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Abstract.  The activity of microorganisms in soil is important for a robust functioning of soil and related ecosystem 23 

services. Hence, there is a necessity to identify the composition, diversity and function of the soil microbiome in 24 

order to determine its natural properties, functioning and operating range as well as to assess ecotoxicological 25 

effects due to anthropogenic activities. Numerous microbiological methods currently exist in the literature and 26 

new, more advanced methods continue to be developed; however, only a limited number of these methods are 27 

standardized. Consequently, there is a need to identify the most promising non-standardized methods for assessing 28 

soil quality and to transform them into standards. In agreement with the “Ecosystem Service Approach”, new 29 

methods should focus more on soil microbial functions, including nutrient cycling and greenhouse gas emission, 30 

pest control and plant growth promotion, carbon cycling and sequestration, as well as soil structure development 31 

and filter function. The few existing standardized methods available that focus on the function of the soil 32 

microbiome mostly include measurements, like basal respiration, enzyme activities, and biodegradation of organic 33 

matter, under well-defined conditions in the lab. This paper sets out to summarize and expand on recent discussions 34 

within the International Organization for Standardization (ISO), Soil Quality - Biological Characterization sub-35 

committee (ISO TC 190/SC 4) where a need was identified to develop scientifically sound methods, which would 36 

best fulfil the practical needs of future users for assessing soil quality, going beyond the existing test systems. Of 37 

particular note is the current evolution of molecular methods in microbial ecology that use quantitative real time 38 

PCR (qPCR) to produce a large number of new functional endpoints which are more sensitive as compared to 39 

‘classical’ methods. Quantitative PCR assesses the abundance of microbes that  catalyse major transformation 40 

steps in nitrogen and phosphorus cycling, greenhouse gas emissions, chemical transformations including pesticide 41 

degradation, and plant growth promotion pathways based on the assessment of marker gene sequences that drive 42 

the related processes. In the assessment of soil quality methods, it was found that most methods focus on bacteria 43 

and related endpoints. Techniques to describe fungal communities as well as their functional traits are far less 44 

represented. As such, techniques to analyse fungal enzyme activities are proposed. Additionally, methods for the 45 

determination of microbial growth rates and efficiencies, including the use of glomalin as a biochemical marker 46 

for soil aggregation, are discussed. Furthermore, field methods indicative of carbon turnover, including the litter 47 

bag test and a modification to the tea bag test, are presented. However, it is obvious, that with increasing 48 

developments in high throughput sequencing technologies and big data analyses, including metagenomics analysis, 49 

it will be possible to implement these technologies into the standardisation process for assessing the functions of 50 

the soil microbiome. Overall, it is suggested that endpoints should represent a potential function of soil 51 
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microorganisms rather than actual activity levels, as the latter can largely be dependent on short-term variable soil 52 

properties such as pedoclimatic conditions, nutrient availability, and anthropogenic soil cultivation activities.  53 
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1 Introduction 54 

Soils are one of the world’s hotspots for biodiversity (Parker, 2010). Biota – both micro- and macro-organisms – 55 

in soil form strong networks and complex food webs, which determine the efficacy of the soil ecosystem functions 56 

(e.g. nutrient cycling, C storage and turnover, water retention, and modulation of soil structure) (Creamer et al., 57 

2016). These functions support a range of ecosystem services that are indispensable for soil use in agri-, horti- or 58 

silviculture (Nannipieri et al., 2017). At the same time, soil biota are strongly impacted by various anthropogenic 59 

activities including ongoing global and climate change, pollution, as well as degradation and destruction of the 60 

terrestrial environment (Gomiero, 2016; Montgomery, 2008; Wagg et al., 2014). Consequently, investigations of 61 

the soil biome structure and function became an emerging topic in soil and environmental sciences (Griffiths and 62 

Philippot, 2013). As such, the number of studies describing the ecology of soils and ecosystem functioning has 63 

increased significantly over the past few decades and has resulted in the development of new methods for the 64 

assessment of microbial communities (e.g. Guillaume et al., 2016; Tian et al., 2018). In comparison, the 65 

ecotoxicological assessment of human impacts (e.g. chemical pollution and mechanical compaction) using single 66 

species tests, which are well-established methods, has remained constant (Brookes, 1995; Joergensen and 67 

Emmerling, 2006). 68 

Characterizing the natural state of a soil’s biome is a quite challenging task. In addition to its huge 69 

structural and functional diversity, soil biomes are influenced by strong temporal dynamics including seasonal 70 

weather conditions and the enormous spatial heterogeneity, which ranges from field scale to microscale (Kuffner 71 

et al., 2012; Regan et al., 2014; Suriyavirun et al., 2019). All of these intrinsic properties hinder the interpretation 72 

of data obtained from the analysis of soil biomes and the measurement of their functional traits.  73 

Despite the fundamental methodological advances over the past years, which allow for an in-depth 74 

analysis of microbiomes and, to some extent, other soil-living organisms (e.g. Joergensen and Emmerling, 2006; 75 

Paul, 2015; Yates et al., 2016), only a limited number of soil biological methods have been standardized (for details 76 

see section 3). As a result, large and often significant deviations are observed in the results obtained when non-77 

standardized methods are used (e.g. Strickland and Rousk, 2010). This is especially true for methods that are based 78 

on high throughput sequencing approaches, where variability and bias in data can occur from the “wet-lab” steps 79 

right through the various bioinformatics pipeline analysis steps (Quince et al., 2017). Therefore, the comparability 80 

between datasets generated by different laboratories using different methods or modified protocols of the same 81 

method is problematic. Consequently, the development of quality indices and threshold values, respectively, for 82 
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assessing soil quality is nearly impossible (Bastida et al., 2008). Presumably, this is why the number of meta-83 

analyses in soil biology remains small.  84 

 Given that there is a lack of harmonization between existing methods and, at the same time, a proliferation 85 

of new methods, there is a need to identify the most promising methods described in the literature that can be 86 

standardized to produce reliable indicators for soil quality (e.g. Philippot et al., 2012). At the Annual International 87 

