increase in the size of the training set from around 350 to 1400. For PLSR and Cubist, the growth in performance became 234 

slower after it reached 2800 samples. PLSR performance reached a plateau after 4000 samples while the increase in 235 

performance in Cubist was marginal after 5500 samples. 236 

In general, the PLSR and Cubist model tend to perform better when the sample size was relatively small (<1500). When the 237 

sample size was approximately 1800, there was only a small difference in the performances for all models. However, when 238 

the sample size was further increased (>2000), the CNN model started to show better performance in comparison to both PLSR 239 

and Cubist model. The effectiveness of PLSR and Cubist model reached a plateau at approximately 4000 and 5500 samples, 240 

respectively, while the performance of CNN was still increasing, as depicted in the theoretical curve (Figure 1). The slight 241 

drop in Cubist’s performance at sample size 9027 was because there was only one realization of data split (75% of the data).  242 

We further compared the average model performance based on the RMSE ratios of machine learning models against the CNN 243 

model (Figure 6). This comparison was developed using the model performance for each unique property, and the variances 244 

presented was based on ten simulations. If a particular model X performs better than the Y model it is compared against, the 245 

RMSE ratios of X/Y should be less than one.  246 

Upon comparing the RMSE ratios of PLSR/Cubist model, we found that PLSR performed better than the Cubist model when 247 

the sample size is less than 1400. Cubist model performed better than the PLSR model as the sample size was increased. Using 248 

the  RMSE ratios of PLSR/CNN model, PLSR was found to perform better than CNN when the sample is less than 1400 249 

(Figure 5). Similar performance of both PLSR and CNN model was achieved when the sample size is approximately 1400. In 250 

terms of RMSE ratios of Cubist/CNN, overall CNN model performed better in comparison to the Cubist model regardless of 251 

sample size. This was slightly different than the one that was observed when only R2 parameter was utilized. The RMSE ratios 252 

of Cubist/CNN seemed to vary more for a smaller sample size (longer whisker). When the sample size is approximately 850, 253 

both models seemed to perform similarly. A portion of the model performed better, while the remaining performed worse. As 254 

the calibration sample size increased, the CNN model performed better in comparison to the Cubist model. Thus, it can be 255 

recommended that the current CNN model structure is most efficient for VIS-NIR-SWIR spectral modelling with sample size 256 

above 2000. CNN still can be used for small number of samples, but its performance is not better than PLSR or Cubist. 257 

3.5. Sensitivity Analysis 258 



11 
 

The critique of CNN is that it is a complex model and a black box. To uncover how the CNN model works, a sensitivity 259 

analysis was conducted to show how CNN is predicting each of the soil properties, illustrated in Figure 7. Only certain parts 260 

of the spectra were used by the CNN model for prediction, which corresponded to the soil properties and composition. The 261 

important wavelengths for the prediction of CEC are between the regions of 1600 – 2000 nm. This result is similar to the 262 

observations made by Lee et al. (2009) on the surface horizon dataset where 1772 and 1805 nm are essential in predicting the 263 

CEC. The presence of high CEC is often linked to the presence of organic matter (OM) and clay content. It is interesting that 264 

the same region is important in predicting organic matter but not clay content.  Aside from the same region used by CEC, 265 

wavelengths’ region between 1100 – 1200 nm are also deemed relevant by the CNN model for the prediction of OM content. 266 

This finding is slightly different to those reported by Lee et al. (2009) in which the important wavelengths reported are at 1772, 267 

1871, 2069, 2246, 2351 and 2483 nm for the profile dataset and 1871, 2072 and 2177 nm for the surface horizon dataset.  268 

