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General comments 
 
Most comments on technical and minor topical suggestions were addressed in the new manuscript. 

Authors’ reply: “The PLSR components vary largely in dependence on the pre-processing method. The 
information on the number of selected components, therefore, did not result very informative. 
Furthermore, it distracts the reader from the main message. We, therefore, refrain from including it in 
this publication. We have adapted the results section concerning the uncertainty scenarios. We have also 
extended the introduction section to elaborate on the various sources of uncertainty.” I insist on giving 
finally selected tuning parameters for all the modeled scenarios. The reader requires such information to 
judge the uncertainty in relation to model complexity within different error propagation scenarios. 
Hyperparameter optimization through Model tuning is a key aspect of spectral modeling, and all 
scientifically-sound publications in this field report these results. Parameter selection results can easily be 
included within a model assessment table. This does not distract the reader. This information will reveal 
also potential over-fitting effects due to replicate spectra in the inner tuning loop in presence of multiple 
spectral replicates. The main concern from the last review round has been mentioned in the conclusion, 
but is still not resolved. Specifically, the group stratification for replicates of the same sample was not 
performed for the tuning procedure. The author’s specifically mention this now in the conclusion. 
However, the author’s refuse to report the finally selected PLSR parameters, but at the same time admit 
that suboptimal model parameters might be selected. Based on the results shown, no conclusive 
statement on this issue can be drawn. In order to get this manuscript eligible for final publication, the 
issues arising from multiple replicates in tuning during cross-validation needs to be addressed. At least, 
the authors should report a majority consensus value of the number of PLSR components selected in the 
final model. This will at least indicate whether the model errors are biased by resampling artifacts. 

Reply: We decided to reply to these general comments collectively as they are all related to one another 
and refer to the applied nested cross-validation (CV) approach. There seems to be a misunderstanding. 
Model validation and tuning are both conducted with a group CV assigning replicate sample 
measurements and scans to the same fold. We adapted the corresponding section in the Materials and 
Methods and discussion section for better understandability. Please compare lines 248-283 and lines 405-
408. “We agree that model complexity should always be kept in mind. However, overfitting was prevented 
by the applied nested group cross-validation (CV) approach. On the other hand, the mere inclusion of a 
table giving the number of components per model scenario would not suffice, as this would definitely 
require an extended discussion section, which is out of scope of this manuscript.” 

 
Specific comments 
 
Abstract 



The statement in l. 24–26 about precise protocol and measurement protocol is out of scope and needs to 
be removed. It isnot the main topic of this study. Such protocols and procedures are mostly well 
documented in soil spectroscopy literature and there are recommendations on this, consider for example 
Wetterlind et al., 2013. 

Reply: Although there are protocols and procedures – we cite Pimstein et al. 2011 in lines 423-425 - there 
is still no agreement within the soil spectroscopy community on the applied protocol and procedure. As a 
consequence, the number of scans and replicate measurements per sample differ in each working group. 
As we have shown that the applied procedure has an impact on model performance, it is important to 
describe it in each study in order to allow for comparison between studies.We adapted the text section 
on Table 4 (lines 414-439) to that extent. As a consequence, the statement is in fact a major conclusion 
from this manuscript. 

Introduction 

The introduction needs a major rewrite, there are many grammatical, topical, and stylistic errors. See the 
technical corrections for some examples and suggestions. 

Reply: Thank you, we have checked the introduction, thoroughly. 

Material and Methods 

Authors’ reply: “Reference to soil treatment and scattering effects was made in the introduction. We 
refrain from referring to soil texture as we are at within-field scale and do not have a pronounced textural 
variability in our dataset. A reference to sample origin is included in the discussion section.” Although the 
present study covers within-field variability, general conclusions regarding spectral error propagation 
need to consider soil texture as it affects scattering and averaging effects. 

Reply: Soils with different properties may have a different amount of light scattering and might therefore 
require a differing amount of scans and replicate measurements per sample. However, this is beyond the 
scope of this paper. Based on the soil samples we measured we cannot make any statement in this regard. 

Results and Discussion 

Some paragraphs contain statements that should be in the Material and Methods section, see e.g. lines 
269–271 (see also technical corrections). Table 3 and the corresponding text needs to be moved to the 
Material and Methods section. 

Reply: We checked the Results and Discussion section, thoroughly. Table 3 and the corresponding text 
were moved to the Material and Methods section. 

Many sections contain present tense where past tense is needed. 

Reply: adapted accordingly 

The section 3.1 on soil organic carbon reference values is too long, and needs some general revision. This 
section needs to be further summarized and presented in a more concise manner. 

Reply: The text section was revised and summarised. 

L. 283–284: “The plots for “A” and all samples show higher and lower SOC values than the archive data 
due to the fact that those data are obtained from compound samples for one plot.’: It it not clear what 
the authors mean by compound plots.. 

Reply: The term “compound sample” was explained. The sentence was adapted to “The plots for “A” and 
all samples show higher and lower SOC values than the archive data due to the fact that those data were 



obtained from compound samples , i.e. a number of distributed soil samples were taken per LTFE plot and 
mixed before they were subjected to soil laboratory analysis.” (lines 325-326). 

Authors’ reply: We are not aware of any study that actually quantified the effect of spectral pre-processing 
on model performance and, therefore, refrain from deleting it from our study. This is simply not correct. 
There are many soil spectral studies addressing pre-processing with regard to model performance. Please 
consider e.g. Stevens et al., 2013 (see References at the end). 

Reply: Yes, you are right. There are quite some publications that compare model performance in 
dependence on various pre-processing methods. We have actually cited some of them. The difference in 
model performance, due to the applied pre-processing, is usually not explicitely reported, though, but 
could be calculated. Still pre-processing is such an important aspect in VIS-NIR spectrometry that we find 
it important to report its impact on model performance in relation to the other aspects we investigated. 
Furthermore, the applied pre-processing changes the impact of the uncertainty propagation; in some 
cases the typical pattern is even reversed (Please compare lines 366-374).  

The discussion around the pre-processing is still way to long. 

Reply: The discussion of pre-processing only relates to its impact on model performance (now lines 375-
383). We find this short paragraph of adequate length. 

Table 4 on R2 values is not informative. First, it only reports R2, which is strictly not a measure of 
performance. Second, it is relative to the range of the measured property, which is not given. The only 
reference to this table is that the error conditional on the input data is different, and this information is 
missing in the table. Therefore, this table and discussion around it should be removed. 

Reply: R² is still the most reported metric when comparing performance results between publications. We 
included the SOC range and further information and adapted the corresponding text section (lines 414-
439) so that the reason for its inclusion is understandable. It relates to the information content of error 
values and the applied measurement protocol. 

In general, the authors should stay focused on the key topics under investigation. Many sections are too 
long and therefore distract the reader. The Results and Discussion requires some more work to offer the 
audience a better flow. 

Reply: Thank you. We have thoroughly revised the whole manuscript. 

Conclusion 

The conclusion should fit on half a page. Focus on the key findings and topics that the study addressed. 

Reply: Adapted accordingly 

Technical corrections 

L. 12: “...the exact monitoring of...” -> “...precise monitoring of...” 

Reply: changed accordingly 

L. 14 “...to enhance conventional SOC analysis and has often been used to predict SOC” -> “...to 
complement conventional SOC analysis.” 