Organization for Standardization (ISO) meeting of TC 190 (Soil Quality) in Fukuoka, Japan in October 2013, a 88 

decision was made to compile a list of available methods and to identify those that would be suitable for assessing 89 

soil quality. Additionally, during a subsequent meeting of ISO TC 190/SC 4/WG 4 (Microbiological Methods) 90 

held in Paris, France in March 2014, further discussions focused the criteria for suitable methods to be comprised 91 

of microbial functional indicators. In this paper, we summarize the major outcomes of the discussions which took 92 

place over the past several years within ISO TC 190/SC 4. Therefore, besides collating a list of criteria for the 93 

selection of test methods for the future analysis of microbial functions in soil, the aim of this paper is to present 94 

our opinion, as members of the ISO TC 190 committee, to initiate further discussion on possible methods that 95 

should be standardized for future soil quality assessments.  96 

 97 

2 Criteria for the selection of methods 98 

Several papers addressing the task to identify suitable methods to be used as biotic indicators (usually including 99 

faunal indicators) were published in the last few years, mainly in the context of EU research projects (e.g. Bispo 100 

et al., 2009; Faber et al., 2013; Ritz et al., 2009; Römbke et al., 2010). Here, we propose to base the selection of 101 

soil quality methods more on the “Ecosystem Service Approach” (MEA 2005) which is increasingly recognized 102 

by both environmental scientists and regulatory agencies (Breure et al., 2012; Galic et al., 2012) and which takes 103 

into account that soils have been raised to the rank of a natural resource to be protected. As a consequence, and in 104 

addition to method development and application (including the assessment of biodiversity as a prerequisite for soil 105 

function), the focus of future activities should be the determination of soil microbial function as recommended 106 

endpoints (Kvas et al., 2017; Nienstedt et al., 2012; van der Putten et al., 2010; TEEB, 2010). Consequently, we 107 

propose to assess both existing and new methods for the selection of microbial functional tests that support various 108 

soil ecosystem services. This structures our approach and simplifies the identification of ecologically relevant 109 

methods, as well as, presumably increases their acceptance by users, including the regulatory and stakeholder 110 

community. The following soil functions and ecosystem services have been defined and are proposed to be used 111 

as a starting point for the development of future methods (MEA, 2005; Ockleford et al., 2017):  112 
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(1) Biodiversity, genetic resources, cultural services;  113 

(2) Food web support;  114 

(3) Biodegradation of pollutants; 115 

(4) Nutrient cycling (for example N and P);  116 

(5) Pest control and plant growth promotion; 117 

(6) Carbon cycling and sequestration;  118 

(7) Greenhouse gas emissions; and 119 

(8) Soil structure affecting soil water, gas balance and filtration function. 120 

A second major criterion for selecting methods for standardization is its usability. The method should be applicable 121 

in regulations (e.g. European and National agencies registering chemicals or products) and for the evaluation of 122 

soil ecology and functioning as fundamental aspects of soil quality (e.g. by stakeholders and researchers). 123 

Moreover, the routine use of methods to inform farmers and site owners on soil quality as continuous assessments 124 

of their land and land-use practises could be an additional condition that would require the choice of easy-to-use 125 

methods or possibly encourage the simplification of existing methods. Overall frequently used methods generate 126 

more data, which in turn is of high importance for the validation of threshold values. Therefore, the aim of this 127 

process is to identify methods that are scientifically sound and best fulfil the practical needs of future users. The 128 

most appropriate new methods, including those proposed in this article, need to be evaluated using the criteria 129 

required for the standardization of ISO methods. 130 

To assess possible methods, a list of criteria was used based on the ‘logical sieve’ approach (Ritz et al., 131 

2009). The list of criteria for the identification of functional indicators and associated methodologies (Table 1) 132 

was an outcome of the EU FP7 EcoFINDERS project (Faber et al., 2013). The criteria were compiled after sending 133 

a questionnaire to 25 partner institutions primarily working in the field of environmental science; mainly 134 

representing academia but also regulators and subcontracting laboratories. These criteria are applicable for 135 

different kinds of indicators and methods, including those addressing the functions of soil microbial communities. 136 

In the following sections, we assume that existing ISO standardized methods partly already fulfil these criteria, 137 

but not all relevant endpoints can be measured.   138 

 139 

3 Existing and new methods 140 

Current methods that have already been implemented as ISO standards are found in Table 2, whereas methods that 141 

might be considered for future standardization are in Table 3. The compilation in Table 2 comprises methods to 142 
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quantify microbial biomass (e.g. through fumigation extraction of microbial biomass carbon (MBC) and DNA) 143 

(Function 6) as well as for (further) analysis of structural microbial diversity (e.g. determination of microbial 144 

fingerprints by phospholipid fatty acids (PLFA) analysis) (Function 1). Additionally, microbial biomass, 145 

measured as respiratory activity, has been included in Table 2, although not directly linked to one of the ecosystem 146 

services, as it provides important information on the activity of the complete microbiome (i.e. microflora and 147 

microfauna). Soil basal respiration normalized to MBC (ISO 14240-1 and ISO 14240-2, 1997, Table 2) yields the 148 

metabolic quotient qCO2, which is a sensitive indicator for microbial carbon use efficiency (Anderson and 149 

Domsch, 1993). However, its use as an endpoint to assess anthropogenic and natural impacts on the soil 150 

microbiome has been controversially discussed in literature (Wardle and Ghani, 1995). The microbial quotient 151 

(MBC related to organic carbon content of a soil) is an indicator revealing changes in the microbial dynamic 152 

equilibrium of soils in response to exposure to natural or anthropogenic stressors (Pankhurst et al., 2001).  153 

The biodiversity function (Function 1) addresses parameters related to the structural diversity of the soil 154 

microbiome. Here, respective ISO guidelines analysing PLFA, phospholipid ether lipids (PLEL) (ISO/TS 29843-155 

