Dear editor

We thank you and the reviewer for your time and valuable comments. Please find our replies displayed in
blue color below each comment. A manuscript version with tracked changes is attached.

Kind regards
Mareike Liel3

Interactive comment on “Error propagation in spectrometric functions of soil organic carbon”
by Ellinger et al.: Response to RC3

General comments

Most comments on technical and minor topical suggestions were addressed in the new manuscript.

Authors’ reply: “The PLSR components vary largely in dependence on the pre-processing method. The
information on the number of selected components, therefore, did not result very informative.
Furthermore, it distracts the reader from the main message. We, therefore, refrain from including it in
this publication. We have adapted the results section concerning the uncertainty scenarios. We have also
extended the introduction section to elaborate on the various sources of uncertainty.” | insist on giving
finally selected tuning parameters for all the modeled scenarios. The reader requires such information to
judge the uncertainty in relation to model complexity within different error propagation scenarios.
Hyperparameter optimization through Model tuning is a key aspect of spectral modeling, and all
scientifically-sound publications in this field report these results. Parameter selection results can easily be
included within a model assessment table. This does not distract the reader. This information will reveal
also potential over-fitting effects due to replicate spectra in the inner tuning loop in presence of multiple
spectral replicates. The main concern from the last review round has been mentioned in the conclusion,
but is still not resolved. Specifically, the group stratification for replicates of the same sample was not
performed for the tuning procedure. The author’s specifically mention this now in the conclusion.
However, the author’s refuse to report the finally selected PLSR parameters, but at the same time admit
that suboptimal model parameters might be selected. Based on the results shown, no conclusive
statement on this issue can be drawn. In order to get this manuscript eligible for final publication, the
issues arising from multiple replicates in tuning during cross-validation needs to be addressed. At least,
the authors should report a majority consensus value of the number of PLSR components selected in the
final model. This will at least indicate whether the model errors are biased by resampling artifacts.

Reply: We decided to reply to these general comments collectively as they are all related to one another
and refer to the applied nested cross-validation (CV) approach. There seems to be a misunderstanding.
Model validation and tuning are both conducted with a group CV assigning replicate sample
measurements and scans to the same fold. We adapted the corresponding section in the Materials and
Methods and discussion section for better understandability. Please compare lines 248-283 and lines 405-
408. “We agree that model complexity should always be kept in mind. However, overfitting was prevented
by the applied nested group cross-validation (CV) approach. On the other hand, the mere inclusion of a
table giving the number of components per model scenario would not suffice, as this would definitely
require an extended discussion section, which is out of scope of this manuscript.”

Specific comments

Abstract



The statement in |. 24—26 about precise protocol and measurement protocol is out of scope and needs to
be removed. It isnot the main topic of this study. Such protocols and procedures are mostly well
documented in soil spectroscopy literature and there are recommendations on this, consider for example
Wetterlind et al., 2013.

Reply: Although there are protocols and procedures — we cite Pimstein et al. 2011 in lines 423-425 - there
is still no agreement within the soil spectroscopy community on the applied protocol and procedure. As a
consequence, the number of scans and replicate measurements per sample differ in each working group.
As we have shown that the applied procedure has an impact on model performance, it is important to
describe it in each study in order to allow for comparison between studies.We adapted the text section
on Table 4 (lines 414-439) to that extent. As a consequence, the statement is in fact a major conclusion
from this manuscript.

Introduction

The introduction needs a major rewrite, there are many grammatical, topical, and stylistic errors. See the
technical corrections for some examples and suggestions.

Reply: Thank you, we have checked the introduction, thoroughly.
Material and Methods

Authors’ reply: “Reference to soil treatment and scattering effects was made in the introduction. We
refrain from referring to soil texture as we are at within-field scale and do not have a pronounced textural
variability in our dataset. A reference to sample origin is included in the discussion section.” Although the
present study covers within-field variability, general conclusions regarding spectral error propagation
need to consider soil texture as it affects scattering and averaging effects.

Reply: Soils with different properties may have a different amount of light scattering and might therefore
require a differing amount of scans and replicate measurements per sample. However, this is beyond the
scope of this paper. Based on the soil samples we measured we cannot make any statement in this regard.

Results and Discussion

Some paragraphs contain statements that should be in the Material and Methods section, see e.g. lines
269-271 (see also technical corrections). Table 3 and the corresponding text needs to be moved to the
Material and Methods section.

Reply: We checked the Results and Discussion section, thoroughly. Table 3 and the corresponding text
were moved to the Material and Methods section.

Many sections contain present tense where past tense is needed.

Reply: adapted accordingly

The section 3.1 on soil organic carbon reference values is too long, and needs some general revision. This
section needs to be further summarized and presented in a more concise manner.

Reply: The text section was revised and summarised.

L. 283-284: “The plots for “A” and all samples show higher and lower SOC values than the archive data
due to the fact that those data are obtained from compound samples for one plot.’: It it not clear what
the authors mean by compound plots..

Reply: The term “compound sample” was explained. The sentence was adapted to “The plots for “A” and
all samples show higher and lower SOC values than the archive data due to the fact that those data were



obtained from compound samples, i.e. a number of distributed soil samples were taken per LTFE plot and
mixed before they were subjected to soil laboratory analysis.” (lines 325-326).

Authors’ reply: We are not aware of any study that actually quantified the effect of spectral pre-processing
on model performance and, therefore, refrain from deleting it from our study. This is simply not correct.
There are many soil spectral studies addressing pre-processing with regard to model performance. Please
consider e.g. Stevens et al., 2013 (see References at the end).

Reply: Yes, you are right. There are quite some publications that compare model performance in
dependence on various pre-processing methods. We have actually cited some of them. The difference in
model performance, due to the applied pre-processing, is usually not explicitely reported, though, but
could be calculated. Still pre-processing is such an important aspect in VIS-NIR spectrometry that we find
it important to report its impact on model performance in relation to the other aspects we investigated.
Furthermore, the applied pre-processing changes the impact of the uncertainty propagation; in some
cases the typical pattern is even reversed (Please compare lines 366-374).

The discussion around the pre-processing is still way to long.

Reply: The discussion of pre-processing only relates to its impact on model performance (now lines 375-
383). We find this short paragraph of adequate length.

