
Thanks for all the comments.  We are sure they will greatly improve the manuscript. 
 
Here we discuss some points that we would like to add to the manuscript, following the 
reviewers comments. 
 
Level of detail 
 
We are happy to address the points raise by Diana Maynard about giving more details about 
the methodology and the rationale behind some of the decisions taken. This will also help to 
delimit the scope of the manuscript. We are trying to introduce the concept of word 
embeddings to the a geosciences audience and document the process of generating the 
embeddings, including their evaluation in task such as analogies, relatedness, and 
categorisation, which seems to be a widely used method to assess the linear substructures 
generated by the model. 
 
We think some of the points raised by the reviewers are beyond the scope of the manuscript. 
For instance, how different pre-processing steps influence the model performance and 
relations. We tried some of the “pipelines” commonly used in the NLP literature instead of 
comparing all the possible combinations (which, according to a paper suggested by Diana, 
could be hundreds). The representations that we observed made sense for us. We are not 
linguists or ontology experts, and we could be biased, but probably as much as any external 
expert in the field of geosciences. 
 
Illustrative example 
 
We realise that an example will greatly improve the manuscript, as pointed out by Diana 
Maynard and Kristof Van Oost. We would like to comment on the inclusion of an example. 
 

- In other fields, word embeddings (specifically generated for the task or, in many 
cases, the same general embeddings) are used in a plethora of applications. They 
have been proven useful in diverse areas so we think there is a general consensus 
about their applicability. 

- According to part of the NLP literature, extrinsic evaluation of embeddings (using 
embeddings in a downstream task) is not a good indicator of their quality. Of course, 
we agree that they need to be useful for something, but the range of applications is 
wide and the complexity of creating gold standard downstream tasks datasets is high. 

 

 

 

  



Proposed example 
(Just an example and not the final text) 
We downloaded around 10,000 soil profile descriptions from the USDA-NRCs Web Site for 
Official Soil Series Descriptions and Series Classification. To each profile, we applied the 
same pre-processing performed when generating the model (tokenisation, lemmatisation, 
etc.). After obtaining the embeddings for each token, we calculated the mean values per 
profile, which can be considered as an encoding at profile level. Each profile and its 
corresponding 300-dimensional encoding were aggregated at Great Group (GG) level (Soil 
Taxonomy) and a mean embedding value was estimated. After projecting the GG 
embeddings in a PCA space, we computed the convex hull per soil order (see figure below). 
The resulting figure shows the extent of each order and it is comparable with the results 
shown by Hughes et al. (2017) who performed a similar exercise but with soil properties 
(OC, sand, clay, etc) in the context of a numerical soil classification system. Similar to the 
results reported by Hughes et al. (2017) Histosols are easily differentiable and they show a 
relatively high variability. 
 

 
 
Hughes, P., McBratney, A.B., Huang, J., Minasny, B., Micheli, E. and Hempel, J., 2017. 
Comparisons between USDA Soil Taxonomy and the Australian Soil Classification System I: 
Data harmonization, calculation of taxonomic distance and inter-taxa variation. Geoderma, 
307, pp.198-209. 



Specific comments to Kristof Van Oost 
 
Figure 3:  a relative scale is used.  Can this be quantified? 
 
Yes. We generated the relative scale from numerical data. We think the relative scale 
illustrates well the word co-occurrence in our corpus. 
 
Section 5.2:  Why is there such a big difference in performance stabilization between 
geosciences and biomedical sciences? 
 
We don’t think both studies are directly comparable. As we mention in the manuscript, it’s 
probably dependant of the tests, domain, corpora used, etc.  
 
What does the color code represent in figure 7? 
 
The two extreme terms (red and blue) are the 2 words used in the interpolation and the black 
terms are the interpolated terms. We will explain that plot better. The interpolation 
corresponded to a linear combination of the 2 extreme encodings 
 

 
where vint is the interpolated embedding, va and vb are the embeddings of the selected 
words. We varied the value of 𝛼  in the range [0, 1] to obtain the figures. 
 

 

 

 

 

 

 

 

  



Specific comments to Alex McBratney 
 
First of all it is worth establishing the basis of the analysis. As I understand it - it 
seems to be based on the multidimensional scaling (principal coordinates) of a 
co-occurrence probability matrix - where the co-occurrences are related to a short list 
of pairs of words=(terms?) separated by a given word distance The words being 
meaningful in the soil science community. Is this a reasonable summary? 
 
The analysis is based on the co-occurrence matrix but the model is more complex than a 
multidimensional scaling. We will expand the model description to clarify this. 
 
Does this kind of analysis tell us anything about science or nature or does it really 
just tell us about the humanly constructed way that science is done and reported? 
 
This is a very good question. These kind of models extract information from the corpus to 
generate a representation in a high dimensional space. From a linguistic point of view, this 
“model” shows interesting features of the text based on words co-occurrence. Assuming that 
this model is a good representation of the corpus, and that the way we report and do science 
is a good representation of nature, maybe we can assume that the derived syllogism (that 
the language model is a good representation of nature) is true. 
 
The newly added example show that the embeddings capture some aspect of nature which 
are also captured by the numerical representation of their properties (clay, SOC, etc). Also, 
the interpolation shows some aspects related with size, which, even if the categories are a 
human construct, describe a measurable natural property. Of course, the representation of a 
representation carries many impressions, but it is worth exploring it. 
 
I could not quite understand Figure 7 - it shows meaningful continua of terms and in 
the correct order - is it a construction?  or is it based on an analysis of papers?  This 
reminds me of course of another approach - if one of the aims of the work here is to 
attempt to quantify meaning via words - then the fuzzy or continuous class approach 
is a good alternative, and perhaps should be compared. 
 
We will expand the interpolation section to clarify that. See comments to Kristof Van Oost. 
 
Continuous and fuzzy classes are another example of encoding and we will mention them in 
Section 2. The main difference is that they are manually generated for a target class, but this 
approach generates the embeddings “automatically” based on the corpus. Of course, they 
are, at best, as good as the corpus and probably some relationships are missing, but for 
sure they include relationships that are hard to encode manually. 

  



Specific comments to Diana Maynard 
 
1. It’s not clear what they want to use word embeddings specifically for. They 
experiment with training some existing techniques on a geoscience corpus, but there 
is no actual motivation for doing so. Word embeddings are only useful if they are 
applied to a specific task, and if it can be shown that they help to solve the task in a 
better way than existing techniques. 
 
We are adding an example to solve this. 
 
“... [the authors] just evaluate the quality of the embeddings on standard fun tasks 
such as analogies that have no actual purpose.” 
 
We think it depends on how far we want to take the definition of purpose. By reading the 
literature, it seems that many NLP researchers focus on developing “fun” analogies, 
relatedness, and categorisation tasks in order to evaluate word embeddings. Those tasks 
are designed to test the syntactic regularities encoded in the embeddings, describing how 
well the generated multi-dimensional space represents the corpus. We would say that that is 
a well defined purpose. 
 
We designed a set of tests to perform the aforementioned tasks, and we agree that that will 
not revolutionise the NLP word, but it is something that has to be done in order to create 
good embeddings. 
 
Specific comments 
 
- ‘The introduction is vague, e.g. "different machine learning methods have been used 
for geoscience" - what does this tell us? Nothing. We need to know at least what task 
they have been used for, why they have been used, and how well they work, not to 
mention why it is relevant to the work presented.’ 
 
We think it is irrelevant what, why and how machine learning methods have been used, 
except for the fact that they prioritise numerical data over qualitative descriptions. 
Nevertheless, we will expand this section giving some examples. 
 
 
 
 
 
 
 
 
 
 



- “References to related work are lacking - the authors need to do proper research into 
the state of the art here - for example, properly investigating the 
advantages/disadvantages of training word embeddings on a general vs specific 
corpus.” 
 
