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Abstract 10 

Soil organic carbon (SOC) plays a major role concerning the chemical, physical and biological soil properties and 

functions. To get a better understanding how soil management affects the SOC content, the exact monitoring of 

SOC on long-term field experiments (LTFE) is needed. Visible and near infrared (Vis-NIR) reflectance 

spectrometry provides an inexpensive and fast possibility to enhance conventional SOC analysis and has often 

been used to predict SOC. For this study, 100 soil samples were collected at a LTFE in central Germany by two 15 

different sampling designs. SOC values ranged between 1.5 and 2.9%. Regression models were built using partial 

least square regression (PLSR). In order to build robust models, a nested repeated 5-fold cross-validation was used, 

that comprises model tuning and evaluation. Various aspects that influence the obtained error measure were 

analysed and discussed. Four preprocessing methods were compared in order to extract information regarding 

SOC from the spectra. Overall the best model performance which did not consider error propagation corresponds 20 

to a mean RMSEMV of 0.12 % SOC (R²=0.86). This model performance is impaired by ∆RMSEMV = 0.04% SOC 

while considering input data uncertainties (∆R²=0.09), and by ∆RMSEMV = 0.12 (∆R²=0.17) considering an 

inappropriate pre-processing. The effect of the sampling design amounts to a ∆RMSEMV of 0.02% SOC 

(∆R²=0.05). We emphasize the necessity of a transparent and precise documentation of the measurement protocol, 

the model building and validation procedure, including the calculation of the error measure, in order to assess 25 

model performance in a comprehensive way and allow for comparison between publications. The consideration 

of uncertainty propagation is essential when applying Vis-NIR spectrometry for soil monitoring. 
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1 Introduction 

Soil is at the same time one of the most important and one of the most limited natural resources. Most of all it is 

needed for food production, but also for the production of energy and fibre or for the provision of fresh water 35 

(Johnson, 2008; Lorenz and Lal, 2016; Stenberg et al., 2010). All these aspects depend on the quality of the existing 

soil. This quality in turn is much influenced by its SOC content since it affects chemical, physical and biological 

soil properties and functions (Knadel et al., 2015; Lorenz and Lal, 2016). Additionally, SOC is also interesting 

when it comes to the global warming issue since soil is the largest terrestrial reservoir of organic carbon in the 

world (Conforti et al., 2015; Johnson, 2008; McBratney et al., 2014; Stockmann et al., 2013). The SOC content of 40 

soils can be increased through the sequestration of atmospheric CO2 into long-living components of soils (Lal, 

2004; McBratney et al., 2014). Thus, the SOC stock of soils could be used as a manageable sink for atmospheric 

carbon (Stockmann et al., 2013), achieving both food security and a strategy against the increasing CO2-

concentration in the global atmosphere (Lal, 2004; Lorenz and Lal, 2016; McBratney et al., 2014). As the SOC 

content of soils reacts very slowly to environmental changes (Meersmans et al., 2009), long-term field experiments 45 

(LTFE) are required to understand the impact of soil management and farming systems on the rate of SOC 

sequestration (Lal, 2004) as well as on yield and crop quality in the long run.  

The precise monitoring of SOC on a LTFE with conventional lab analysis is labour-intensive and expensive 

(Adamchuk and Viscarra Rossel, 2010; Loum et al., 2016) as it requires the analysis of a rather high amount of 

samples. Visible and near infrared (Vis-NIR) reflectance spectrometry can facilitate this procedure. It is non-50 

destructive, fast and economical (Mouazen et al., 2010; Tekin et al., 2014), requiring only a small number of soil 

samples and little sample preparation (Conforti et al., 2015). In addition, no chemicals are needed and one spectrum 

contains information about many different soil components (Conforti et al., 2015; Viscarra Rossel et al., 2006b). 

Spectral absorption features are caused by vibrational stretching and bending of structural molecule groups and 

electronic excitation (Ben-Dor et al., 1999; Dalal and Henry, 1986). Molecule vibrations from hydroxyl, carboxyl 55 

and amine functional groups produce soil absorption features related to soil organic matter in the mid-infrared 

(MIR) region of the spectra (Croft et al., 2012). In comparison, Vis-NIR spectra show only broad and unclear 

adsorption features related to overtone vibrations from the MIR, but instruments are less cost-intensive and 

available for field monitoring as well (Stenberg and Viscarra Rossel, 2010; Viscarra Rossel et al., 2006a). 