Similar wavelength regions are deemed to be important in predicting the soil texture although the importance slightly varied 269 

among the type of texture of interest (sand, silt and clay) at wavelengths between 500 and 1800 nm. The important wavelengths 270 

for the prediction of sand and clay content share a higher similarity in comparison to that of silt content prediction. The most 271 

crucial wavelength identified is around 850 nm for the prediction of sand and clay content, and around 1100 nm for the 272 

prediction of silt content. These observations are also different from those reported by Demattê (2002) and Lee et al. (2009) 273 

where the important wavelengths for the prediction of soil texture are at 1800 – 2400 nm. In particular, the soil texture 274 

prediction found in the CNN model is strongly related to hematite and/or goethite, -OH and Al-OH groups from kaolinite 275 

(Viscarra Rossel and Behrens, 2010;Pinheiro et al., 2017;Fang et al., 2018). 276 

We also compare important wavelengths from the machine learning models against the one from the deep learning model for 277 

the prediction of OM as an example. Common wavelengths found to be related to the organic matter predictions are 1100, 278 

1600, 1700 – 1800, 2000, 2200 – 2400 nm (Dalal and Henry, 1986;Stenberg et al., 2010). 279 

As a comparison, we calculated important wavelengths used in the PLSR and Cubist models. The important wavelengths 280 

utilized in the PLSR model was derived based on the absolute value of the regression coefficients. The height of the line 281 

indicates the importance of particular wavelengths for the determination of organic matter content in the soil. Important 282 

wavelengths identified for the prediction of organic matter were 500 – 700, 1400 and 1715 nm. 283 

The wavelengths used in the Cubist were derived based on model usage either as predictors (blue lines) or conditions (pink 284 

lines) (Figure 9). Some of the wavelengths used in the Cubist model are similar to those observed in the PLSR model, in 285 

particular the visible (500 – 700 nm), and shortwave infrared regions (1400 and 1900 nm). 286 

4. Discussion 287 

4.1. Understanding the CNN models 288 
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While conventional PLSR and machine learning models require spectra pre-processing for the spectra data input, CNN model 289 

takes raw spectra as inputs. CNN has been shown to be a successful end-to-end learning model which learn feature 290 

automatically while minimizing hand-crafted pre-processing process. Upon taking a closer look at the various filters within 291 

the convolutional layers, we found that the filters behaved like spectra pre-processing method. It is interesting to note that 292 

using the raw spectral input, various spectral pre-processing that was commonly used within spectroscopy could be observed 293 

within the layer itself. Given the various complexity within the CNN model, the use of spectra pre-processing prior to being 294 

fed is unnecessary. This advantage opens up possibilities of developing highly accurate chemometrics model, which also plays 295 

a role in automatic spectral pre-processing. 296 

CNN have been proven to be extremely successful, however how they work remains largely a mystery as they are buried in 297 

layers of computations. Sensitivity analysis enabled us to see better the inner workings of the CNN model. We could understand 298 

better which wavelengths features are essential from the spectra when used in developing the regression prediction. Important 299 

wavelengths derived from the sensitivity analysis based on the CNN model looked slightly different from those of PLSR and 300 

Cubist models. Wavelengths around the 1700 nm region were deemed to be the most important, followed by those between 301 

the 1150 nm region. Nonetheless, some of the important regions overlapped. It was also worth noting that the model did not 302 

use the visible part of the spectra for prediction. In comparison to the sensitivity of MIR spectra data on previous study (Ng et 303 

al., 2019), the NIR model’s sensitivity index was much broader, which reflected NIR’s characteristic broad peak. 304 

Although all three methods used different ways to derive important wavelengths, PLSR model tended to use most parts of the 305 

spectra. When irrelevant wavelengths are included in model development, it may reduce the model performance. The Cubist 306 

model seemed more selective in terms of wavelengths used, however this example showed that it also used most parts of the 307 

VIS-NIR-SWIR spectra. CNN model used wavelengths between 800 – 2000 nm, with emphasis around 1100 and 1700 nm. 308 