In the introduction, we give two examples of studies where models trained on specific corpus 
which conclude that they can capture the semantics of domain-specific terms better than 
those trained on general corpora. We also mention another reference in the results and 
discussion section. A quick search yielded 3 more examples that conclude the same, in 
different fields (which we will add). This seems to be in line with the reviewer’s comment on 
the first paragraph of her review (“...unsurprisingly, these are better than some pre-existing 
embeddings trained on a general corpus”). We think that 6 references is enough. 
 
- “The section on word embeddings is neither a clear general explanation for those 
who have no idea what they are (as one might expect in the geoscience field), nor 
does it provide a technical explanation for those familiar with the topic. The authors 
introduce the idea of analogies being produced with word embeddings, but do not 
explain why this is even interesting. Figures 1 and 2 are not clear to those who don’t 
know already about word embeddings, and obsolete for those who do. In general, this 
section is very inadequate.” 
 
We will modify this section accordingly to reach the target audience. 
 
- “Section 3 is lacking in technical detail.  How were the terms listed in Table 1 
decided?Why were these particular pre-processing decisions taken?  See for example 
(Dennyand Spirling, 2018) on the importance of such decisions on the results 
obtained, and the effect that even small changes to these decisions can have on the 
end results. Denny, Matthew J., and Arthur Spirling. "Text preprocessing for 
unsupervised learning:why it matters, when it misleads, and what to do about it." 
Political Analysis 26.2 (2018):168-189.  For example,  why do you use stemming and 
not morphological analysis?Surely you do not want to conflate tokens with different 
POS tags here? In other words,you want to perform inflectional but not derivational 
morphological analysis - this is more commonly used for pre-processing word 
embedding training than just stemming(the easy option). Either way, these decisions 
need to be properly justified.” 
 
We will add more technical details and more insights about the different steps. We utilised 
method widely used in NLP literature and we will add some references to help the reader. 
 
Just as a comment, we didn’t observe a difference when using morphological analysis, and 
definitely didn’t change the interpretation of the embeddings. The structure of most of the 
descriptive data that we mention (pedon and auger descriptions) is simple and based on 
occurence of something specific. For instance, If we observe the occurrence of weathering, 
the description probably includes the word “weathering”, “weathered”, and that both have a 
different POS tag (part-of-speech tag, e.g.: verb, adjective) does not change the results. And 
of course, we preferred the “easier” (simpler) solution. 



- “Evaluation:  You need to provide proper information here.  For the relatedness 
task,who did the scoring? Was Inter-Annotator Agreement measured (and if not why 
not?)? What was the result of IAA? I would not expect high agreement here because 
this is a hard task for humans to perform, so this is really critical in order to have a 
valid set of gold standard data. How many tokens is your dataset also?” 
 
We will add more information and thanks for the suggestions. We did not measure IAA, but 
we will add that information. We actually expect a relatively high agreement since the task 
was performed by people with background in geosciences and the relations are not 
extremely complex (for people with some training). We are sure that giving some examples 
and providing more information, as the reviewer suggests, will clarify things. 
 
About the number of tokens, we provide all the information in Fig. 4. Around 300 million 
tokens, and 700,000 unique tokens. Also under Fig. 4 (section 5.2, intrinsic evaluation) we 
provide more examples of studies using domain-specific embeddings. 
 
- “The Conclusion section is very brief and, unsurprisingly given the rest of the paper, 
gives no real interesting conclusions. The final sentence is very unsatisfactory:  what 
do you even mean by saying that embeddings give the scientific community an 
interesting way of "exploring how a scientific community creates its own 
language...."? You certainly haven’t studied this in this work, and have no insights to 
offer us on it.” 
 
You are right about the final sentence and we are happy to remove it. 
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Abstract. A large amount of descriptive information is available in most disciplines of geosciences. This information is usually

considered subjective and ill-favoured compared with its numerical counterpart. Considering the advances in natural language

processing and machine learning, it is possible to utilise descriptive information and encode it as dense vectors. These word

embeddings lay on a multi-dimensional space where angles and distances have a linguistic interpretation. We used 280,764 full-

text scientific articles related to geosciences to train a domain-specific language model capable of generating such embeddings.5

To evaluate the quality of the numerical representations, we performed three intrinsic evaluations, namely: the capacity to

generate analogies, term relatedness compared with the opinion of a human subject, and categorisation of different groups of

words. Since this is the first attempt to evaluate word embedding for tasks in the geosciences domain, we created a test suite

specific for geosciences. We compared our results with general domain embeddings commonly used in other disciplines. As

expected, our domain-specific embeddings (GeoVec) outperformed general domain embeddings in all tasks, with an overall10

performance improvement of 107.9%.
:::
We

::::
also

::::::::
presented

:::
an

:::::::
example

:::::
were

:::
we

::::::::::
successfully

:::::::::
emulated

:::
part

:::
of

::
a

:::::::::
taxonomic

::::::
analysis

:::
of

:::
soil

:::::::
profiles

:::::
which

::::
was

::::::::
originally

:::::::
applied

::
to

::::
soil

::::::::
numerical

:::::
data,

:::::
which

::::::
would

:::
not

::
be

:::::::
possible

:::::::
without

:::
the

:::
use

:::
of

::::::::::
embeddings.

:
The resulting embedding and test suite will be made available for other researchers to use an expand.
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1 Introduction15

Whilst different machine learning
:::::::
Machine

:::::::
learning

:::::
(ML) methods have been used in geosciences (Lary et al., 2016), natural

language processing (NLP) techniques, which involve the manipulation and analysis of language (Jain et al., 2018), have

rarely been applied. This is mainly due to the prioritisation of numerical
:::::
many

:::::
fields

::
of
:::::::::::

geosciences
::::::::::::::::
(Lary et al., 2016)

::
to

:::::::
perform

:::::
tasks

::::
such

:::
as

:::::::::::
classification

::
of
::::::::

satellite
:::::::
imagery

:::::::::::::::::::
(Maxwell et al., 2018),

::::
soil

::::::::
mapping

::::::::::::::::::::
(McBratney et al., 2003)

:
,

::::::
mineral

::::::::::
prospecting

:::::::::::::::
(Caté et al., 2017),

:::::
flood

:::::::::
prediction

:::::::::::::::::
(Mosavi et al., 2018).

:::::::
Thanks

::
to

::::
their

::::::::
capability

::
to
::::
deal

::::
with

::::::::
complex20

:::::::::::
nonlinearities

::::::
present

::
in

:::
the

::::
data,

:::
ML

:::::::
usually

::::::::::
outperforms

::::
more

:::::::::
traditional

:::::::
methods

::
in

:::::
terms

::
of

::::::::
predictive

::::::
power.

:::
The

::::::::::
application

::
of

:::
ML

::
in
::::::::::
geosciences

:::::::
usually

::::::::
prioritise

::::::::
numerical

::
or

::::::::::
categorical data over qualitative descriptions, which are usually consid-

1



ered of subjective nature (McBratney and Odeh, 1997). However, it must be taken into account the resources that have been

invested in collecting large amounts of descriptive information from pedological, geological and other fields of geosciences.

Neglecting non-numerical
:::::::::
descriptive data due to its bias or inconsistency seems wasteful. Moreover, considering the advances

in NLPand machine learning, a significant fraction of the subjectivity and ambiguity introduced by language can be removed by

text processing and probabilistic analysis (Bakx et al., 2006)
:
,
::
yet

::::::
natural

::::::::
language

:::::::::
processing

::::::
(NLP)

:::::::::
techniques,

:::::
which

:::::::
involve5

::
the

:::::::::::
manipulation

::::
and

:::::::
analysis

::
of

::::::::
language

::::::::::::::
(Jain et al., 2018)

:
,
::::
have

:::::
rarely

::::
been

:::::::
applied

::
in

::::::::::
geosciences.

For soil sciences, the use of NLP opens the possibility to
:::
use a broad range of new analyses. Some examples include general,

discipline-wide methods such as automated content analysis (Nunez-Mir et al., 2016) or recommendation systems (Wang and

Blei, 2011) which can take advantage of the current literature. More specific cases could take advantage of big archives of

descriptive data, like the ones reported by Arrouays et al. (2017). The authors mention examples such as the Netherlands with10

more than 327,000 auger descriptions covering agricultural, forest and natural lands, or
:::
the north-central US with 47,364 pedon

descriptions covering 8 states.