Furthermore, in diffuse reflectance spectroscopy, scattering properties depend on the particular wavelengths and 60 

can vary significantly over the VIS-NIR spectral range (Pilorget et al., 2016). Hence, pre-processing of Vis-NIR 

spectra is necessary in order to extract soil property related information (Stenberg and Viscarra Rossel, 2010). 
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Scattering and other effects attributed to within-sample variance can be addressed by repeated measurements of 

replicate samples (e.g. Pimstein et al., 2011). Alltogether, Vis-NIR soil spectrometry has been used on many 

occasions to build SOC prediction models (Jiang et al., 2016; Kuang and Mouazen, 2013; Nocita et al., 2013).  65 

However, the application of Vis-NIR soil spectrometry for SOC determination involves a couple of uncertainties. 

The required calibration data are determined with standard lab analysis, e.g. dry combustion, with associated 

uncertainties. On the other hand side, the spectral measurements are affected by the sample preparation, e.g. drying, 

sieving, grinding (e.g. Nduwamungu et al., 2010). Furthermore, sensor noise and other spectrometer internal 

sources (electronic and mechanical) can affect the measurements (Schwartz et al., 2011). Finally, these two 70 

uncertain data sources are related by a regression model. And the model building procedure involves a couple of 

error sources itself. The development of robust models requires a resampling process to determine the model 

parameters and avoid overfitting; the applied resampling method impacts model performance (e.g. Molinaro et al., 

2005, Beleites et al., 2005). Further aspects that impact model performance are the available dataset in concordance 

with the applied sampling design, the handling of outliers, spectral pre-processing, and last but not least the model 75 

evaluation procedure. In most studies dealing with SOC prediction from Vis-NIR spectra, no clear statement about 

input data uncertainties or their handling is made. The reported prediction errors only refer to the model building 

procedure, while uncertainties from lab measurements are neglected. Commonly, only a single SOC measurement 

per soil sample is available. In spectral soil sensing in lab applications,  the general approach consistst in averaging 

the multiple measured spectra of one sample to one spectrum which is then used for model building (Ge et al., 80 

2011; Stevens et al., 2013; Viscarra Rossel et al., 2003). But the number of measurements used to gain one 

averaged spectrum differs between studies. Jiang et al. (2016), for example, averaged 10 measurements to receive 

one spectrum, while Volkan Bilgili et al. (2010) and Wang et al. (2014) used four measurements. This difference 

is also assumed to have an influence on the uncertainties implemented in the input data.  

Overall, to allow for comparision between studies, in terms of predictive uncertainty in % SOC, a modelling 85 

procedure is required that deals with the propagation of the input data uncertainites. For discussion of the general 

concept, please refer to Jansen (1998), for applications in soil modelling compare e.g. Heuvelink et al. (1999) and 

Poggio and Gimona (2014). Although, the problem of the involved uncertainties in Vis-NIR spectrometry is well-

known (e.g. Gholizadeh et al., 2013, Nduwamungu et al., 2010, Mortensen, 2014), implementations of uncertainty 

propagation in Vis-NIR spectrometric modelling are lacking.  90 
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2 Material and Methods 

2.1 The static fertilization experiment Bad Lauchstädt 

The soil samples were taken at the LTFE site “Static Fertilisation Experiment” in Bad Lauchstädt in central 

Germany (Körschens and Pfefferkorn, 1998). Positioned at 51° 24’ N, 11 ° 53’ E and with an altitude of 113 m 

(Körschens and Pfefferkorn, 1998), the climate is characterized by a mean annual precipitation of 470 – 540 mm 95 

and an average mean annual temperature of 8.5 – 9.0 °C. The soil type was characterized as a haplic Chernozem 

developed from loess (Altermann et al., 2005) with a soil texture of 21.1 ± 1.2 % clay, 72.1 ± 1.7 % silt, and 6.9 ± 

1.9 % sand (Dierke and Werban, 2013). Saturated water conductivity and air capacity are medium to high in the 

top soil (Altermann et al., 2005). The Static Fertilization Experiment was initialized in 1902 by Schneidewind and 

Gröbler and is about 4 ha in size (Merbach and Schulz, 2013) Its objective is to investigate the impact of organic 100 

and mineral fertilization on soil fertility as well as yield and quality of crops (Körschens and Pfefferkorn, 1998; 

Schulz, 2017). The experiment includes eight subfields with a width from 25.2 m to 28.5 m and a length of 190 m 

which are each divided into 18 plots that are treated with different mineral and organic fertilizer as well as planted 

with different crops following a crop rotation (Körschens and Pfefferkorn, 1998). The plots of subfields 4 and 5 

are additionally parted into 5 smaller subplots.  105 

2.2  Sampling design 

A total of 100 soil samples were taken at the soil surface (0-10 cm) in September 2016. The exact location of the 

sampling points was determined by a differential GPS GNSS LEICA Viva GS08. It was decided to sample at 

precise point locations instead of taking samples representative for LTFE plots to allow for a direct comparison 

with spectrometric field measurements for area-wide regionalisation (not included in this study). The sampling 110 

points were determined beforehand by two sampling designs. Based on the LTFE treatment factors and per-plot 

