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Comment 1 Parts of the manuscript are below standard. Unfortunately, important parts
of the manuscript are below standard. In the abstract, there is no information on the
results of the study. This is unacceptable. The introduction should present the state
of knowledge, open questions, hypotheses and objectives. The authors present two
hypotheses which are related to MIRS. One might get the idea that MIRS is the core of
the paper. However, half of the introduction (the first three paragraphs) does not deal
with MIRS and the remaining part of the introduction does not give specific information
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on known and open issues with MIRS in the context of the study (which are the known
absorption bands, how good was the estimation accuracy in different studies?). Since
there are two hypotheses, one would expect two objectives. In fact, there are three
objectives, but only one objective deals with MIRS. In summary, there is a need for a
major improvement.

Answers 1/We agreed with the inconsistency of the abstract. The results were in the
short abstract and were deleted to the main abstract. We wrote another abstract to
underline the need of 598 soil samples (69 soil profiles), the use of MIRS and to give
the results of the study.

Here is the new Abstract. Soil organic carbon (SOC) constitutes the largest terrestrial C
stock, particularly in the Andosols of volcanic areas. Quantitative information on distri-
bution of SOC stocks is needed to construct a baseline for studying temporal changes
in SOC. The spatial variation of soil short-range-order constituents such as allophane
usually explains the variability of topsoil SOC contents, but SOC data for deeper soil
layers are needed. We found that within a 1-km2 Costa Rican basin covered by coffee
agroforestry, SOC stocks in the upper 200 cm of soil were highly variable (24 to 72 kgC
m-2). Topsoil SOC stocks were not correlated with SOC stocks present in deeper lay-
ers. Diffuse-reflectance mid-infrared (MIR) spectroscopy made possible the analysis
of a large number of samples (69 soil profiles, i.e. 598 soil samples) for ammonium-
oxalate and sodium-pyrophosphate extractable forms of Al, Fe and Si, as well as SOC
content and bulk density. The MIR spectra identified two different soil materials, which
occurred one on top of the other in some soil profiles. Andic soil properties and the
thickness of a young andic A horizon explained the high variability of SOC. This study
illustrates that knowledge of topography and pedogenesis are needed to understand
and extrapolate the distribution of SOC stocks at landscape scales.

Short summary. Soil organic carbon (SOC) is the largest terrestrial C stock. Andosols
of volcanic areas hold particularly large stocks. E.g. from 24 to 72 kgC m-2 in the
upper 2 m of soil, as determined via MIR spectrometry, at our Costa Rican study site:
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a 1 km2 basin covered by coffee agroforestry. Andic soil properties explained this high
variability, which did not correlate with stocks in the upper 20 cm of soil. Topography
and pedogenesis are needed to understand the SOC stocks at landscape scales.

2/ The introduction was rewritten to underline the main objective of our research which
was not MIRS but the variability of soil material (andic soil material and halloysite soil
material) and then of SOC contents and stocks. Our main objective was to underline
that surface SOC stocks does not always give a good image of the SOC stocks in
deeper soil horizons in volcanic areas. You need to know about soil pedogenesis if
you want to estimate accurately soil carbon stocks in this young volcanic environment.
MIRS was an useful tool to analyse a lot of soil samples for andic properties. The only
new result in our study about MIRS is to show that MIRS spectra could be used to
classify andic material from non andic material.