1, 2010; ISO/TS 29843-2, 2011) and DNA (ISO 11063, 2012; ISO 17601, 2016), have already been well 156 

implemented into guidelines (Table 2). In addition, high throughput sequencing of barcodes of the ribosomal 157 

operon (16S rRNA gene for bacteria and archaea and ITS [internal transcribed spacer] region for fungi) have 158 

generated a large amount of data (Schöler et al., 2017). These approaches have been also used successfully for 159 

other microbial groups like protists (using the 18S rRNA gene as a target). As it is well accepted that the use of 160 

different primer pairs introduce different biases (Ramirez et al., 2018), standards have been recommended by 161 

international initiatives. For example, the Earth Microbiome project (www.earthmicrobiome.org) recommended a 162 

primer pair targeting the V4 region of the 16S rRNA gene and ITS2 region for bacterial and fungal barcoding, 163 

respectively. Bioinformatics pipelines used for barcoding approaches are already well standardized and shared 164 

worldwide among the scientists, which makes possible the cross comparison of various datasets from different 165 

labs. Unfortunately, this is not yet the case for the pipelines to analyse metagenomics datasets that are still under 166 

constant evolution making difficult cross-comparisons. 167 

Although microbial diversity, per se, is not strongly correlated with a particular functional capacity, it is 168 

clear that the loss of diversity can have an impact on microbial function (Thiele-Bruhn et al., 2012); at least for 169 

relatively specific functions performed by narrow microbial guilds or taxa. This applies even more, when certain 170 

taxa are closely linked to very specific functions including nitrifiers, methanogens, arbuscular- and ecto-171 

mycorrhizal fungi, and biocontrol microorganisms like Trichoderma (e.g. Hartmann et al., 2009; Hayat et al., 172 
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2010; Lugtenberg and Kamilova, 2009; Peng et al., 2008; Singh et al., 2007; Xia et al., 2011). Therefore, the 173 

interpretation of the outcomes from microbial community-based testing tends to be straightforward and closely 174 

linked to Function 4 and Function 5.  175 

Food web support (Function 2) of higher trophic levels no doubt starts from soil microorganisms and 176 

propagates through the trophic levels (e.g. earthworms) that are consumed by birds and mammals (Haynes, 2014; 177 

Scheu et al., 2002; Scheu et al., 2005). However, the role of the microbiota in the soil food web is not fully 178 

understood, since many eukaryotic organisms can be considered as meta-organisms, which carry their “own 179 

microbiome” that itself is essential for life supporting functions. From this, it is unclear if environmental 180 

microbiomes and host specific microbiomes complement one another. So far there are no comprehensive methods 181 

(especially not those addressing microbial functions) or standards available to address this problem. The use of 182 

stable isotope labelling of select carbon or nutrient sources as a promising approach to follow food webs and 183 

degradation pathways might provide one possibility in the future to assess food webs in soil. This would be 184 

accomplished by combining carbon and nitrogen stable isotope fluxes determination with phylogenetic analysis of 185 

the microorganisms labelled with the stable isotopes (e.g. Coban et al., 2015; Traugott et al., 2013; Lueders et al., 186 

2004). 187 

Methods to assess the biodegradation of pollutants (Function 3), as described above, are already 188 

implemented into ISO guidelines (Table 2) and are part of legal frameworks including pesticide directives (EU 189 

Regulation1107/2009/EC; European Commission, 2009). A number of standard methods for the determination of 190 

the potential of soils to degrade organic chemicals (Function 3) under both aerobic (ISO 14239, 2017) and 191 

anaerobic (ISO 15473, 2002) conditions are available. However, in the past, the development of standard methods 192 

was mainly driven by the need to assess the ecotoxicological effects of anthropogenic activities, such as chemical 193 

contamination of soils, rather than to describe and understand the natural properties and functions of soils. Defining 194 

methods for the determination of adverse effects of contaminants on soil biota was not only done by ISO, but it 195 

was also a major task of other organizations such as the Organization for Economic Co-Operation and 196 

Development OECD). For example, there are OECD guidelines, tests No. 216 and 217, for testing the long-term 197 

effects of single exposure chemicals on soil microbial nitrogen and carbon transformation, respectively (OECD, 198 

2000a; 2000b). As a result, it was decided early that the standardization of methods for toxicity testing should not 199 

be the primary aim of the ISO sub-committee (ISO TC 190/SC 4). Metagenomics lead to the rapid discovery of 200 

new genes, which catalyse degradation processes of xenobiotics and, consequently, offer new insight in the study 201 

of ecology of microbial degraders. The transfer of this knowledge into operational bioindicators for the estimation 202 
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of soil filtration capabilities (e.g. by using qPCR or RT-qPCR assays to quantify those genes and their expression 203 

in soils, respectively) will be one of the major tasks in soil science in the upcoming years. Jeffries et al. (2018) for 204 

example were able to successfully predict the degradation rates of organophosphorus based pesticides in a 205 

contaminated soil by using metagenomics based functional profiling.  206 

Some of the existing standard methods that are listed in Table 2 focus on the estimation of enzyme 207 

activities useful for soil quality assessment, which mainly contribute to Function 4. Here, the potential 208 

dehydrogenase activity measurement is an indicator for general (potential) oxidoreductase activity in soil. Since 209 

this measurement has been frequently used, there are large amounts of baseline data available on the toxic effects 210 

of a range of pollutants in soil. Recently, additional potential enzyme activities related to the C, N, P and S cycle 211 

have been used and are either standardized or are in the process for standardization.  212 

 213 

The current evolution of molecular methods in microbial ecology has resulted in a large number of new 214 

endpoints. It is well known that many of the new endpoints (e.g. using quantitative real-time PCR (qPCR)) are 215 

more sensitive than classical methods that had been standardized in the past (Ribbons et al., 2016; Schulz et al., 216 

2016). This new metagenomics approach will be of high importance in the future, as it allows for the 217 

implementation of information on new functional traits that can be standardized into an analytical pipeline. Direct 218 

sequencing of soil DNA extracts, called metagenomics, is nowadays a method that can easily be implemented to 219 

obtain an overview of in-soil living organisms, including microorganisms. It is recognized that metagenomics is 220 

no longer limited by sequencing possibilities but more by the availabilities of large-scale computing clusters to 221 

analyse the amount of data generated. The future success of metagenomics in soil surveys will mainly depend on 222 

the possibilities to standardize bioinformatics pipelines as well as on the availability of tools for big data analysis 223 

and artificial intelligence. However, it must be mentioned that even a well-standardized and automated workflow 224 

will generate only data on the relative abundance of nucleotide sequences and not absolute values (Geisen et al., 225 

2019). Thus at the moment for the assessment of new methods linked to Functions 4 to 8, qPCR from soil DNA 226 

extracts (ISO 17601, 2016) plays a very important role in determining the abundance of single marker gene 227 

sequences, which are indicative of specific transformation processes or soil functions. For example, the 228 

quantification of nitrogen fixing microbes, nitrifiers and denitrifiers has been successfully implemented using the 229 

nifH, amoA and nirS/nirK genes as markers, respectively (Henry et al., 2004; Hirsch et al., 2010; Ollivier et al., 230 