Reply: changed accordingly 

L. 24–26: “We emphasize...and allow for a comparison between publications.” 

Reply: changed accordingly 



L. 35: “production of energy”: Energy cannot be produced, rather use “production of energy crops” 

Reply: changed accordingly 

L. 36: remove Stenberg et al., 2010: this does not fit the context. 

Reply: adapted accordingly 

L. 36–37: “quality of soil” needs to be described, too generic -> soil properties, soil type... 

Reply: adapted accordingly 

L. 38–40: “...SOC is also interesting when it comes to the global warning issue...” -> “SOC is also relevant 
for the global warning issue...” 

Reply: changed accordingly 

L. 66: “However, the application of ....”. -> Delete “However” because there is no reference sentence. 

Reply: However relates to the previous paragraph 

L. 67: “...standard lab analysis” -> ”...standard laboratory analysis” 

Reply: changed accordingly 

L. 68: “...on the other hand side” -> either “hand” or “side” ... (see general comments for abstract) 

Reply: changed accordingly 

L. 100: Missing dot after “(Merbach and Schultz, 2013)” 

Reply: changed accordingly 

L. 131: “Elementaranalysator” -> “elemental analyser” 

Reply: changed accordingly 

L. 155–160: Give original publications for all pre-processing techniques; only give these and remove the 
other references. L. 160–182: All references that are not original method publications for pre-processing 
need to be removed. 

Reply: Adpated accordingly. 

L. 276: “the SOC distribution of “A” and “B” samples differ” -> “the SOC distribution of “A” and “B” samples 
differed” 

Reply: changed accordingly 

L. 307–308: “The model results are now compared based on their mean RMSEMV and their interquartile 
range”: this should be in Material and Methods... 

Reply: adapted accordingly 

L. 308: “It is not surprising that the dataset...”: style -> use “We expected that/It was expected that...” or 
similar 

Reply: changed accordingly 

L. 312: “It seems that the within sample variation concerning soil spectra con somehow compendate the 
within sample variability concerning SOC within the model building process, although replicate 
measurements do not match” -> consistently use past tense. 

Reply: Thank you.We have thoroughly revised the results and discussion section. 

L. 387: “cross validation” -> “cross-validation” 



Reply: changed accordingly 

All figures need to be in vector graphics format or need a better resolution. 

Reply: When embedding vector graphics in the applied software for manuscript writing, they get 
automatically rasterised. Vector files will be provided for final publication. 

Figure 9: The text annotation for “RMSE” must be changed from “RMSE <number>” to “RMSE = <number>” 

Reply: adapted accordingly 
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Abstract 10 

Soil organic carbon (SOC) plays a major role concerning the chemical, physical and biological soil properties and 

functions. To get a better understanding of how soil management affects the SOC content, the exact precise 

monitoring of SOC on long-term field experiments (LTFE) is needed. Visible and near near-infrared (Vis-NIR) 

reflectance spectrometry provides an inexpensive and fast opportunitypossibility to enhance complement 

conventional SOC analysis and has often been used to predict SOC. For this study, 100 soil samples were collected 15 

at an LTFE in central Germany by two different sampling designs. SOC values ranged between 1.5 and 2.9%. 

Regression models were built using partial least square regression (PLSR). In order to build robust models, a 

nested repeated 5-fold group cross-validation approach was used, that comprises comprised model tuning and 

evaluation. Various aspects that influence the obtained error measure were analysed and discussed. Four pre-

processing methods were compared in order to extract information regarding SOC from the spectra. 20 

OverallFinally, the best model performance which did not consider error propagation corresponds corresponded 

to a mean RMSEMV of 0.12 % SOC (R²=0.86). This model performance is was impaired by ∆RMSEMV = 0.04% 

SOC while considering input data uncertainties (∆R²=0.09), and by ∆RMSEMV = 0.12% SOC (∆R²=0.17) 

considering an inappropriate pre-processing. The effect of the sampling design amounts amounted to a ∆RMSEMV 

of 0.02% SOC (∆R²=0.05). Overall, wWe emphasize the necessity of a transparent and precise documentation of 25 

the measurement protocol, the model building, and validation procedure, including the calculation of the error 

measure, in order to assess model performance in a comprehensive way and allow for a comparison between 

publications. The consideration of uncertainty propagation is essential when applying Vis-NIR spectrometry for 

soil monitoring. 
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1 Introduction 

Soil is at the same time one of the most important and one of the most limited natural resources. Most of all, it is 

needed for food production, but also for the production of energy crops and fibre, or for the provision of fresh 

water (Johnson, 2008; Lorenz and Lal, 2016; Stenberg et al., 2010). All these aspects depend on the quality of the 35 

soil, which is determined by its site-specific propertiesof the existing soil. And tThis quality in turn, in turn, is 

much influenced by its SOC content since it affects chemical, physical and biological soil properties and functions 

(Knadel et al., 2015; Lorenz and Lal, 2016). Additionally, SOC is also interesting when it comes torelevant in the 

context of global warming the global warming issue since the soil is the largest terrestrial reservoir of organic 

carbon in the world (Conforti et al., 2015; Johnson, 2008; McBratney et al., 2014; Stockmann et al., 2013). The 40 

SOC content of soils can be increased through the sequestration of atmospheric CO2 into long-living components 

of soilsSOC sequestration may lead to long-term SOC storage in relatively stable soil fractions (Lal, 2004; 

McBratney et al., 2014). Thus, the SOC stocks of soils could be used as a manageable sink for atmospheric carbon 

(Stockmann et al., 2013), achieving both, food security and a strategy against the increasing CO2-concentration in 

the global atmosphere (Lal, 2004; Lorenz and Lal, 2016; McBratney et al., 2014). As the SOC content of soils 45 

reacts very slowly to environmental changes (Meersmans et al., 2009), long-term field experiments (LTFE) are 

required to understand the impact of soil management and farming systems on the rate of SOC sequestration (Lal, 

2004), as well as on yield and crop quality in the long run.  

The precise monitoring of SOC on an LTFE with conventional laboratory analysis is labour- and cost-intensive 

and expensive (Adamchuk and Viscarra Rossel, 2010; Loum et al., 2016) as it requires the analysis of a rather high 50 

amount of samples. Visible and near near-infrared (Vis-NIR) reflectance spectrometry can facilitate this procedure. 