Here is the new introduction. Soil organic carbon (SOC) not only contributes impor-
tantly to soil fertility and productivity, but is a larger pool of C than the world’s vege-
tation and atmosphere combined (Lal, 2004). Those facts suggest that SOC is a po-
tential sink for atmospheric CO2, especially in soils whose formerly high levels of SOC
have become depleted through land use. Therefore, many benefits may accrue from
quantitative research on spatial patterns of SOC stocks at scales ranging from land-
scapes down to individual experimental plots. Among the many factors that affect those
patterns are soil type, climate, topography, and vegetation biomass (Batjes, 2014; Job-
bagy and Jackson, 2000). High spatial variations in SOC content can occur even at
small scale (m) due to soil topography (Gessler et al., 2000) or to changes in land
use (Chevallier et al., 2000). Such variations increase the uncertainty of comparisons
among SOC stocks under different land-management practices (Costa Junior et al.,
2013). For example, as when evaluating the effectiveness of different soil-conservation
measures for restoring SOC in depleted soils. Attempting to decrease experimental un-
certainty by testing SOC at smaller spatial intervals can be impractical because of the
time and expense of standard SOC analyses. Therefore, development of accurate, low-
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cost techniques for quantifying SOC contents at the necessary spatial scales may help
researchers carry out experiments that would provide more definitive results. As a soil
type on which to test those techniques, Andosols have three attractive traits: they store
a disproportionate amount of soil carbon; their SOC patterns are spatially complex both
vertically and horizontally (Mora et al., 2014); and the soil constituents (short-range-
order constituents, e.g. allophane) associated with SOC in Andosols might be used as
proxies for quantifying SOC contents via diffuse-reflectance mid-infrared spectroscopy
(MIRS) (Kinoshita et al. 2016). We will discuss each of those traits of Andosols in turn,
using the standard nomenclature in which the symbols Alo, Feo and Sio represent
ammonium-oxalate-extractable forms of Al, Fe, and Si, and Alp and Fep represent the
sodium-pyrophosphate-extractable forms of Al and Fe. Although Andosols represent
only about 0.84% of the terrestrial soils, they store approximately 5% of the global soil
C (Matus et al. 2014). Derived from volcanic material, they have high levels of short
range order (SRO) constituents, i.e. Allophane or imogolite; high SOC concentrations
(Batjes, 2014; Feller et al., 2001; Torn et al., 1997); high water retention; and low bulk
densities (Shoji et al. 1996). They can store up to three times as much SOC as non-
Andosols. Clear correlations have been found between SOC content and Allophane
content (Basile-Doelsch et al., 2005) or Aluminium humus complexes (Alp) (Percival et
al., 2000; Shen et al., 2018). As explanations for the high SOC contents, most authors
have posited that SOC in Andosols is stabilized against decomposition by some combi-
nation of (i) acidic condition; (ii) Al toxicity; (iii) SOC adsorption on the mineral surfaces
(Mayer and Xing, 2001); (iv) complexation, precipitation, and formation of organo-metal
(Al/Fe) complexes, also called Al/Fe humus complexes (Percival et al., 2000; Scheel et
al., 2007; Torn et al., 1997); and (v) entrapment in the mesoporosity (Mayer, 1994) with
a particular network structure (Chevallier et al., 2010; Mayer et al., 2004; McCarthy
et al., 2008). SOC in the deeper levels of Andosols has not been studied extensively.
Most calculations of global-level C-budgets have not taken deep SOC into account
because SOC at those levels is not considered to contribute much to the exchange
of C between soil and the atmosphere. However, authors are now paying increased
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attention to dynamics and estimated storage capacities of deep SOC that underlies
different ecosystems (Bounouara et al., 2017; Cardinael et al., 2015; Mathieu et al.,
2015; Rasse et al., 2006; Shi et al., 2013). In a global review for tropical regions,
Batjes (2014) estimated SOC stocks in the 0-200 cm depth range at 616 to 640 PgC,
versus 384-403 PgC in the 0-100 cm range. Volcanic regions with high percentages
of Andosols (compared to the other soil types) showed some of the lowest degrees
of vertical stratification of SOC stocks, but with a high degree of uncertainty. For An-
dosols, the ratio of SOC stocks at 0-30 cm those at 0-100 cm has been evaluated as
0.48, with a coefficient of variation of 29% (Batjes 2014). According to Churchman
et al. (2016), the SRO distribution in volcanic regions can be complex both vertically
and horizontally in areas where (i) an active volcano produces thin, intermittent ash
deposits, (ii) soil erosion causes movement of soil materials (Zehetner et al., 2003),
and (iii) the ash weathers in humid climates on slopes in which zones from which Si is
leached away (thereby enabling SRO constituents to form and persist) alternate with
zones in which Si accumulates (thereby causing those constituents to crystallize into
aluminosilicates like halloysite). Factors (ii) and (iii), especially, can combine to pro-
duce terrains in which older, SRO-depleted soils become overlain by newer, SRO-rich
topsoils. Previous work (Kinoshita et al., 2016) at the study site described in this article
(a 1 km2 volcanic micro-watershed) showed that spatial variations in Alp and allophane
contents explained the high spatial variation of SOC contents of topsoils. Those same
spatial variations in SOC (from 48 to 172 gC kg-1soil at 0-5 cm depth) were not ex-
plained by topographic or vegetation covariates. Kinoshita et al. did not sample deeper
layers of soil at the site. However, Kinoshita et al.’s correlations between SRO and
SOC, together with Mora et al’s (2014) data on the potentially complex distributions of
SRO components in volcanic soils, suggested that deep-soil SOC stocks may be not
related to topsoil SOC stocks. More generally, we hypothesized that SOC stocks would
be highly variable along soil profiles. Testing those hypotheses required the analysis
of hundreds of soil samples from soil profiles at widely distributed locations within the
site. The results provided a large database with which to test an additional hypothesis:
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that signatures of SRO components in MIR spectra of soil samples would be useful
proxies for SRO constituents, type of soil material (Andic vs Halloysitic soil material),
SOC and bulk density (Bd). Several authors have shown that diffuse-reflectance MIR
spectroscopy is a time- and cost-effective analysis to quantify SOC contents. There-
fore, MIR spectroscopy has become increasingly popular for spatial mapping of SOC
(Ben-Dor et al., 2009; Clairotte et al., 2016; Nocita et al., 2015; Visacarra Rossel et
al., 2016). Especially in the MIR region, each of a soil’s mineral constituents affects
spectra in a characteristic way. For example, absorbance peaks of Allophane and
imogolite two SRO constituents that are specific to Andosols are near 1000 cm-1. In
contrast, the absorbance peaks of polymerized silicates are near 350 cm-1 (Parfitt,
2009). As SRO constituents control soil Bd (Shoji et al. 1996) and SOC content (Torn
et al., 1997), SRO signatures in MIRS spectra may be useful proxies for soil Bd and
SOC. Therefore, MIR spectra might contain enough information to predict Bd as well
as SOC stocks. Therefore, MIR spectroscopic analysis could replace soil extractions
for some purposes (Janik et al., 1998). Those purposes include the spatial mapping
of SROs and SOCs in volcanic areas where soil age, type, and andic properties vary.
If true, then MIRS could be appropriate for classifying soil samples as Andosols or
non-Andosols. Based upon those classifications, researchers could build different pre-
diction models for SOC contents for a large number of soil samples. In summary, then,
the three hypotheses that we tested in the work reported here were that 1. Spatial dis-
tribution of SOC stocks at depths down to 200 cm depth can vary dramatically volcanic
areas, even within a small watershed; 2. Surface SOC stocks in volcanic areas are not
reliable predictors of stocks that might exist down to depths of 200 cm; and 3. MIRS
is an effective and reliable technique for classifying soil materials according to some
characteristics of andic soils associated with contents of SRO constituents (e.g., Alo,
Alp, Sio, Feo, Alo+0.5 Feo, Allophane, (Alo-Alp)/Sio).