Approaches to deal with descriptive data include the work of Fonseca et al. (2002) who proposed the use of ontologies to

integrate geographic information of different kinds. At the University of Colorado, Chris Jenkins created a structured vocabu-

lary for geomaterials (http://instaar.colorado.edu/~jenkinsc/dbseabed/resources/geomaterials/) using lexical extraction (Miller,15

1995), names decomposition (Peckham, 2014) and distributional semantics (Baroni et al., 2012) in order to characterise word

terms for use in Natural Language Processing
:::
NLP

:
and other applications. A different approach, perhaps closer to the preferred

quantitative methods, is the use of dense word embeddings (vectors) which encode information about a word and its linguistic

relationships with other words, positioning it on a multi-dimensional space. The latter is the focus of this study.

There are many general-purpose word embeddings trained on large corpora from social media or knowledge organisation20

archives such as Wikipedia (Pennington et al., 2014; Bojanowski et al., 2016). These embeddings have been proven to be useful

in many tasks such as machine translation (Mikolov et al., 2013a), video description (Venugopalan et al., 2016), document sum-

marisation (Goldstein et al., 2000), and spell checking (Pande, 2017). However, for field-specific tasks,
:::::
many

:::::::::
researchers

:::::
agree

:::
that word embeddings trained on specialised corpora can capture the semantics of terms better than those trained on general cor-

pora (Pakhomov et al., 2016; Wang et al., 2018)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Jiang et al., 2015; Pakhomov et al., 2016; Roy et al., 2017; Nooralahzadeh et al., 2018; Wang et al., 2018)25

.

As far as we are aware, this is the first attempt to develop and evaluate word embedding for the geosciences domain. This

paper is structured as follow: first, we define what word embeddings are, explaining how they work and showing examples to

help the reader understand some of their properties. Second, we describe the text data used and the pre-processes required to

train a language model and generate these word embedding (GeoVec). Third, we illustrate how a natural language model can30

be quantitatively evaluated and we present the first test dataset for the evaluation of word embeddings specifically developed

for the geosciences domain. Fourth, we present result
:::::
results

:
of an intrinsic evaluation of our language model using our test

dataset . Finally,
:::
and

:
we explore some of the characteristics of the multi-dimensional space and the linguistic relationships

captured by the model through examples of soil-related concepts.
::::::
Finally,

:::
we

::::::
present

:
a
:::::::
simple,

::::::::
illustrative

::::::::
example

::
of

::::
how

:::
the

:::::::::
embedding

:::
can

:::
be

::::
used

::
in

:
a
::::::::::
downstream

:::::
task.

2
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2 Word embeddings5

Word embedding
::::::::::
embeddings

:
have been commonly used in many science

:::::::
scientific

:
disciplines, thanks to their application in

statistics. For example, one-hot encodings (Fig. 1), also know as “dummy variables”, have been used in regression analysis

since at least 1957 (Suits, 1957). In one-hot encoding, each word is represented by a vector of length equal to the number of

classes or words, where each dimension represents a feature. The problem with this representation is that the resulting array

is sparse (mostly zeros) and very large when using a large corpora, and also presents
::
the

:
problem of poor estimation of the10

parameters of the less-common words (Turian et al., 2010). A solution for these problems is the use of unsupervised learning

to induce dense, low-dimensional embeddings (Bengio, 2008). The resulting embeddings lay on a multi-dimensional space

where angles and distances have a linguistic interpretation. One of the most common examples of this property is the capacity

of generating analogies with vector arithmetic. For instance, the analogy “king is to queen as man is to woman”could be

represented by the vectorequality king− queen = man−woman.15

" red sticky clay"

word id

red 0

sticky 1

clay 2

red

1

0

0

sticky

0

1

0

clay

0

0

1

one-hotnumerical

Figure 1. Example of two encodings of the phrase “red sticky clay”, numerical and one-hot.

This and other relationships can be extracted from
:::::
These

:::::
dense,

::::
real

:::::::
vectors

:::::
allow

:::::::
models,

:::::::
specially

::::::
neural

::::::::
networks,

:::
to

::::::::
generalise

::
to
::::

new
::::::::::::

combinations
::
of

::::::::
features

::::::
beyond

:::::
those

::::
seen

::::::
during

:::::::
training

::::::
thanks

:::
to

:::
the

:::::::::
properties

::
of

:
the embeddings

where, potentially, each dimension and interaction within the high-dimensional space encodes a different type of relationship.

A more complex example is the representation of the country-capital relationship
:::::
vector

:::::
space

:::::
where

:::::::::::
semantically

:::::
related

::::::
words

::
are

:::::::
usually

::::
close

::
to
:::::

each
::::
other

:::::::::::::::::
(LeCun et al., 2015)

:
.
:::::
Since

:::
the

::::::::
generated

:::::
vector

:::::
space

::::
also

:::
has

:::::::::
properties

::::
such

::
as

:::::::
addition

::::
and20

:::::::::
subtraction,

::::::::::::::::::::
Mikolov et al. (2013b)

::::
gives

:::::
some

::::::::
examples

::
of

:::::::::::
calculations

:::
that

::::
can

::
be

:::::::::
performed

:::::
using

:::::
word

::::::::::
embedding.

::::
For

:::::::
instance

:::
the

::::::::
operation

::::::::::::
vec(“Berlin”)

:
-
::::::::::::::
vec(“Germany”)

::
+

::::::::::::
vec(“France”)

::::::::
generates

::
a
::::
new

::::::
vector.

::::::
When

::::
they

:::::::::
calculated

:::
the

:::::::
distance

::::
from

::::
that

:::::::
resulting

::::::
vector

::
to

:::
all

:::
the

:::::
words

:::::
from

:::
the

:::::
model

::::::::::
vocabulary,

:::
the

::::::
closest

::::
one

::::
was

:::
the

::::
word

:::::::
“Paris”. Fig. 2

presents a principal component analysis (PCA) projection of pairs of words with such
:::
the

::::::::::::
country-capital

:
relationship. Without

explicitly enforcing this relationship when creating the language model, the resulting word embeddings encode the country-

capital relationship due to the high co-occurrence of the terms. In Fig. 2
::
it is also possible to observe a second relationship,

3



geographic location, where South American countries are positioned to the right, European countries in the middle and (Eur-

)Asian countries to the left.5

Figure 2. Examples of two-dimensional PCA projection of selected word embeddings using a general domain model. The figure illustrates

the country-capital relationship learned by the model. Also notice that the model learned about the geographic relationship between the

places. Example adapted from Mikolov et al. (2013b).

:::::::::
Potentially,

:::::
each

:::::::::
dimension

:::
and

::::::::::
interaction

::::::
within

:::
the

:::::::::
generated

::::::
vector

:::::
space

:::::::
encodes

::
a
::::::::
different

::::
type

::
of

:::::::::::
relationship

:::::::
extracted

:::::
from

:::
the

::::
data.

:::::::
Thanks

::
to

:::
the

::::::::
properties

::
of

:::
the

:::::::::
generated

:::::
vector

::::::
space,

::
we

::::
give

::::
ML

:::::::::
algorithms

:::
the

:::::::
capacity

::
to

::::::
utilise

:::
and

:::::::::
understand

::::
text

:::
and

:::
we

:::
are

::::
able

:::
to

:::
use

:::
the

:::::
same

:::::::
methods

:::::::
usually

:::::::
designed

:::
for

:::::::::
numerical

::::
data

::::
(e.g.

:::::::::
clustering,

::::::::
principal

::::::::::
component).

::
In

:::
the

::::
next

::::::::
sections,

:::
we

:::::::
describe

::::
how

:::
we

::::::::
generated

::
a

:::::::
language

::::::
model

::::
that

:::::
yields

:::::
word

::::::::::
embeddings

:::
that

:::::::
encode

:::::::
semantic

:::
and

::::::::
syntactic

:::::::
relations

:::::::
specific

:::
for

::
the

::::::::::
geosciences

:::::::
domain,

:::
we

::::::::
visualise

::::
some

::
of

:::::
those

:::::::
relations

::::
and

::
we

::::::::
illustrate

::::
how10

::
to

:::::::
evaluate

::::
them

:::::::::::
numerically.