It is non-destructive, fast and economical (Mouazen et al., 2010; Tekin Summers et al., 20142011), and 

requiresrequiring the conventional laboratory analysis to be conductedonly on a small number of soil samples, 

only, and as well as little sample preparation (Conforti et al., 2015). In addition, no chemicals are needed and oThe 

obtainedne spectrum contains information about many different soil components (Conforti et al., 2015; Viscarra 55 

Rossel et al., 2006b);. please compare Stenberg et al. (2010) for a review on the past and current role of Vis-NIR 

spectrometry in soil science. Spectral absorption features are caused by vibrational stretching and bending of 

structural molecule groups and electronic excitation (Ben-Dor et al., 1999; Dalal and Henry, 1986). Molecule 

vibrations from hydroxyl, carboxyl, and amine functional groups produce soil absorption features related to soil 

organic matter in the mid-infrared (MIR) region of the spectra (Croft et al., 2012). In comparison, Vis-NIR spectra 60 

show only broad and unclear adsorption features related to overtone vibrations from the MIR, but instruments are 
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less cost-intensive and available for field monitoring as well (Stenberg and Viscarra Rossel, 2010; Viscarra Rossel 

et al., 2006a). Furthermore, in diffuse reflectance spectroscopy, scattering properties depend on the particular 

wavelengths and can vary significantly over the VISVis-NIR spectral range (Pilorget et al., 2016). Hence, the pre-

processing of Vis-NIR spectra is necessary in order to extract soil property property-related information (Stenberg 65 

and Viscarra Rossel, 2010). As there is no standard pre-processing technique which works on all spectral data 

(Stenberg and Viscarra Rossel, 2010), it is recommended to always test various techniques and to choose the one 

which performs best for the respective data. Several studies, therefore, compared a rather high number of pre-

processing methods (e.g. Peng et al., 2014; Nawar et al., 2016). Scattering and other effects attributed to within-

sample variance can be addressed by repeated measurements of replicate samples (e.g. Pimstein et al., 2011). 70 

Alltogether, Vis-NIR soil spectrometry has been used on many occasions to build SOC prediction models (Jiang 

et al., 2016; Kuang and Mouazen, 2013; Nocita et al., 2013).  

However, the application of Vis-NIR soil spectrometry for SOC determination involves a couple of uncertainties. 

The required calibration data are determined with standard laboratory analysis, e.g. dry combustion, with 

associated uncertainties. On the other hand side, the spectral measurements are affected by the sample preparation, 75 

e.g. drying, sieving, grinding (e.g. Nduwamungu et al., 2010). Furthermore, sensor noise and other spectrometer 

internal sources (electronic and mechanical) can affect the measurements (Schwartz et al., 2011). Finally, these 

two uncertain data sources are related by a regression model. And the model building procedure involves a couple 

of error sources itself. The development of robust models requires a resampling process procedure to determine 

the model parameters and to avoid overfitting; the applied resampling method impacts model performance (e.g. 80 

Molinaro et al., 2005, Beleites et al., 2005). Further aspects that impact model performance are: the available 

dataset in concordance with the applied sampling design, the handling of outliers, spectral pre-processing, and last 

but not least the model evaluation procedure. In most studies dealing with SOC prediction from Vis-NIR spectra, 

no clear statement about input data uncertainties or their handling is made. The reported prediction errors only 

refer to the model building procedure, while uncertainties from laboratory measurements are neglected. 85 

Commonly, only a single SOC measurement per soil sample is available, and in spectrometric laboratory 

measurements. In spectral soil sensing in lab applications,  the general approach consistst in averaging the multiple 

measured spectra of one sample to one spectrum which is then used for model building (Ge et al., 2011; Stevens 

et al., 2013; Viscarra Rossel et al., 2003). But However, the number of measurements used to gain one averaged 

spectrum differs between studies. Jiang et al. (2016), for example, averaged 10 measurements to receive one 90 

spectrum, while Volkan Bilgili et al. (2010) and Wang et al. (2014) used four measurements. This difference is 

also assumed to have an influence on the uncertainties containeimplemented in the input data.  
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Overall, to allow for comparision between studies, in terms of predictive uncertainty in % SOC, a modelling 

procedure is required that deals with the propagation of the input data uncertainitesuncertainties. For discussion of 

the general concept, please refer to Jansen (1998), for applications in soil modelling compare e.g. Heuvelink et al. 95 

(1999) and Poggio and Gimona (2014). Although, the problem of the involved uncertainties in Vis-NIR 

spectrometry is well-known (e.g. Gholizadeh et al., 2013, Nduwamungu et al., 2010, Mortensen, 2014), 

implementations of uncertainty propagation in Vis-NIR spectrometric modelling are lacking.  

2 Material and Methods 

2.1 The static fertilization experiment Bad Lauchstädt 100 

The soil samples were taken at the LTFE site “Static Fertilisation Experiment” in Bad Lauchstädt in central 

Germany (Körschens and Pfefferkorn, 1998). Positioned at 51° 24’ N, 11 ° 53’ E and with an altitude of 113 m 

a.s.l. (Körschens and Pfefferkorn, 1998), the climate is characterized by a mean annual precipitation of 470 – 540 

mm and an average mean annual temperature of 8.5 – 9.0 °C. The soil type was characterized as a haplic 

Chernozem developed from loess (Altermann et al., 2005) with a soil texture of 21.1 ± 1.2 % clay, 72.1 ± 1.7 % 105 

silt, and 6.9 ± 1.9 % sand (Dierke and Werban, 2013). Saturated water conductivity and air capacity are medium 

to high in the top soil (Altermann et al., 2005). The Static Fertilization Experiment was initialized in 1902 by 

Schneidewind and Gröbler and is about 4 ha in size (Merbach and Schulz, 2013). Its objective is to investigate the 

impact of organic and mineral fertilization on soil fertility as well as yield and quality of crops (Körschens and 

Pfefferkorn, 1998; Schulz, 2017). The experiment includes eight subfields with a width from 25.2 m to 28.5 m and 110 

a length of 190 m which are each divided into 18 plots that are treated with different mineral and organic fertilizer 

as well as planted with different crops following a crop rotation (Körschens and Pfefferkorn, 1998). The plots of 

subfields 4 and 5 are additionally parted into 5 smaller subplots.  

2.2  Sampling design 

A total of 100 soil samples were taken at the soil surface (0-10 cm) in September 2016. The exact location of the 115 

sampling points was determined by a differential GPS GNSS LEICA Viva GS08. It was decided to sample at 

precise point locations instead of taking samples representative for LTFE plots to allow for a direct comparison 

with spectrometric field measurements for area-wide regionalisation (not included in this study). The sampling 

points were determined beforehand by two sampling designs. Based on the LTFE treatment factors and per-plot 

soil archive data including Corg, Ntot, plant plant-available P, plant plant-available K (both with DL-Method 120 
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(VDLUFA, 2012))  and pH (Fig. 1) both designs strived to select a dataset of 50 samples representative for the 

soil variability of the entire LTFE. Categorical and continuous data first entered a factor analysis with for mixed 

data (FAMD) performed with R package FactoMineR (Lê et al., 2008) to allow for further joint analysis. For 

design 'A' the LTFE plots were then grouped by a k-means cluster analysis. R package NbClust (Charrad et al., 

2014) automatically determines the optimal number of clusters making use of 30 indices. In the end, ten plots were 125 

randomly selected from each of the resulting five clusters, making a total of 50 plots to be sampled. For design 'B', 

the Kennard-Stone algorithm was applied with R package prospectr (Kennard and Stone, 1969; Stevens and 

Ramirez Lopez, 2014). 50 LTFE plots were selected involving 5 repetitions of the algorithm to reduce inter-point 

dependence. Finally, one sampling point was randomly selected from each of the 50 LTFE plots from for design 

A and B based on a 5 x 5 cm raster. Plot margins of 1.5 m (3 m between plots) were excluded. Fig. 2 shows the 130 

location of the so obtained 100 soil samples. 

 

Fig. 1 Soil archive data of the LTFE measured from 2004 to 2007 (Reports of the experimental station Bad Lauschstädt 

2004-2007 (unpublished). 
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 135 

Fig. 2 Site of the Static Fertilisation Experiment in Bad Lauchstädt with LTFE plots and sampling points according to 

design A and B. Plot margins excluded from sampling are visible as 3 m wide stripes between plots. 