Comment 2 The core of the study is not sufficiently clear to me. Unfortunately, the core
of thestudy is not sufficiently clear to me. A main focus is on MIRS for which 98 spectra
were scanned and where there are also wet-chemical results. In total, however, there
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are598 soils and I do not see that the difference (598 - 98, the 500 soils) is really
required for this study.

Answer: The core of the study and the need of 598 soil samples were specified in the
abstract and the introduction, see answer and modifications in the Ms in our answer to
comment 1.

Comment 3 The chemometric modelling is not exciting. The authors carried out a
LOO-cross-validation for a modified PLS regression using a mixture of replicates and
pseudoreplicates (soils from the same profile at different depths). This is not really
exciting. More exciting would have been an independent validation, where one makes
sure that soils from a profile are kept together in the calibration or validation sample.

Answer: The 10 soil samples of the soil profile sampling were not considered as
pseudo-replicates, neither the 69 soil samples of a same depth but from a different
soil profile. However, we agree they are not independent, they are spatially linked and
were especially used for understanding the vertical and horizontal variability of allo-
phane and carbon contents. We have thus proceeded to independent validations of the
prediction models for all Alo, Sio, Feo and Alp, and the global model for SOC content.
The models of prediction were built on 7 soil profiles (n=69). Validation was performed
on 3 other soils profiles (n= 29.) It was not possible to do it for the other models (Bd,
SOC by clusters) as we did not have enough conventionally measured soil samples to
constitute two groups. Table 1 and material and method were modified. In this study,
the new result is not the model building but the classification of 2 soil materials from the
MIR spectra whatever the soil depth of the soil sampling. We underline this information
in the introduction (third hypotheses) and it was also discussed in §3.1.2. Clustering
according to soil type based upon MIR spectra, versus conventional analyses.