3 Data, text pre-processing and model training

3.1 Corpus

The corpus was generated by retrieving and processing 280,764 full-text articles related to geosciences. We used the Else-

vier ScienceDirect APIs to search for manuscript
:::::::::
manuscripts

:
that matched the terms listed in Table 1

:
,
:::::
which

:::::
cover

::
a

:::::
broad

::::
range

:::
of

::::::
topics.

:::::
These

::::::
terms

::::
were

:::::::
selected

::::::
based

::
on

:::::
their

::::::
general

:::::::::::
relationship

::::
with

::::::::::
geosciences

::::
and

::::::::::
particularly

::::
with

::::
soil

:::::::
sciences. We also included Wikipedia articles which list and concisely define some concepts like types of rocks, minerals,

and soils
:
,
::::::::
providing

:::::
more

::::::
context

::::
than

::
a

:::::::
scientific

::::::::::
publication,

::::::::::
considering

::::
that

:::
the

:::::
model

::::::::
depends

::
on

::::::
words

::::::::::::
co-occurrences.

4



We downloaded the text from Wikipidia
:::::::::
Wikipedia articles “List_of_rock_types”, “List_of_minerals”, “List_of_landforms”,5

“Rock_(geology)”, “USDA_soil_taxonomy” and “FAO_soil_classification”, and also all the Wikipedia articles linked from

those pages.

Table 1. Search terms used to retrieve full-text articles from Elsevier ScienceDirect APIs.

Search terms

Acrisol Geosciences Permafrost

Alfisol Groundwater Petrology

Allophane Gypsisols Podzols

Andisol Histosol Sedimentary

Andosols Hydrogeology Sedimentary mineralogy

Aridisol Igneous petrology Sedimentary petrology

Chernozems Imogolite Sedimentary rocks

Entisol Inceptisol Sedimentology

Environmental geology Lithology Soil classification

Field geology Metamorphic petrology Spodosol

Gelisol Mineralogy Stratigraphy

Geochemistry Mollisol Ultisol

Geology Oxisol Vertisol

Geomaterials Peatland Volcanic soils

Geomorphology Pedogenesis

Geophysics Pedology

3.2 Pre-processing

The corpus was split in
:::
into

:
sentences which were then pre-processed using a sequence of commonly used procedures in-

cluding: a) removing punctuation, b) lower-casing, c) removing digits and symbols, and d) removing (easily identifiable) refer-10

ences. The clean
:::
The

::::::
cleaned

:
sentences were then tokenised (split into words)stemmed using Porter’s algorithm (Porter, 1980)

in order to remove some derivational affixes (e.g.: coating→ coat). We excluded .
:::
In

::::
order

::
to
::::::::

decrease
:::
the

:::::::::
complexity

:::
of

:::
the

:::::::::
vocabulary,

:::
we

::::::::::
lemmatised

:::
all

:::::
nouns

::
to
:::::

their
:::::::
singular

:::::
form

:::
and

::::::::
removed

::
all

::::
the words with less than 3 characters, and we

:
.
:::
We

::::
also removed common English words such as ‘not

:::
the’, ‘only’ ,

:::
an’

:
and ‘most’

::::
since

::::
they

::::
are

:::
not

::::::::::::
discriminating

::::
and

:::::::::::
unnecessarily

:::::::
increase

:::
the

::::::
model

:::
size

::::
and

:::::::::
processing

::::
time

:
(a full list

::
of

:::
the

:::::::
removed

:::::
“stop

::::::
words”

:
can be found in the docu-

mentation of the nltk python library (Bird and Loper, 2004)). Finally, we excluded sentences with less than 3 words. The final

corpus has a vocabulary size of 701,415 (unique) words and 305,290,867 tokens.5
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3.3 Model training

For this work,
:

we used the GloVe (Global Vectors) model (Pennington et al., 2014), developed by Stanford University NLP

group, which achieved great accuracy on word analogy tasks and outperformed other word embedding models on similarity and

entity recognition tasks. As many NLP methods, GloVe relays on ratios of word-word co-occurrence probabilities in the corpus,

generating a vector space with the linear substructures mentioned in Section 2. To calculate the co-occurrence probabilities,10

GloVe uses a local context window, where a pair of words d words apart contributes to a 1/d to the total count.
:::::
After

:::
the

:::::::::::
co-occurrence

::::::
matrix

::
X

::
is
:::::::::
calculated,

::::::
GloVe

:::::::::
minimises

:::
the

::::::::::
least-squares

::::::::
problem

V∑
i,j=1

f(Xij)
(
wTi ŵj + bi+ b̂j − logXij

)2
:::::::::::::::::::::::::::::::::

(1)

:::::
where

:::
Xij::

is
:::
the

::::::::::::
co-occurrence

:::::::
between

:::
the

:::::
target

::::::
words

:
i
:::
and

:::
the

:::::::
context

::::
word

::
j,
::
V

::
is
:::
the

::::::::::
vocabulary

::::
size,

::
wi::

is
:::
the

:::::
word

:::::::::
embedding,

:::̂
wj::

is
::
a
::::::
context

:::::
word

::::::::::
embedding,

::
bi::::

and
::
b̂j:::

are
::::::
biases

:::
for

::
wi::::

and
:::
ŵj ,:::::::::::

respectively,
::::
and

::::::
f(Xij)::

is
:::
the

:::::::::
weighting15

:::::::
function

f(x) =

(x/xmax)
α ifx < xmax

1 otherwise
:::::::::::::::::::::::::::

(2)

:::
that

:::::::
assures

:::
that

::::
rare

::::
and

::::::::
frequent

::::::::::::
co-occurrences

::::
are

:::
not

::::::::::::
overweighted.

:::::::::::::::::::::
Pennington et al. (2014)

:::::::::
recommend

:::::
using

::::
the

:::::
values

::::
0.75

:::
for

:::
the

:::::::::
smoothing

::::::::
parameter

::
α

:::
and

::::
100

:::
for

:::
the

::::::::
maximum

::::::
cutoff

:::::
count

::::
xmax.

:

We trained the model during 60 epochs, where 1 epoch corresponds to a complete pass through the training dataset. During20

the training phase,
:
we experimented using embedding of

:::
with

:
different number of components (dimensions) and different

context window sizes. Here we present the results for 300 components and a window size of
::::::
context

:::::::
window

::
of

:::
size

:
10, which

represents a good balance between model size, training time and performance.

4 Evaluation of word embeddings

Given the characteristic of the vector space, the most common method to evaluate word embeddings is to asses their perfor-25

mance in tasks that test if semantic and syntactic rules are properly encoded. Many studies have presented datasets to perform

this task. Rubenstein and Goodenough (1965) presented a set of 65 noun synonyms to test the relationship between the seman-

tic similarity existing between a pair of words and the degree to which their contexts are similar. More recent and larger test

dataset
::::::
datasets

:
and task types have been proposed (Finkelstein et al., 2002; Mikolov et al., 2013c; Baroni et al., 2014) but they

all have been designed with the aim to test general domain vectors. Because the aim of this work is
:::
this

::::
work

::::
aims

:
to generate

embeddings for the geosciences domain, we developed a test suite to evaluate their intrinsic quality in different tasks, which5

are described bellow
:::::
below.
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Analogy: Given two related pairs of words, a:b and x:y, the aim of the task is to answer the question “a is to x as b is to?”. The

set includes 50 quartets of words with different levels of complexity, from simple semantic relationships to more advance

syntactic relations. In practice,
:
it
:
is possible to find y by calculating the cosine similarity between the differences of the

paired vectors:10

(vb− va) · (vy − vx)
‖vb− va‖‖vy − vx‖

(3)

In this case
:
, vy is the embedding for each word of the vocabulary and y is the word with the highest cosine similarity.