Table 4 on R2 values is not informative. First, it only reports R2, which is strictly not a measure of
performance. Second, it is relative to the range of the measured property, which is not given. The only
reference to this table is that the error conditional on the input data is different, and this information is
missing in the table. Therefore, this table and discussion around it should be removed.

Reply: R? s still the most reported metric when comparing performance results between publications. We
included the SOC range and further information and adapted the corresponding text section (lines 414-
439) so that the reason for its inclusion is understandable. It relates to the information content of error
values and the applied measurement protocol.

In general, the authors should stay focused on the key topics under investigation. Many sections are too
long and therefore distract the reader. The Results and Discussion requires some more work to offer the
audience a better flow.

Reply: Thank you. We have thoroughly revised the whole manuscript.

Conclusion

The conclusion should fit on half a page. Focus on the key findings and topics that the study addressed.
Reply: Adapted accordingly

Technical corrections

L. 12: “...the exact monitoring of...” -> “...precise monitoring of...”

Reply: changed accordingly

“”

L. 14 “...to enhance conventional SOC analysis and has often been used to predict SOC” -> “...to

complement conventional SOC analysis.”
Reply: changed accordingly
L. 24-26: “We emphasize...and allow for a comparison between publications.”

Reply: changed accordingly



L. 35: “production of energy”: Energy cannot be produced, rather use “production of energy crops”
Reply: changed accordingly

L. 36: remove Stenberg et al., 2010: this does not fit the context.

Reply: adapted accordingly

L. 36—-37: “quality of soil” needs to be described, too generic -> soil properties, soil type...

Reply: adapted accordingly

L. 38-40: “...SOC is also interesting when it comes to the global warning issue...” -> “SOC is also relevant
for the global warning issue...”

Reply: changed accordingly

L. 66: “However, the application of ....". -> Delete “However” because there is no reference sentence.
Reply: However relates to the previous paragraph

L. 67: “...standard lab analysis” -> "...standard laboratory analysis”

Reply: changed accordingly

L. 68: “...on the other hand side” -> either “hand” or “side” ... (see general comments for abstract)
Reply: changed accordingly

L. 100: Missing dot after “(Merbach and Schultz, 2013)”

Reply: changed accordingly

L. 131: “Elementaranalysator” -> “elemental analyser”

Reply: changed accordingly

L. 155-160: Give original publications for all pre-processing techniques; only give these and remove the
other references. L. 160-182: All references that are not original method publications for pre-processing
need to be removed.

Reply: Adpated accordingly.

L. 276: “the SOC distribution of “A” and “B” samples differ” -> “the SOC distribution of “A” and “B” samples
differed”

Reply: changed accordingly

L. 307-308: “The model results are now compared based on their mean RMSEwmv and their interquartile
range”: this should be in Material and Methods...

Reply: adapted accordingly

L. 308: “It is not surprising that the dataset...”: style -> use “We expected that/lt was expected that...” or
similar

Reply: changed accordingly

L. 312: “It seems that the within sample variation concerning soil spectra con somehow compendate the
within sample variability concerning SOC within the model building process, although replicate
measurements do not match” -> consistently use past tense.

Reply: Thank you.We have thoroughly revised the results and discussion section.

L. 387: “cross validation” -> “cross-validation”



Reply: changed accordingly
All figures need to be in vector graphics format or need a better resolution.

Reply: When embedding vector graphics in the applied software for manuscript writing, they get
automatically rasterised. Vector files will be provided for final publication.

Figure 9: The text annotation for “RMSE” must be changed from “RMSE <number>" to “RMSE = <number>"
Reply: adapted accordingly
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Abstract

Soil organic carbon (SOC) plays a major role concerning-the chemical, physical and biological soil properties and
functions. To get a better understanding_of how soil management affects the SOC content, the exact-precise
monitoring of SOC on long-term field experiments (LTFE) is needed. Visible and nearnear-infrared (Vis-NIR)
reflectance spectrometry provides an inexpensive and fast opportunitypessibiity to enhanee—complement
conventional SOC analysis and has often been used to predict SOC. For this study, 100 soil samples were collected
at an LTFE in central Germany by two different sampling designs. SOC values ranged between 1.5 and 2.9%.
Regression models were built using partial least square regression (PLSR). In order to build robust models, a
nested repeated 5-fold group cross-validation approach was used, that eomprises-comprised model tuning and
evaluation. Various aspects that influence the obtained error measure were analysed and discussed. Four pre-
processing methods were compared in order to extract information regarding SOC from the spectra.
OverallFinally, the best model performance which did not consider error propagation eerrespends-corresponded
to a mean RMSEwmy of 0.12-% SOC (R2=0.86). This model performance is-was impaired by ARMSEmy = 0.04%
SOC while considering input data uncertainties (AR*=0.09), and by ARMSEuy = 0.12% SOC (AR*=0.17)
considering an inappropriate pre-processing. The effect of the sampling design ameunts-amounted to a ARMSEmv
0f 0.02% SOC (AR?=0.05). Overall, wW/e emphasize the necessity of a transparent and precise documentation of

the measurement protocol, the model building, and validation procedure; including-the-caleulation-of-the-error

measure—in order to assess model performance in a comprehensive way and allow for a comparison between

publications. The consideration of uncertainty propagation is essential when applying Vis-NIR spectrometry for

soil monitoring.



30 Keywords: Soil organic carbon, Laboratory Vis-NIR spectrometry, Partial least square regression, nested cross-

validation
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1 Introduction

Soil is at the same time one of the most important and one of the most limited natural resources. Most of all, it is
needed for food production, but also for the production of energy crops and fibre, or for the provision of fresh
water (Johnson, 2008; Lorenz and Lal, 2016;-Stenberg-et-al—2010). All these aspects depend on the quality of the

soil, which is determined by its site-specific propertiesef-the-existing-seit. And tFhis quality-ia-tuen, in turn, is

much influenced by its SOC content since it affects chemical, physical and biological soil properties and functions
(Knadel et al., 2015; Lorenz and Lal, 2016). Additionally, SOC is also interesting-when-it-comes-torelevant in the

context of global warming-the-glebal-warming-issue since the soil is the largest terrestrial reservoir of organic

carbon in-the-werld-(Conforti et al., 2015; Johnson, 2008; McBratney et al., 2014; Stockmann et al., 2013). Fhe

of-solsSOC sequestration may lead to long-term SOC storage in relatively stable soil fractions (Lal, 2004;

McBratney et al., 2014). Thus, the SOC stocks of soils could be used as a manageable sink for atmospheric carbon
(Stockmann et al., 2013), achieving both, food security and a strategy against the increasing CO-concentration in
the glebal-atmosphere (Lal, 2004; Lorenz and Lal, 2016; McBratney et al., 2014). As the SOC content of soils
reacts very slowly to environmental changes (Meersmans et al., 2009), long-term field experiments (LTFE) are
required to understand the impact of soil management and farming systems on the rate of SOC sequestration (Lal,

2004), as well as on yield and crop quality in the long run.