2010; Sessitsch et al., 2006). Similarly, the quantification of microorganisms involved in the β-ketoadipate 231 

pathway has been implemented by targeting pcaH (El Azhari et al., 2008) and catA (El Azhari et al., 2010) gene 232 
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sequences. Various methods for the assessment of soil microbial Function 4 (nutrient cycling), Function 5 (pest 233 

control and plant growth promotion) and Function 7 (greenhouse gas emissions) are proposed based on the qPCR 234 

analysis of gene sequences coding for enzymes which trigger the respective function (e.g. Fish et al., 2013; Ribbons 235 

et al., 2016; Smith and Osborn, 2009). Additionally, it should be noted that molecular methods based on the 236 

assessment of specific marker genes for estimating the degradation potential in soil have already been proposed 237 

both for PAHs (e.g. Cebron et al., 2008) and individual pesticides (e.g. Martin-Laurent et al., 2004). These could 238 

be interesting for future standardization; however, if a method is very compound-specific and targeted, this could 239 

limit its application range. Thus, these specific approaches will not be discussed further in this article. 240 

 241 

Major advantages of qPCR assays to quantify gene sequence numbers, which can be used as proxies for 242 

a given microbial process, are that they are: (i) highly standardized, sensitive, selective and reproducible, (ii) 243 

designed for high throughput analysis, (iii) available for a wide range of targets, and (iv) methods that are relatively 244 

cheap once the necessary analytical devices are on hand. Some training on the method is required, however, once 245 

trained the assays are easy to perform. For example, numerous studies have already used the microbial functional 246 

genes involved in nitrogen cycling to determine the status and to assess induced changes in the soil microbial 247 

community (Levy-Booth et al., 2014; Nannipieri and Eldor, 2009; Wallenstein et al., 2006). Consequently, the 248 

number of functional genes that are suited for use as specific indicators of soil function are continuing to grow in 249 

the literature as researcher gain experience in this field and data becomes more prevalent. Also, evidence is 250 

increasing that functional gene abundance and community structure are closely linked to related microbial 251 

activities and their increase or decrease, e.g. through agricultural fertilizer regime or soil contamination (Levy-252 

Booth et al., 2014; Ouyang et al., 2018; Xue et al., 2018). However, also contrasting findings have been reported, 253 

pointing to the fact that functional gene abundance and diversity is less affected by short-term changes, e.g. due to 254 

soil moisture changes (Zhang et al., 2019). A critical meta-analysis of existing data and reports, respectively, would 255 

be timely to better identify and generalize the linkage of functional gene abundance and ecosystem services. 256 

Disadvantages, on the other hand, are that: (i) the quality of qPCR data depends on soil DNA extracts 257 

(PCR inhibition), (ii) primer pairs, even degenerated ones, might not successfully amplify all microbes of the 258 

functional group of interest, (iii) only genetic potential is resolved, and (iv) there is no differentiation between 259 

active, dormant or dead microorganisms, when working with DNA as a template for the qPCR reaction. The 260 

analysis of total RNA and of mRNA, which could help to overcome the latter problem, is currently not a suitable 261 

alternative as it is highly dynamic in time and space and needs special care to stabilize the RNA extracted from 262 
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complex environmental matrices to avoid its degradation. Another problem of DNA analysis is the biological 263 

representativeness of the results is solely based on a relatively small amount of soil (from few hundred mg to ten 264 

g of soil) from which the DNA extracted. The use of small soil samples (< 1 g) simplifies the sample preparation 265 

process for molecular biologists; however, it provides a poor representation of the indigenous soil microbial 266 

community in the naturally inhomogeneous soil. Typically, the -biodiversity declines with sample size while that 267 

of ß-biodiversity increases (Nicol et al., 2003; Penton et al., 2016). Lastly, it must be noted that the high 268 

repeatability and reproducibility of molecular biology methods, including qPCR assays, depends on extraction, 269 

purification and amplification of DNA or RNA. This is typically performed using commercial extraction kits; 270 

however, by simply changing the commercial supplier of a kit can substantially change the results (Brooks et al., 271 

2015; Feinstein et al., 2009). This clearly challenges standardization since standard methods must not hinge on a 272 

specific supplier.  273 

Recently, molecular tools for the assessment of the microbial phosphorous turnover (Function 4) have 274 

been published (Bergkemper et al., 2016) where metagenomics data have been used for the construction of primers 275 

for P mineralization, transport and uptake. As another example, the relevance of anaerobic ammonium oxidation 276 

(anammox) for N cycling in soils has increased (Levy-Booth et al., 2014) along with the development of analytical 277 

methods for high throughput analysis. Among the microorganisms in soil that substantially govern pest control 278 

and plant growth promotion (Function 5), arbuscular mycorrhizae and ectomycorrhizal fungi are of high 279 

relevance. These microorganisms are especially abundant in the rhizosphere (Hartmann et al., 2009; Hayat et al., 280 

2010; Lugtenberg and Kamilova, 2009). Methods related to Function 5 are listed in Table 3. 281 

Several options exist for (additional) standardized methods to test Function 6 (carbon cycling and 282 

sequestration) (Table 3). For Function 6, there is a need to implement more fungal activity analysis as most tests 283 

described mostly assess bacterial activities. Thus, the integration of more fungal enzyme activities into the suite 284 

of standardized methods for soil quality assessment is essential (for example determining the turnover of complex 285 

natural compounds such as lignin) (Baldrian, 2006). The ligninolytic enzymes laccase and Mn-peroxidase, as well 286 

as the chitin degrading 1,4--N-acetylglucosaminidase, are typical fungal enzymes of interest for ecosystem 287 

services (Jiang et al., 2014; Šnajdr et al., 2008). However, since other organisms also produce these enzymes, 288 

including bacteria and plants (Bollag, 1992; de Gonzalo et al., 2016), current methods do not specifically target 289 

fungal enzyme activities. As a result, the implementation of molecular methods for assessing fungal communities 290 

are far less developed than those for bacterial communities (Table 3). First approaches to close this gap have been 291 

made in recent years. For example, molecular systems to detect genes coding for laccases and other ligninolytic 292 
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enzymes as well as other fungal activities in carbon cycling have been published and applied (Edwards et al., 2011; 293 