Some examples of analogies are: “moraine is to glacial as terrace is to ? (fluvial)”, “limestone is to sedimentary as

tuff is to ? (volcanic)” and “chalcantite is to blue as malachite is to ? (green)”.

We estimated the top-1, top-3, top-5 and top-10 accuracy score, recording a positive result if y was within the first 1, 3,15

5 or 10 words returned by the model, respectively.

Relatedness: For a given pair of words (a,b), a score of 0 or 1 is assigned by a human subject if the words are unrelated

or related, respectively. The set includes 100 pairs of scored pairs of words. The scores are expected to have a high

correlation with the cosine similarity between the embeddings of each pair of words. In this work
:
, we used the Pearson

correlation coefficient
::
to

:::::::
evaluate

:::
the

:::::
model

::::::
against

::::::::::
annotations

:::::
made

::
by

::
3
::::::
people

::::
with

:
a
::::::::::
geosciences

::::::::::
background.20

Categorisation: Given 2 sets of words s1 = {a,b,c, ...} and s2 = {x,y,z, ...}, this test should be able to correctly assign each

word to its corresponding group using a clustering algorithm. We provide 30 tests with 2 clusters each. We estimated

the v-measure score (Rosenberg and Hirschberg, 2007), which takes into account the homogeneity and completeness

of the clusters, after projecting the multi-dimensional vector space to a two-dimensional PCA space and performing a

k-means clustering. Given that k-means is not deterministic (when using random centroids initiation), we used the mean25

v-measure score of 50 realisations.

We compared our results with general domain vectors trained on Wikipedia articles (until 2014) and the Gigaword v5

catalogue, which comprise 6 billion tokens and is provided by the authors of GloVe at https://nlp.stanford.edu/projects/glove/.

5
:::::::::
Illustrative

::::::::
example

::
In

::::
order

:::
to

:::::::
illustrate

:::
the

:::
use

:::
of

::::
word

::::::::::
embedding

::
in

:
a
:::::::::::
downstream

:::::::::
application,

:::
we

:::::::
decided

::
to

:::::::
emulate

::::
part

::
of

:::
the

:::::::
analysis

::
of

::
a

:::
soil

:::::::::
taxonomic

::::::
system

:::::::::
performed

::
by

:::::::::::::::::
Hughes et al. (2017)

:
.
::::
They

::::
used

:::
23

:::
soil

::::::::
variables

::::
(e.g.

::::
sand

:::::::
content

:::
and

::::
bulk

::::::::
density),

::
in

::::
their

:::::::
majority

:::::::::
numerical

:::
and

:::::::::
continuous

::::::
except

:::
for

:::
two

::::::
binary

::::::::
variables

::::::::::
representing

:::
the

::::::::
presence

::
or

:::::::
absence

::
of

:::::
water

::
or

::::
ice.

:::::
Those

::::::::
variables

:::::::::
correspond

::
to

:::
the

::::::::::::
representation

::
of

:::::::
horizons

::::
from

::::
soil

:::::::
profiles,

:::::
which

::::
were

::::
then

:::::::::
aggregated

:::::::
(mean)

:
at
::::::::
different

::::::::
taxonomic

::::::
levels

::
to

:::::
obtain

::::
class

:::::::::
centroids.5

:::
Our

:::::::
analysis

::::
was

:::::::
similar,

:::
but,

:::::::
instead

::
of

:::::
using

::::
soil

::::::::
variables,

:::
we

:::::
used

:::
the

::::
word

::::::::::
embedding

::::::::::::
corresponding

::
to
::::

the
::::::
textual

:::::::::
description

::
of

::::::
10,000

:::
soil

::::::
profile

::::::::::
descriptions

::::::::::
downloaded

::::
from

:::
the

::::::::::::
USDA-NRCS

::::
Web

:::
Site

:::
for

::::::
Official

::::
Soil

:::::
Series

:::::::::::
Descriptions

7
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:::
and

:::::
Series

::::::::::::
Classification.

::::
The

::::::::::
descriptions

::::
were

::::::::::::
pre-processed

:::::
using

:::
the

::::
same

:::::::
pipeline

::::
used

:::
for

:::
the

::::::
corpus

:::::::
(Section

::::
3.2).

:::::
After

::::::::
obtaining

::
the

::::::::::
embeddings

:::
for

::::
each

:::::
token

::
in

:::
the

::::::::::
descriptions,

:::
we

:::::::::
calculated

:::
the

::::
mean

::::::
values

:::
per

::::::
profile,

:::::
which

:::
can

:::
be

:::::::::
considered

::
as

::
an

::::::::::
embedding

::
at

:::
the

::::::
profile

:::::
level.

::::
The

::::::
profiles

::::
and

::::
their

::::::::::::
corresponding

::::::::::::::
300-dimensional

:::::::::::
embeddings

::::
were

::::::::::
aggregated

::
at10

::::
Great

::::::
Group

:::::
(GG)

::::
level

::::
(Soil

::::::::::
Taxonomy)

::::
and

:
a
:::::
mean

:::::::::
embedding

:::::
value

:::
was

:::::::::
estimated

:::::::::
(equivalent

::
to

:::
the

::::::::
centroids

:::::::
obtained

:::
by

::::::::::::::::
Hughes et al. (2017)

:
).
:::::
After

:::::::::
projecting

:::
the

:::
GG

::::::::::
embeddings

::::
into

:
a
:::::
PCA

:::::
space,

:::
we

::::::::
computed

:::
the

::::::
convex

::::
hull

:::
per

:::
soil

:::::
order

::
as

::
a

:::
way

::
of
::::::::::
visualising

::::
their

::::::
extent.

6 Results and discussion

6.1 Co-occurrence15

Before training the language model, the first output of the process is a co-occurrence matrix. This matrix encodes useful

information about the underlying corpus (Heimerl and Gleicher, 2018). Fig. 3 shows the co-occurrence probabilities of soil

taxonomic orders and some selected words. Is
::
It

:
is
:
possible to observe that concepts generally associated with a specific order

actually co-occur in the corpus, such as soil cracks, which are features usually present in Vertisols; or Andisols being closely

related to areas with volcanic activity.20
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Figure 3. Co-occurrence probability matrix of soil orders (USDA) and selected words.

This information can also be used to guide the process of generating a domain-specific model. In our case, in an early stage

of this study, the terms “permafrost” and “gelisol” presented a very low co-occurrence probability, a clear sign of the limited

topic coverage of the articles at that point.

6.2 Intrinsic evaluation

The results of the intrinsic evaluation indicate that our domain-specific embeddings (GeoVec) performed better than the gen-

eral domain embeddings in all tasks (Table 2), increasing the overall performance by 107.9%. This is an expected outcome5

considering the specificity of the tasks. For the analogies, we decided to present the top-1, 3, 5 and 10 accuracy scores because,

even if the most desirable result is to have the expected word as the first output from the model, in many cases the first few
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words are closely related or they are synonyms. For instance, for the analogy “fan is to fluvial as estuary is to ? (coastal)”,

the first four alternatives are “tidal”, “river”, “estuarine”, “coastal”, which are all related to a estuary.

::
In

::
the

::::::::::
relatedness

::::
task,

:::
the

:
3
::::::
human

:::::::::
annotators

:::
had

:
a
::::
high

::::::::::::
inter-annotator

:::::::::
agreement

:::::::::::::::::::
(multi-kappa=98.66%;

::
as

:::
per

::::::::::::::::::::
Davies and Fleiss (1982)10

:
),
::::::
which

:::
was

::::::::
expected

::::
since

:::
the

::::::::
relations

:::
are

:::
not

:::::::
complex

:::
for

::::
some

::::
with

::
a
::::::::::
background

::
in

::::::::::
geosciences.

:::
As

:::
we

::::
keep

:::::::
working

:::
on

:::
this

:::::
topic,

:::
we

::::
plan

::
to

::::::
extend

::
the

::::
test

::::
suite

::::
with

:::::
more

:::::
subtle

::::::::
relations.