2.3 Laboratory measurements 

The soil samples were air-dried, sieved and grinded ground prior to C carbon measurements with dry combustion. 

A High-end Elementaranalysator elemental analyser vario Vario EL Cube-CN was used. Measurements were 140 

repeated in three replicate samples. C arbon measurements were taken as organic carbonSOC due to negligibly 

small carbonate contents (below detection limit). The Vis-NIR contact measurements were performed on air-dried 

and sieved (2 mm) samples in July 2017, using Veris® VIS-NIR Spectrophotometer by Veris 

technologiesTechnologies, Inc. (hereinafter called Veris) containing an Ocean Optics USB4000 instrument (200 

to 1100 nm) and a Hamamatsu Mini-spectrometer TG series (1100 to 2200 nm, resolution 6 nm). The device was 145 

warmed up for at least 20 minutes before performing measurements. All measurements were taken in a dark room 

to prevent daylight from affecting the outcome. The soil samples were scanned from the top. Before and between 

soil sample measurements, Veris was calibrated using four Avian Technologies Fluorilon™ gray scale standards. 

Each soil sample was divided into three sub-samples filled into petri Petri dishes (Schott Duran petri Petri dishes; 
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Duran Group, Mainz, Germany). These replicate samples were not related to the three replicate samples used for 150 

C/N-SOC measurements. For each replicate sample, six spectra were gained by measuring each replicate sample 

three times, rotating it by 90 degrees and then measuring it three times again. This procedure resulted in 18 spectra 

for each soil sample. Internally the spectrometer averaged 25 scans for each spectrometer reading (spectrometer 

setting). 

2.4  Spectral pre-processing 155 

Veris is equipped with two spectrometers. At the beginning and end of their respective wavelength ranges noise 

occurs in the measurements. Therefore, the spectra between these wavelengths (1000 to 1100 nm) had to be 

removed. Additionally, the spectra were cut at the beginning (402 nm) and the end (2220 nm) to remove noise. A 

number of pre-processing methods were tested to enhance the information regarding SOC in the Vis-NIR spectra. 

The spectra were tested for outliers using R package mvoutlier (Filzmoser and Gschwandtner, 2017). For this 160 

procedure, a PCA is performed, using then the first two obtained PCs for outlier detection with function aq.plot. 

Out of the tested pre-processing methods, four different combinations are shown in this study in order to 

demonstrate their different effects on the prediction modelimpact on model performance. Their application resulted  

in spectra with different wavelength ranges (Table 1) and different appearance (Fig. 3). These pre-processing 

techniques include the Savitzky-Golay algorithm (SG), the continuum removal (CR), the standard normal variate 165 

(SNV), the first derivative (d1) and the gap-segment algorithm (gapDer). The application of the differentAll pre-

processing methods for this study wasere conducted using R package prospectr (Stevens and Ramirez Lopez, 

2014). The SG algorithm fits a polynomial regression on the spectral data to find the derivative at a center point i 

of a defined smoothing window (w) (Rinnan et al., 2009; Savitzky and Golay, 1964; Swarbrick, 2016). CR can be 

seen as a spectra normalization normalisation technique which enables to compare different absorption 170 

characteristics from a mutual baseline (Kokaly, 2001; Mutanga and Skidmore, 2003). It identifies the local 

reflectance spectra maximum points and connects those points to form a convex hull (Mutanga and Skidmore, 

2003; Stevens and Ramirez Lopez, 2014)The continuum is calculated by linear interpolation of the reflectance 

spectrum’s maxima. We implemented CR following Stevens and Ramirez Lopez (2014) by cCalculating  

ɸ𝒊𝒊  =
𝒙𝒙𝒊𝒊
𝒄𝒄𝒊𝒊

                                                      (1) 

 175 

for i = {1, … , p) with xi and ci being the initial and the continuum reflectance values at wavelength i of a set of p 

wavelengths. ɸi then gives the continuum-removed reflectance value. ɸi (Stevens and Ramirez Lopez, 2014). All 
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other data have values between 1 and 0 (Mutanga and Skidmore, 2003; Schmidt and Skidmore, 2001). Thus the 

absorption peaks are enhanced (Schmidt and Skidmore, 2001). SNV is a scatter-corrective pre-processing method 

(Rinnan et al., 2009Barnes et al., 1989). The basic formula is as follows 180 

𝒙𝒙𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 =
𝒙𝒙𝒐𝒐𝒐𝒐𝒐𝒐 − 𝒂𝒂𝟎𝟎

𝒂𝒂𝟏𝟏
 

 

                                                   (2) 

with a0 as the measured spectrum’s average value which shall be corrected and a1 being the sample spectrum’s 

standard deviation. xorg are is the original spectra spectrum and xcorr the corrected spectra spectrum after applying 

SNV. In this study, SNV operates row-wise, so each observation is processed on its own (Rinnan et al., 2009; 

Stevens and Ramirez Lopez, 2014). d1 represents the slope of the spectrum, showing peaks where the spectrum 

displays its maximum slope and crossing zero where the spectrum shows peaks (Leone et al., 2012). According to 185 

Knadel et al. (2015) and  Smith (2002), d1 can be used to remove baseline offsets from the spectra. The estimation 

of d1 is done by computing the difference between two batchedd1 is calculated by the finite difference method, 

i.e. the difference between two subsequent data points spectral points xi and xi-1 (Eq. 3) 

𝒙𝒙𝒊𝒊′ = 𝒙𝒙𝒊𝒊 −  𝒙𝒙𝒊𝒊−𝟏𝟏                                                   (3) 

 

with xi’ as the value of the first derivative at the ith wavelength (Rinnan et al., 2009). The downside of using 190 

derivative spectra is their tendency to over-fit the calibration model (Stevens and Ramirez Lopez, 2014). Moreover, 

derivatives may increase noise so that a smoothing of the data is required (Leone et al., 2012; Stevens and Ramirez 

Lopez, 2014). With the gapDer, a smoothing is performed under a chosen segment size (s) and then a derivative 

follows (Stevens and Ramirez Lopez, 2014). The application of the different pre-processing methods for this study 

was conducted using R package prospectr (Stevens and Ramirez Lopez, 2014). 195 

Table 1 Combinations of pre-processing techniques used in this study; w = window size, s = segment size. 

Pre-processing methods Wavelength range  Abbreviation. 

Savitzky-Golay (w =11 nm) 432 – 2201 nm SG 

Savitzky-Golay  (w=11 nm) and continuum removal 432 – 2201 nm SGCR 

Standard normal variate and 1st derivative 408 – 2186 nm SNVd1 
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Fig. 3 Impact of different pre-processing techniques on a spectrum; SG = Savitzky-Golay, CR = continuum removal, 205 

SNV = standard normal variate, d1 = 1st derivative, gapDer = Gap-segment algorithm. 