Chen et al., 2013; Hannula and van Veen, 2016). Also for genes involved in the fungal nitrogen turnover, primer 294 

pairs have been successfully developed (Gorfer et al., 2011). However here, even more than for bacteria, it is 295 

critical to link copy numbers of genes directly to the size of the respective functional population, as in many cases 296 

one organism can harbour multiple operons coding for the same genes involved in a given function.  297 

 298 

The method of community level physiological profiling (CLPP) using the BiologTM system (Biolog, 299 

Hayward CA, USA) was first developed in the late 1980s to identify bacteria of clinical importance by assessing 300 

the consumption of 95 different carbon sources in a microtiter plate. The technique was then extended to identify 301 

bacterial strains from environmental mixed microbial communities samples using select carbon sources (Garland, 302 

1997). Currently, the technique is frequently used to assess the effects of contaminants on soil microbial activity 303 

(Bloem and Breure, 2003; Schmitt et al., 2004). As such, the CLPP method has become a measure of microbial 304 

functional diversity in soil (e.g. Gomez et al., 2006) and was used to distinguish the biodiversity of soil microbial 305 

communities in monitoring programs (Rutgers et al., 2016). Even though the method is easy to use, it does have 306 

some drawbacks (Winding and Hendriksen, 2007). The technique is based on the utilisation of select carbon 307 

sources, which when consumed result in reduction, and thus colour change, of a tetrazolium indicator dye (Garland 308 

and Mills, 1991). This reaction is based on the dehydrogenase enzyme activity of cultivable, fast growing, aerobic, 309 

eutrophic microorganisms (largely bacteria). Consequently, this technique does not reflect the full spectrum of 310 

microbial species within a mixed soil community. Additionally, due to the artificial growth conditions required in 311 

the test, it is argued that the method does not reflect the microbial community diversity and its function of a given 312 

soil (Glimm et al., 1997). On the other hand, however, standardized conditions allows for direct comparisons 313 

between microbial communities in different sites, for example, independent of the abiotic conditions, thus making 314 

CLPP a popular method for toxicology testing (Preston-Mafham et al., 2002). 315 

Isothermal micro-calorimetry is another technique that involves the direct measurement of energetics in 316 

soil and provides a functional link between energy flow and the composition of belowground microbial 317 

communities at a high taxonomic level (Herrmann et al., 2014). With this method, an integrative determination of 318 

the metabolic activity of soil bacteria and fungi is achieved. The integrated assessment of substances’ and energy 319 

turnover has high potential to elucidate the regulation of soil ecological functions. However, the substantial costs 320 

for the acquisition of this very specific instrumentation is considered as a major drawback. Furthermore, the 321 
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measurement requires water saturation of the soil and, thus, the samples are modified. Since calorimetry has been 322 

rarely used and data and publications are few, this method is considered not ready for standardization.  323 

The methods targeting thymidine or leucine incorporation into microbial biomass can be used to 324 

determine microbial growth rates and efficiencies (Bååth et al., 2001; Rousk, 2016). Growth rate is a fundamental 325 

reference for numerous other microbial properties and functions. For example, it is required to calculate microbial 326 

carbon use efficiency (CUE) as a key-parameter describing C-substrate turnover and storage in soil (Liu et al., 327 

2018; Spohn et al., 2016; Takriti et al., 2018). Furthermore, the method can be used to assess the adverse effects 328 

of toxic chemicals on the microbial community (Modrzyński et al., 2016; Rousk et al., 2009a). The drawbacks of 329 

these two methods are: (i) specific training is required, (ii) laboratories must have a permit to manipulate 330 

radioactive isotopes, and (iii) there are higher costs for proper handling and disposal of 3H-labelled radioactive 331 

material. As an alternative, the incorporation of the stable isotope 18O from labelled water into soil microbial DNA 332 

can be used to distinguish growing and non-growing microorganisms based on the gradient-separation of 333 

[18O]DNA and [16O]DNA (Schwartz, 2007). The 18O stable isotope method has been improved by sequencing a 334 

marker gene from fractions retrieved from ultracentrifugation to produce taxon density curves; thus enabling 335 

researchers to estimate the percent isotope composition of each microbial taxon's genome (Schwartz et al., 2016). 336 

This method continues to be advanced and, although not used often, could have a high potential for future 337 

standardization. 338 

There are simplistic methods available to determine organic matter decomposition, which are indicative 339 

of C cycling (Function 6). The tests listed in Table 3 are based on measuring the weight loss of introduced organic 340 

materials of different complexity in soil over time. The tests are relatively easy to perform and inexpensive, 341 

however, degradation activity is not exclusive to microorganisms but can also include invertebrates. The OECD 342 

litter bag test (OECD, 2006) for site specific assessment of organic matter decomposition uses wheat straw as the 343 

substrate and provides clear evidence of cellulose degradation. In general, the litter bag tests provides evidence for 344 

the degradation of naturally occurring plant material in soil. Results do, however, depend on the mesh size of the 345 

litter bags (increasing exclusion of soil animals with decreasing mesh size). On the other hand, plant material or 346 

litter is hard to standardise with the results largely depending on the composition of the plant material. As such, 347 

artificial cellulose has been successfully used for a laboratory procedure to assess organic matter decomposition 348 

(Kvas et al., 2017). Another alternative to the litter bag test is the use of tea bags (Keuskamp et al., 2013). Tea 349 

bags can be purchased to contain a consistent quality of material, and so this method is preferred by citizen science 350 

(e.g. farmers to assess the soil quality of their land). In order to better distinguish the degrading abilities of different 351 
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soil microbiomes, the test could be modified to use different types of tea that contain recalcitrant material to a 352 

different extent. Another test for future method development is the Bait Lamina test (ISO 18311, 2016) used to 353 

assess the degradation of organic matter in field soil by grazing invertebrates (Jänsch et al., 2013; Kvas et al., 354 

2017). It is a simple test that can easily be adapted for use under controlled laboratory conditions (Jänsch et al., 355 

2017).  356 

Methods for the determination and assessment of greenhouse gas emissions from soil (Function 7) have 357 

already been standardized or are well advanced in the standardization process (Table 2). They are mostly focused 358 

on measuring concentrations of greenhouse gases, like CO2, CH4 and N2O, as well as their fluxes as endpoints. In 359 

addition, molecular biology methods that estimate the relative abundance of functional microbial guilds or taxa 360 

gives new insight into the ecology of microorganisms involved in the formation of greenhouse gases. For example, 361 

the qPCR measurement of key N2O functional genes has allowed researchers to link N2O reduction capacity to 362 

reduced greenhouse gas emissions in soil amended with organic matter (Xu et al., 2018). Additionally, the 363 

quantification of functional gene sequences related to methane generation and methane oxidation, respectively, 364 

yields detailed insights into the functional potential of climate change-affected permafrost soils (Yergeau et al., 365 