Table 2. Evaluation scores for each task for our domain-specific (GeoVec) and general domain embeddings (Stanford). For the analogy

task, top-1, 3, 5 and 10 represents the accuracy if the expected word was within the first 1, 3, 5 or 10 words returned by the model. For the

relatedness task, the score represents the absolute value of the Pearson correlation
::::
(mean

::
of

:::
the

:
3
::::::

human
:::::::
subjects). For the categorisation

task, the score represents the mean value of 50 v-measure scores. The possible range of all scores is 0 to 1, where higher is better.

GeoVec Stanford

Analogy (top-1) 0.39 0.22

Analogy (top-3) 0.78 0.37

Analogy (top-5) 0.90 0.41

Analogy (top-10) 0.92 0.49

Relatedness 0.61 0.23

Categorisation 0.75 0.38

Overall 0.73 0.35

It was possible to observe an increase on the overall performance of the embeddings (calculated as the mean of the analogy

(top-5), relatedness and categorisation tasks) as we added more articles, almost stabilising around 300 million tokens, specially

::::::::
especially

:
for the analogy task (Fig. 4). For domain-specific embeddings, this limit most likely varies depending on the task15

and domain. For instance, Pedersen et al. (2007), measuring semantic similarity and relatedness in the biomedical domain,

found a limit of around 66 million tokens.

The improvement over the general domain embeddings has also been reported in other studies. Wang et al. (2018) concluded

that word embeddings trained on biomedical corpora can capture the semantics of medical terms better than the embeddings of a

general domain GloVe model. Also in a biomedical application, Jiang et al. (2015) and Pakhomov et al. (2016) reported similar

conclusions. In the following sections,
:

we explore the characteristics of the obtained embeddings, showing some graphical

examples of selected evaluation tasks.

6.3 Analogy

A different way of evaluating analogies is to plot the different pairs of words in a 2-dimensional PCA projection. Fig. 5 shows

different pairs of words which can be seen as group analogies. From the plot, any pair of related words can be expressed as an

analogy. For example, from the left panel,
:
it is possible to generate the analogy “claystone is to clay as sandstone is to ?

(sand)” and the first model output is indeed “sand”.5
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Figure 4. Overall performance of the embeddings versus number of tokens used to construct the co-occurrence matrix. The improvement

limit is around 300 million tokens. For future comparisons, this limit corresponds to approximately: 280,000 articles, 22.5 million sentences

and 700,000 unique tokens.

As we showed in Fig. 2, the embeddings encode different relationships with different degrees of sophistication. In the left

panel of Fig. 5
:
it is possible to observe simple analogies, mostly syntactics

:::::::
syntactic since “claystone” contains the word “clay”.

The right panel presents a more advanced relationship where rock names are assigned to their corresponding rock type.

Figure 5. Two-dimensional PCA projection of selected words. Simple syntactic relationship between particle fraction sizes and rocks (left

panel) and advanced semantic relationship between rocks and rock types (right panel).
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6.4 Categorisation

Similar to the analogies, the categorisation task can also present different degrees of complexity of the representations. In10

the left panel of Fig. 6, a k-means clustering can distinguish the two expected clusters of concepts, WRB (FAO, 1988) and

Soil Taxonomy (USDA, 2010) soil classification names. Andisols and Andosols are correctly assigned to their corresponding

groups but apart from the rest, probably due to their unique characteristics. Vertisols are correctly placed in between the two

groups , since both have a soil type with that name. A second level of aggregation can be observed in the right panel. The

k-means clustering correctly assigned the same soil groups from the left panel into a general “soil types” group, different from15

“rocks”.
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Figure 6. Two-dimensional PCA projection of selected categorisations. Clusters representing soil types from different soil classification

systems (left panel) and a different aggregation level where the same soil types are grouped as a single cluster when compared with rocks

(right panel).

6.5 Other embedding properties

Interpolation of embeddings is an interesting exercise that
:::::
allows

::
to
::::::

further
:::::::

explore
::
if

:::
the

::::::
corpus

::
is

::::
well

::::::::::
represented

:::
by

:::
the

:::::
vector

::::::
space.

::::::::::
Interpolation

:
has been used to generate gradient between faces (Yeh et al., 2016; Upchurch et al., 2017), assist

drawing (Baxter and ichi Anjyo, 2006) and transform speech (Hsu et al., 2017). Interpolation between text embeddings are

:
is
:
less common. Bowman et al. (2015) analysed the latent vector space of sentences and found that their model was able to

generate coherent and diverse sentences when sampling between two embeddings. Duong et al. (2016) interpolated between5

embedding from two vector spaces trained on different languages corpora to create a single cross-lingual vector space. The

vector space from our model also presents similar characteristics.
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We were able to interpolate between different words , obtaining coherent concepts
::
In

:::::
order

::
to

:::::::
generate

:::
the

:::::::::::
interpolated

::::::::::
embeddings,

:::
we

:::::::
obtained

:::::
linear

::::::::::::
combinations

::
of

:::
two

::::::
words

::::::::::
embeddings

::
by

:::::
using

:::
the

:::::::
formula

:

vint = α ∗ va+(1−α) ∗ vb
::::::::::::::::::::::

(4)10

:::::
where

::::
vint ::

is
::
the

:::::::::::
interpolated

:::::::::
embedding,

:::
va:::

and
:::
vb :::

are
:::
the

::::::::::
embeddings

::
of

:::
the

:::
two

:::::::
selected

::::::
words.

:::
By

:::::::
varying

:::
the

:::::
value

::
of

:
α
::
in
:::
the

:::::
range

:::::
[0,1],

:::
we

:::::::::
generated

:
a
:::::::
gradient

::
of

:::::::::::
embeddings.

:::
For

:::::
each

::::::::::
intermediate

::::::::::
embedding

:::::::
obtained

:::
by

:::::::::::
interpolation,

:::
we

::::::::
calculated

:::
the

::::::
cosine

::::::::
similarity

::::
(Eq.

::
3)

::::::
against

:::
all

::
the

::::::
words

::
in

:::
the

::::::
corpus

:::
and

:::::::
selected

:::
the

::::::
closest

::::
one.

:::
The

::::::
results

::::::
showed

::::::::
coherent

:::::::
concepts

:::::
along

:::
the

:::::::
gradients

:
(Fig. 7). The interpolation between “clay” and “’boulder’

:::::::
boulder”,

with fine and coarse size, respectively, yields a gradient of sizes, with “clay”<“silt”<“sand”<“gravel”<“cobble”<“boulder”.15

Another interpolation example, along another type of relationship, is shown in the right panel of Fig. 7. The interpola-

tion between the rocks “slate” and “migmatite” yields a gradient of rocks with different grades of metamorphism, with

“slate”<“phyllite”<“schist”<“gneiss”<“migmatite”.
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Figure 7. Interpolated embedding in a two-dimensional PCA projection showing a size gradient (left panel)

with “clay”<“silt”<“sand”<“gravel”<“cobble”<“boulder”; and gradient of metamorphism grade (right panel) with

“slate”<“phyllite”<“schist”<“gneiss”<“migmatite”.
:::
Red

::::
and

::::
blue

::::
dots

::::::::
represent

::::::
selected

::::::
words

::::::
(“clay”

::::
and

::::::::
“boulder”,

::::
and

::::::
“slate”

:::
and

::::::::::
“migmatite”)

:::
and

::::
black

:::
dots

:::::::
represent

:::
the

:::::
closest

:::::
word

:::::
(cosine

::::::::
similarity)

::
to

:::
the

:::::::::
interpolated

:::::::::
embeddings.

6.6
:::::::::

Illustrative
::::::::
example

::
As

::
a
:::::
final,

:::::::
external

:::::::::
evaluation

::
of

:::
the

::::::::::
embedding,

:::
we

:::::::::
estimated

::::::
average

:::::::::::
embeddings

:::
for

::::
each

::::
GG

::
of

::::
soils

:::::
from

::::::
10,000

::::
soil

::::::
profiles

:::::::::::
descriptions.