Gap-segment algorithm (w = 11 nm, s = 10 nm) 490 – 2163 nm gapDer 
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2.5 Error propagation  

A problem occurring in every model building process is uncertainty propagation. Uncertainties of the input data 

and model, result in uncertainties in the output (Brown and Heuvelink, 2006). Uncertainties in the input data are 

caused by errors in data acquisition (e.g. measurement errors) as well as variation in the data themselves (e.g. 210 

within-sample variability) (Heuvelink, 1999). For this study, there are two different sources for errors in data 

acquisition: the measurement of the spectral data and the measurement of the SOC content of the soil samples. In 

order to investigate the influence of these errors, different datasets were built in this study. Fig. 4 gives an overview. 

From the measured Vis-NIR spectra, three different spectral data variants were created (Fig. 4, step 1). For the 

first variant, all 18 spectra were retained. The inclusion of all 18 spectra reveals the influence of the error 215 

implemented in the spectral measurements as well as the influence of the within-sample variability. For the second 

variant, the three measurements obtained before and after sample rotation were averaged separately resulting in 6 

spectra per sample showing the influence of within-sample variability (replicate measurements). For the third data 

variant, all 18 spectra were averaged to 1 mean spectrum per sample, removing the influence of the measurement 

error as well as the within-sample variability. The different spectra obtained through this procedure can be seen in 220 

Fig. 5;. oOnly parts of the spectra are depicted in order to show their differences. The three different spectral data 

variants were then pre-processed with the different pre-processing methods from Table 1 (Fig. 4, step 2), resulting 

into 12 different spectral datasets (Fig. 4, step 3). These were then combined with single and averaged SOC values 

in step 4 so that altogether 24 datasets were obtained (Fig. 4, step 5). In order to compare the two sampling designs, 

this procedure was carried out for the 50 soil samples labelled “A”‘A’ and “B”‘B’ and also for the complete set of 225 

soil samples. In this way, three different soil sample sets (“A”‘A’, “B”‘B’ and “all samples”‘all’ samples) were 

achievedobtained.  

 

Fig. 4 Datasets to investigate the uncertainty propagation. SG = Savitzky-Golay, CR = continuum removal, SNV = 

standard normal variate, d1 = 1st derivative, gapDer = Gap-segment algorithm. 230 
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Fig. 5 Zoom-in to a sample’s spectral dataset: a) 18 spectra comprised of 6 replicate sample measurements with 3 scans 

each, b) 6 spectra related to replicate sample measurements (average of three scans each)  and c) 1 averaged spectrum. 

2.6 Model building and validation 

Regression models were built using partial least square regression (PLSR). Out of the many algorithms, PLSR is 235 

seen as a standard method for spectral calibration and prediction (Mouazen et al., 2010; Tekin et al., 2014; Viscarra 

Rossel et al., 2006b). For recent applications to predict SOC from Vis-NIR soil spectra, see e.g. Liu et al. (2018) 

and Yang et al. (2019).For applications to predict SOC from Vis-NIR soil spectra see (Conforti et al., 2015; Jiang 

et al., 2016; Kuang and Mouazen, 2013; Nocita et al., 2013). PLSR is described in detail by Martens and Næs 

(1989) and Naes et al. (2002). It incorporates characteristics from principle principal component analysis (PCA) 240 

and multiple regression (Abdi, 2007). The concept behind PLSR is to seek a small number of linear combinations 

(components or latent factors) obtained from the measured spectral data and to use them in the regression equation 

to predict SOC instead of the initial values (Martens and Næs, 1989; Naes et al., 2002). These components are 

constructed so that they account for most of the variance in the measured spectral data (X) and the SOC content 

(Y), and at the same time maximize the correlation between X and Y. In other words, PLSR leads to the covariance 245 

between X and Y being maximized (Bjørsvik and Martens, 2008; Summers et al., 2011; Tekin et al., 2014; 

Wehrens, 2011).  

In order to receive a robust model, it is important not to include too many components in model building as this 

will lead to over-fitting (Hastie et al., 2009; Kuhn and Johnson, 2013). On the other hand, the inclusion of too few 

components comprises the risk of building an under-fitted model which is too small to cover the variability existing 250 

in the soil spectral data (Naes et al., 2002). The selection of the optimal number of components is hereinafter 

referred to as model tuning. In order to receive a robust model, resampling is commonly applied for model building 

and validation. But resampling can also be used for model tuning to receive robust tuning parameters (Guio Blanco 

et al., 2018; Hastie et al., 2009; Kuhn and Johnson, 2013). For small datasets, k-fold cross-validation (CV) is 

recommended (Hastie et al., 2009). 255 
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In this study, model building, model validation and model tuning was were done implemented using a nested 

repeated 5-fold cross-validation (CV) approach (Fig. 6)(, e.g. Varma and Simon, 2006, Guio Blanco et al., 2018). 

The CV for model validation and tuning consisted of a repeated k-fold group CV. Repeated 5-fold CV can increase 

the precision of the prediction while maintaining a small bias (Kuhn and Johnson, 2013). Five Repetitions of 5-

fold CV were conducted in this case. In order to calculate reliable error measures, the subdivision of the spectral 260 

data into the folds had to account for repeated scans and replicate measurements per sample. Accordingly, all 

spectra for one sample were assigned to the same fold during k-fold CV, i.e. k-fold group CV. Furthermore, to 

allow for comparison of the models built on behalf of the 24 datasets (Figure 4), the created folds coincide for all 

datasets; the data of certain sample IDs were always assigned to the same fold ID. For the model validation CV, 

two further aspects were taken into account that were neglected for the model tuning CV. The group CV was 265 

adapted to also guarantee that neighbouring points of ≤ 5 m distance were assigned to the same fold to avoid spatial 

autocorrelation and too optimistic error measures. Furthermore, the response variable’s density distribution was 

taken into account during fold creation, i.e. a stratified CV. Overall, a nested repeated k-fold group CV was applied.  

Five Repetitions of a 5-fold group CV were conducted in this case. Kuhn and Johnson (2013) recommend 5-fold 

CV as it can increase the precision of the prediction while maintaining a small bias. 270 

Fig. 6 shows the various steps of the modelling procedure involving repeated 5-fold group CV for model tuning 

(right box) and validation (left box). In the process, the dataset (n = 100%) is randomly subdivided into 5 folds of 

equal size (step 1). One of the 5 folds is held out as a test set and the other four are used as the training set and 

partitioned again into 5 folds for model tuning (step 2). The optimal number of components (best Ncomp) is then 

determined by computing a PLSR on the resampled data, testing 1 to 30 components (step 3), and calculating the 275 

repeatedly 5-fold cross-validated RMSE of model tuning (RMSEMT) corresponding to each number of components 

(step 4). This The latter was implemented with the trainControl() function in of R package caret (Kuhn, 2017). 

The optimal number of components (step 5) is then used in model building (step 6). The resulting model’s test set 

RMSE of model validation (RMSEMV) is determined in step 7. The whole procedure is repeated until all folds in 

the boxes have once been used as the test set to have a simple 5-fold group CV. A repeated 5-fold group CV means 280 

that the model tuning CV and model validation CV each have to be rerun according to the number of repetitions. 

Finally, tThe model performance results of the models built with the 24 datasets are now compared based on their 

mean RMSEMV mean and and their interquartile range. Table 2 displays the respective dataset size per soil sample. 

The resulting datasets and models were named after the following scheme: Datasetx1 x2 x3 with the SOC 

measurement error (x1), the spectral measurement error (x2) and the within-sample variability (x3). A value of 1 285 
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indicates that the respective error is included in the model, a value of 0 shows that the error was removed 

beforehand by averaging the data.   