4.2. The effect of calibration sample size to model performance 309 

PLSR, Cubist and CNN represent models with increased complexity. By combining results from 5 soil properties, we can 310 

show better a generalisation of the performance of the models as a function of training sample size. Simpler models (PLSR) 311 

performed better at a smaller sample size (< 1400). Cubist outperformed PLSR at sample size > 2000, while CNN outweighed 312 

other models when sample size > 2500. The increase in the accuracy of machine learning models (PLSR and Cubist) became 313 

insignificant when the number of samples was greater than 5000. This trend of plateauing of performance (maximized up to a 314 

certain point) with an increase in sample size as had been observed by several authors (Shepherd and Walsh, 2002;Kuang and 315 

Mouazen, 2012;Ramirez-Lopez et al., 2014;Ng et al., 2018). This trend is related to the complexity of the model, as a simpler 316 

model (such as PLSR) cannot capture all variation in the data. Thus, a more complex model is suitable when the number of 317 

samples is large. 318 



13 
 

Previous studies by Ng et al. (2019) and Padarian et al. (2019) had shown that CNN performed better than PLSR and Cubist 319 

when the model was trained with more than 10,000 samples.  However, there were also studies using CNN with a small number 320 

of training samples. This study showed that CNN model only outperformed PLSR and Cubist models when the sample size is 321 

greater than 2000. As sample size increases, the efficiency of CNN model is increased. We observed a larger reduction in 322 

RMSE (CNN compared to the other 2 models) with increasing calibration sample size. Thus, we recommend using a minimum 323 

of 2000 samples to train CNN model for the VIS-NIR-SWIR spectra. To further improve the performance of the CNN model, 324 

simultaneous prediction of soil properties could also be implemented within the model.  325 

The advantage of using deep learning on a small number of samples is minimal as CNN is a data-hungry model; it is also more 326 

computationally expensive than the typical machine learning models. While our results pertain to the spectral dataset from 327 

Brazil and a particular structure of the CNN, we believe our results can serve as a guide on the number of samples needed to 328 

create a better deep learning model. Future research could test this idea on larger and more variable datasets (e.g. a global 329 

spectral library with more than 100,000 samples) and to see if a more complex and deeper network of CNN can handle such 330 

dataset. 331 

5. Conclusions 332 

In this paper, we assessed the effect of training sample size and identified important wavelengths in predicting various soil 333 

properties using Cubist and CNN model. In general, the CNN model performed better than the Cubist when the sample size is 334 

relatively large (>2000). Here, we found that with its current model structure, CNN is more accurate than a machine learning 335 

model when the number of calibration samples is above 2000. The more complex and deeper network of a deep learning model, 336 

the more likely it will need a larger number of samples for training. PLSR and Cubist models perform less accurate than the 337 

CNN model as sample size increases, and both models reached a plateau after a sample size of 4000 – 5000. Meanwhile, the 338 

performance of CNN still increases until the maximum number of data used in this study (N = 9000). Future studies should 339 

explore larger dataset to see the generalization of the accuracy vs sample size and to explore if the deep learning CNN model 340 

ever reaches a plateau in accuracy. 341 
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 447 
Figure 1. Model performance of deep learning vs other machine learning algorithms as a function of number of samples. 448 

  449 
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 450 
Figure 2. Architecture of the one-dimensional Convolutional Neural Network (CNN) model. 451 

  452 
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 453 

  454 
Figure 3. Visible, near and shortwave infrared (VIS-NIR-SWIR) spectra of 10 soil samples without spectra pre-processing (left) and 455 
with spectra pre-processing (right).  456 

  457 
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 458 

 459 

 460 

 461 
Figure 4. Visualization of the filters in the first two convolutional layers within the one-dimensional Convolutional Neural Network 462 
(CNN) model of the visible, near, and shortwave infrared (VIS-NIR-SWIR) spectra data. 463 