soil archive data including Corg, Ntot, plant available P, plant available K (both with DL-Method (VDLUFA, 2012))  

and pH (Fig. 1) both designs strived to select a dataset of 50 samples representative for the soil variability of the 

entire LTFE. Categorical and continuous data first entered a factor analysis with mixed data (FAMD) performed 

with R package FactoMineR (Lê et al., 2008) to allow for further joint analysis. For design 'A' the LTFE plots 115 

were then grouped by a k-means cluster analysis. R package NbClust (Charrad et al., 2014) automatically 

determines the optimal number of clusters making use of 30 indices. In the end, ten plots were randomly selected 

from each of the resulting five clusters making a total of 50 plots to be sampled. For design 'B' the Kennard-Stone 

algorithm was applied with R package prospectr (Kennard and Stone, 1969; Stevens and Ramirez Lopez, 2014). 
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50 LTFE plots were selected involving 5 repetitions of the algorithm to reduce inter-point dependence. Finally, 120 

one sampling point was randomly selected from each of the 50 LTFE plots from design A and B based on a 5 x 5 

cm raster. Plot margins of 1.5 m (3 m between plots) were excluded. Fig. 2 shows the location of the so obtained 

100 soil samples. 

 
Fig. 1 Soil archive data of the LTFE measured from 2004 to 2007 (Reports of the experimental station Bad Lauschstädt 125 

2004-2007 (unpublished). 
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Fig. 2 Site of the Static Fertilisation Experiment in Bad Lauchstädt with LTFE plots and sampling points according to 

design A and B. Plot margins excluded from sampling are visible as 3 m wide stripes between plots. 

2.3 Laboratory measurements 130 

The soil samples were air-dried, sieved and grinded prior to C measurements with dry combustion. A High-end 

Elementaranalysator vario EL Cube-CN was used. Measurements were repeated in three replicate samples. C 

measurements were taken as organic carbon due to negligibly small carbonate contents (below detection limit). 

The Vis-NIR contact measurements were performed on air-dried and sieved (2 mm) samples in July 2017, using 

Veris® VIS-NIR Spectrophotometer by Veris technologies, Inc. (hereinafter called Veris) containing an Ocean 135 

Optics USB4000 instrument (200 to 1100 nm) and a Hamamatsu Mini-spectrometer TG series (1100 to 2200 nm, 

resolution 6 nm). The device was warmed up for at least 20 minutes before performing measurements. All 

measurements were taken in a dark room to prevent daylight from affecting the outcome. The soil samples were 

scanned from the top. Before and between soil sample measurements, Veris was calibrated using four Avian 

Technologies Fluorilon™ gray scale standards. Each soil sample was divided into three sub-samples filled into 140 

petri dishes (Schott Duran petri dishes; Duran Group, Mainz, Germany). These replicate samples were not related 
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to the three replicate samples used for C/N-measurements. For each replicate sample six spectra were gained by 

measuring each replicate sample three times, rotating it by 90 degrees and then measuring it three times again. 

This procedure resulted in 18 spectra for each soil sample. Internally the spectrometer averaged 25 scans for each 

spectrometer reading (spectrometer setting). 145 

2.4  Spectral pre-processing 

Veris is equipped with two spectrometers. At the beginning and end of their respective wavelength ranges noise 

occurs in the measurements. Therefore, the spectra between these wavelengths (1000 to 1100 nm) had to be 

removed. Additionally, the spectra were cut at the beginning (402 nm) and the end (2220 nm) to remove noise. A 

number of pre-processing methods were tested to enhance the information regarding SOC in the Vis-NIR spectra. 150 

The spectra were tested for outliers using R package mvoutlier (Filzmoser and Gschwandtner, 2017). For this 

procedure a PCA is performed, using then the first two obtained PCs for outlier detection with function aq.plot. 

Out of the tested pre-processing methods, four different combinations are shown in this study in order to 

demonstrate their different effects on the prediction model. Their application resulted  in spectra with different 

wavelength ranges (Table 1) and different appearance (Fig. 3). These pre-processing techniques include the 155 

Savitzky-Golay algorithm (SG), continuum removal (CR), the standard normal variate (SNV), the first derivative 

(d1) and the gap-segment algorithm (gapDer). The SG algorithm fits a polynomial regression on the spectral data 

to find the derivative at a center point i of a defined smoothing window (w) (Rinnan et al., 2009; Savitzky and 

Golay, 1964; Swarbrick, 2016). CR can be seen as a spectra normalization technique which enables to compare 

different absorption characteristics from a mutual baseline (Kokaly, 2001; Mutanga and Skidmore, 2003). It 160 

identifies the local reflectance spectra maximum points and connects those points to form a convex hull (Mutanga 

and Skidmore, 2003; Stevens and Ramirez Lopez, 2014). Calculating  

ɸ𝒊  ൌ
𝒙𝒊

𝒄𝒊
                                                      (1) 