The precise monitoring of SOC on an LTFE with conventional laboratory analysis is labour-_and cost-intensive
and-expensive-(Adamchuk and Viscarra Rossel, 2010; Loum et al., 2016) as it requires the analysis of a rather high
amount of samples. Visible and rear-near-infrared (Vis-NIR) reflectance spectrometry can facilitate this procedure.

It is non-destructive, fast and economical (Mouazen et al., 2010; Fekin—Summers et al., 20442011), and

requiresrequiring the conventional laboratory analysis to be conductedenby on a small number of soil samples,

only, and-as well as little sample preparation (Conforti et al., 2015). in-addition-no-chemicals-are-needed-and-oThe

obtainedne spectrum contains information about many different soil components (Conforti et al., 2015; Viscarra

Rossel et al., 2006b);- please compare Stenberg et al. (2010) for a review on the past and current role of Vis-NIR

spectrometry in soil science. Spectral absorption features are caused by vibrational stretching and bending of

structural molecule groups and electronic excitation (Ben-Dor et al., 1999; Dalal and Henry, 1986). Molecule
vibrations from hydroxyl, carboxyl, and amine functional groups produce seit-absorption features related to soil
organic matter in the mid-infrared (MIR) region of the spectra (Croft et al., 2012). In comparison, Vis-NIR spectra

show only broad and unclear adsorption features related to overtone vibrations from the MIR, but instruments are
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less cost-intensive and available for field monitoring as well (Stenberg and Viscarra Rossel, 2010; Viscarra Rossel
et al., 2006a). Furthermore, in diffuse reflectance spectroscopy, scattering properties depend on the particular
wavelengths and can vary significantly over the MVISVis-NIR spectral range (Pilorget et al., 2016). Hence, the pre-
processing of Vis-NIR spectra is necessary in order to extract soil preperty-property-related information (Stenberg

and Viscarra Rossel, 2010). As there is no standard pre-processing technique which works on all spectral data

(Stenberg and Viscarra Rossel, 2010), it is recommended to always test various techniques and to choose the one

which performs best for the respective data. Several studies, therefore, compared a rather high number of pre-

processing methods (e.g. Peng et al., 2014; Nawar et al., 2016). Scattering and other effects attributed to within-

sample variance can be addressed by repeated measurements of replicate samples (e.g. Pimstein et al., 2011).
Alltogether, Vis-NIR soil spectrometry has been used on many occasions to build SOC prediction models (Jiang

et al., 2016; Kuang and Mouazen, 2013; Nocita et al., 2013).

However, the application of Vis-NIR soil spectrometry for SOC determination involves a couple of uncertainties.
The required calibration data are determined with standard laboratory analysis, e.g. dry combustion, with
associated uncertainties. On the other hand-side, the spectral measurements are affected by the sample preparation,
e.g. drying, sieving, grinding (e.g. Nduwamungu et al., 2010). Furthermore, sensor noise and other spectrometer
internal sources (electronic and mechanical) can affect the measurements (Schwartz et al., 2011). Finally, these
two uncertain data sources are related by a regression model. And the model building procedure involves a couple
of error sources itself. The development of robust models requires a resampling process-procedure to determine
the model parameters and to avoid overfitting; the applied resampling method impacts model performance (e.g.
Molinaro et al., 2005, Beleites et al., 2005). Further aspects that impact model performance are: the available
dataset in concordance with the applied sampling design, the handling of outliers, spectral pre-processing, and last
but not least the model evaluation procedure. In most studies dealing with SOC prediction from Vis-NIR spectra,
no clear statement about input data uncertainties or their handling is made. The reported prediction errors only
refer to the model building procedure, while uncertainties from laboratory measurements are neglected.
Commonly, only a single SOC measurement per soil sample is available, and in spectrometric laboratory

measurements—a-speetral-sotksensing-in-lab-applications, the general approach consistst in averaging the multiple

measured spectra of one sample to one spectrum which is then used for model building (Ge et al., 2011; Stevens

et al., 2013; Viscarra Rossel et al., 2003). But-However, the number of measurements used to gain one averaged

spectrum differs between studies. Jiang et al. (2016), for example, averaged 10 measurements to receive one
spectrum, while Volkan Bilgili et al. (2010) and Wang et al. (2014) used four measurements. This difference is

also assumed to have an influence on the uncertainties containeimplemented in the input data.



95

100

105

110

115

120

Overall, to allow for comparision between studies, in terms of predictive uncertainty in % SOC, a modelling
procedure is required that deals with the propagation of the input data uneertainitesuncertainties. For discussion of
the general concept, please refer to Jansen (1998), for applications in soil modelling compare e.g. Heuvelink et al.
(1999) and Poggio and Gimona (2014). Although; the problem of the involved uncertainties in Vis-NIR
spectrometry is well-known (e.g. Gholizadeh et al., 2013, Nduwamungu et al., 2010, Mortensen, 2014),

implementations of uncertainty propagation in Vis-NIR spectrometric modelling are lacking.