  464 

Convolution #1: A few of the 32 filters 

Convolution #2: A few of the 64 filters 
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 465 
Figure 5. Model performances (in terms of average R2 for five soil properties) as a function of sample size using Partial Least Squares 466 
Regression (PLSR), Cubist and Convolutional Neural Network (CNN) model based on ten simulations. The value for the largest 467 
sample size (N = 9027) is a single realization 75% of the data. 468 
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 469 
Figure 6. Model performances (in terms of root mean square error (RMSE) ratios of (A) Partial Least Squares Regression (PLSR) 470 
over Cubist model (B) PLSR over Convolutional Neural Network (CNN) model and (C) Cubist over CNN as an average of five soil 471 
properties) based on various sample size using ten simulations. The red – dotted line represents a 1:1 RMSE ratio. 472 
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Figure 7. Illustration of sensitivity analysis process: (A) represents the validation spectra data, (B) represents the overall average of 474 
the validation spectra data and (C) represents the modified average of the validation spectra data. 475 

A 

C B 
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 476 
Figure 8: Sensitivity analysis of the visible, near and shortwave infrared (VIS-NIR-SWIR) spectra in predicting various soil 477 
properties using the Convolutional Neural Network (CNN) model. The graph depicts sensitivity index (calculated from(Eq. 2)) for 478 
different soil properties as a function of wavelength. 479 

480 
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 481 
Figure 9: Important wavelengths for the prediction of organic matter (OM) content using Partial Least Squares Regression (PLSR), 482 
Cubist and Convolutional Neural Network (CNN) model. 483 
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 485 

 486 
Table 1: Descriptive statistics of the soil properties measurements. 487 

 Sand Silt Clay OM CEC 

 g kg-1 mmolc kg-1 

Minimum 50.0 0.0 5.0 2.0 3.4 

1st Quartile 644.0 31.0 112.0 6.0 22.9 

Median 757.0 57.0 174.7 9.4 32.7 

Mean 703.8 69.7 226.5 11.2 37.7 

3rd Quartile 839.0 93.5 283.3 14.3 46.3 

Maximum 969.0 562.0 840.0 69.0 375.7 

 488 
  489 
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Table 2: Architecture of the convolutional neural network. 490 

Type Shared Filter size # Filters Activation 

Convolutional Yes 20 32 ReLU 

Max-pooling Yes 2 - - 

Convolutional Yes 20 64 ReLU 

Max-pooling Yes 5 - - 

Convolutional Yes 20 128 ReLU 

Max-pooling Yes 5 - - 

Convolutional Yes 20 256 ReLU 

Max-pooling Yes 5 - - 

Dropout (0.4) Yes - - - 

Flatten Yes - - - 

Fully-connected No - 100 ReLU 

Dropout (0.2) No - - - 

Fully-connected No - 1 Linear 

*ReLU: rectified linear units 

 491 

  492 
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Table 3: Results of model validation for the prediction of various soil attributes using the full calibration dataset. 493 

Model Properties Unit R2 RMSE bias RPIQ 

PLSR 
 

Sand 

g kg-1 

0.79 91.47 2.74 1.29 

Silt 0.47 41.58 -1.78 0.67 

Clay 0.80 73.01 -0.65 0.87 

OM 0.48 4.98 0.04 0.70 

CEC mmolc kg-1 0.52 16.77 -0.17 0.57 

Cubist 

Sand 

g kg-1 

0.78 89.66 1.28 1.19 

Silt 0.45 38.68 -2.06 0.67 

Clay 0.81 69.65 -0.23 0.92 

OM 0.54 4.83 -0.22 0.70 

CEC mmolc kg-1 0.52 17.03 -0.93 0.59 

CNN 

Sand 

g kg-1 

0.85 77.28 -0.16 1.52 

Silt 0.58 37.09 -1.74 0.75 

Clay 0.86 60.78 -0.53 1.05 

OM 0.69 3.83 -0.11 0.91 

CEC mmolc kg-1 0.68 13.73 -0.76 0.69 

OM = organic matter; CEC = cation exchange capacity 

 494 
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