 

for i = {1, … , p) with xi and ci being the initial and the continuum reflectance values at wavelength i of a set of p 

wavelengths then gives the continuum-removed reflectance value ɸi (Stevens and Ramirez Lopez, 2014). All other 165 

data have values between 1 and 0 (Mutanga and Skidmore, 2003; Schmidt and Skidmore, 2001). Thus the 

absorption peaks are enhanced (Schmidt and Skidmore, 2001). SNV is a scatter-corrective pre-processing method 

(Rinnan et al., 2009). The basic formula is as follows 
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𝒂𝟏
 

 

                                                   (2) 

with a0 as the measured spectrum’s average value which shall be corrected and a1 being the sample spectrum’s 

standard deviation. xorg are the original spectra and xcorr the corrected spectra after applying SNV. SNV operates 170 

row-wise, so each observation is processed on its own (Rinnan et al., 2009; Stevens and Ramirez Lopez, 2014). 

d1 represents the slope of the spectrum, showing peaks where the spectrum displays its maximum slope and 

crossing zero where the spectrum shows peaks (Leone et al., 2012). According to Knadel et al. (2015) and  Smith 

(2002), d1 can be used to remove baseline offsets from the spectra. The estimation of d1 is done by computing the 

difference between two batched spectral points xi and xi-1 (Eq. 3) 175 

𝒙𝒊
ᇱ ൌ 𝒙𝒊 െ 𝒙𝒊ି𝟏                                                   (3) 

 

with xi’ as the value of the first derivative at the ith wavelength (Rinnan et al., 2009). The downside of using 

derivative spectra is their tendency to over-fit the calibration model (Stevens and Ramirez Lopez, 2014). Moreover, 

derivatives may increase noise so that a smoothing of the data is required (Leone et al., 2012; Stevens and Ramirez 

Lopez, 2014). With the gapDer a smoothing is performed under a chosen segment size (s) and then a derivative 180 

follows (Stevens and Ramirez Lopez, 2014). The application of the different pre-processing methods for this study 

was conducted using R package prospectr (Stevens and Ramirez Lopez, 2014). 

Table 1 Combinations of pre-processing techniques used in this study; w = window size, s = segment size. 
 

 185 

 

 

 

Pre-processing methods Wavelength range  Abbr. 

Savitzky-Golay (w =11 nm) 432 – 2201 nm SG 

Savitzky-Golay  (w=11 nm) and continuum removal 432 – 2201 nm SGCR 

Standard normal variate and 1st derivative 408 – 2186 nm SNVd1 

Gap-segment algorithm (w = 11 nm, s = 10 nm) 490 – 2163 nm gapDer 
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 190 

Fig. 3 Impact of different pre-processing techniques on a spectrum; SG = Savitzky-Golay, CR = continuum removal, 

SNV = standard normal variate, d1 = 1st derivative, gapDer = Gap-segment algorithm. 

2.5 Error propagation  

A problem occurring in every model building process is uncertainty propagation. Uncertainties of the input data 

and model result in uncertainties in the output (Brown and Heuvelink, 2006). Uncertainties in the input data are 195 

caused by errors in data acquisition (e.g. measurement errors) as well as variation in the data themselves (e.g. 

within-sample variability) (Heuvelink, 1999). For this study, there are two different sources for errors in data 

acquisition: the measurement of the spectral data and the measurement of the SOC content of the soil samples. In 

order to investigate the influence of these errors, different datasets were built in this study. Fig. 4 gives an overview. 

From the measured Vis-NIR spectra, three different spectral data variants were created (Fig. 4, step 1). For the 200 

first variant, all 18 spectra were retained. The inclusion of all 18 spectra reveals the influence of the error 

implemented in the spectral measurements as well as the influence of the within-sample variability. For the second, 
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the three measurements obtained before and after sample rotation were averaged separately resulting in 6 spectra 

per sample showing the influence of within-sample variability. For the third data variant, all 18 spectra were 

averaged to 1 mean spectrum per sample, removing the influence of the measurement error as well as the within-205 

sample variability. The different spectra obtained through this procedure can be seen in Fig. 5. Only parts of the 

spectra are depicted in order to show their differences. The three different spectral data variants were then pre-

processed with the different pre-processing methods from Table 1 (Fig. 4, step 2), resulting into 12 different 

spectral datasets (Fig. 4, step 3). These were then combined with single and averaged SOC values in step 4 so that 

altogether 24 datasets were obtained (Fig. 4, step 5). In order to compare the two sampling designs, this procedure 210 

was carried out for the 50 soil samples labelled “A” and “B” and also for the complete set of soil samples. In this 

way, three different soil sample sets (“A”, “B” and “all samples”) were achieved.  