2 Material and Methods

2.1  The static fertilization experiment Bad Lauchstadt

The soil samples were taken at the LTFE site “Static Fertilisation Experiment” in Bad Lauchstadt in central
Germany (Koérschens and Pfefferkorn, 1998). Positioned at 51°-24° N, 11-°-53" E and with an altitude of 113 m
a.s.l. (Kdrschens and Pfefferkorn, 1998), the climate is characterized by a mean annual precipitation of 470 — 540
mm and an average mean annual temperature of 8.5 — 9.0-°C. The soil type was characterized as a haplic
Chernozem developed from loess (Altermann et al., 2005) with a soil texture of 21.1 + 1.2-% clay, 72.1 + 1.7-%
silt, and 6.9 + 1.9-% sand (Dierke and Werban, 2013). Saturated water conductivity and air capacity are medium
to high in the top-soil (Altermann et al., 2005). The Static Fertilization Experiment was initialized in 1902 by
Schneidewind and Grébler and is about 4 ha in size (Merbach and Schulz, 2013). Its objective is to investigate the
impact of organic and mineral fertilization on soil fertility as well as yield and quality of crops (Kdrschens and
Pfefferkorn, 1998; Schulz, 2017). The experiment includes eight subfields with a width from 25.2 mto 28.5 m and
a length of 190 m which are each divided into 18 plots that are treated with different mineral and organic fertilizer
as well as planted with different crops following a crop rotation (Kérschens and Pfefferkorn, 1998). The plots of

subfields 4 and 5 are additionally parted into 5 smaller subplots.

2.2 Sampling design

A total of 100 soil samples were taken at the soil surface (0-10 cm) in September 2016. The exact location of the
sampling points was determined by a differential GPS GNSS LEICA Viva GSO08. It was decided to sample at
precise point locations instead of taking samples representative for LTFE plots to allow for a direct comparison
with spectrometric field measurements for area-wide regionalisation (not included in this study). The sampling
points were determined beforehand by two sampling designs. Based on the LTFE treatment factors and per-plot

soil archive data including Corg, Nit, plant-plant-available P, plant-plant-available K (both with DL-Method

5
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(VDLUFA, 2012)} and pH (Fig. 1) both designs strived to select a dataset of 50 samples representative for the
soil variability of the entire LTFE. Categorical and continuous data first entered a factor analysis with-for mixed
data (FAMD) performed with R package FactoMineR (L& et al., 2008) to allow for further joint analysis. For
design 'A’ the LTFE plots were then grouped by a k-means cluster analysis. R package NbClust (Charrad et al.,
2014) automatically determines the optimal number of clusters making use of 30 indices. In the end, ten plots were
randomly selected from each of the resulting five clusters, making a total of 50 plots to be sampled. For design 'B',
the Kennard-Stone algorithm was applied with R package prospectr (Kennard and Stone, 1969; Stevens and
Ramirez Lopez, 2014). 50 LTFE plots were selected involving 5 repetitions of the algorithm to reduce inter-point
dependence. Finally, one sampling point was randomly selected from each of the 50 LTFE plots frem-for design

A and B based on a 5 x 5 cm raster. Plot margins of 1.5 m (3 m between plots) were excluded. Fig. 2 shows the

location of the so obtained 100 soil samples.
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Fig. 1 Soil archive data of the LTFE measured from 2004 to 2007 (Reports of the experimental station Bad Lauschstadt

2004-2007 (unpublished).
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Fig. 2 Site of the Static Fertilisation Experiment in Bad Lauchstédt with LTFE plots and sampling points according to

design A and B. Plot margins excluded from sampling are visible as 3 m wide stripes between plots.

2.3 Laboratory measurements

The soil samples were air-dried, sieved and grinded-ground prior to €-carbon measurements with dry combustion.

A High-end Elementaranalysator-elemental analyser varie-Vario EL Cube-CN was used. Measurements were

repeated in three replicate samples. C-arbon measurements were taken as erganic-carbenSOC due to negligibly
small carbonate contents (below detection limit). The Vis-NIR contact measurements were performed on air-dried
and sieved (2 mm) samples in July 2017, using Veris® VIS-NIR Spectrophotometer by Veris
technelogiesTechnologies, Inc. (hereinafter called Veris) containing an Ocean Optics USB4000 instrument (200
to 1100 nm) and a Hamamatsu Mini-spectrometer TG series (1100 to 2200 nm, resolution 6 nm). The device was
warmed up for at least 20 minutes before performing measurements. All measurements were taken in a dark room
to prevent daylight from affecting the outcome. The soil samples were scanned from the top. Before and between
soil sample measurements, Veris was calibrated using four Avian Technologies Fluorilon™ gray-scale standards.

Each soil sample was divided into three sub-samples filled into petri-Petri dishes (Schott Duran petri-Petri dishes;
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Duran Group, Mainz, Germany). These replicate samples were not related to the three replicate samples used for
C/N-SOC measurements. For each replicate sample, six spectra were gained by measuring each replicate sample
three times, rotating it by 90 degrees and then measuring it three times again. This procedure resulted in 18 spectra
for each soil sample. Internally the spectrometer averaged 25 scans for each spectrometer reading (spectrometer

setting).

2.4 Spectral pre-processing

Veris is equipped with two spectrometers. At the beginning and end of their respective wavelength ranges noise
occurs in the measurements. Therefore, the spectra between these wavelengths (1000 to 1100 nm) had to be
removed. Additionally, the spectra were cut at the beginning (402 nm) and the end (2220 nm)-te-remeve-noise. A
number of pre-processing methods were tested to enhance the information regarding SOC in the Vis-NIR spectra.
The spectra were tested for outliers using R package mvoutlier (Filzmoser and Gschwandtner, 2017). For this
procedure, a PCA is performed, using then the first two obtained PCs for outlier detection with function aq.plot.

Out of the tested pre-processing methods, four different combinations are shown in this study in order to

demonstrate their differenteffectsonthepredictionmeodelimpact on model performance. Their application resulted

in spectra with different wavelength ranges (Table 1) and different appearance (Fig. 3). These pre-processing
techniques include the Savitzky-Golay algorithm (SG), the continuum removal (CR), the standard normal variate
(SNV), the first derivative (d1) and the gap-segment algorithm (gapDer). Fhe-apphcation-of the-differentAll pre-
processing methods for this study wasere conducted using R package prospectr (Stevens and Ramirez Lopez,
2014). The SG algorithm fits a polynomial regression on the spectral data to find the derivative at a center point i
of a defined smoothing window (w) (Rinnan-etal;2009:-Savitzky and Golay, 1964:-Swarbrick;2016). CR can be

seen as a spectra normalization—normalisation technique which enables to compare different absorption

characteristics from a mutual baseline—(Kekaly,—2001—Mutanga—and-Skidmere,—2003). H-identifies-the-local