::::
The

:::::::::::
convex-hulls

::
at

:::
soil

:::::
order

:::::
level

::::
(Fig.

:::
8)

:::::
show

:::
the

:::::
same

::::::
pattern

:::::::
reported

:::
by

:::::::::::::::::
Hughes et al. (2017)

:
.

:::::::
Histosols

:::
are

::::::
easily

:::::::::::
differentiable

:::
and

::::
they

:::::
show

:::
the

::::::
highest

:::::::::
variability

::::
and

:::
the

:::
rest

::
of

:::
the

::::
soil

:::::
orders

:::
are

:::::::
heavily

::::::::::
overlapped.

::::
That

::::::
overlap

::::
does

:::
not

:::::
imply

::::
that

:::
the

:::::
orders

:::
are

:::
not

::::::::
separable

::::
since

:::
we

:::
are

:::::::
plotting

:::
the

:::
first

::
2

:::::::
principal

::::::::::
components

:::::
(PCs)

::::::
which5
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::::
only

::::::
account

:::
for

:::::
28.8%

::
of

:::
the

::::
total

::::::::
variance.

::::
This

:
is
::::::::
probably

:::
the

::::
same

::::::
reason

:::
for

::
the

:::::::
overlap

::
in

::
the

:::::
study

:::
by

:::::::::::::::::
Hughes et al. (2017)

::::
since

:::
the

::::
first

::
36

::::
PCs

:::::::
account

::
for

:::::
95%

::
of

:::
the

::::
total

:::::::
variance.

:

0.2 0.1 0.0 0.1 0.2 0.3 0.4

0.2
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0.2

0.4

0.6

0.8
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Figure 8.
::::::::::
Convex-hulls

::
of

::::
great

::::
group

:::::::::
embeddings

::
at

::
the

:::::
order

:::
level

::::
(Soil

:::::::::
Taxonomy).

:::::
Great

::::
group

:::::::::
embeddings

::::
were

:::::::
obtained

:::
after

::::::::
averaging

::
the

:::::::::
embeddings

::
of
:::
all

::
the

:::::
words

::
in

:::
the

:::::::::
descriptions

::
of

::
the

::::::
profiles

::::::::
belonging

::
to

::::
each

::::
great

:::::
group.

:::
The

::::::::::
convex-hulls

::::
were

:::::::
estimated

::::
from

:::
the

:
2
:::
first

:::::::
principal

:::::::::
components

::
of

:::
the

::::
great

::::
group

::::::::::
embeddings.

::::
This

:::::::
example

:::::
shows

::::
how,

:::
by

::::
using

:::::::::::
descriptions

:::::::
encoded

::
as

::::
word

:::::::::::
embeddings,

:::
we

::::
were

::::
able

::
to

:::
use

::
the

:::::
same

:::::::
methods

::::
used

:::
by

::::::::::::::::
Hughes et al. (2017)

:
.
::
In

:::
this

:::::
case,

:
if
:::
no

:::
soil

::::::::
variables

:::::::::
(laboratory

:::::
data)

::::
were

::::::::
available,

:::::
word

::::::::::
embeddings

:::::
could

::
be

::::
used

:::::::
instead.

::::::
Ideally,

:::
we

:::::
would

::::::
expect

::
to

:::
use

::::
word

::::::::::
embeddings

::
to

::::::::::
complement

:::::::::
numerical

:::
data

::
to
:::::::
include

:::::::
valuable

::::::::::
information

:::::::
included

::
in

:::
the10

:::::::::
descriptive

::::
data.

::::
This

::
is

::::
also

:::::::
possible

::::
with

:::::
other

::::::::::
approaches.

:::::::::::::::::
Hughes et al. (2017)

::::::::
manually

::::::::
generated

::::::
binary

::::::::::
embeddings

:::
for

::
the

::::::::
presence

::
of

:::
ice

:::
and

:::::
water.

:::::::
Another

:::::::::
alternative

::
to

:::::
create

::::::::::
embeddings

::
is

::::
fuzzy

:::::
logic.

:::
For

::::::::
example,

::::::::::::::::::::::::
McBratney and Odeh (1997)

::::::
fuzzify

:::::::::
categorical

::::::::::
information

::::
from

:::
soil

:::::::
profiles

::::
such

::
as

:::::
depth,

:::::::::
generating

::
an

::::::::
encoding

:::
that

:::::::::
represents

:::
the

:::::::::
probability

::
to

::::::
belong

::
to

:::::::
different

:::::
depth

::::::
classes

::::
(e.g

:
a
::::::
“fairly

:::::
deep”

::::
soil

:::::
could

:::
lay

:::::::
between

:::
the

::::::::
“shallow”

::::
and

::::::
“deep”

::::::
classes,

:::::
with

:
a
::::::::::
membership

:::
of

:::
0.5

::
to

::::
each

:::::
class).

::::
The

:::::::::
advantage

::
of

:::::
using

::::
word

::::::::::
embeddings

::
is
::::
that

::::
they

:::
are

::::
high

::::::::::
dimensional

::::::
vectors

::::
that

::::::
encode

:::::
much

:::::
more5

:::::::::
information

:::::::::
applicable

::
to

:::::
many

:::::
tasks,

::::::
which

:::::
would

::
be

:::::::
difficult

::
to

::::::::
replicate

::
by

:::::::
manual

::::::::
encoding.
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6.7
::::

What
:::
do

:::::
these

::::::::::
embeddings

::::::::
actually

:::::::::
represent?

:
It
::

is
::::::

worth
:::::::::
discussing

::
if
:::::
word

:::::::::::
embeddings

:::
tell

:::
us

:::::::
anything

::::::
about

:::::
nature

:::
or

::
if

::::
they

::::::
really

:::
just

::::
tell

::
us

::::::
about

:::
the

::::::::
humanly

:::::::::
constructed

::::
way

::::
that

:::::::
science

::
is

:::::
done

:::
and

::::::::
reported.

:::
A

::::::::
language

::::::
model

:::::::
extracts

::::::::::
information

:::::
from

:::
the

:::::::
corpora

::
to

::::::::
generate

:
a
::::::::::::
representation

::
in

::
a
::::
high

:::::::::::
dimensional

:::::
space.

:::::
This

:::::::::
continuous

::::::
vector

:::::
space

::::::
shows

:::::::::
interesting

:::::::
features

::::
that

:::::
relate

:::::
words

:::
to10

::::
each

:::::
other,

::::::
which

::::
were

::::::
tested

::
in

:::::::
multiple

:::::
tasks

::::::::
designed

::
to

:::::::
evaluate

:::
the

::::::::
syntactic

::::::::::
regularities

:::::::
encoded

:::
in

:::
the

:::::::::::
embeddings.

::::::::::
Considering

:::
the

:::::::
position

:::
that

:::::::
science

:
is
::
a
:::::
model

:::
of

:::::
nature

:::::::::::::
(Gilbert, 1991)

:::
and

::::::::
assuming

::::
that

::
the

::::
way

:::
we

:::
do

:::
and

:::::
report

:::::::
science

:
is
::
a

::::
good

::::::::::::
representation

::
of

::
it,

::
if

:::
the

:::::::
language

::::::
model

::
is

:
a
::::
good

::::::::::::
representation

::
of

:::
the

:::::::
corpora

::
of

:::::::::::
publications,

::::::
perhaps

:::
the

:::::::
derived

::::::::
syllogism

::
—

:::
the

::::::::
language

:::::
model

::
is
::
a

::::
good

::::::::::::
representation

::
of

::::::
nature

::
—

:::
can

:::
be

:::::::::
considered

::
as

::::
true.

:::
Of

::::::
course,

:::
the

::::::::::::
representation

::
of

:
a
::::::::::::
representation

::::::
carries

:::::
many

::::::::::
impressions,

:::
but

::
it

::
is

:::::
worth

::::::::
exploring

::
its

:::::::
validity.

:
15

::
As

::::::
shown

::
by

:::
the

:::::
linear

::::::::::::
combinations

::
of

::::::::::
embeddings

::::
(Fig.