 

Fig. 4 Datasets to investigate the uncertainty propagation. SG = Savitzky-Golay, CR = continuum removal, SNV = 
standard normal variate, d1 = 1st derivative, gapDer = Gap-segment algorithm. 215 

Fig. 5 Zoom-in to a sample’s spectral dataset: a) 18 spectra comprised of 6 replicate sample measurements with 3 scans 

each, b) 6 spectra related to replicate sample measurements (average of three scans each)  and c) 1 averaged spectrum. 

2.6 Model building and validation 

Regression models were built using partial least square regression (PLSR). Out of the many algorithms, PLSR is 220 

seen as a standard method for spectral calibration and prediction (Mouazen et al., 2010; Tekin et al., 2014; Viscarra 

Rossel et al., 2006b). For applications to predict SOC from Vis-NIR soil spectra see (Conforti et al., 2015; Jiang 
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et al., 2016; Kuang and Mouazen, 2013; Nocita et al., 2013). PLSR is described in detail by Martens and Næs 

(1989) and Naes et al. (2002). It incorporates characteristics from principle component analysis (PCA) and 

multiple regression (Abdi, 2007). The concept behind PLSR is to seek a small number of linear combinations 225 

(components or latent factors) obtained from the measured spectral data and to use them in the regression equation 

to predict SOC instead of the initial values (Martens and Næs, 1989; Naes et al., 2002). These components are 

constructed so that they account for most variance in the measured spectral data (X) and the SOC content (Y) and 

at the same time maximize the correlation between X and Y. In other words, PLSR leads to the covariance between 

X and Y being maximized (Bjørsvik and Martens, 2008; Summers et al., 2011; Tekin et al., 2014; Wehrens, 2011).  230 

In order to receive a robust model, it is important not to include too many components in model building as this 

will lead to over-fitting (Hastie et al., 2009; Kuhn and Johnson, 2013). On the other hand, the inclusion of too few 

components comprises the risk of building an under-fitted model which is too small to cover the variability existing 

in the soil spectral data (Naes et al., 2002). The selection of the optimal number of components is hereinafter 

referred to as model tuning. In order to receive a robust model, resampling is commonly applied for model building 235 

and validation. But resampling can also be used for model tuning to receive robust tuning parameters (Guio Blanco 

et al., 2018; Hastie et al., 2009; Kuhn and Johnson, 2013). For small datasets, k-fold cross-validation is 

recommended (Hastie et al., 2009). 

In this study, model building, model validation and model tuning was done using a nested repeated 5-fold cross-

validation (CV) (e.g. Varma and Simon, 2006, Guio Blanco et al., 2018). Repeated 5-fold CV can increase the 240 

precision of the prediction while maintaining a small bias (Kuhn and Johnson, 2013). Five Repetitions of 5-fold 

CV were conducted in this case.  
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Fig. 6 Model tuning and model validation procedure with a nested k-fold cross validation approach. The right box shows 

the model tuning, the left one the model validation procedure; Ncomp = number of components; adapted from Guio 245 

Blanco et al. (2018). 

Fig. 6 shows the various steps of the modelling procedure involving repeated 5-fold CV for model tuning (right 

box) and validation (left box). In the process the dataset (n = 100%) is randomly subdivided into 5 folds of equal 

size (step 1). One of the 5 folds is held out as test set and the other four are used as training set and partitioned 

again into 5 folds for model tuning (step 2). The optimal number of components (best Ncomp) is then determined 250 

by computing a PLSR on the resampled data testing 1 to 30 components (step 3) calculating the repeatedly 5-fold 

cross-validated RMSE of model tuning (RMSEMT) (step 4). This was implemented with the trainControl() function 

in package caret (Kuhn, 2017). The optimal number of components (step 5) is then used in model building (step 

6). The resulting model’s test set RMSE of model validation (RMSEMV) is determined in step 7. The whole 

procedure is repeated until all folds in the boxes have once been used as test set. 255 

In this study, the subdivsision of the spectral data into the folds for 5-fold CV had to account for repeated scans 

and replicate measurements per sample. All spectra for one sample were assigned to the same fold during k-fold 

CV, i.e. k-fold group CV. The folds contained always the same sample IDs for the various data variants described 

in Figure 4. For model validation, folds were created following a repeated stratified group CV approach (5-fold). 