2003;-Stevens-and-Ramirez-Lopez—2014)The continuum is calculated by linear interpolation of the reflectance

spectrum’s maxima. We implemented CR following Stevens and Ramirez Lopez (2014) by cCalculating

M @)
(1)1 - c;
fori={1, ..., p) with x; and c; being the initial and the continuum reflectance values at wavelength i of a set of p

wavelengths. @i then gives the continuum-removed reflectance value. ¢i-{Stevens-and-Ramirez Lopez,2014)--AH
8
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absorption-peaks-are-enhanced-{Schmidtand-Skidmore-2001). SNV is a scatter-corrective pre-processing method

(Rinnan-etal-2009Barnes et al., 1989). The basic formula is as follows

x _ Xorg — Qo 2
corr a

with ao as the measured spectrum’s average value which shall be corrected and a; being the sample spectrum’s
standard deviation. Xorg are-is the original speetra-spectrum and xcorr the corrected speetra-spectrum after applying
SNV. In this study, SNV operates row-wise, so-each observation is processed on its own (Rinnan-et-al;—2009;

Stevens and Ramirez Lopez, 2014).

i.e. the difference between two subsequent data points-speetral-points x; and X1 (Eq. 3)

X' =x;— Xiq (3)

with xi" as the value of the first derivative at the i wavelength (Rinnan et al., 2009). The downside of using

derivative spectra is their tendency to eve

derivatives-may-increase noise so that asmoothing of the data is required (Leene-etal;-2012:-Stevens and Ramirez
Lopez, 2014). With the gapDer, a-smoothing is performed under a chosen segment size (s) and then a derivative

follows (Stevens and Ramirez Lopez, 2014).

Table 1 Combinations of pre-processing techniques used in this study; w = window size, s = segment size.

Pre-processing methods Wavelength range Abbreviation-
Savitzky-Golay (w =11 nm) 432 - 2201 nm SG
Savitzky-Golay (w=11 nm) and continuum removal 432 — 2201 nm SGCR
Standard normal variate and 1% derivative 408 - 2186 nm SNVvd1




200

205

Gap-segment algorithm (w =11 nm, s = 10 nm) 490 — 2163 nm gapDer
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Fig. 3 Impact of different pre-processing techniques on a spectrum; SG = Savitzky-Golay, CR = continuum removal,

SNV = standard normal variate, d1 = 1% derivative, gapDer = Gap-segment algorithm.
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2.5  Error propagation

A problem occurring in every model building process is uncertainty propagation. Uncertainties of the input data
and model, result in uncertainties in the output (Brown and Heuvelink, 2006). Uncertainties in the input data are
caused by errors in data acquisition (e.g. measurement errors) as well as variation in the data themselves (e.g.
within-sample variability) (Heuvelink, 1999). For this study, there are two different sources for errors in data
acquisition: the measurement of the spectral data and the measurement of the SOC content of the soil samples. In
order to investigate the influence of these errors, different datasets were built in this study. Fig. 4 gives an overview.
From the measured Vis-NIR spectra, three different spectral data variants were created (Fig. 4, step 1). For the
first variant, all 18 spectra were retained. The inclusion of all 18 spectra reveals the influence of the error
implemented in the spectral measurements as well as the influence of the within-sample variability. For the second
variant, the three measurements obtained before and after sample rotation were averaged separately resulting in 6

spectra per sample showing the influence of within-sample variability (replicate measurements). For the third data

variant, all 18 spectra were averaged to 1 mean spectrum per sample, removing the influence of the measurement
error as well as the within-sample variability. The different spectra obtained through this procedure can be seen in
Fig. 5;-00nly parts of the spectra are depicted in order to show their differences. The three different spectral data
variants were then pre-processed with the differentpre-processing-methods from Table 1 (Fig. 4, step 2), resulting
inte 12 different spectral datasets (Fig. 4, step 3). These were then combined with single and averaged SOC values
in step 4 so that altogether 24 datasets were obtained (Fig. 4, step 5). In order to compare the two sampling designs,

this procedure was carried out for the 50 soil samples labelled “A”‘A’ and “B>‘B’ and also for the complete set of

soil samples. In this way, three different soil sample sets (“A~*A’, “B”‘B’ and Z*all” samples) were
achievedobtained.
’I pE e Pre-processing
1) [2) SOC data
SG
18 spectra * (4]
e 3S0C values | o 0
SG+CR || 12 spectral data sets < —: 24 final data sets
6 spectra * ‘ 1 SOC value | e
SNV +d1
1 spectrum *
gapDer
* per soil sample

Fig. 4 Datasets to investigate the uncertainty propagation. SG = Savitzky-Golay, CR = continuum removal, SNV =

standard normal variate, d1 = 1%t derivative, gapDer = Gap-segment algorithm.
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Fig. 5 Zoom-in to a sample’s spectral dataset: a) 18 spectra comprised of 6 replicate sample measurements with 3 scans

each, b) 6 spectra related to replicate sample measurements (average of three scans each) and c) 1 averaged spectrum.

2.6 Model building and validation

Regression models were built using partial least square regression (PLSR). Out of the many algorithms, PLSR is
seen as a standard method for spectral calibration and prediction (Mouazen et al., 2010; Fekin-etal2014:-Viscarra

Rossel et al., 2006b). For recent applications to predict SOC from Vis-NIR soil spectra, see e.g. Liu et al. (2018)

and Yang et al. (2019).

et-al—2016;:Kuang-and-Mouazen,—2013;Nocita—et-al;—2013): PLSR is described in detail by Martens and Nas
(1989) and Naes et al. (2002). It incorporates characteristics from prineiple-principal component analysis (PCA)

and multiple regression (Abdi, 2007). The concept behind PLSR is to seek a small number of linear combinations
(components or latent factors) obtained from the measured spectral data and to use them in the regression equation
to predict SOC instead of the initial values (Martens and Nas, 1989; Naes et al., 2002). These components are
constructed so that they account for most of the variance in the measured spectral data (X) and the SOC content
(YY), and at the same time maximize the correlation between X and Y. In other words, PLSR leads to the covariance
between X and Y being maximized (Bjersvik and Martens, 2008; Summers—et-al;—2011: Tekin-et-al;—2014;

Wehrens, 2011).