Here are the changes in the text, in Material and Method section (§2.5.1): From the
data sets for MIRS (Sect. 2.3) and laboratory analyses (Sect. 2.4.1), we developed
predictive models for contents of Alo, Alp, Sio, Feo, and SOC. One model was devel-
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oped for each constituent, for a total of five models. All of the models were based upon
69 samples, from seven soil profiles, that were common to both data sets. The other 29
samples that were common to both data sets were used for validating the models, as
described below. The models were developed by fitting the samples’ MIR absorbance
spectra to the samples’ measured contents of each of the five constituents. Except
as noted in Sect. 2.3, the spectra were not given mathematical pre-treatments. Fit-
ting was done via modified partial least-squares regressions. The accuracy of each
prediction model was determined by external validation using laboratory analyses and
MIRS spectra of the above-mentioned 29 samples, which were from three different soil
profiles. The accuracy was quantified by computing (i) the coefficient of determination
(R2), (ii) the root mean square error (RMSE) between predicted and measured values,
and (iii) the ratio (denoted as RPD) of the standard deviation of the value set to RMSE.

Please see below the new Table 1

Comment 4 The anova modelling is not convincing. As above, there are problems
with pseudo replication. In anova, independent data are required. Data from different
depths arenot independent from each other. Repeated measures anova or a mixed
effects model is required.

Answer : We agreed with the reviewer. As repeated anova was not possible because
all the soil profiles were not complete (10 soil depths), linear mixed models were used
to analyse our data. Changes were made in the Ms, Changes were also made in table
2, 3, 7 and 8.

Changes in Material and methods §2.6.2: Effects of spectral cluster and soil depth on
andic properties, SOC contents, Bd, and SOC stocks were analysed with linear mixed
models that considered soil profile a random effect. The T-test was used to assess the
effect of spectral cluster on the variable to be explained for each depth. A random forest
regression model was used to evaluate and order the importance of andic properties,
spectral cluster, and soil depth on SOC contents. Random forest is a machine-learning
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technique based on randomly built decision trees. At each node, a subset of covariates
is also randomly chosen. Random forest was used instead of multiple-linear-regression
methods because it allows use of both categorical and numeric covariates, collinearity
between covariates, and non-linear relationships between covariates and the variable
to be explained. %IncMSE was used to assess the relative importance of covariates in
explaining variability of SOC content. For a given covariate, %IncMSE is the difference
between mean standard error (MSE) of the model with permutation of this covariate,
and model without that permutation. The larger the %IncMSE, the more important this
covariate in predicting SOC content. We used R software (R Core Team, 2018) for the
statistical analyses.

Interactive comment on SOIL Discuss., https://doi.org/10.5194/soil-2019-14, 2019.
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Table 1. Validation statistics of modified partial least square (mPLS) regression for the models used to predict SOC and 
extractable Al, Si, and Fe contents from MIR spectra.  

  n n outliers Mean Sd RMSE R2 RPD 
Alo Calibration 69 0 2.18 1.72 0.4 0.94 4.9 
Alo External validation 29  2.85 2.15 0.8 0.85 2.6 
Sio Calibration 69 3 0.88 0.53 0.14 0.93 3.9 
Sio External validation 29  1.06 0.64 0.19 0.91 3.4 
Feo Calibration 69 0 1.0 0.5 0.2 0.81 2 
Feo External validation 29  1.1 0.5 0.5 0.19 1 
Alp Calibration 69 1 0.26 0.17 0.07 0.85 2.4 
Alp External validation 29  0.24 0.12 0.06 0.72 2 

SOC Calibration 69 2 39.7 26.1 3.6 0.97 7.3 
SOC External validation 29  39.7 21.3 9.4 0.86 2.3 

n: number of soil samples for calibration. Mean and Standard deviation (Sd) of the measured Alo, Sio, Feo, Alp population (in g 
100 g-1 soil) and SOC content (g kg-1) used for model calibration RMSE: Root Mean Square Error, R2: cross-validation 
determination coefficient, RPD : ratio of Sd to RMSE, Sd : Standard deviation. 

 

Fig. 1. Table 1: Validation statistics of modified partial least square (mPLS) regression for the
models used to predict SOC and extractable Al, Si, and Fe contents from MIR spectra.
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