2010). 366 

For Function 8 (soil structure affecting soil water, gas balance and filtration function), there is clear 367 

evidence that microbial activity and biomolecules substantially contribute to the formation and stability of micro-368 

aggregates, and thus to the structure, pore system and pre-consolidation stress of soils (Six et al., 2004). While 369 

existing parameters, such as enzyme activities, are not clearly indicative in this regard (Beck and Beck, 2000), 370 

glomalin can be considered as a biochemical marker of soil aggregation. This glycoprotein is produced by 371 

microorganisms, especially arbuscular mycorrhiza fungi, and significantly increases aggregate formation and 372 

stability (Rillig, 2004; Rillig and Mummey, 2006). The existing protocols for extraction (chemical extraction 373 

combined with autoclaving) and determination of glomalin, either by using the Bradford protein assay, enzyme-374 

linked immunosorbent assay (ELISA), or LC-MS method (Bolliger et al., 2008; Janos et al., 2008), open the 375 

possibility for its standardization in the near future. It should be noted, however, that a well-equipped and 376 

experienced laboratory is required to perform this method. 377 

 378 

4 Transforming standardized methods into indicators of soil quality 379 

As recently underlined by the European Food Safety Agency (EFSA) in a scientific opinion ‘addressing the state 380 

of the science on risk assessment of plant protection products for in-soil organisms’, there is an urgent need to 381 
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modernize pesticide risk assessment by implementing specific protection goals for in-soil organisms which are 382 

key drivers of a wide range of functions supporting ecosystem services (Ockleford et al., 2017). There currently 383 

exists a multitude of methods that can potentially be used for this task. Here, we have identified in the body of this 384 

paper a number of methods that are presumably suitable for further evaluation and standardization with regard to 385 

their scientific value and practical applicability. These prospective standardized methods will not only be useful 386 

to identify adverse effects on the soil microbiome, but also to conduct comparable studies in laboratories all over 387 

the world to define normal operating ranges of microbial activity in soil and respective quality indices and 388 

threshold values. 389 

It is clear that all parameters taken together reflect the potential of a microbial community to perform a 390 

certain function and not solely a specific (actual) activity. This is important to understand in order to interpret the 391 

values of a given endpoint in relation to both energy fluxes and compound transformation rates, which can largely 392 

depend on intrinsic properties such as pedoclimatic conditions, and nutrient availability as well as extrinsic 393 

properties such as anthropogenic effects, and soil cultivation measures. To make use of these methods as indicators 394 

for soil quality, there are several requirements that need to be included. These involves the assessment of the 395 

normal operating range of soil that include natural and dynamic fluctuations of a given endpoint. The methods 396 

need to be implemented into a framework, which takes into account site-specific conditions including soil type, 397 

pedoclimate and land-use. Undoubtedly, this requires further joint efforts in order to generate comprehensive 398 

databases from which normal operating ranges of values for a given proxy can be read. Such a task calls for 399 

standardized methods to obtain comparable data. Additionally, there is a requirement for the assessment of 400 

resistance and resilience of a given microbial endpoint to see how much it is affected by a soil disturbance and 401 

whether or not it can recover (e.g. return to its original state) after the disturbance has disappeared. Here the use 402 

of DNA based methods, which provide a measure of a microbial community’s potential to perform a given process, 403 

might be more useful than using RNA. The RNA rather indicates actual activities, which may highly fluctuate in 404 

time and space, and thus are of less significance as an indicator. However, free DNA released from dead microbes 405 

is often highly resistant in soil, which might result in an over estimation of a potential function. This needs to be 406 

taken into account when interpreting the data. Recently, methods that extract DNA only from living cells have 407 

been described, but their use has not been yet introduced into recent standardization activities.  408 

Also, the use of a test battery to measure a range of interconnected endpoints is recommended (Ockleford 409 

et al., 2017) to integrate different biological and other parameters (e.g. soil pH, organic carbon content) into 410 

multiparametric indices (Bastida et al., 2008; Kvas et al., 2017). At present, it appears to be favourable to use a 411 
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suite of different methods, i.e. functional gene analysis and microbial enzyme and/or degradation activities, for 412 

soil quality testing. Finally, to fully understand soil microbial functioning, a task was envisioned to investigate the 413 

linkage between the genetic functional potential and the available resources, termed the soil metaphenome (Jansson 414 

and Hofmockel, 2018). This will require even further integration and assessment of multiple parameters and test 415 

methods. Reaching that goal will surely promote soil ecological research but, at the current stage, may clearly go 416 

beyond the applied aim of standardization to release easy-to-use targeted methods. 417 

The critical evaluation of existing and non-standardized methods is required to further select and 418 

standardize new methods to assess soil quality. For methods linked to the molecular analysis of soil microbiomes, 419 

there is a need to ensure that worldwide activities are synchronized to propose important standards that are well 420 

accepted by the scientific community. To improve the reproducibility of data it has been agreed that a complex 421 

mixture of microorganisms (MOCK) must be implemented as a control in every experiment, but so far no common 422 

agreement on the composition of a MOCK community has been reached. However, it is clear that if further 423 

developments of microbial bar coding and/or metagenomics methods are to be implemented into ISO guidelines, 424 

an MOCK is required.  425 

ISO standardization committees are open circles and the presented selection and valuation of methods 426 

may not be complete. Environmental scientists are solicited to propose new work items enlarging the current 427 

catalogue of biological methods for future standardization. Accordingly, this opinion paper aims at initiating a 428 

broader discussion intended to improve the measurement of microbial functions for soil quality assessment. Lastly, 429 

it must be noted that standardization of methods is inevitably a balancing act. On one hand, standardization 430 

provides defined methods that are essential to obtain comparable data, e.g. for integration in large, joint databases. 431 