In order to receive a robust model, it is important not to include too many components in model building as this
will lead to over-fitting (Hastie et al., 2009; Kuhn and Johnson, 2013). On the other hand, the inclusion of too few
components comprises the risk of building an under-fitted model which is too small to cover the variability existing
in the soil spectral data (Naes et al., 2002). The selection of the optimal number of components is hereinafter
referred to as model tuning. In order to receive a robust model, resampling is commonly applied for model building
and-validation. But resampling can also be used for model tuning to receive robust tuning parameters (Guio Blanco
et al., 2018; Hastie et al., 2009; Kuhn and Johnson, 2013). For small datasets, k-fold cross-validation_(CV) is

recommended (Hastie et al., 2009).
12
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In this study, model building, model validation and model tuning was-were dene-implemented using a nested

repeated-5-fold-cross-validation{CV} approach (Fig. 6)¢, e.g. Varma and Simon, 2006, Guio Blanco et al., 2018).

The CV for model validation and tuning consisted of a repeated k-fold group CV. Repeated-5-fold-C\/-canincrease

fold-C\were-conducted-in-this-case—In order to calculate reliable error measures, the subdivision of the spectral

data into the folds had to account for repeated scans and replicate measurements per sample. Accordingly, all

spectra for one sample were assigned to the same fold during k-fold CV, i.e. k-fold group CV. Furthermore, to

allow for comparison of the models built on behalf of the 24 datasets (Figure 4), the created folds coincide for all

datasets; the data of certain sample IDs were always assigned to the same fold ID. For the model validation CV,

two further aspects were taken into account that were neglected for the model tuning CV. The group CV was

adapted to also guarantee that neighbouring points of < 5 m distance were assigned to the same fold to avoid spatial

autocorrelation and too optimistic error measures. Furthermore, the response variable’s density distribution was

taken into account during fold creation, i.e. a stratified CV. Overall, a nested repeated k-fold group CV was applied.

Five Repetitions of a 5-fold group CV were conducted in this case. Kuhn and Johnson (2013) recommend 5-fold

CV as it can increase the precision of the prediction while maintaining a small bias.

Fig. 6 shows the various steps of the modelling procedure involving repeated 5-fold group CV for model tuning
(right box) and validation (left box). In the process, the dataset (n = 100%) is randomly subdivided into 5 folds of
equal size (step 1). One of the 5 folds is held out as a test set and the other four are used as the training set and
partitioned again into 5 folds for model tuning (step 2). The optimal number of components (best Ncomp) is then
determined by computing a PLSR on the resampled data, testing 1 to 30 components (step 3), and calculating the

repeatedly 5-fold cross-validated RMSE of model tuning (RMSEwmT) corresponding to each number of components

(step 4). Fhis-The latter was implemented with the trainControl() function in-of R package caret (Kuhn, 2017).
The optimal number of components (step 5) is then used in model building (step 6). The resulting model’s test set
RMSE of model validation (RMSEwy) is determined in step 7. The whole procedure is repeated until all folds in

the-boxes-have once been used as the test set to have a simple 5-fold group CV. A repeated 5-fold group CV means

that the model tuning CV and model validation CV each have to be rerun according to the number of repetitions.

Finally, tFhe medel-performance resutts-of the models built with the 24 datasets are aew-compared based on their

mean-RMSEwmy mean and and-their-interquartile range. Table 2 displays the respective dataset size per soil sample.

The resulting datasets and models were named after the following scheme: Datasetyx x2 x3 with the SOC

measurement error (x1), the spectral measurement error (x2) and the within-sample variability (x3). A value of 1

13



indicates that the respective error is included in the model, a value of 0 shows that the error was removed

beforehand by averaging the data.

for each
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Fig. 6 Model tuning and model validation procedure with a nested k-fold group eress-validationCV approach. The right
290 box shows the model tuning, the left one the model validation procedure; Ncomp = number of components; adapted from

Guio Blanco et al. (2018).

Table 2. Data basis per soil sample

Number of SOC Number of measured The resulting size of the
values per sample spectra per sample dataset per sample
Datasetii1 3 18 54
Datasetiot 3 6 18
Datasetiog 3 1 3
Datasetou: 1 18 18
Datasetoos 1 6 6
Datasetooo 1 1 1

295
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3 Results and Discussion

3.1  Soil organic carbon content

Fig. 7 shews-compares the distribution of the SOC content of the three soil sample sets; eonsisting-ef50-soil

to the LTFE archive data (Fig. 1).

~In all cases, no significant
difference between the differentrespective sample-datasets and the archive data could be found. This shows that
all soil sample sets used in this study are-were representative for-of the SOC values-existingvariability oin the

LTFE. Nevertheless, the SOC distribution of “A”*A’ and “B2‘B’ samples differed;—with-—the“A” samples

—. The “A”*A’ samples contained more
samples representing higher SOC values, whereas the “B=‘B’ samples showed a higher representation for lower

SOC values.

predictlower SOC values-more-accurate-than-higher SOC-values-The violin plots of all three seil-sampledata sets

do not resemble the archive violin plot very much. The plots for A’ and-al-samples show higher and lower

SOC values than the archive data, ‘B’ samples share the same minimum value with the archive data but display

slightly higher SOC values. This difference is likely due to the fact that the archivehose data awere obtained from

compound samples-for-one-plet, i.e. a number of distributed soil samples were taken per LTFE plot and mixed

before they were subjected to soil laboratory analysis. Fhe-“B”samples-share-the-same-minimum-value-with-the
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Fig. 7 Soil organic carbon (SOC) content of the three soil sample sets “A~‘A’ (left), “B>‘B’ (middle), and all (middle)
and of archive data measured from 2004 to 2007 (right); The thin line shows the 95 % confidence interval, the bar the
interquartile range and the dot the median; Mann-Whitney U test was used to compare “AZ‘A’, “B”‘B’, and all samples

to the archive data; the three soil sample sets were not compared among each other.

335 Table 2-3. Statistics of soil organic carbon in [%0] for the three different soil sample sets and the per-plot soil archive

data.