The data were primarily subdivided into 5 equal probability strata based on their density function. The data from 260 

each of the strata were then randomly assigned to the 5 folds. Neighbouring points of ≤ 5 m distance were assigned 

to the same fold to avoid spatial autocorrelation and too optimistic error measures. 
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3 Results and Discussion 

3.1 Soil organic carbon content 265 

Fig. 7 shows the distribution of the SOC content of the three soil sample sets, consisting of 50 soil samples labelled 

“A” and “B” and  100 soil samples referred to as “all samples”. The measurement error existing in the SOC 

measurements, here defined as the difference between replicate measurements, ranges from 0.003 to 0.229 % SOC 

with a mean of 0.048 % SOC. The aim of this study was not to compare the two different sampling designs among 

each other, but to test whether they are representative of the SOC values existing on the LTFE. For this purpose, 270 

per-plot soil archive data from the years 2004 to 2007 are also displayed. The statistics of the data are given in 

Table 2. In order to compare distributions between the archive SOC data and “A”, “B” and “all samples”, a Mann–

Whitney U test was applied to the data, testing the “A”, “B” and “all samples” against the archive data, 

respectively. In all cases, no significant difference between the different sample sets and the archive data could be 

found. This shows that all soil sample sets used in this study are representative for the SOC values existing in the 275 

LTFE. Nevertheless, the SOC distribution of “A” and “B” samples differ, with the “A” samples resembling the 

distribution of all 100 samples more than the “B” samples. The “A” samples contained more samples representing 

higher SOC values, whereas the “B” samples show a higher representation for lower SOC values. This difference 

in the distribution of SOC values may have an influence on the prediction results of the models built with “A” and 

“B” samples. “A” models may be better in predicting higher SOC values, while simultaneously failing to estimate 280 

lower SOC values in an appropriate way. To the contrary, “B” models may predict lower SOC values more 

accurate than higher SOC values. The violin plots of all three soil sample sets do not resemble the archive violin 

plot very much. The plots for “A” and all samples show higher and lower SOC values than the archive data due to 

the fact that those data are obtained from compound samples for one plot. The “B” samples share the same 

minimum value with the archive data, but display slightly higher SOC values. This indicates that the choice of the 285 

sampling design might have an influence on the model outcome, even if both designs represent the SOC values on 

the experimental field in an appropriate way.  
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Fig. 7 Soil organic carbon (SOC) content of the three soil sample sets “A” (left), “B” (middle),  and all  (middle) and of 

archive data measured from 2004 to 2007 (right); The thin line shows the 95 % confidence interval, the bar the 290 

interquartile range and the dot the median; Mann–Whitney U test was used to compare “A”, “B”, and all samples to 

the archive data; the three soil sample sets were not compared among each other.  

Table 2 Statistics of soil organic carbon in [%] for the three different soil sample sets and the per-plot soil archive data. 

Samples Min. 1st Qu. Median Mean 3rd Qu. Max. 

“A” 1.47 1.82 2.21 2.11 2.36 2.93 

“B” 1.49 1.70 1.97 2.02 2.31 2.74 

all 1.47 1.72 2.12 2.01 2.35 2.93 

Archive data 1.49 1.89 2.09 2.08 2.33 2.64 

3.2 Comparison of datasets and pre-processing methods 

According to Filzmoser (2005), the Mahalanobis distance of normally distributed data follows a chi-square 295 

distribution. Observations which lay beyond a certain quantile of this distribution are marked as outliers and 

removed from the data (Filzmoser and Gschwandtner, 2017). In this study, no outliers were detected. 
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Table 3 displays the different combinations of soil spectra and SOC values per soil sample. The resulting models 

are then named after the following scheme: Datasetx1 x2 x3 with the SOC measurement error (x1), the spectral 

measurement error (x2) and the within-sample variability (x3). The number 1 indicates that the respective error is 300 

included into the model, the number 0 shows that the error was removed beforehand by averaging the data.   

Table 3 Data basis per soil sample 

 Number of SOC 
values per sample 

Number of measured 
spectra per sample 

Resulting size of the dataset 
per sample  

Dataset111 3 18 54 

Dataset101 3 6 18 

Dataset100 3 1 3 

Dataset011 1 18 18 

Dataset001 1 6 6 

Dataset000 1 1 1 

 

Fig. 8 shows boxplots of the RMSEMV. The six datasets are displayed in one panel. The models using “A” samples 

are shown in the 1st column (a), “B” samples in the 2nd column (b) and all samples in the 3rd column (c); Figure 305 

lines 1 to 4 refer to the used pre-processing method. As 5-fold CV with five repetitions was performed, five 

RMSEMV are shown in each boxplot. The model results are now compared based on their mean RMSEMV and their 

interquartile range. It is not surprising that the dataset of 3 SOC replicate measurements with 1 averaged spectrum 

(Dataset100) results in low model performance, as the within-sample variance concerning SOC cannot be explained 

by the contained predictor information; the input data uncertainty propagates through the model building process. 310 

This model performance is impaired in some cases by Dataset101 which combines the 3 SOC measurements with 

6 replicate spectral measurements (Figures 8b1, a2, a3, b3,  c3) but not always. It seems that the within sample 

variation concerning soil spectra can somehow compensate the within sample variability concerning SOC within 

the model building process, although replicate measurements do not match. Considering the dataset with 18 spectra 

and 3 SOC measurements, model performance improves even further (Dataset111). In contrast to this, we find the 315 

expected pattern while only 1 SOC measurement is considered: model performance results display an increase of 