On the other hand, it requires setting a specific method for several years. Consequently, scientific progress cannot 432 

be easily adopted, or at least with a delay, considering that standards are revised every five years, which may be  433 

a barrier to the introduction of new approaches resulting from technological evolution, especially in the fast 434 

developing field of molecular biology methods. Hence, it is also the aim of this paper to have an open discussion 435 

to identify the best suitable methods with an assumed longer period of validity.  436 
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Table 1. List of criteria for the selection of indicators for microbial functional indicators, based on Faber et al. 906 

(2013) and Pulleman et al. (2012), with slight modifications by the authors. 907 

 Criteria Measured by Low Score High Score 

a) Practicability Lab equipment Very few labs have the 

equipment needed 

All labs would be able to carry 

out the work 

 Skills Specialist skills are needed General skills would suffice 

b) Cost 

efficiency 

Capital start-up More than €100 000 Less than €2000 

 Cost per sample More than €100 Less than €2 

 Labour needed in 

the lab 

High labour demand Low labour demand 

 Labour needed in 

the field 

High labour demand Low labour demand 

c) Policy 

relevance 

Focus on ecosystem 

processes and 

services  

Weak links with existing or 

planned legislation 

Strong links with existing or 

planned legislation 

d) Sensitivity Effect of soil 

properties  

No response or idiosyncratic 

response 

The indicator responds 

characteristically to change 

 Effect of land use No response or idiosyncratic 

response 

The indicator responds 

characteristically to change 

 Effect of 

disturbance 

No response or idiosyncratic 

response 

The indicator responds 

characteristically to change 

e) Selectivity  Endpoint affected by numerous 

variables 

Endpoint only affected by 

parameter under investigation 

f) Reproducibi-

lity 

 Low or largely varying 

reproducibility among replicates 

Highly reproducible  

g) Use as an 

indicator 

Status quo Not in use already In use already 

h) Handling and 

availability of 

organisms1 

 Rare and/or difficult to obtain 

Difficult to keep 

Largely varying quality/fitness 

Seasonal availability 

Easy to obtain 

Easy to keep 

Easy to provide with constant 

quality/fitness 

Year-round availability 

i) Fit for use as 

an indicator 

Significance /  

explanatory power 

Weak relationship to ecological 

function 

Strong relationship to ecological 

function 

 Standardized Methods are not ready for 

general use or standardization 

(i.e. low experience, no SOPs 2) 

Methods are already in general 

use, preferably as standard (e.g. 

OECD) 

 Spatio-temporally 

relevant 

Spatio-temporally only relevant 

for a small plot at one point in 

time 

Representative for more than one 

site and/or more than one point 

in time 

 Understandable  Difficult to explain in a policy 

situation 

Easily understood in a policy 

situation 

j) Experience Literature data Low amount of information on 

performance and outcome, e.g. 

<10 publications 

High amount of information on 

the performance and outcome, 

e.g. >10 publications, existing 

ring test(s) 

k) Data 

evaluation 

Database No or hardly any existing data 

available or not freely available  

Freely available and sound 

database for data evaluation 

1 Only relevant for faunal species. Does not apply to soil microorganisms that are tested with their natural 908 

abundance in mixed communities.  909 
2 Standard operating procedures  910 
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Table 2. Methods already validated and published as ISO standards for determining potential microbial biomass 911 

and activities for soil quality. 912 

Microbial biomass and respiration (some relations to Functions 1 and 6) 

ISO 14240-1 Determination of soil microbial biomass – Part 1: Substrate induced respiration method 

ISO 12240-2 Determination of soil microbial biomass – Part 2: Fumigation – extraction method 

ISO 16072 Laboratory method for determination of microbial soil respiration 

ISO 17155 Determination of the activity of the soil microflora using respiration curves 

ISO 11063 Direct soil DNA extraction 

ISO 17601 Quantification of the abundance of microbial groups in soil DNA extract 

ISO/TS 29843-1 Method by phospholipid fatty acid analysis (PLFA) and phospholipid ether 

lipids (PLEL) analysis ( 

ISO/TS 29843-2: Method by phospholipid fatty acid analysis (PLFA) using the simple PLFA 

extraction method 

(Potential) microbial enzymatic activities: C, N and P turnover (Functions 4 and 6) 

ISO/TS 22939 1 Measurement of enzyme activity patterns in soil samples using fluorogenic substrates in 

micro-well plates 

ISO 20130 2 Measurement of enzyme activity patterns in soil samples using colorimetric substrates 

in micro-well plates 

ISO/TS 23753-1 Determination of dehydrogenase activity in soils — Part 1: Method using 

triphenyltetrazolium chloride (TTC) 

ISO/TS 23753-2 Determination of dehydrogenase activity in soils — Part 2: Method using 

iodotetrazolium chloride (INT) 

ISO 14238 Biological methods – Determination of nitrogen mineralization and nitrification in soils 

and the influence of chemicals on these processes 

ISO 15685 Determination of potential nitrification and inhibition of nitrification — Rapid test by 

ammonium oxidation  

Potential microbial activities: biodegradation of pollutants (Function 3) 

ISO 11266 Guidance on laboratory testing for biodegradation of organic chemicals in soil under 

aerobic conditions 

ISO 14239 Laboratory incubation systems for measuring the mineralization of organic chemicals in 

soil under aerobic conditions  

ISO 15473 Guidance on laboratory testing for biodegradation of organic chemicals in soil under 

anaerobic conditions 

Potential microbial activities: turnover greenhouse gases (Function 7) 

ISO 20951 Guidance on methods for measuring greenhouse gases (CO2, N2O, CH4) and ammonia 

(NH3) fluxes between soils and the atmosphere 

ISO/TS 20131-1 Easy laboratory assessments of soil denitrification, a process source of N2O emissions -

- Part 1: Soil denitrifying enzymes activities 

ISO/TS 20131-2 Easy laboratory assessments of soil denitrification, a process source of N2O emissions -

- Part 2: Assessment of the capacity of soils to reduce N2O 

Potential microbial activities: organic matter decomposition (Function 6) 

ISO/CD 23265 3 Test for measuring organic matter decomposition in contaminated soil 

1 Measured enzyme activities: Arylsulfatase E.C. 3.1.6.1; α-glucosidase E.C. 3.2.1.20; β-glucosidase E.C. 3.2.1.21; 913 
β-xylosidase E.C. 3.2.1.37; cellobiosidase E.C. 3.2.1.91; N-acetylglucosaminidase E.C. 3.2.1.52; 914 
phosphodiesterase E.C. 3.1.4.1; phosphomonoesterase E.C. 3.1.3.2; leucine-aminopeptidase E.C. 3.4.11.1; 915 
alanine-aminopeptidase E.C. 3.4.11.12. 916 