Samples Min. 1%t Qu. Median Mean 39 Qu. Max.
EAZA 1.47 1.82 2.21 2.11 2.36 2.93
“B»‘B’ 1.49 1.70 1.97 2.02 2.31 2.74
‘all’ 1.47 1.72 2.12 2.01 2.35 2.93
Archive data 1.49 1.89 2.09 2.08 2.33 2.64

3.2  Comparison of datasets and pre-processing methods

16



350

Fig. 8 shows the boxplots of the RMSEwmy. The_results of the six datasets_corresponding to different information

concerning SOC values and spectra (Table 2) are displayed in one plot, the results according to the various pre-

processing methods (compare Fig. 4) are displayed in figure lines 1 to 4 anel, and t—Fhe results of the models using

built from the data corresponding to “A”‘A’ samples, ‘B’ samples and ‘all” samples are shown in the-1figure

columns a, b and cfa)—~B~samples-inthe2* column{(b)-and-al-samplesin-the-3* column-{c) Figure Hines 1 to-4
refer-to-the-used-pre-processing-methed. As 5-fold CV with five repetitions was performed, five RMSEwy are

shown in each boxplot.
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Fig. 8 Boxplots of testset RMSEwmv {5-repetetions)-obtained with the various datasets; Figure columns refer to datasets
using a) ‘A’ samples, b) ‘B’ samples and c) ‘all’ samples; figure rows refer to the applied pre-processing, 1 = SG, 2 =
SGCR, 3 =SNVd1, 4 = gapDer.

-H-is-net-surprising-thatAs expected, the dataset of 3 SOC replicate measurements with 1 averaged spectrum
(Dataseti0o0) results-resulted in low model performance, as the within-sample variance concerning SOC cannot
could not be explained by the contained predictor information; the input data uncertainty propagateds through the

model building process. This model performance wais impaired in some cases by Datasetior which cembines

combined the 3 SOC measurements with 6 replicate spectral measurements (Figures 8b1, a, as, bs, c3)-but-net

always. It seems that the within-within-sample variation concerning soil spectra ean-was somehow able to
compensate for the within-within-sample variability concerning SOC within the model building process, although
replicate measurements de-did not match. Considering the dataset with 18 spectra and 3 SOC measurements

(Dataseti11), model performance improves-improved even further-(Batasetisa}. In contrast to this, we fiound the

expected pattern while only 1 SOC measurement wais considered: model performance results display an increase
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of RMSE values from Datasetooo to Datasetoo: to Datasetor1 due to the fact that more spectral variance wais related

to the same target information concerning SOC. This applies for three of the four spectral pre-processing variants
(SG, SGCR, gapDer), while SNVd1 pre-processing displays an unexpected pattern with datasets including
replicate measurements and multiple scans even outperforming those with averaged data. Overall SGCR resulted
in the best model performance for data ‘A’ (Figure 8az) and “all” samples (Figure 8cz), while SG pre-processing
resulted best for data ‘B’ (Figure 8b;). However, the latter does not apply for Datasetooo Where gapDer pre-

processing resulted in the best model performance with RMSEuv= 0.13.

The overall best pre-processing methods in this study were the combination of SG and CR as well as SG alone.

SG was used successfully by many authors before for spectral pre-processing. CR was used by e.g. Viscarra Rossel

et al. (2016) or Loum et al. (2016) with acceptable success. The combination of SG and CR could not be found in

literature, though. SNV was applied before by other authors in order to remove baseline effects (Knadel et al.,

2015; Minasny et al., 2011; Viscarra Rossel et al., 2006a). The pre-processing technique d1 was found to lead to

poorer model results and rather unexpected performance patterns in this study. The former may have its cause in

the tendency of d1 to increase noise (Leone et al., 2012; Stevens and Ramirez Lopez, 2014). We do not have an

explanation for the latter, though. Leone et al. (2012) suggested the usage of SG in combination with d1 to solve

the problem. For the usage of gapDer no comparison could be found in the literature.

Comparing the mean RMSEwy, the fer-models built on samples “A”and-*B’-models-build-on-samplesB-” resulted

in better model performance_than those built on samples ‘A’ whith the exception of Datasetioo. Fhe-locations-of

Whitney U test did not show a significant difference-between-the-archive-data-and-the-sample-sets-used-in-this

study. ‘A’ samples-as-weH-as—-B*-samples, as well as ‘B’ samples, seem to represent the LTFFE-SOCarchive data

in an adequate way. As-already-mentioned-aboveNevertheless, the difference in the distribution of SOC values of
‘A’ and ‘B’ samples might-may have led to a-the observed different predictive capability in certain SOC value

ranges._ However, whether-H this difference is the reason for the better performance of the ‘B* models cannot be

stated with certainty.

Comparing_the results of Dataseti;1 with those of Datasetooo, Shows how the inclusion of all input data uncertainties

affectimpaireds the—model-resultsmodel performance. It can be seen that a model without error propagation

(Datasetooo) reaches-achieved a mean RMSEwmy of 0.12-% SOC and a mean R? of 0.86 using the pre-processing
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method which delivered the best results. A model with error propagation (Dataseti11), on the other hand, reaches
reached a mean RMSEwy of 0.16-% SOC and an R? of 0.77. This is further illustrated in Fig. 9 and could be
expected, as Datasetogo €ontains-contained no input data uncertainties;-. tThe RMSEwmyv values, therefore, only
correspond to the model building process. Overall, the best model performance which dees-did not consider error
propagation eerresponds-corresponded to a mean RMSEwmy of 0.12 % SOC (R2=0.86). This model performance is
was impaired by ARMSEuv = 0.04% SOC while considering input data uncertainties (AR>=0.09), and by
ARMSEwmy = 0.12 (AR?>=0.17) considering an inappropriate pre-processing. The effect of the sampling design

ameunts-amounted to a ARMSEwmv of 0.02% SOC (AR?=0.05). Overall, the additional accounting of neighbouring

sample locations during fold division not only for model validation CV but also for model tuning CV might still

improve the performance of all models. This is currently not implemented in the applied R package caret. We will,

therefore, opt for other implementations in future studies.
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Fig. 9 Comparison of predicted and observed soil organic carbon (SOC) values for Dataseti1: (al to c1) and Datasetooo
(a2 to c2) for five repetitions with the corresponding best pre-processing (SGCR for data ‘A’ and ‘all’ ADATAdata, SG
for data ‘B’); a) shows results for ‘A’ samples, b) for ‘B” samples and c) for all samples. The depicted RMSE and R?2