RMSE values from Dataset000 to Dataset001 to Dataset011 due to the fact that more spectral variance is related to 

the same target information concerning SOC. This applies for three of the four spectral preprocessing variants 

(SG, SGCR, gapDer), while SNVd1 preprocessing displays an unexpected pattern with datasets including replicate 

measurements and multiple scans even outperforming those with averaged data. Overall SGCR resulted in the best 320 

model performance for data ‘A’ (Figure 8a2) and all samples (Figure 8c2), while SG preprocessing resulted best 
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for data ‘B’ (Figure 8b1). However, the latter does not apply for Dataset000 where gapDer preprocessing resulted 

in the best model performance with RMSEMV= 0.13. Comparing the mean RMSEMV for samples ‘A’ and ‘B’, 

models build on samples ’B’ resulted in better model performance whith the exception of Dataset100.  The locations 

of the ‘B’ samples were determined using the Kennard-Stone-algorithm, those of the ‘A’ samples with k-means 325 

clustering algorithm. Fig. 7 allows an assessment of the data collected by those two sampling designs and shows 

no clear resemblance between the violin plots of ‘A’, ‘B’ , all samples, and the archive violin plot. But the Mann–

Whitney U test did not show a significant difference between the archive data and the sample sets used in this 

study. ‘A’ samples as well as ‘B’ samples seem to represent the LTFE SOC data in an adequate way. As already 

mentioned above, the difference in the distribution of SOC values of ‘A’ and ‘B’ samples might have led to a 330 

different predictive capability in certain SOC value ranges. If this difference is the reason for the better 

performance of the ‘B’ models cannot be stated with certainty. 

Comparing Dataset111 with Dataset000 shows how the inclusion of all input data uncertainties affects the model 

results. It can be seen that a model without error propagation (Dataset000) reaches a mean RMSEMV of 0.12 % SOC 

and mean R2 0.86 using the pre-processing method which delivered the best results. A model with error 335 

propagation (Dataset111) on the other hand reaches a mean RMSEMV of 0.16 % SOC and R2 0.77. This is further 

illustrated in Fig. 9 and could be expected, as Dataset000 contains no input data uncertainties, the RMSEMV values 

therefore only correspond to the model building process. Overall the best model performance which does not 

consider error propagation corresponds to a mean RMSEMV of 0.12 % SOC (R²=0.86). This model performance is 

impaired by ∆RMSEMV = 0.04% SOC while considering input data uncertainties (∆R²=0.09), and by ∆RMSEMV 340 

= 0.12 (∆R²=0.17) considering an inappropriate pre-processing. The effect of the sampling design amounts to a 

∆RMSEMV of 0.02% SOC (∆R²=0.05). 
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Fig. 8 Boxplots of testset RMSEMV (5 repetetions) obtained with the various datasets; Figure columns refer to datasets 

using a) ‘A’ samples, b) ‘B’ samples and c) all samples; figure rows refer to the applied pre-processing, 1 = SG, 2 = 345 

SGCR, 3 = SNVd1, 4 = gapDer. 
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Fig. 9 Comparison of predicted and observed soil organic carbon (SOC) values for Dataset111 (a1 to c1) and Dataset000 

(a2 to c2) for five repetitions with the corresponding best pre-processing (SGCR for data ‘A’ and all ADATA, SG for 350 

data ‘B’); a) shows results for ‘A’ samples, b) for ‘B’ samples and c) for all samples. The depicted RMSE and R² values 

refer to the mean of 5 repetitions. 

Examples of other studies using Vis-NIR spectra to predict SOC are listed in Table 4. Most studies used a different 

number of scans and replicate samples to get an averaged spectrum to predict SOC, so the error implemented in 

the respective input data is assumed to be different. Pimstein et al. (2011) propose a number of 3-5 replicate 355 

measurements as standard protocol for measurering Vis-NIR spectra of soil samples under laboratory conditions. 

Figure 5b indicated the high impact of within sample variance determined by the measurements of replicate 

samples, whereas the effect of the repeated scans per replicate is comparatively small (compare Figures 5a and b). 

We dried and sieved the samples before spectral measurements but did not grind them to fine powder. The latter 

might reduce spectral variance in replicate measurements, but the benefit of Vis-NIR spectroscopy as a fast and 360 

inexpensive method is reduced. One might argue that samples have to be grinded for SOC analysis, anyway. 