 

Fig. 6 Model tuning and model validation procedure with a nested k-fold group cross validationCV approach. The right 

box shows the model tuning, the left one the model validation procedure; Ncomp = number of components; adapted from 290 

Guio Blanco et al. (2018). 

Table 2. Data basis per soil sample 

 Number of SOC 
values per sample 

Number of measured 
spectra per sample 

The resulting size of the 
dataset per sample 

Dataset111 3 18 54 

Dataset101 3 6 18 

Dataset100 3 1 3 

Dataset011 1 18 18 

Dataset001 1 6 6 

Dataset000 1 1 1 

 

In this study, the subdivsision of the spectral data into the folds for 5-fold CV had to account for repeated scans 

and replicate measurements per sample. All spectra for one sample were assigned to the same fold during k-fold 295 

CV, i.e. k-fold group CV. The folds contained always the same sample IDs for the various data variants described 

in Figure 4. For model validation, folds were created following a repeated stratified group CV approach (5-fold). 

The data were primarily subdivided into 5 equal probability strata based on their density function. The data from 

each of the strata were then randomly assigned to the 5 folds. Neighbouring points of ≤ 5 m distance were assigned 

to the same fold to avoid spatial autocorrelation and too optimistic error measures. 300 
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3 Results and Discussion 

3.1 Soil organic carbon content 

Fig. 7 shows compares the distribution of the SOC content of the three soil sample sets, consisting of 50 soil 

samples labelled “A” and “B” and  100 soil samples referred to as “all samples”to the LTFE archive data (Fig. 1). 305 

The measurement error existing in the SOC measurements, here defined as the difference between replicate 

measurements, ranges from 0.003 to 0.229 % SOC with a mean of 0.048 % SOC. The aim of this study was not to 

compare the two different sampling designs among each other, but to test whether they are representative of the 

SOC values existing on the LTFE. For this purpose, per-plot soil archive data from the years 2004 to 2007 are also 

displayed. A Mann–Whitney U test was applied. The statistics of the data are given in Table 23. In order to compare 310 

distributions between the archive SOC data and “A”, “B” and “all samples”, a Mann–Whitney U test was applied 

to the data, testing the “A”, “B” and “all samples” against the archive data, respectively. In all cases, no significant 

difference between the different respective sample datasets and the archive data could be found. This shows that 

all soil sample sets used in this study are were representative for of the SOC values existingvariability oin the 

LTFE. Nevertheless, the SOC distribution of “A”‘A’ and “B”‘B’ samples differed, with the “A” samples 315 

resembling the distribution of all 100 samples more than the “B” samples. . The “A”‘A’ samples contained more 

samples representing higher SOC values, whereas the “B”‘B’ samples showed a higher representation for lower 

SOC values. This difference in the distribution of SOC values may have an influence on the prediction results of 

the models built with “A” and “B” samples. “A” models may be better in predicting higher SOC values, while 

simultaneously failing to estimate lower SOC values in an appropriate way. To the contrary, “B” models may 320 

predict lower SOC values more accurate than higher SOC values. The violin plots of all three soil sampledata sets 

do not resemble the archive violin plot very much. The plots for “A”‘A’ and all samples show higher and lower 

SOC values than the archive data, ‘B’ samples share the same minimum value with the archive data but display 

slightly higher SOC values. This difference is likely due to the fact that the archivehose data awere obtained from 

compound samples for one plot, i.e. a number of distributed soil samples were taken per LTFE plot and mixed 325 

before they were subjected to soil laboratory analysis. The “B” samples share the same minimum value with the 

archive data, but display slightly higher SOC values. This indicates that the choice of the sampling design might 

have an influence on the model outcome, even if both designs represent the SOC values on the experimental field 

in an appropriate way.  
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 330 

Fig. 7 Soil organic carbon (SOC) content of the three soil sample sets “A”‘A’ (left), “B”‘B’ (middle),  and all  (middle) 

and of archive data measured from 2004 to 2007 (right); The thin line shows the 95 % confidence interval, the bar the 

interquartile range and the dot the median; Mann–Whitney U test was used to compare “A”‘A’, “B”‘B’, and all samples 

to the archive data; the three soil sample sets were not compared among each other.  

Table 2 3. Statistics of soil organic carbon in [%] for the three different soil sample sets and the per-plot soil archive 335 

data. 

Samples Min. 1st Qu. Median Mean 3rd Qu. Max. 

“A”‘A’ 1.47 1.82 2.21 2.11 2.36 2.93 

“B”‘B’ 1.49 1.70 1.97 2.02 2.31 2.74 

‘all’ 1.47 1.72 2.12 2.01 2.35 2.93 

Archive data 1.49 1.89 2.09 2.08 2.33 2.64 

3.2 Comparison of datasets and pre-processing methods 

According to Filzmoser (2005), the Mahalanobis distance of normally distributed data follows a chi-square 

distribution. Observations which lay beyond a certain quantile of this distribution are marked as outliers and 

removed from the data (Filzmoser and Gschwandtner, 2017). In this study, no outliers were detected. 340 
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Table 3 displays the different combinations of soil spectra and SOC values per soil sample. The resulting models 

are then named after the following scheme: Datasetx1 x2 x3 with the SOC measurement error (x1), the spectral 

measurement error (x2) and the within-sample variability (x3). The number 1 indicates that the respective error is 

included into the model, the number 0 shows that the error was removed beforehand by averaging the data.   

Table 3 Data basis per soil sample 345 

 Number of SOC 
values per sample 

Number of measured 
spectra per sample 

Resulting size of the dataset 
per sample  

Dataset111 3 18 54 

Dataset101 3 6 18 

Dataset100 3 1 3 

Dataset011 1 18 18 

Dataset001 1 6 6 

Dataset000 1 1 1 

 

Fig. 8 shows the boxplots of the RMSEMV. The results of the six datasets corresponding to different information 

concerning SOC values and spectra (Table 2) are displayed in one plot, the results according to the various pre-

processing methods (compare Fig. 4) are displayed in figure lines 1 to 4 anel, and t. The results of the models using 

built from the data corresponding to “A”‘A’ samples, ‘B’ samples and ‘all’ samples are shown in the 1st figure 350 

columns a, b and c(a), “B” samples in the 2nd column (b) and all samples in the 3rd column (c); Figure lines 1 to 4 

refer to the used pre-processing method. As 5-fold CV with five repetitions was performed, five RMSEMV are 

shown in each boxplot. 
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Fig. 8 Boxplots of testset RMSEMV (5 repetetions) obtained with the various datasets; Figure columns refer to datasets 355 

using a) ‘A’ samples, b) ‘B’ samples and c) ‘all’ samples; figure rows refer to the applied pre-processing, 1 = SG, 2 = 

SGCR, 3 = SNVd1, 4 = gapDer. 