values refer to the mean of 5 repetitions.
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Model performance values between studies that use VIS-NIR spectral information to predict soil properties are

often compared to one another without mentioning the underlying range of the target variable, the variability of

the measured soils, the applied sampling design, measurement protocol, validation approach, or applied

instrumentation. Often, this information is not even provided by the respective studies. However, all of this has an

impact on the calculated measures of model performance. Table 4 provides some of this information but not all

details of the applied measurement protocol. Examples-of ether-studies-using-\is-NIR-spectra-to-predict SOC-are
listed-in—Table-4—Mest-studiesThe listed studies used a different number of scans and replicate samples to get

calculate an averaged spectrum to predict SOC;-. se-Often, it is not specified whether the measurements refer to

instrument _internal scans, repeated external scans, or replicate measurements. As a consequence, the error

implemented in the respective spectral input data is-must be assumed to be different. Pimstein et al. (2011)
proposed a number of 3-5 replicate measurements as standard protocol for measurering Vis-NIR spectra of soil
samples under laboratory conditions. Figure 5b indicated the high impact of within-within-sample variance
determined by the measurements of replicate samples, whereas the effect of the repeated scans per replicate is-was
comparatively small (compare Figures 5a and b). We dried and sieved the samples before spectral measurements
but did not grind them to a fine powder. The latter might reduce the spectral variance in replicate measurements,
but the benefit of Vis-NIR spectroscopy as a fast and inexpensive method is-would be reduced. One might argue
that samples have-had to be grinded-ground for SOC analysis, anyway. However, this requires a tiny fraction of
the large amount that would have to be grinded-ground for Vis-NIR measurements. In addition, comparison to
measurements under field conditions would beis further distorted while grinding the samples for laboratory

measurements.

of these studies_listed in Table 4, the error in SOC measurements is-was mentioned to be considered during model

building. Also, in most studies the available dataset iwas randomly parted into calibration and validation set, using
different percentages-data proportions ef the-data-for the two sets. Jeong et al.; (-2017-) and Beleites et al. (2005)

showed that different validation strategies lead to different error measuresvalues. As shown in Figure 8, the input

data uncertainty had a major influence on model performance. Accordingly, the applied measurement protocol

should be reported in all details.
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440 Table 4 R? model performance values from Vis-NIR applications to predict SOCfrom-literature-forsoil-organic-carbon
Authors SOC  Soil instrumentati number average calibration and R?
% variabilit on o dseans  validation set
y samples  per
n sample
m
{Reeves 0.04  various Digilab FTS 720 64 a) Cross-validationwith ~ a)
and - soil types 7000 Fourier (internal  al-samplesLOO CV 0.534
Smith; 34.2 (USA) tranform scans) b) Independentvalidation  b)
(2009) setcluster analysis based  0.335
partition (Y2, %2)
Liu et 0.10 - various ASD 515 10 scans  Stratified systematic 0.74 -
al., 2018 3.40 soil types  FieldSpec Pro partition (75%, 25%) 0.83
(China)
{Islamet 0.06 - various Cary 500 (UV- 161 - Randomly-selectedfrom  0.76
al; 495  soil types VIS-NIR), datasetrandom partition
(2003) (Australia Labsphere (321+403/4, 1/14)
) DRA_CA-50D
falone LS 4 Randomly-selected-from 0.67-
2014
{Volkan 0.39 - various ASD 512 100100 Randemly-selectedfrom  0.80
Bilgiliet 0.69  soil types FieldSpec Pro (2 datasetrandom partition
al.; (SO (Turkey) replicate  (70-%,-and 30-%)
(2010) M) 5.5
scans,
10
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(kuang 174 10
and
Meuaze
A-2013)
{Jianget 0.24 - various ASD
al.; 2.62 soil types  FieldSpec 3
(2016) (China)
{Confort 0.3-  various ASD
ietal; 6.5 soil types  FieldSpec Pro
(2015) (Italy)
Yanget 0.24- single ASD
al., 2019 6.05 soil type,  FieldSpec Pro
SO texture
M) range
(China)
{Leone 0.04 - various ASD
etal.; 21.56 soil types  FiledSpec Pro
(2012) (Italy)

internal

scans)

e

98 10

201 30

523 3
replicate
s, 10
internal

scans

374 4 scans

Dotoseboaredinie 0.58 -
colibrallopandovelidetion 0.85

setstratified partition

(213, 1/3)

CV (unspecified)- -

partition (2/3, 1/3)

o
(o]
s

Ropdembrseleciedrom 0.84 -
datasetrandom partition 0.92

(213 -and-1/3)

n = number of samples, m = averaged spectral measurements per sample, LOO CV = leave-one-out cross-

validation
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4 Conclusions

This study aimed-te-investigateaddressed the influence-impact of various data and modellingdifferent aspects on

esmodel performance with a focus on the

propagation of input data uncertainties.- Overall, the best model performance which did not consider uncertainty

propagation corresponded to a mean RMSEmv of 0.12% SOC (R2=0.86). This model performance was impaired

by ARMSEmv = 0.04% SOC considering input data uncertainties (AR>=0.09), and by ARMSEmv = 0.12% SOC

(AR?>=0.17) considering an inappropriate pre-processing. The effect of the sampling design amounted to a

ARMSEwmy_of 0.02% SOC (AR?=0.05). Fhese—aspects—included-the-input-data—uncertainties—the—number—of

modeltuning—and—validation—procedure—was—diseussed—Overall, tFhe applied nested k-fold group eress

validationCV approach that-includesresampling-in-model-tuning-as-wel-as-evaluation-can be recommended in

general.
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soils)—OveralFurthermore, this study showed that it is of impertant-uttermost importance to clarify which

information is contained in the reported error measure-valueseontains.

~We, therefore, emphasize the necessity of a transparent
and precise documentation of the measurement protocol, the model building and validation procesdure, including
the calculation of the error measure, in order to assess model prefermance-performance in a comprehensive way
and allow for comparison between publications. Particularly, when Vis-NIR spectrometry is used for soil

monitoring, the aspect of uncertainty propagation in the involved modelling procedure becomes essential.
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