2 Measured enzyme activities: Arylamidase E.C. 3.4.11.2; arylsulfatase E.C. 3.1.6.1; α-glucosidase E.C. 3.2.1.20; 917 

β-glucosidase E.C. 3.2.1.21; β-galactosidase E.C. 3.2.1.22; N-acetylglucosaminidase E.C. 3.2.1.52; phosphatase 918 
E.C. 3.1.4.1; acid phosphatase E.C. 3.1.4.1; alkaline phosphatase E.C. 3.1.4.1; urease E.C. 3.5.1.5. 919 

3 Degradation of cellulose under laboratory conditions. 920 

  921 
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Table 3. Potential new methods for the ISO standardization process and assessment according to the “logical 922 

sieve” selection criteria (described in Table 1). 923 

Method Source Function addressed Assessment 1 

Function 4. Nutrient cycling (N and P) a b c d e f g h i j k 

Functional genes assessed by real 

time qPCR 

             

Ammonium monoxygenase gene 

(amoA)  

Levy-Booth et al., 

2014 

quantify the abundance of 

nitrifying microbes  

1-

2 

3 5 5 5 5 5 na2 4 4 3 

Ammonium monoxygenase gene 

(amoB)  

Norton et al., 2002 quantify the abundance of 

nitrifying microbes 

1-

2 

3 5 5 5 5 5 na 4 4 3 

Nitrogenase gene (nifH)  Gaby and Buckley, 

2012 

quantify the abundance of N 

fixing microbes  

1-

2 

3 5 5 5 5 5 na 4 4 3 

Various genes driving P turnover  Bergkemper et al, 

2016 

quantify the abundance of 

microbes driving P 

transformation  

1-

2 

3 5 5 5 5 5 na 4 4 3 

Function 5. Pest control and plant growth promotion            

Specific mtDNA sequences 

assessed by real time qPCR 

Voříšková et al., 

2017  

quantify the abundance of 

arbuscular mycorrhiza  

1-

2 

3 5 5 5 5 5 na 4 3 2 

Specific ITS sequences assessed by 

real time qPCR 

Sakakibara et al., 

2002  

quantify the abundance of 

ectomycorrhizal fungi  

1-

2 

3 5 5 5 5 5 na 4 3 2 

Specific ITS sequences assessed by 

real time qPCR 

Savazzini et al., 

2008  

quantify the abundance of 

biocontrol active 

Trichoderma fungi  

1-

2 

3 5 5 5 5 5 na 4 3 2 

Function 6. Carbon cycling and sequestration            

Enzyme activity of fungi Eichlerová et al., 

2012 

determine activity of 

laccases 

4 4 5 5 3 5 5 na 4 5 4 

 Bach et al., 2013 determine activity of 

phenoloxidases 

4 4 5 5 3 5 5 na 4 5 4 

Community level physiological 

profiling (CLPP, “Biolog”) 

Garland and Mills, 

1991 

determine degradation of a 

set of carbon sources 

3 4 3 1 1 5 3 na 1 5 3 

Microcalorimetry Prado and Airoldi, 

2001; 2003 

quantify microbial energy 

turnover 

1 2 1 3 3 5 1 na 3 3 1 

[³H]-leucine or [³H]-thymidine 

incorporation 

Bååth, 1998; Bååth 

et al., 2001; Rousk 

et al., 2009b 

quantify microbial growth 

rate and efficiency 

1 2 5 5 4 5 5 na 4 4 2 

[18O] incorporation into DNA from 

labelled water 

Schwartz, 2007; 

Schwartz et al., 

2016 

quantify microbial growth 

rate and efficiency 

2 3 5 5 4 5 5 na 3 2 2 

Organic matter decomposition  

 

 

Litter bag technique 

OECD, 2006; 

Knacker et al., 

2003 

Bockhorst and 

Wardle, 2013 

assess organic matter 

degradation and therefore C 

cycling assess the 

degradation of plant litter 

material 

5 5 4 4 5 4 5 na 5 5 5 

Tea bag technique Keuskamp et al., 

2013 

assess the degradation of tea 

leaves  

5 5 4 4 5 4 5 na 5 5 5 

Funct. genes within C cycle 

assessed by real time qPCR 

El Azhari et al., 

2008 

 

 

 

 

El Azhari et al., 

2010 

quantify the abundance of 

microbes able to degrade 

protocatechuate (pcaH) a 

key intermedi-ary 

metabolite of the β-

ketoadipate pathway 

quantify the abundance of 

microbes able to degrade 

catechol (cat A) a key 

intermediary metabolite of 

the β-ketoadipate pathway 

1-

2 

3 5 5 5 5 5 na 4 4 3 

 924 
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Table 3. Continued 925 

Function 7. Greenhouse gas emissions            

Method Source Function addressed Assessment 1 

              

Methyl coenzyme M reductase 

(mcrA) assessed by real time qPCR 

Steinberg and 

Regan, 2009 

quantify the abundance of 

methane producing 

microbes 

1-

2 

3 5 5 5 5 5 na 4 4 3 

N2O reductase gene (nosZ) 

assessed by real time qPCR 

Jung et al., 2013 quantify the abundance of 

N20 reducing microbes 

1-

2 

3 5 5 5 5 5 na 4 4 3 

Methane reductase gene pmoA) Kolb et al., 2003 quantify the abundance of 

methane reducing microbes 

1-

2 

3 5 5 5 5 5 na 4 4 3 

Nitric oxide reductase gene cnorA) 

assessed by real time qPCR 

Dandie et al., 2007 quantify the abundance of 

methane reducing microbes 

1-

2 

3 5 5 5 5 5 na 4 4 3 

Function 8. Soil structure affecting soil water, gas balance and filtration capacity            

Determination of glomalin Bolliger et al., 

2008; Janos et al., 

2008; Wright et 

al., 1998 

determine the content of 

glomalin in soil as a proxy 

of soil aggregation 

3 3 4 4 4 5 3 na 4 4 2 

1 Overall scoring in case of several measures for one criterion. Fulfilment of criterion described by numbering 926 

(colour code): 1 (red) very low; 2 (orange) low; 3 (yellow) medium; 4 (light green) good; 5 (dark green) very good. 927 
2 na = not applicable 928 

 929 