 It is not surprising thatAs expected, the dataset of 3 SOC replicate measurements with 1 averaged spectrum 

(Dataset100) results resulted in low model performance, as the within-sample variance concerning SOC cannot 

could not be explained by the contained predictor information; the input data uncertainty propagateds through the 360 

model building process. This model performance wais impaired in some cases by Dataset101 which combines 

combined the 3 SOC measurements with 6 replicate spectral measurements (Figures 8b1, a2, a3, b3, c3) but not 

always. It seems that the within within-sample variation concerning soil spectra can was somehow able to 

compensate for the within within-sample variability concerning SOC within the model building process, although 

replicate measurements do did not match. Considering the dataset with 18 spectra and 3 SOC measurements 365 

(Dataset111), model performance improves improved even further (Dataset111). In contrast to this, we fiound the 

expected pattern while only 1 SOC measurement wais considered: model performance results display an increase 
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of RMSE values from Dataset000 to Dataset001 to Dataset011 due to the fact that more spectral variance wais related 

to the same target information concerning SOC. This applies for three of the four spectral pre-processing variants 

(SG, SGCR, gapDer), while SNVd1 pre-processing displays an unexpected pattern with datasets including 370 

replicate measurements and multiple scans even outperforming those with averaged data. Overall SGCR resulted 

in the best model performance for data ‘A’ (Figure 8a2) and ‘all’ samples (Figure 8c2), while SG pre-processing 

resulted best for data ‘B’ (Figure 8b1). However, the latter does not apply for Dataset000 where gapDer pre-

processing resulted in the best model performance with RMSEMV= 0.13.  

The overall best pre-processing methods in this study were the combination of SG and CR as well as SG alone. 375 

SG was used successfully by many authors before for spectral pre-processing. CR was used by e.g. Viscarra Rossel 

et al. (2016) or Loum et al. (2016) with acceptable success. The combination of SG and CR could not be found in 

literature, though. SNV was applied before by other authors in order to remove baseline effects (Knadel et al., 

2015; Minasny et al., 2011; Viscarra Rossel et al., 2006a). The pre-processing technique d1 was found to lead to 

poorer model results and rather unexpected performance patterns in this study. The former may have its cause in 380 

the tendency of d1 to increase noise (Leone et al., 2012; Stevens and Ramirez Lopez, 2014). We do not have an 

explanation for the latter, though. Leone et al. (2012) suggested the usage of SG in combination with d1 to solve 

the problem. For the usage of gapDer no comparison could be found in the literature.  

Comparing the mean RMSEMV, the  for models built on samples ‘A’ and ‘B’, models build on samples ’B’ resulted 

in better model performance than those built on samples ‘A’ whith the exception of Dataset100.  The locations of 385 

the ‘B’ samples were determined using the Kennard-Stone-algorithm, those of the ‘A’ samples with k-means 

clustering algorithm. Fig. 7 allows an assessment of the data collected by those two sampling designs and shows 

no clear resemblance between the violin plots of ‘A’, ‘B’ , all samples, and the archive violin plot. But Tthe Mann–

Whitney U test did not show a significant difference between the archive data and the sample sets used in this 

study. ‘A’ samples as well as ‘B’ samples, as well as ‘B’ samples, seem to represent the LTFE SOCarchive data 390 

in an adequate way. As already mentioned aboveNevertheless, the difference in the distribution of SOC values of 

‘A’ and ‘B’ samples might may have led to a the observed different predictive capability in certain SOC value 

ranges. However, whether If this difference is the reason for the better performance of the ‘B’ models cannot be 

stated with certainty. 

Comparing the results of  Dataset111 with those of Dataset000, shows how the inclusion of all input data uncertainties 395 

affectimpaireds the model resultsmodel performance. It can be seen that a model without error propagation 

(Dataset000) reaches achieved a mean RMSEMV of 0.12 % SOC and a mean R2 of 0.86 using the pre-processing 
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method which delivered the best results. A model with error propagation (Dataset111), on the other hand, reaches 

reached a mean RMSEMV of 0.16 % SOC and an R2 of 0.77. This is further illustrated in Fig. 9 and could be 

expected, as Dataset000 contains contained no input data uncertainties, . tThe RMSEMV values, therefore, only 400 

correspond to the model building process. Overall, the best model performance which does did not consider error 

propagation corresponds corresponded to a mean RMSEMV of 0.12 % SOC (R²=0.86). This model performance is 

was impaired by ∆RMSEMV = 0.04% SOC while considering input data uncertainties (∆R²=0.09), and by 

∆RMSEMV = 0.12 (∆R²=0.17) considering an inappropriate pre-processing. The effect of the sampling design 

amounts amounted to a ∆RMSEMV of 0.02% SOC (∆R²=0.05). Overall, the additional accounting of neighbouring 405 

sample locations during fold division not only for model validation CV but also for model tuning CV might still 

improve the performance of all models. This is currently not implemented in the applied R package caret. We will, 

therefore, opt for other implementations in future studies. 

 

Fig. 9 Comparison of predicted and observed soil organic carbon (SOC) values for Dataset111 (a1 to c1) and Dataset000 410 

(a2 to c2) for five repetitions with the corresponding best pre-processing (SGCR for data ‘A’ and ‘all’ ADATAdata, SG 

for data ‘B’); a) shows results for ‘A’ samples, b) for ‘B’ samples and c) for all samples. The depicted RMSE and R² 

values refer to the mean of 5 repetitions. 
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Model performance values between studies that use VIS-NIR spectral information to predict soil properties are 

often compared to one another without mentioning the underlying range of the target variable, the variability of 415 

the measured soils, the applied sampling design, measurement protocol, validation approach, or applied 

instrumentation. Often, this information is not even provided by the respective studies. However, all of this has an 

impact on the calculated measures of model performance. Table 4 provides some of this information but not all 

details of the applied measurement protocol. Examples of other studies using Vis-NIR spectra to predict SOC are 

listed in Table 4. Most studiesThe listed studies used a different number of scans and replicate samples to get 420 

calculate an averaged spectrum to predict SOC, . so Often, it is not specified whether the measurements refer to 

instrument internal scans, repeated external scans, or replicate measurements. As a consequence, the error 

implemented in the respective spectral input data is must be assumed to be different. Pimstein et al. (2011) 

proposed a number of 3-5 replicate measurements as standard protocol for measurering Vis-NIR spectra of soil 

samples under laboratory conditions. Figure 5b indicated the high impact of within within-sample variance 425 

determined by the measurements of replicate samples, whereas the effect of the repeated scans per replicate is was 

comparatively small (compare Figures 5a and b). We dried and sieved the samples before spectral measurements 

but did not grind them to a fine powder. The latter might reduce the spectral variance in replicate measurements, 

but the benefit of Vis-NIR spectroscopy as a fast and inexpensive method is would be reduced. One might argue 

that samples have had to be grinded ground for SOC analysis, anyway. However, this requires a tiny fraction of 430 

the large amount that would have to be grinded ground for Vis-NIR measurements. In addition, comparison to 

measurements under field conditions would beis further distorted while grinding the samples for laboratory 

measurements.  As shown in Figure 8, the input data error has a major influence on the model outcome. In none 

of these studies listed in Table 4, the error in SOC measurements is was mentioned to be considered during model 

building. Also, in most studies the available dataset iwas randomly parted into calibration and validation set, using 435 

different percentages data proportions of the data for the two sets. Jeong et al., ( 2017 ) and  Beleites et al. (2005) 

showed that different validation strategies lead to different error measuresvalues. As shown in Figure 8, the input 

data uncertainty had a major influence on model performance. Accordingly, the applied measurement protocol 

should be reported in all details. 
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Table 4 R2 model performance values from Vis-NIR applications to predict SOCfrom literature for soil organic carbon 440 

prediction models. 