:::
7),

::::
some

:::::::
aspects

::::::
related

::
to

:::::
“size”

:::
are

:::::::
captured

:::
by

:::
the

::::::::::
embeddings

:::
and,

:::::
even

::
if

::::
size

:::::::::
categories

:::
are

:
a
:::::::

human
::::::::
construct,

::::
they

::::::::
describe

::
a

:::::::::
measurable

:::::::
natural

::::::::
property.

::
A

:::::
more

:::::::
complex

:::::
case

::
is

::
the

::::::::::
illustrative

:::::::
example

::
in

:::::::
Section

:::
6.6,

::::::
where

:::
the

::::::::::
embeddings

:::::::
capture

:::::
some

:::::
aspect

::
of
::::::

nature
::::::
which

:::
are

::::
also

:::::::
captured

:::
by

:::
the

::::::::
numerical

::::::::::::
representation

::
of

:::
its

::::::::
properties

:::
(in

::::
this

::::
case

:::
soil

:::::::::
properties

::::
such

::
as

::::
clay

:::::::
content,

::::
pH,

::::
etc).

:::::
Given

::::
the

:::::
results

:::
of

:::
the

:::::::
intrinsic

::::::::
evaluation

::
of

::::
this

::::
work

::::
and

:::::
others

:::::::::
referenced

:::::::::
throughout

::::
this

::::::
article,

:
it
::
is

:::::::
probably

::::::::::
impossible

::
to

:::::::
generate

:::
the

:::::::
“perfect20

:::::::::::
embeddings”.

:::::
Even

:
if
:::
we

::::
were

::::
able

::
to

::::::
process

:::
all

:::
the

::::::
written

:::::::::
information

::::::::
available,

::::
and

:::::::
ignoring

:::
the

:::::::::
limitations

::
of

:::
any

::::::::
language

::::::
model,

:::
the

::::::::::
embeddings

::::::
would

::
be

:::
still

::::::
limited

:::
by

:::
our

:::::::
capacity

::
to

:::::::::
understand

:::::::::
non-linear

::::::::::
relationships

:::::::::::::::::::::::
(Doherty and Balzer, 1988)

:::
and,

::
in
::::::::::::
consequence,

::
to

:::::::::
understand

::::::
nature.

:
If
:::::
word

::::::::::
embedding

:::
can

::::
give

::::
new

:::::::
insights

:::::
about

::::::::::
geosciences

::
is

::::
still

::
to

::
be

::::::
tested.

:::::::
Studies

::
in

:::::
other

:::::
fields

::::
have

::::::
shown

:::::
some

:::::::::
potentially

:::
new

:::::::::::
information.

:::
For

:::::::
instance,

:::::::::::::::::::
Kartchner et al. (2017)

::::::::
generated

::::::::::
embeddings

::::
from

:::::::
medical

::::::::
diagnosis

::::
data

::::
and,

::::
after25

:::::::::
performing

:
a
:::::::::
clustering,

::::
they

::::::
found

::::
clear

::::
links

::::::::
between

::::
some

:::::::::
diagnoses

::::::
related

::
to

::::::::
advanced

:::::::
chronic

::::::
kidney

::::::
disease.

::::::
Some

::
of

::
the

::::::::
relations

:::
are

::::::
already

::::::
known

:::
and

::::::::
accepted

::
by

:::
the

:::::::
medical

:::::::::
community

:::::
while

::::::
others

::
are

::::
new

:::
and

:::
are

::::
just

::::::
starting

::
to

::
be

:::::::
studied

:::
and

::::::::
reported.

6.8 Future work

In the future, we expect to evaluate the effect of using our embeddings in
:::::
more downstream applications (extrinsic evaluation).30

It is expected that domain-specific embedding will necessarily improve the results of downstream tasks but this is not always the

case. Schnabel et al. (2015) suggested that extrinsic evaluation should not be used as a proxy for a general notion of embedding

quality, since different tasks favour different embeddings, but they are useful in characterising the relative strengths of different

models. We also expect to expand the test suite with more diverse and complex tests, opening the process to the scientific

community. Another interesting opportunity is the inclusion of word embeddings in numerical classification systems (Bidwell

and Hole, 1964; Crommelin and De Gruijter, 1973; Sneath et al., 1973; Webster et al., 1977; Hughes et al., 2014) which try to5

remove subjectivity by classifying an entity (soil, rock, etc.) based on numerical attributes that describe its composition.
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7 Conclusions

In this work we introduced the use of domain-specific word embeddings for geosciences (GeoVec) as a way to a) reduce

subjectivity
::::::::::::
inconsistencies

:
of descriptive data, and b) open the alternative to include such data into numerical data analysis.

Comparing the result with general domain embeddings, trained on corpus such as Wikipedia, the domain-specific embed-10

ding performed better in common natural language processing tasks such as analogies, terms relatedness and categorisation,

improving the overall accuracy by 107.9%.

We also presented a test suite, specifically designed for geosciences, to evaluate embedding intrinsic performance. It
::::
This

::::::::
evaluation

::
is
::::::::
necessary

:::
to

:::
test

::
if

:::::::
syntactic

:::
or

:::::::
semantic

:::::::::::
relationships

:::::::
between

::::::
words

:::
are

:::::::
captured

:::
by

:::
the

:::::::::::
embeddings.

:::
The

::::
test

::::
suite comprises tests for three tasks

::::::
usually

::::::::
described

::
in

:::
the

::::::::
literature

:
(analogy, relatedness and categorisation) with different15

levels of complexity. We
:::::
Since

:::::::
creating

:
a
:::

set
:::

of
::::
gold

::::::::
standard

::::
tests

::
is

:::
not

::
a
:::::
trivial

:::::
task,

:::
we

::::::::
consider

:::
this

::::
test

::::
suite

::
a
::::
first

::::::::
approach.

::
In

:::
the

::::::
future,

:::
we

:
expect to expand the test suite with more diverse and complex tests , opening

:::
and

::
to

:::::
open the

process to the scientific community
:
to
:::::
cover

::::::::
different

:::::::
subfields

::
of

::::::::::
geosciences.

We demonstrated that the high-dimensional space generated by the language model encodes different type
::::
types

:
of re-

lationships, through examples of soil-related concepts. These relationships can , potentially, be used in novel downstream

applications usually reserved for numerical data. Beyond the analytical opportunities provided by word embeddings , they

are also an interesting way of exploring how a scientific community creates its own language and the interactions between

domain-specific concepts
::::
One

::
of

:::::
these

::::::::
potential

::::::::::
applications

::
is

:::
the

::::::::
inclusion

:::
of

::::::::::
embeddings

::
in

:::::::::
numerical

:::::::::::
classification.

::::
We5

::::::::
presented

::
an

:::::::
example

:::::
were

::
we

:::::::::::
successfully

:::::::
emulated

::::
part

::
of

:
a
:::::::::
taxonomic

:::::::
analysis

::
of

::::
soil

::::::
profiles

::::::
which

:::
was

::::::::
originally

:::::::
applied

::
to

:::
soil

:::::::::
numerical

::::
data.

:::
By

::::::::
encoding

:::
soil

:::::::::::
descriptions

::
as

::::
word

:::::::::::
embeddings

:::
we

::::
were

::::
able

::
to

:::
use

:::
the

:::::
same

:::::::
methods

:::::
used

::
in

:::
the

::::::
original

::::::::::
application

:::
and

::::::
obtain

::::::
similar

::::::
results.

:::::::
Ideally,

:::
we

:::::
would

::::::
expect

::
to
::::

use
::::
word

:::::::::::
embeddings

:::::
when

::
no

:::::::::
numerical

::::
data

::
is

:::::::
available

::
or

::
to

:::::::::::
complement

::::::::
numerical

::::
data

::
to

:::::::
include

:::::::
valuable

::::::::::
information

:::::::
included

::
in

:::
the

:::::::::
descriptive

::::
data.

Code availability. The embeddings, test suite and helper functions will be available at https://github.com/spadarian/GeoVec10
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