However, this requires a tiny fraction of the large amount that would have to be grinded for Vis-NIR 

measurements. In addition, comparison to measurements under field conditions is further distorted while grinding 

the samples for lab measurements.  As shown in Figure 8, the input data error has a major influence on the model 
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outcome. In none of these studies the error in SOC measurements is mentioned to be considered during model 365 

building. Also, in most studies the available dataset is randomly parted into calibration and validation set, using 

different percentages of the data for the two sets. Jeong et al., 2017 and  Beleites et al. (2005) showed that different 

validation strategies lead to different error measures. 

The overall best pre-processing methods in this study were the combination of SG and CR as well as SG alone. 

SG was used successfully by many authors before for spectral pre-processing (Bogrekci and Lee, 2006; Nocita et 370 

al., 2013; Stevens et al., 2013; Viscarra Rossel et al., 2006a). CR was used by e.g. Viscarra Rossel et al. (2016) or 

Loum et al. (2016) with acceptable success. The combination of SG and CR could not be found in literature, 

though. SNV was applied before by other authors in order to remove baseline effects (Knadel et al., 2015; Minasny 

et al., 2011; Viscarra Rossel et al., 2006a). The pre-processing technique d1 was found to lead to poorer model 

results and rather unexpected performance patterns in this study. The former may have its cause in the tendency 375 

of d1 to over-fitting and the increasing of noise in the data as reported by some authors before (Leone et al., 2012; 

Stevens and Ramirez Lopez, 2014). We do not have an explanation for the latter, though. Leone et al. (2012) 

suggests the usage of SG in combination with d1 to solve the problem. For the usage of gapDer no comparison 

could be found in literature. As there is no standard pre-processing technique which works on all spectral data 

(Stenberg and Viscarra Rossel, 2010), it is recommended to always test various techniques and to choose the one 380 

which performs best for the respective data.  

Table 4 R2 from literature for soil organic carbon prediction models. 

Author number of 

samples 

averaged scans 

per sample 

calibration and validation set R2 

(Reeves and 

Smith, 2009) 

720 64 a) Cross-validation with all samples  

b) Independent validation set 

a) 0.534  

b) 0.335 

(Islam et al., 

2003) 

161 - Randomly selected from dataset (121 / 

40) 

0.76 

(Wang et al., 

2014) 

156 4 Randomly selected from dataset (116 / 

40) 

0.67 - 0.88  

(Volkan Bilgili 

et al., 2010) 

512 100 Randomly selected from dataset (70 % 

and 30 %) 

0.80 
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(Kuang and 

Mouazen, 2013) 

174 10 60 % and 40 % - 

(Jiang et al., 

2016) 

98 10 Dataset parted into calibration and 

validation set 

0.58 - 0.85 

(Conforti et al., 

2015) 

201 30 - - 

(Leone et al., 

2012) 

374 4 Randomly selected from dataset (2/3 

and 1/3) 

0.84 - 0.92 

4 Conclusions 

This study aimed to investigate the influence different aspects have on the model building process and the 

calculation of error measures. Those aspects included the input data uncertainties, the number of measurements 385 

per sample and the chosen pre-processing method. Furthermore, the effect of sampling design, model tuning and 

validation procedure was discussed. The applied nested cross validation approach that includes resampling in 

model tuning as well as evaluation can be recommended in general. The fact that replicate measurements and scans 

as well as geographically near samples have to be assigned to the same fold (k-fold group CV) in order to obtain 

unbiased error measures is often neglected, and, therefore, has to be emphasized. Overall the best model 390 

performance which does not consider error propagation corresponds to a mean RMSEMV of 0.12 % SOC (R²=0.86). 

This model performance is impaired by ∆RMSEMV = 0.04% SOC while considering input data uncertainties 

(∆R²=0.09), and by ∆RMSEMV = 0.12 (∆R²=0.17) considering an inappropriate pre-processing. The effect of the 

sampling design amounts to a ∆RMSEMV of 0.02% SOC (∆R²=0.05). The rather high within-sample variance of 

spectral replicate measurements of field-scale soil samples of very similar mineral composition requires a 395 

reconsideration of the number of replicate measurements per sample. 3-5 replicates as suggested for Vis-NIR soil 

measurements might simply not be enough. In general, this within-sample variability depends on the soil treatment 

and possibly also on the origin of the samples (e.g. agricultural or forest soils). Overall, this study showed that it 

is important to clarify which information the reported error measure contains. We are aware that the consideration 

of stratified group CV for model evaluation but only partly for tuning (spectral replicate measurements and scans 400 

per sample were always assigned to the same fold) might impair model performance as suboptimal model 

parameters might be selected. This will be adapted in future studies. We emphasize the necessity of a transparent 

and precise documentation of the measurement protocol, the model building and validation procesdure, including 
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the calculation of the error measure, in order to assess model preformance in a comprehensive way and allow for 

comparison between publications. Particularly, when Vis-NIR spectrometry is used for soil monitoring, the aspect 405 

of uncertainty propagation in the involved modelling procedure becomes essential.  
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