Authors SOC 

[%] 

Soil 

variabilit

y 

instrumentati

on 

number 

of 

samples

n 

average

d scans 

per 

sample

m 

calibration and 

validation set 

R2 

(Reeves 

and 

Smith, 

(2009) 

0.04 

– 

34.2 

various 

soil types 

(USA) 

Digilab FTS 

7000 Fourier 

tranform 

720 64 

(internal 

scans) 

a) Cross-validation with 

all samplesLOO CV  

b) Independent validation 

setcluster analysis based 

partition (½, ½) 

a) 

0.534  

b) 

0.335 

Liu et 

al., 2018 

0.10 -

3.40 

various 

soil types 

(China) 

ASD 

FieldSpec Pro 

515 10 scans Stratified systematic 

partition (75%, 25%) 

0.74 – 

0.83 

(Islam et 

al., 

(2003) 

0.06 -

4.95 

various 

soil types 

(Australia

) 

Cary 500 (UV-

VIS-NIR), 

Labsphere 

DRA_CA-50D 

161 - Randomly selected from 

datasetrandom partition 

(121 / 403/4, 1/4) 

0.76 

(Wang 

et al., 

2014) 

156  4 Randomly selected from 

dataset (116 / 40) 

0.67 - 

0.88  

(Volkan 

Bilgili et 

al., 

(2010) 

0.39 -

0.69 

(SO

M) 

various 

soil types 

(Turkey) 

ASD 

FieldSpec Pro 

512 100 100 

(2 

replicate

s, 5 

scans, 

10 

Randomly selected from 

datasetrandom partition 

(70 %, and 30 %) 

0.80 



23 
 

internal 

scans) 

(Kuang 

and 

Mouaze

n, 2013) 

174  10 60 % and 40 % - 

(Jiang et 

al., 

(2016) 

0.24 -

2.62 

various 

soil types 

(China) 

ASD 

FieldSpec 3  

98 10 Dataset parted into 

calibration and validation 

setstratified partition 

(2/3, 1/3) 

0.58 - 

0.85 

(Confort

i et al., 

(2015) 

0.3 -

6.5 

various 

soil types 

(Italy) 

ASD 

FieldSpec Pro 

201 30 CV (unspecified)- - 

Yang et 

al., 2019 

0.24 -

6.05 

(SO

M) 

single 

soil type, 

texture 

range 

(China) 

ASD 

FieldSpec Pro  

523 3 

replicate

s, 10 

internal 

scans 

partition (2/3, 1/3) 0.81 

(Leone 

et al., 

(2012) 

0.04 -

21.56 

various 

soil types 

(Italy) 

ASD 

FiledSpec Pro 

374 4 scans Randomly selected from 

datasetrandom partition 

(2/3, and 1/3) 

0.84 - 

0.92 

n = number of samples, m = averaged spectral measurements per sample, LOO CV = leave-one-out cross-

validation 

The overall best pre-processing methods in this study were the combination of SG and CR as well as SG alone. 

SG was used successfully by many authors before for spectral pre-processing (Bogrekci and Lee, 2006; Nocita et 445 

al., 2013; Stevens et al., 2013; Viscarra Rossel et al., 2006a). CR was used by e.g. Viscarra Rossel et al. (2016) or 

Loum et al. (2016) with acceptable success. The combination of SG and CR could not be found in literature, 

though. SNV was applied before by other authors in order to remove baseline effects (Knadel et al., 2015; Minasny 

et al., 2011; Viscarra Rossel et al., 2006a). The pre-processing technique d1 was found to lead to poorer model 
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results and rather unexpected performance patterns in this study. The former may have its cause in the tendency 450 

of d1 to over-fitting and the increasing of noise in the data as reported by some authors before (Leone et al., 2012; 

Stevens and Ramirez Lopez, 2014). We do not have an explanation for the latter, though. Leone et al. (2012) 

suggests the usage of SG in combination with d1 to solve the problem. For the usage of gapDer no comparison 

could be found in literature. As there is no standard pre-processing technique which works on all spectral data 

(Stenberg and Viscarra Rossel, 2010), it is recommended to always test various techniques and to choose the one 455 

which performs best for the respective data.  

4 Conclusions 

This study aimed to investigateaddressed the influence impact of various data and modellingdifferent aspects on 

have on the model building process and the calculation of error measuresmodel performance with a focus on the 

propagation of input data uncertainties.. Overall, the best model performance which did not consider uncertainty 460 

propagation corresponded to a mean RMSEMV of 0.12% SOC (R²=0.86). This model performance was impaired 

by ∆RMSEMV = 0.04% SOC considering input data uncertainties (∆R²=0.09), and by ∆RMSEMV = 0.12% SOC 

(∆R²=0.17) considering an inappropriate pre-processing. The effect of the sampling design amounted to a 

∆RMSEMV of 0.02% SOC (∆R²=0.05). Those aspects included the input data uncertainties, the number of 

measurements per sample and the chosen pre-processing method. Furthermore, the effect of sampling design, 465 

model tuning and validation procedure was discussed. Overall, tThe applied nested k-fold group cross 

validationCV approach that includes resampling in model tuning as well as evaluation can be recommended in 

general. The fact that replicate measurements and scans as well as geographically near samples have to be assigned 

to the same fold (k-fold group CV) in order to obtain unbiased error measures is often neglected, and, therefore, 

has to be emphasized. Overall the best model performance which does not consider error propagation corresponds 470 

to a mean RMSEMV of 0.12 % SOC (R²=0.86). This model performance is impaired by ∆RMSEMV = 0.04% SOC 

while considering input data uncertainties (∆R²=0.09), and by ∆RMSEMV = 0.12 (∆R²=0.17) considering an 

inappropriate pre-processing. The effect of the sampling design amounts to a ∆RMSEMV of 0.02% SOC 

(∆R²=0.05). We are aware that the consideration of stratified group CV for model evaluation but only partly for 

tuning (spectral replicate measurements and scans per sample were always assigned to the same fold) might impair 475 

model performance as suboptimal model parameters might be selected. This will be adapted in future studies.  

The rather high within-sample variance of spectral replicate measurements of field-scale soil samples of very 

similar mineral composition requires a reconsideration of the number of replicate measurements per sample. 3-5 
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replicates as suggested for Vis-NIR soil measurements might simply not be enough. In general, this within-sample 

variability depends on the soil treatment and possibly also on the origin of the samples (e.g. agricultural or forest 480 

soils). OverallFurthermore, this study showed that it is of important uttermost importance to clarify which 

information is contained in the reported error measure valuescontains. We are aware that the consideration of 

stratified group CV for model evaluation but only partly for tuning (spectral replicate measurements and scans per 

sample were always assigned to the same fold) might impair model performance as suboptimal model parameters 

might be selected. This will be adapted in future studies. We, therefore, emphasize the necessity of a transparent 485 

and precise documentation of the measurement protocol, the model building and validation procesdure, including 

the calculation of the error measure, in order to assess model preformance performance in a comprehensive way 

and allow for comparison between publications. Particularly, when Vis-NIR spectrometry is used for soil 

monitoring, the aspect of uncertainty propagation in the involved modelling procedure becomes essential.  

 490 
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